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Abstract

A convergence rate is established for nonstationary iterated Tik-
honov regularization, applied to ill-posed problems involving closed,
densely defined linear operators, under general conditions on the iter-
ation parameters. It is also shown that an order-optimal accuracy is
attained when a certain a posteriori stopping rule is used to determine
the iteration number.

1 Introduction

Many inverse problems in the physical sciences may be posed in the form
Tx =y (1)

where T' is a linear operator on a Hilbert space having an unbounded (gen-
eralized) inverse, y is a given “data” vector, and x is a desired solution (e.g.,
[9], [6], [13]). Because the generalized inverse is discontinuous, problem (1)

is ill-posed, that is, the solution x depends in an unstable way on the data y.
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A natural way to alleviate this instability is to replace (1) with an approxi-
mating well-posed problem. The best known way of accomplishing this is by

Tikhonov regularization, that is, instead of (1) one solves
(T"T + al)x, =Ty (2)

where « is a positive “regularization” parameter and T™ is the adjoint of T
It is easy to show that as o — 0 the unique solution x, of (2) converges
to the minimal norm least squares solution of (1) whenever it exists. There
is a well-developed convergence theory for (2) (e.g., [5], [13]), an important
ingredient of which is a strategy for relating the regularization parameter to
perturbed data in such a way that as the error level diminishes to zero the
approximations converge to the desired solution. In this respect the method
(2) is deficient — the rate of convergence of (2), with respect to the error
level ¢ in the data, cannot in general exceed a certain “saturation level” of
@) (52/3) [5]. It is well known that this rate may be improved in an iterated

version of (2) given by
(T°T + al)x, = axpq + Ty (3)

(see, e.g., [11], [10], [4]). Brill and Schock [2] have investigated a nonstation-

ary version of (3), namely
(T°T + a,Da, = g + Ty (4)

for the case of a compact operator T' (see also [16]). A special case of (3),

namely o = 1, has been analyzed by Lardy [12] for the case of a closed
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densely defined unbounded operator T'. In ordinary Tikhonov regularization
a number of authors (e.g. [9, p. 96]), [17, p. 92]) have advocated a successive
geometric choice of the regularization parameter, which in turn suggests the
choice o, = a¢"'(0 < ¢ < 1) in the nonstationary iterative Tikhonov
method. For a certain adaptive choice of «, Brakhage [1] has established a
linear convergence rate.

The convergence rate for (4) derived in [2] assumes a condition on the
parameters {a,} that is not satisfied for the stationary method (3) (and in
particular for Lardy’s method) nor for the geometric choice of parameters.
One of our purposes in this paper is to establish the Brill/Schock convergence
rate for the nonstationary method under conditions that are flexible enough
to cover a wide range of iteration parameters. We also establish a convergence
rate for the nonstationary method with perturbed data when the iteration
number is selected by a discrepancy principle, and we illustrate our results

for the geometric choice of regularization parameters mentioned above.

2 Convergence Rates: Linear Operators

Suppose T' is a closed linear operator defined on a dense domain D(T') in a
Hilbert space H and that y € R(T), the range of T. Let 2" be the normal

solution of (1), that is, =T is the unique vector satisfying

et e D(T)N N(T)*: and Tal =y,



where N(T')* is the orthogonal complement of the nullspace of T. For a
given sequence of positive numbers {a,, }, take (for simplicity) o = 0 and

define x,, by
Ty = an(T*T + ) ey + THTT + a, 1)y, (5)

We note that both of the operators (T*T + a, 1)~ and T*(TT*+ v, I)~" are
everywhere defined and bounded [15, p. 307] (with ||(T*T +a, 1)} < o b),
hence for each fixed n, x,, € D(T) is stable with respect to perturbations in
Y.

For bounded operators Brill and Schock [2] have proved that the method
(5) converges to x! if and only if 3" a;! = oo and they established a conver-
gence rate under the additional assumption that 3> a;? < co. Our first goal
is to establish this rate under a strictly weaker assumption on {«,} that in-
cludes as special cases Lardy’s method and iterated Tikhonov regularization
with geometric parameter scheme.

We begin by noting that, since y = Tz7,
T(TT* 4 a, )y = T*T(T*T + a, 1) "2t = 2" — a, (T*T + a, 1)~ 't

and hence by (5):

QY

)\—I-Oéi'

ol — 2, = Tn(T*T)J}T, where r,(\) = H

=1
If, in addition, = = (T*T)*w for some w € D((T*T)") and v > 0 then
ot — 2, = Fa(T7THw (6)
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where
o) == N ().

The error analysis will hinge on an investigation of the function

n

FawN) = N1

=1

QY

)\—I-Oéi

, A€[0,00)

where v > 0, a; > 0 are given parameters. As we are interested in fixed
v > 0 and n — oo, we shall assume that n > v (note that for v > n, f,,(})

is increasing in A). An easy calculation shows that f'(A) = 0 if and only if

o)=Y = @

where g = A7%. Since ¢(0) =n > v > 0 = g(o0) and g is strictly decreasing,
equation (7) has a unique positive solution, say g = py. Furthermore, since

fn,u(o) =0= fn,u(oo)v

max)fn,m = fou(prt) < pi”. (8)

A€E[0,c0

Also, the negative solutions of (7) are separated by the vertical asymptotes

pw= —ozj_l, and hence, if we denote these negative solutions by pa, s, ..., fn,
then
n n—1
-1
—Z/MZZ%‘ = Op—1 (9)
i=2 i=1



i3 1 _
Lemma 1 Z/“ = ! On
=1 4

Proof: Equation (7) may be written in the equivalent form

n

Z/H(l—l—ozk,u)—znzﬁ(l—l—ozk,u) = 0.

k=1

o
Il
—

Using the fact that the sum of the roots of a monic polynomial is the negative

of the next-to-highest order coefficient, we then obtain

n n 1

Zﬂi:—Za;1+7ynn ZHO%: c,.0

Lemma 2 [f0 < v <1, then max)fm,()\) < ( ’ ) o’

A€E[0,c0 1 —v "
Proof: Because the roots pso, ..., pu, are negative, we have by Lemma 1,
- 1 —v
> i = on
=1 v
and hence

and the result follows from (8). O

For the case 0 < v < 1, we note that Xi [20] has obtained the stronger
estimate: f,,(A) < vYo ", In order to handle the case v > 1, we will need
to assume an additional condition on the parameters {«,}. Specifically, we
shall assume that there is a positive constant ¢ such that

1
R 10
o COpo1 (10)



for all n sufficiently large. Note that (10) is strictly weaker (considering the
necessary condition, o, — oo, for convergence) than the condition 3 a;? <
oo of [2], and that (10) is satisfied for the stationary method (in particular,

Lardy’s method) and the method with «,, = a¢"~ (0 < ¢ < 1), cf. Section 4.
Lemma 3 [f0 < v < n and condition (10) is satisfied, then
n,v A < v v
\max f (A) < coy

where ¢, = 2v(c+ 1)) for 0 <v <1 and ¢, = 2v(c+ 1)")” forv > 1.

Proof: For 0 < v < 1/2, we have ( ) < ¢, and the result follows

—v
from Lemma 2. On the other hand, if 1/2 < v < 1, then by Lemma 1 and

(9) we have
p1 2> —Zn:/li > Op—t1
i=2
and, by (10),
o, = ozi + o1 < (c+ 1)o,-1. (11)

It then follows from (8) that

X fun(A) = fun(pi) S " S oy S (e D)o S oy
€|0,00

The case v > 1 will be handled by an inductive argument. We suppose

that

f?’b7l/(lu1_1) S cl/o-;y (12)



holds for all v with 0 < v < vy, for some vy > 1. Take v € (vg, 1o + 1] and

n > v. We will show that (12) holds for v. By Lemma 1 and (9) we have

i 1 —v
o= —> i+ o
1=2 4
1—v 1 v—11
> Op1 + Op = —0Op-1 — B
v Voo
Consider now two cases. If i < 2(1,1_1)0-71—17 then
< 1 v—1 1 1
—Op_1 — ——— 01 = —Op_1,
#1 = Tn-t v 2v-—1) A

and hence by (8) and (11),
fun(prh) < 077 < (20)70 0 < (2v(e+ 1)) 07" < 0"

On the other hand, if i > ﬁan_l, that is, if a,, < 2(v — 1)o7 !4, then by

(12) and (11), (note that n — 1 > v — 1, by assumption),

n—1 n—1
1y -y Qafh QG [y —(v-1) Qi iy
n,V - S i3
In, (/h ) 1 1+ anir il 1+ auin Ha g 1+ csn

< ozncl,_la;g_l) <2(v—1)(c+ 1)’c,q0,".

Now, if v > 2, ¢,.1 = (2(v — D)(c+ 1) 1)~ < (2v(c+ 1)¥)*~! and hence
Fon (") < 2v(c+ 1) e 1077 < c,o77. While if 1 < v < 2, then

o) < 2v(c+ 1) e,10)" <2w(c+ 1) Quic+ 1)) ar”

< 2v(e+1)"2uv(c+ 1)”)”_105” =¢,0,".0

The following theorem now follows directly from (6) and Lemma 3.
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Theorem 1 If a7 = (T*T)"w for some v > 0 with some w € D(T*T)"),

and if {a,} satisfies (10), then ||z, — 21| < c,0,7||w]|.
We note the crucial role that an estimate of the type

Nr,(A) = O(e,”
Alg[l(%go) () (0,") as n — o

(13)

(Lemmas 2 and 3) played in establishing the convergence rate in Theorem 1.

As (13) was established for v > 1 on the basis of condition (10), the question

of the necessity of this condition naturally arises. The next theorem addresses

this question.

Theorem 2 If v > 1 and f,,(X) = Xr,(A) < ¢, 0. for some ¢, > 0 and

all n € N, then {a,} satisfies condition (10) for some ¢ > 0.

Proof. Since r,—1(0) = 1, /,_1(0) = —0,_1, and r,—1(A) is convex for

A > 0, we have

Fpe1(A) > 1 —0,-9A, for A >0.

Therefore,
> M, (M) = A A1 (M)
Cl,O'n - 'n = Oy o, _I_ )\ 'n—1
oy,
> P )\)\ (1 —0,-1A), for A >0.

In particular, setting A = %U;il, we find that

—v Qn0yp—1 I\ —v
C,0, > —F 1|z 0n-1
14+ 2a,0,-1 \2
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and therefore,

v
ap0p—1 S QUCU (Un—l)y _ QUCU ap0p—1 ‘
1 + 2anan—1 On, 1 + Qn0yp—1

It follows that

1+ a,0 a0 vl
nn—-1 v nn—-1 v v—1
v ( ) S 2 cu(anan—l)

1
—_ < -
2 1 + 205710-71—1 B 1 + Qn0p—1
and hence
1
L <2V,
(877
that is, (10) holds. O

Finally, we remark that the “O” estimate of (13) cannot be improved to
a “0” estimate. Indeed if
ANra(A) = 2 ) )
s )= oot n oo
then since 1 — g, A < r,()), we would obtain by setting A = o !/2,
0 <277 <o¥ max Ar,()) = o(1), n — 0o,

A€E[0,00)

which is a contradiction.

3 Perturbed Data: Stopping Criteria
From (5) we see that x,, may be expressed as

xn, = T7¢,(TT™)y

10



where ¢,()\) is generated by:

7(A) = (A4 an) g1 (A) + 1), go(A) = 0.

It follows that

1= Aga(A) = —2—(1 = Agu_s(V),

At ay,
that is, ¢,(\) = =23 where r,(A) = [T, 12 We now find that for A > 0,
0<Agu(A) =1—r,(N) <1, (14)
and, by the convexity of r,,
0w = T2 < 0) =,

Finally, since ¢,(\) — o0, as A — 04, we have

Alg[l(itgo)cz() o (15)

These estimates can now be used to derive a stability estimate for the
approximations x,. Suppose y° is an approximation to the data y with
ly — y°|| < 8. Let {2f} be the sequence generated by (5) using the data y°,
i.e., 28 = T*q,(TT*)y’. Since z,,2° € D(T), we have by (14) and (15),

o, — 2l | = (TT*q(TT*)(y — ), gu(TT")(y —y°))
< &o,

and hence

v — 23]l < 60,2 (16)
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A sufficient condition for regularity of the approximations is therefore that
the iteration number be chosen in terms of the error level, say n = n(é), so
that the condition

(50i/2 —0 as 6—=0

(6)
is satisfied (see [2] and [16] for somewhat different formulations of regularity

conditions). From (14) we also obtain the stability result
[T — Tll| = [T g (TT)y — )] < 6. (1)

Our goal in this section is to establish a convergence rate for an a poste-
riori stopping criterion for the iteration (5). The criterion is of discrepancy

type and relies on monitoring the residual
y' —Tal =, (TT™)y . (18)

We assume that o, — oo (as is necessary for convergence [2]) and hence

r.(A) — 0 for every A > 0. Therefore, by (18),

lim [ly* — Tay]| = [Py’ = [|P(y° —y)l] < 6

n—oo

where P is the projector onto the orthogonal complement of the range of T'.
Finally we assume that the signal-to-noise ratio of the data is bounded above
1, that is, there is a number 7 > 1 such that ||y°|| > é7. There is then a first

value of n, say n =n(é) > 1, for which
Iy’ — Tadqll < 67. (19)

12



Lemma 4 If n(6) is chosen by (19), then

T—1

T+1

ly = Tl < (7 —=1)8 < ly = Twnis)-a-
Proof. Using (18) and the fact that |r,(A)| < 1, we have

ly = Trull = Ily" = Taggey + 1o (TT7)(y = y°)]

< (74 1)
On the other hand,
y—Tana =y —Tay g —raa(TT)(y" —y)

and therefore

ly — Tl’n((g)_lH >716—6=(r—1)6.0

To prove a convergence rate for the iterative method (5) with stopping cri-
terion (19), we will use a specialized moment inequality ([3], [13]) which is

proved for convenience in the next Lemma.

Lemma 5 If y € D((T*T)"*t'/%), for some v > 0, then

I(T=T)yll < Nyl |(TT) 2y ™

Proof. Let uw = (I™1")"y and let {E)}.>0 be a resolution of the identity

generated by T*T'. Then

| adlEal? = [ iyl =y < o
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and

/OO M| Eyul|? < oo, since u € D(T*T)Y?).
0

Therefore, by Holder’s inequality,

WWW@W==WW=A(Y%”MMﬁWMwW

_1

(/oo )\_Ql’dHEAuHZ) 2vF1 (/oo )\dHE/\uHZ) 2v+1
0 0

_2 e _dv_
[yl| 75 [|(TT)+ /2y | 2470

IA

The proof of the next theorem follows that of Vainikko [18] (see also [7]).

Theorem 3 Let {a,} C RT be a sequence of regularization parameters for
which (10) holds. If ¥ € R((T*T)") N D((T*T)"/?) and n(8) is chosen as in
(19), then Hxi((s) —21| =0 (5%) Moreover, at the stopping index we have

oni) = O ((Vﬁ).
Proof. Suppose ' = (T*T)"w, where w € D((T*T)”"'%). Then
x, —al = (T*T)r, (T"T )w.
Using Lemma 5 on y = r,(1T*7T )w, we find

| — 2t < (lra(T*T )| ||[(T*T )+ 20, (T T Yoo || 557

< el = (T T) 2, — )5
Therefore, by Lemma 4,
|25y — 27| = O (8247 .
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Now, by (16),
|35y — &T]| < 8okt + O (6757

and it is sufficient to show that O'i{;) =0 ((Tﬁ). By Lemma 4,

(r=18 < |ly = Tans)-all = rne-(TT)y]

= || T(T"T) 7)1 (T"T)w]|.
But, by Lemma 3 and condition (10),

[T(T*T) 7 (T T 0]
= (1) Yy (T*T w0, (T*T )y (T*T)0)
< eermo 2 ull? = O ).

_2v41

Therefore, (1 — 1) < const. x O,y - and hence O'i{;) =0 ((Tﬁ), giving

the result. O

A method of Vainikko [19] can be adapted to show that the parameter

)

strategy (19) is a regularizing scheme, i.e., Tos) — zf as & — 0, without

additional assumptions on z'. However, we note that a general result of
Plato [14, Thm. 2.1] can also be extended to the case considered here to

deduce the regularity of the scheme (19).

15



4 Example

We close with the aforementioned example of a geometric sequence of regu-

larization parameters, i.e.,

a, = ag"™? with fixed @ > 0 and 0 < ¢ < 1'.
In this case we have
1 1 —g" 1 1
Un:_ql_nl q Z_ql—n:q 7
—q « nt1

so that (10) holds with ¢ = 1/¢q. We can therefore apply Theorem 1 and
obtain

lz, — '] = O(o7") = O(¢").

n

i.e., a linear rate of convergence where the root convergence factor ¢ depends
on the “smoothness” of the exact solution zf: The larger is v, the faster is
the convergence.

Concerning perturbed data we can employ the discrepancy principle (19)

as a stopping rule, and we have
_2v
1255y — @'l = O(6747)

according to Theorem 3. Moreover, this theorem shows that at the stopping

index n(6) we have

L0 < 0,4 = 0(67577).

! As Robert Plato kindly pointed out to us, this special case of a geometric sequence of
parameters «,, can actually be analyzed in a more sophisticated way.
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which implies that at most

n(6) < O([log ¢])

iterations are necessary to achieve this accuracy.

An efficient numerical implementation of nonstationary iterated Tikhonov
regularization is not more expensive than using the same sequence of regular-
ization parameters in a successive way for ordinary Tikhonov regularization.
This follows from the fact that the major amount of work stems from the
computation of a bidiagonalization of the discretized operator which has to
be done in either approach; details are given in the survey [8]. However, as il-
lustrated above, while the computational costs are the same, the convergence

properties for the iterated Tikhonov scheme are much better.
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