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Abstract. This paper investigates the convergence of the Lanczos method for computing the
smallest eigenpair of a selfadjoint elliptic di�erential operator via inverse iteration (without shifts).
Superlinear convergence rates are established, and their sharpness is investigated for a simple model
problem. These results are illustrated numerically for a more di�cult problem.
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1. Introduction. The power iteration method is a very well-known tool for

approximating the largest eigenvalue of a symmetric, positive de�nite matrix. It has

a linear rate of convergence, where the convergence factor is given by the ratio of

subdominant over dominant eigenvalue. However, with essentially the same amount

of work (i.e., the same number of matrix vector multiplies) the Lanczos method [8]

always yields better approximations of this eigenvalue, and at the same time provides

some information about the remainder of the spectrum of the given matrix.

Although being a close relative of the conjugate gradient iteration for solving

linear systems of equations, the convergence theory for the Lanczos method is less

developed. Essentially, there are only the error bounds by Kaniel and Saad, as pre-

sented for instance in Parlett's book [10]. These bounds improve on the convergence

factor of the power method, but still, the established rate of convergence is only

linear. On the other hand the conjugate gradient method is known to converge su-

perlinearly, and hence, at least under appropriate assumptions on the distribution

of the given eigenvalues one may also expect superlinear convergence of the Lanczos

approximations.

In this paper the performance of the Lanczos method is considered, when applied

to a compact selfadjoint operator K with eigenvalues �n, which decay like

�n � n�s; n!1 ;

here s > 0 is a prescribed number. This may correspond to applications where one is

interested in the smallest eigenvalue(s) of a selfadjoint elliptic di�erential operator L of

order s, in which case one would choose K to be the inverse of L on its range. Ericsson

and Ruhe [4] have shown that the Lanczos method is a very e�cient algorithm for

this kind of eigenvalue problem; cf. Weinberger [13] for a number of corresponding

applications.

The bounds that will be established below imply a superlinear rate of the form

(q=k)2sk with some q > 0 ;(1.1)

as the number k of Lanczos iterations tends to in�nity. A good way to think of this is

as of a linear rate with a convergence factor decreasing like k�2s during the iteration.

Note that this is worse than the Rayleigh quotient iteration (cf., e.g., [10]), which is

known to have a cubic convergence rate locally. However, as the numerical results in
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[4] and in Section 4 show, the convergence rate of the Lanczos method is su�ciently

rapid to ensure that only few Lanczos iterations are required for an accuracy up to

the order of the discretization error. On the other hand, an implementation of the

Rayleigh quotient iteration may su�er from the use of di�erent shifts �k in each iter-

ation, by which the shifted operator L� �kI becomes inde�nite and almost singular,

with increasing numerical di�culties in the solution of the associated linear systems.

For computing eigenvalues of di�erential operators, direct multigrid techniques as

described by Hackbusch [7, Chapter 12] will typically be superior.

The main emphasis of this paper, however, is not on superlinear upper bounds,

but rather on lower bounds for the Lanczos method. In Section 3 it will be shown for a

one-dimensional example, namely Lu = �u00, that the established upper bound (1.1)

is sharp up to a slight overestimation of the factor q. For this example the precise

asymptotic behaviour of the approximation error after k Lanczos steps is determined

by using the connection between the Lanczos iteration and orthogonal polynomials.

The corresponding polynomials can be expressed explicitly in terms of (modi�ed)

Lommel polynomials, and the required asymptotic behaviour of these polynomials

will be derived to obtain the desired result.

It should be emphasized that this theoretical analysis presumes exact arithmetic,

and also does not take the discretization error into account. It is well-known that in

practice the Lanczos method may slow down due to round-o� errors. Concerning this

important topic the reader is referred to Cullum and Willoughby [3], or to the pro-

ceedings of the Lanczos Centenary Conference [1] for more recent references. To pay

tribute to these practical considerations, however, numerical results for a two dimen-

sional partial di�erential operator of second order have been included in Section 4.

These results illustrate the rapid convergence of the eigenvalue approximations even

with �nite precision arithmetic.

2. A general superlinear upper bound. In the following some basic proper-

ties of the Lanczos process are recollected for the ease of presentation; see Golub and

Van Loan [5] or Parlett [10] for further details. It shall be assumed throughout that

K is a compact, selfadjoint and positive de�nite operator in a Hilbert space X . Let

fxng and f�ng, respectively, denote the normalized eigenfunctions and eigenvalues of

K and, without loss of generality, let f�ng be in strictly decreasing order. Given any

y =

1X
n=1

�nxn 2 X ;

with in�nitely many �n 6= 0, a (discrete) inner product

[';  ] :=

1X
n=1

�2n'(�n) (�n); ';  2 � ;(2.1)

can be de�ned in the space � of polynomials over IR.

The Lanczos method with starting vector v0 = y=kyk generates an orthonormal

basis fvjgk�1j=0 of the kth Krylov subspace

Kk(K; y) = spanfy;Ky;K2y; : : : ;Kk�1yg � X(2.2)

via the iteration

�j+1vj+1 = (K � �jI)vj � �jvj�1; j = 0; 1; : : :; k � 1 ;(2.3)
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here, �j+1 > 0 is implicitly de�ned so as to normalize vj+1, and one has �j = hvj ;Kvji
because of the orthogonality requirement. For notational convenience let v�1 = 0.

Introducing

Vk = (v0; v1; : : : ; vk�1) ;

one can rewrite (2.3) formally in short terms as

KVk = VkTk + �kvke
T
k ;(2.4)

where ek is the kth Cartesian coordinate vector and Tk is the k�k tridiagonal matrix

of the recursion coe�cients,

Tk =

0
BBBB@

�0 �1 0

�1 �1
. . .

. . .
. . . �k�1

0 �k�1 �k�1

1
CCCCA :

By multiplying (2.4) formally from the left with V �k it becomes evident that the matrix

Tk = V �k KVk = (hvi;Kvji)k�1i;j=0

is a representation of the orthogonal projection of K onto the Krylov space Kk(K; y),

and it makes sense to consider the eigenvalues of Tk as approximate eigenvalues of K.

The results in this paper strongly rely on the following connection to the theory

of orthogonal polynomials. As is obvious from the de�nition (2.2), the basis vector

vj 2 Kj+1(K; y) can be rewritten as

vj = pj(K)y ;(2.5)

where pj 2 �j, i.e., the subset of polynomials of degree j or less. Moreover, from the

orthonormality of the fvjg and the de�nition of the inner product (2.1) follows

�ij = hvi; vji = hpi(K)y; pj(K)yi =
1X
n=1

�2npi(�n)pj(�n) = [pi; pj] :

In other words, the polynomials fpjgj�0 form a sequence of orthonormal polynomi-

als with respect to the inner product (2.1). These polynomials satisfy a three-term

recurrence relation, and it is obvious from (2.3) and (2.5) that the same coe�cients

appear as in (2.3), i.e.,

�j+1pj+1(�) = (�� �j)pj(�) � �jpj�1(�); j = 0; 1; : : : ; k� 1 ;(2.6)

with p�1 � 0 and p0 � 1=kyk . Consequently, the matrix Tk is just the principal k�k
submatrix of the semiin�nite Jacobi matrix corresponding to this inner product.

It is well-known that the eigenvalues of Tk are the roots of the kth orthogonal

polynomial pk, and that an eigenvector u corresponding to such a root � is given by

u =
�
p0(�); p1(�); : : : ; pk�1(�)

�T
:(2.7)

The roots of pk (also called Ritz values) shall be denoted by

�1;k > �2;k > : : : > �k;k :

3



At this point it is worth mentioning a well-known a posteriori bound for the error

between eigenvalues of Tk and K, cf. [10, Section 13-2]. To this end let � 2 f�j;kgkj=1,
and u be the corresponding eigenvector (2.7) of Tk; then there is an eigenvalue �n of

K with

j�n � �j � "k :=
�kpk�1(�)�

p20(�) + : : :+ p2k�1(�)
�1=2 :(2.8)

This follows readily from (2.4) and standard perturbation theory.

To formulate the asymptotic results two di�erent notations will be used: the

statement an � bn means that an=bn and bn=an are bounded as n!1; if, moreover,

an=bn ! 1 as n!1 then this is denoted by an ' bn. The following result states an

upper bound for the superlinear convergence rate of the Lanczos method.

Theorem 2.1. Let �n � n�s for some s > 0, and assume that y has a component

along x1, i.e., �1 6= 0. Then there are some q > 0 and c > 0 such that

0 < �1 � �1;k � c(q=k)2sk; k = 1; 2; : : :(2.9)

Proof. For any element u 2 IRk one has Vku 2 Kk�1(K; y), and hence there is a

polynomial p of degree k � 1 or less with

Vku = p(K)y :(2.10)

Vice versa, any polynomial of degree k � 1 can be identi�ed with an element of IRk

via (2.10). This yields the following well-known variational characterization of the

largest Ritz value,

�1;k = max
u6=0

u
TTku

uTu
= max

u6=0

hVku;KVkui
hVku; Vkui

= max
06=p2�k�1

hp(K)y;Kp(K)yi
hp(K)y; p(K)yi ;

which can be rewritten in terms of the inner product (2.1) as

�1;k = max
06=p2�k�1

[p; �p]

[p; p]
:(2.11)

It should be mentioned that (2.11) is also known in the orthogonal polynomial

literature (cf., e.g., Szeg�o [11, Section 7.72]), and has already been the starting point

for the error analysis of Kaniel and Saad (cf. [10, Section 12-4]). Here, let

p(�) :=

kY
j=2

�
1� �

�j

�
2 �k�1 ;

i.e., p vanishes at all eigenvalues �2 through �k, and { by monotonicity { is bounded

by p(0) = 1 in [0; �k]. Then it follows from (2.11) and (2.1) that

�1;k �
[p; �p]

[p; p]
� �21�1p

2(�1)

�21p
2(�1) +

P1
n=k+1 �

2
n

:

Since f�ng 2 `2 is square summable the series in the denominator is bounded, e.g.,

by kyk2, and hence one has

�1 � �1;k � �1 (
kyk
�1

)2 p�2(�1) :
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To complete the proof an estimate of p(�1) is required. By assumption, �1=�n � "ns

for some " > 0, and hence,

jp(�1)j =
kY

j=2

�1

�j

�� �j
�1

� 1
�� � "k�1

�
1� �2

�1

�k�1
�s(k + 1) :(2.12)

The assertion now follows from Stirling's formula.

It must be mentioned that the use of polynomials with prescribed zeros in some

of the eigenvalues of K has already been suggested in [10, p. 247] to obtain useful

error bounds for clustered spectra; however, there seems to be no bound like (2.9) in

the literature. Note how (2.9) illuminates the sensitivity of the rate of convergence on

the decay rate of the eigenvalues. If the eigenvalues converge rapidly to zero then one

can think of the dominating eigenvalue(s) to be more isolated. Note that this need

not a�ect the convergence rate of the power method.

The technique used in the proof of Theorem 2.1 is not restricted to the largest

eigenvalue only. For example, to estimate �2 � �2;k one has to impose a prescribed

zero in �1;k for the polynomials p 2 �k�1 to be used in (2.11). The resulting bound

is the same as (2.9), but with some larger q and c. For an estimation of q see the

following section, i.e., (3.2).

Finally, it should be mentioned that similar techniques have been applied by

Nevanlinna in his monograph [9] to estimate the superlinear convergence rate of con-

jugate gradient type methods for solving linear equations. Although not obvious right

away, it turns out that the rate of convergence for the eigenvalue approximations is

similar (up to a square root) to the one for solving the linear system (I + K)x = y,

cf. [9, Theorem 5.8.10].

3. A model problem. In this section the sharpness of Theorem 2.1 will be in-

vestigated. To this end consider the problem of approximating the smallest eigenvalue

of the di�erential operator

Lu = �u00; D(L) = H2(0; 1)\H1
0[0; 1] � L2(0; 1) :(3.1)

As is well-known the normalized eigenfunctions xn(t) of L are the sines
p
2 sinn�t

corresponding to eigenvalues �n = (n�)2, n = 1; 2; : : :. Let y(t) = t be the initial

function for the Lanczos process to be considered in L2(0; 1). Note that in each step

of (2.3) a boundary value problem

Lwj = vj ; wj(0) = wj(1) = 0 ;

has to be solved for wj, and then

�j+1vj+1 = wj � �jvj � �jvj�1 :

Since

y(t) =

1X
n=1

(�1)n+1 2

n�
sinn�t; a.e. in (0; 1) ;

the inner product (2.1) corresponds to a discrete measure with point masses �2n =

2(�n)�2 at �n = (�n)�2, n 2 IN. Consequently, this problem meets the setting of
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Theorem 2.1 with s = 2. Note that with this more detailed information the evaluation

of (2.12) yields the upper bound

�1 � �1;k �
2

3

� k

k + 1

�2
��4(k + 1) ' 1

6�2
k�2(e=k)4k(3.2)

for the error of the Ritz values.

The reason for introducing this particular problem as a model problem is that one

can determine the orthogonal polynomials with respect to (2.1) explicitly in this case.

Still, this does not mean that their zeros are known, but their asymptotic behavior

can be determined on the basis of the following (general) observation.

Lemma 3.1. Let � be a discrete measure with point masses at f�ng1n=1, where �n
is monotonically decreasing to zero. If fpkg is a sequence of orthogonal polynomials

with respect to d� and �1;k the largest zero of pk then

�1 � �1;k '
pk(�1)

p0k(�1)
; k !1 :(3.3)

Proof. Since �j;k are the zeros of pk one can rewrite

pk(�) = pk(0)

kY
j=1

�
1� �

�j;k

�
;

which yields

p0k(�) = pk(�)

kX
j=1

1

� � �j;k
;

i.e.,

p0k(�1)

pk(�1)
=

kX
j=1

1

�1 � �j;k
:(3.4)

Recall that between any two mass points of � there is at most one root of pk (cf. [11,

Theorem 3.41.2]), and hence,

�1 � �2 � �1 � �j;k � �1; 2 � j � k :

Consequently, since �1;k converges with superlinear rate to �1 one can conclude from

(3.4) that

p0k(�1)

pk(�1)
= (�1 � �1;k)

�1 + O(k) ' (�1 � �1;k)
�1 ;

which was to be shown.

Consider now the Lommel polynomials fhk;�g1k=0 for � > 0, cf., e.g., Watson [12,

Section 9�6], or Chihara [2, Section VI.6]; the present notation is adopted from [2]. For

� > 0 the Lommel polynomials are orthogonal with respect to a discrete measure with

masses j�2n;��1 at �j�1n;��1, where jn;��1 denotes the nth positive zero of the Bessel

function J��1 of order � � 1. The three-term recurrence relation is

hk+1;�(�) = 2�(k + �)hk;�(�) � hk�1;�(�); k = 0; 1; 2; : : : ;(3.5)
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with h0 � 1 and h�1 � 0. Of particular interest for the present setting is the case

� = 3=2, because J1=2(z) = (2=�z)1=2 sin z, and hence, jn;��1 = n� for � = 3=2.

Therefore, using a well established technique (cf., e.g., [2, Section I.8]) it follows that

the \squared" polynomials

pk(�) = h2k;3=2(
p
�); k = 0; 1; 2; : : : ;(3.6)

are orthogonal with respect to the inner product (2.1) corresponding to the model

problem introduced above. (Note, however, that pk of (3.6) is not normalized; the

orthonormal multiple �pk is given in (3.15) below). The following result states the

asymptotic behavior of hk;� at a mass point.

Lemma 3.2. Let � > 0 and 1=� be a zero of J��1. Then, for k !1,

hk;�(�) =
J�+k(1=�)

J�(1=�)
'
� 1
2�

�k+�
��1(k + � + 1)J�1� (

1

�
) ;(3.7)

h0k;�(�) ' � 1

�2
J��2(

1

�
)�(k + �)(2�)k+��1 :(3.8)

Proof. Recall that the Bessel functions of order �+k satisfy the recurrence relation

J�+k+1(z) =
2(k + �)

z
J�+k(z) � J�+k�1(z); k = 0; 1; 2; : : : :(3.9)

Since J��1 vanishes at z = 1=� by assumption, a comparison of this recursion with

(3.5) yields that hk;�(�) = J�+k(1=�)=J�(1=�) for every k 2 IN. (Note, cf. [12],

that the positive zeros of the Bessel functions J� and J��1 interlace, and hence,

J�(1=�) 6= 0). The second part of (3.7) is the well-known asymptotic behavior of the

Bessel function with �xed argument.

The proof of the second assertion (3.8) requires the following identity from [12,

Section 9�63] for the derivative of a Lommel polynomial,

h0k;�(�) = � 1

�2

�
�(k + 2)hk;�(�) + hk+1;��1(�) � hk+1;�(�)

�
;(3.10)

and Hurwitz' theorem concerning the asymptotic behavior of a Lommel polynomial

at a point � which is not a mass point, cf. [12, Section 9�65]:

hk;��1(�) ' J��2(1=�)�(k + � � 1)(2�)k+��2 ; k !1 :(3.11)

Since � is a mass point corresponding to the polynomials fhk;�g, � is no mass point

for the measure corresponding to fhk;��1g, and hence, (3.7), (3.10) and (3.11) yield

h0k;�(�) ' � 1

�2
hk+1;��1(�) ' � 1

�2
J��2(1=�)�(k + �)(2�)k+��1 ;

as k!1.

After these preliminaries the strong asymptotic behavior of the error of the Lanc-

zos approximation to the smallest eigenvalue of L can be determined.

Theorem 3.3. Let L be as in (3.1) with smallest eigenvalue �1 = �2, and

1=�1;k be the corresponding approximation after k Lanczos steps with initial function

y. Then,

1

�1;k
� �1 '

�4

64
k�3(

�e

4k
)4k; k !1 :(3.12)
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Proof. It only remains to assemble the previous results. First, from (3.6),

Lemma 3.2, and Stirling's formula one has

pk(1=�1) = h2k;3=2(1=�) '
�

16
J�1
3=2

(�)k�2(
�e

4k
)2k :

Since J�1=2(z) = (2=�z)1=2 cos z and J3=2(�) = �J�1=2(�) =
p
2=� by (3.9), this

gives

pk(1=�1) '
�2

16
p
2
k�2(

�e

4k
)2k :(3.13)

Second, since p0k(�) = h0
2k;3=2(

p
�)=2

p
�, Lemma 3.2 and Stirling's formula yield

p0k(1=�1) ' �2�3J�1=2(�)k(
4k

�e
)2k = 2

p
2�2k(

4k

�e
)2k :

Consequently, one has

p0k(1=�1)

pk(1=�1)
' 64k3(

4k

�e
)4k ;(3.14)

and a �nal application of Lemma 3.1 completes the proof.

Comparing (3.12) with (3.2) it follows that Theorem 2.1 is quite sharp, at least

as far as powers of k�k are concerned. The two values of q for (1.1) as calculated in

(3.2) and (3.12) only di�er by as little as an extra factor of �=4. Numerically, this

di�erence can hardly be seen due to the dominating growth of k4k. As of today, it is

not clear how to improve the technique in the proof of Theorem 2.1 to end up with

the optimal value of q.

Finally, consider the sharpness of the a posteriori estimate "k of (2.8). To this end

the recursion coe�cients of the orthonormal multiples of pk are required. As shown,

e.g., by Grosjean [6], the polynomials f
p
2k + 3hk;3=2g are orthonormal with respect

to the Lommel measure; concerning the inner product (2.1) this implies that

�pk(�) =
p
4k + 3h2k;3=2(

p
�); k = 0; 1; 2; : : : ;(3.15)

are the orthonormal polynomials corresponding to the Lanczos process. Inserting this

into (3.5) one can compute the coe�cients �j and �j from (2.6), namely �0 = 1=15,

and, for j � 1,

�j =
2

(4j + 1)(4j + 5)
; �j =

1

(4j + 1)
p
(4j + 3)(4j � 1)

:(3.16)

To determine �pk�1(�1;k) one can use the convexity of �pk�1 in [�1;k�1; �1] to obtain

that

�pk�1(�1;k) � �pk�1(�1)� (�1 � �1;k)�p
0
k�1(�1) :

From this inequality and Lemma 3.1 follows that

��1� �pk�1(�1;k)

�pk�1(�1)

�� � (�1 � �1;k)
�p0k�1(�1)

�pk�1(�1)
' �1 � �1;k

�1 � �1;k�1
:
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Since the right-hand side goes to zero by Theorem 3.3 it has been shown that

�pk�1(�1;k) ' �pk�1(�1) '
p
2k1=2(

�e

4k
)2k ;(3.17)

cf. (3.15) and (3.13).

The remaining factor in (2.8) is just the square root of the weight in the kth

Gaussian quadrature rule for the inner product (2.1). This weight converges to the

mass of the associated measure at �1, i.e.,

�k�1X
j=0

�p2j (�1;k)
��1

�! 2

�2
; k !1 :(3.18)

Inserting now (3.16), (3.17) and (3.18) into (2.8) one obtains that

"k '
1

8�
k�3=2(

�e

4k
)2k :

As can be seen from Theorem 3.3 this is essentially the square root of (3.12). Note

that this is in nice agreement with the stronger perturbation error estimate

1

�1
� �1;k � "2k=
 ;

stated in [10, Section 13-2], where 
 is the gap between �1;k and �2;k.

It should be mentioned that the same model problem appears as Example 5.2.8

in Nevanlinna [9], where lower and upper bounds are obtained for the superlinear

convergence rate of the conjugate gradient iteration applied to solving (I+L�1)u = f .

These bounds are approximately the square root of the eigenvalue approximation error

(3.12). While the upper bounds are obtained with similar techniques as in Section 2,

Nevanlinna uses a lemma from analytic function theory to derive his lower bound.

If f = t a.e. in (0; 1), however, then the precise asymptotic convergence rate of the

residual norm kf � (I + L�1)ukk can be computed by similar means as above.

4. Numerical examples. To illustrate the results of the previous section the

Lanczos method has been used to compute the smallest eigenvalue �1 = �2 of the

di�erential operator L of Section 3. The operator is approximated by �nite di�erences,

which gives the tridiagonal matrix A = n2 � tridiag (�1; 2;�1) of size (n�1)� (n�1).

It is the reciprocal ~�1 of the smallest eigenvalue of A, i.e.,

~�1 =
1

4n2
sin�2

�

2n
=

1

�2
+

1

12
n�2 + : : : ;

to which the Lanczos approximations will converge.

For n = 128, Table 4.1 presents the results of the �rst six Lanczos iterations: the

second column shows the approximation �1;k of the Lanczos method after k iterations,

and the third column contains the approximation error ~�1 � �1;k. The numbers in

the fourth column are the a posteriori error bounds "k de�ned in (2.8), while the last

column contains the reciprocals of the a priori estimate (3.14), which describes the

exact asymptotic behavior of the approximation error. For comparison, the last line

shows the true eigenvalue �1 = ��2 of L�1.

Note that only three iterations are required to obtain all signi�cant digits of �1
within the discretization error. It can also be seen by counting the zeros in the error

9



Table 4.1
Model problem Lu = �u00

k approximations absolute errors a posteriori bound estimate (3.14)

1 0.067449951 0.033876319 0.043298950 0.324606700
2 0.100622293 0.000703977 0.007638242 0.003292797
3 0.101323064 0.000003206 0.000542465 0.000009764
4 0.101326266 0.000000004 0.000020379 0.000000011
5 0.101326270 0 0.000000481 0
6 0.101326270 0 0.000000008 0

��2 0.101321184

numbers that an algorithm with quadratic or even cubic convergence would not be

signi�cantly faster. As predicted by the asymptotic analysis of the previous section,

the a posteriori bounds "k are signi�cantly larger than the true errors, but somewhat

smaller than their square roots.

The second example is a more realistic problem. Let

Lu = �div(a gradu)

be an elliptic di�erential operator over the square [0; 1]� [0; 1] with D(L) = H2\H1
0 �

L2, and with piecewise constant coe�cient function

a(x; y) =

(
100 0 � x; y � 0:5 ;

1 elsewhere :

The aim is to determine the smallest eigenvalues of L. As described in the beginning

of Section 3, these eigenvalues can be computed with the Lanczos process, solving

a di�erential equation Lwj = vj in each iteration. The following results correspond

to y � 1 as initial function. The di�erential equations have been solved with a full

multigrid V (2; 2)-cycle (called nested iteration in [7]) using two pre and post Jacobi

smoothing steps, respectively, and bilinear �nite elements over 128� 128 squares on

the �nest level. Note that this means that L�1 is implemented by an algorithm, and

not via a matrix vector multiply (although in exact arithmetic the algorithm implic-

itly corresponds to some matrix). As a consequence the errors in the computation are

much larger than in the previous example, which leads to a certain loss of orthogo-

nality in the Lanczos vectors. This is manifested by so-called \spurious" (or ghost)

eigenvalues of the resulting Jacobi matrix. Spurious eigenvalues can be identi�ed with

a technique due to Cullum and Willoughby [3]. With their approach the �rst spurious

eigenvalue of Tk has been detected after k = 7 iterations, with a second one occurring

after nine iterations. Table 4.2 shows the remaining four dominant eigenvalues of Tk
for k = 1; : : : ; 10. Note the loss of monotonicity in these columns at k = 7 and k = 9,

which is due to the elimination of the spurious eigenvalues.

The last column of Table 4.2 shows the decay of the numbers "k of (2.8) corre-

sponding to the dominant eigenvalue. Similarly, the �nal row contains the respective

numbers "10 for the four largest eigenvalues of T10.

Again, essentially three to four iterations are required to approximate the smallest

eigenvalue of L within the discretization error, and two more iterations to obtain the

next one. Note that according to the a posteriori bounds "10 in the last row it is not
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Table 4.2
Problem Lu = �div(a gradu)

k approximations a posteriori bound

1 0.013980 0.012071
2 0.025811 0.001674 0.002749
3 0.026269 0.009937 0.000742 0.000615
4 0.026289 0.012185 0.004675 0.000458 0.000106
5 0.026289 0.012695 0.007539 0.002489 0.000010
6 0.026289 0.012731 0.008085 0.004657 0.000004
7 0.026289 0.012716 0.007807 0.003244 0.000004
8 0.026290 0.012718 0.007843 0.004459 0.000010
9 0.026291 0.012718 0.007856 0.003327 0.000004
10 0.026291 0.012718 0.007971 0.005331 0.000004

"10 0.000004 0.000005 0.003623 0.002657

quite clear whether the third eigenvalue has converged after 10 iterations. A couple

of more iterations, however, establish 0:0078 as the �rst few signi�cant digits of �3.

Anyway, after 10 iterations one has

�1 = 38:0; �2 = 78:6; and �3 � 125

as �nal approximations of the three smallest eigenvalues of L.
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