
REGULARIZING PROPERTIES OF A TRUNCATED NEWTON-CG

ALGORITHM FOR NONLINEAR INVERSE PROBLEMS

MARTIN HANKE�

Abstract. This paper develops truncated Newton methods as an appropriate tool for nonlinear
inverse problems which are ill-posed in the sense of Hadamard. In each Newton step an approximate

solution for the linearized problem is computed with the conjugate gradient method as an inner

iteration. The conjugate gradient iteration is terminated when the residual has been reduced to a
prescribed percentage. Under certain assumptions on the nonlinear operator it is shown that the

algorithm converges and is stable if the discrepancy principle is used to terminate the outer iteration.

These assumptions are ful�lled, e.g., for the inverse problem of identifying the di�usion coe�cient in
a parabolic di�erential equation from distributed data.
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1. Introduction. The stable numerical solution of nonlinear inverse problems

F (a) = u ; F : D(F ) � X ! Y ;(1.1)

is one important matter of scienti�c computing. For example, consider the di�erential

equation

ut � div (a gradu) = f ; for x 2 
 � IRN
; t > 0 ;(1.2)

with suitable boundary conditions. An important inverse problem in ground water

�ltration is the reconstruction of the transmissivity coe�cient a as a function of x in

a porous medium 
 from (partial) knowledge of the piezometric head u in 
 within a

given time inverval T . Here, F in (1.1) would be the nonlinear parameter-to-solution

mapping with

D(F ) = fa 2 L1(
) j ess inf a > 0g ;

and the range of F would belong to some observation space, e.g., L2(
� T ).
Inverse problems are often ill-posed in the sense that even when a is uniquely

determined by the right-hand side u of (1.1), the mapping u 7! a lacks continuity.

This is a severe numerical problem when the given data ~u are noisy and

k~u� uk � �(1.3)

in the norm topology of Y . As a consequence there is need for regularization and

several possibilities for regularizing (1.1) are treated in [6].

Like for well-posed problems Newton type methods are one important option for

solving (1.1) and have been applied with success in various applications: cf., e.g.,

[7, 20] for the parameter identi�cation problem (1.2), [18, 21] for a related problem

arising in impedance tomography, and [9, 14] for inverse scattering problems.
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On the other side, only few rigorous theoretical treatments of Newton type meth-

ods for ill-posed problems can be found in the literature. Exceptions are the works by

Bakushinskii [1, 2], Nashed and Chen [17], and Blaschke et al. [4, 3].

The present paper develops inexact Newton type methods as a natural setting

for nonlinear inverse problems. The basic idea is the computation of a regularized

approximation of the linearized problem by an inner iteration, namely by a conjugate

gradient method. Iterative methods for the linearized equation are particularly inter-

esting for parameter identi�cation problems where it is usually much cheaper to apply

the Fr�echet derivative to a single argument (which requires the solution of a di�erential

equation, cf. Kravaris and Seinfeld [13]), than to assemble the whole (usually dense)

derivative matrix and invert it afterwards. A posteriori stopping criteria for the inner

and the outer iteration are suggested that make the algorithm a regularizing method

in the sense of [6, Def. 3.1].

It has to be mentioned that inexact or truncated Newton methods have some

tradition for large-scale well-posed problems (cf., e.g., Nash and Sofer [16] and the

references given there) but those works do not address nor apply to ill-posed problems.

2. The algorithm. Throughout it will be assumed that X and Y are Hilbert

spaces; the same notation k � k and h � ; � i is used for the norms and inner products in

X and Y , respectively. For a linear operator T : X ! Y , T ? : Y ! X denotes the

adjoint operator.

Newton's method is based on the Taylor expansion of F . Assuming that ay is a

solution of the nonlinear problem (1.1) and an is some approximation of ay then

F (ay)� F (an) = F
0(an)(a

y� an) + R(ay; an) ;(2.1)

where R(ay; an) is the Taylor remainder. Adding the noise term ~u � u to (2.1), and

solving for ay� an this yields

F
0(an)(a

y � an) = ~u� F (an) + u� ~u �R(ay; an) :(2.2)

The right-hand side of (2.2) splits in two parts: the �rst part, ~yn := ~u � F (an),

is computable whereas the second part is not. In other words: the ideal update

x := a
y � an solves the linear equation

Tnx = yn(2.3)

with Tn = F
0(an) and right-hand side yn as in (2.2), however, only ~yn is known with

k~yn � ynk � � + kR(ay; an)k :(2.4)

Here, � is the bound on the data error (1.3) which is assumed to be available.

Although, in general, solving (2.3) for x is still ill-posed, there is a well-developed

theory on how to regularize linear ill-posed problems with inexact data, cf., e.g.,

[8, 15, 6]. Several methods for approximating the solution of (2.3) have been suggested;

cgne, the conjugate gradient method applied to the normal equation

T
?
nTnx = T

?
n ~yn

belongs to the most powerful ones. The regularizing e�ect of cgne comes from early

termination of the iteration. Nemirovskii and Plato (cf. [11, Sect. 3.3]) have established
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n = 0
while k~u� F (an)k > �� do

begin % outer iteration

y = ~u� F (an); T = F 0(an)
x0 = 0

r0 = y

w0 = y

�0 = 1

k = 0

repeat % inner iteration

dk = T ?wk

�k = kT ?rkk
2=kTdkk

2

xk+1 = xk + �kdk
rk+1 = rk � �kTdk
�k = kT ?rk+1k

2=kT ?rkk
2

wk+1 = rk+1 + �kwk

�k+1 = 1 + �k�k
k = k+ 1

until krkk < � kyk
an+1 = an + xk
n = n+ 1

end

return an.

Algorithm 2.1. Truncated Newton-cgne

that the so-called discrepancy principle is a suitable stopping criterion for this purpose.

This means that x0 = 0 is in some sense the best possible approximation of the solution

x of (2.3) if the error (2.4) dominates the right-hand side ~yn, while otherwise cgne

should be stopped with iterate xk as soon as the data �t k~yn � Tnxkk has the order

of the error (2.4) in the right-hand side. This leads to the following two conclusions

concerning a combination of inner and outer iteration for the nonlinear problem:

� If k~u � F (an)k has reached the order of � then there is no sense in iterating

any further.

� Even when this is not the case the outer iteration can only make any further

progress via (2.3) if kR(ay; an)k � k~ynk . Otherwise the linearized equation

provides little additional information.

In order to guarantee such an inequality { at least for an su�ciently close to ay

{ the following assumption on the Taylor remainder term will turn out useful if not

necessary: for a certain ball B � D(F ) around the exact solution ay of (1.1), and some

C > 0 let

kF (~a)� F (a)� F
0(a)(~a� a)k � C k~a� ak kF (~a)� F (a)k(2.5)

for all a; ~a 2 B. It must be mentioned that an inequality like (2.5) is a nontrivial

restriction in ill-posed problems; cf. the discussion in [12], where such an assumption

has been employed for a convergence analysis of the nonlinear Landweber iteration.

On the other hand, (2.5) is ful�lled for example for the inverse problem (1.2) with

steady state or transient measurements of u in L2(
) provided that the exact solution

a
y is su�ciently smooth, cf. [6, Ex. 11.1] and [10].

Consider the truncated Newton-cgne scheme of Algorithm 2.1, where for the ease

of notation y and T stand for ~yn and Tn, respectively. Algorithm 2.1 requires an input

guess a0 of a
y and two tolerance parameters � and � for the stopping rules of the inner
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and the outer iteration. Although any � < 1 and � � 1 would make sense for this

purpose the theoretical results in Sect. 5 require �2� > 2.

The inner iteration (cgne) di�ers slightly from [11, Algorithm 2.3] in that it

maintains an additional variable wk connected to dk via dk = T
?
wk; dk is the same

as in [11]. wk and the additional scalar �k are required for the analysis in Sect. 3.

In view of the theoretical results in [11] the discrepancy principle is the most natural

stopping rule for cgne; it requires an explicit upper bound for k~yn � ynk . (2.4) and
(2.5) yield a bound which is not implementable, namely

k~yn � ynk � � + C kay� ank ku� F (an)k :

However, during the iteration it can be presumed that � � ku � F (an)k , and hence

any su�ciently large fraction of k~u � F (an)k may serve as an upper bound for the

right-hand side when an is su�ciently close to ay. The cgne iteration is therefore

terminated as soon as

k~yn � Tnxkk < � k~ynk ;(2.6)

where 0 < � < 1 should be a �xed, but not too small parameter. According to

the stopping rule (2.6), Algorithm 2.1 belongs to the general class of inexact Newton

methods investigated in detail by Dembo, Eisenstat and Steihaug [5] for well-posed

optimization problems.

The essential ingredient for the convergence analysis of Algorithm 2.1 is a mono-

tonicity result for cgne concerning the iteration error. The discrepancy principle per

se is not an appropriate stopping rule for this purpose (cf. Example 3.3 in the fol-

lowing section), but fortunately monotonicity can nevertheless be established in the

particular case (2.6) used above. From this follows that an converges to a solution of

(1.1) as n ! 1, provided the data u are given exactly and a0 and ay are su�ciently

close (cf. Theorem 4.2).

For a theoretical analysis of the perturbed data case the inner iteration needs to

be modi�ed by an additional backtracking step in order to enforce equality in (2.6),

cf. Sect. 5. While this does not a�ect the convergence analysis of Sect. 4, the advantage

is that an depends continuously on ~u through this modi�cation. Thus, it follows from a

general argument that the truncated Newton-cgne method is a regularization method

when �2� > 2.

3. Preliminaries about cgne. The convergence analysis for Algorithm 2.1 re-

quires a few properties of cgne, which go beyond the general theory developed in [11],

and which may be of independent interest.

Given a linear operator T : X ! Y and a right-hand side y 2 Y the kth iterate

xk of cgne (with initial guess x0 = 0) belongs to the kth Krylov subspace

Kk(T
?
y;T ?

T ) = spanfT ?
y; (T ?

T )T ?
y; : : : ; (T ?

T )k�1T ?
yg ;

and among all elements x 2 Kk(T
?
y;T ?

T ), xk minimizes the residual ky � Txkk . If
P denotes the orthogonal projector onto R(T ) then this minimizing element is unique

as long as Py does not belong to an invariant subspace of TT ? of dimension k� 1; for

the ease of presentation this will tacitly be presumed throughout the sequel and, as

will be shown later on, this is no restriction for the new results to be presented below.
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As in [11] it is convenient to use the connection to the so-called residual polyno-

mials. Let �k be the set of all polynomials of degree k or less, and set

�0

k := fp 2 �k j p(0) = 1g :

Then there is a 1-1 relation between elements x 2 Kk(T
?
y;T ?

T ) and p 2 �0

k via the

representation

y � Tx = p(TT ?)y(3.1)

of the corresponding residual; see [11, Sect. 2.1] for details. In particular, pk 2 �0

k

shall denote the residual polynomial associated with xk , the kth cgne iterate.

The bilinear form

[';  ] := h'(TT ?)y;  (TT ?)y i(3.2)

de�nes an inner product for ';  2 �k, and with this inner product and (3.1) the

minimizing property of xk can be reformulated as follows: pk solves the minimization

property

[p; p] �! min among p 2 �0

k :(3.3)

If q 2 �k�1 is an arbitrary polynomial of degree k� 1 then the polynomial p given by

p(�) = pk(�) + t�q(�) belongs to �0

k for every t 2 IR, and hence, by virtue of (3.3),

[pk; �q] =
1

2

d

dt
[p; p]

����
t=0

= 0 for all q 2 �k�1 :(3.4)

In particular, de�ning q = qk�1 by pk = 1� �qk�1, it follows from (3.4) that

[pk; 1] = [pk; 1]� [pk; �qk�1] = [pk; pk] ;(3.5)

an identity which will be useful later on.

Polynomials can also be used to rewrite the update (cf. Algorithm 2.1)

xk+1 � xk = �kdk = �kT
?
wk :(3.6)

In fact, it is easy to see that

wk = sk(TT
?)y with sk(�) :=

pk(�)� pk+1(�)

�k�
2 �k :(3.7)

However, sk will in general not belong to �0

k. Instead, since the vetors wk are updated

by wk+1 = rk+1 + �kwk with rk+1 = y � Txk+1, it follows from (3.7) that

sk+1(�) = pk+1(�) + �ksk(�) ;

and hence, sk(0) and �k of Algorithm 2.1 enjoy the same recurrence relation, i.e.,

sk(0) = �k :(3.8)

It is an immediate consequence of the minimization property of the cgne iterates

that ky � Txkk is monotonically decreasing for k = 0; 1; : : : . It is also known (cf.,
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e.g., [11, Sect. 3.1]) that for y = Tx the actual error kx� xkk is decreasing, too. The

following result considers the iteration error for perturbed right-hand sides.

Theorem 3.1. Let  � 2, k� 2 IN, and x 2 X satisfy ky � Txk � ". If

ky � Txkk
2 + ky � Txk+1k

2
> 

kwkk

�k
" ; k = 0; 1; : : : ; k�� 1 ;(3.9)

then kx� xkk is strictly monotonically decreasing for k = 0; 1; : : : ; k�, and

kxk2 � kx� xk
�

k2 > ( � 2) "
k
�
�1X

k=0

�k kwkk :

Proof. By virtue of (3.6),

kx� xk+1k
2 = kx� xk � �kT

?
wkk

2

= kx� xkk
2 � �kh 2x� 2xk � �kT

?
wk; T

?
wk i

= kx� xkk
2 � �khTx� Txk; wk i � �khTx� Txk+1; wk i

= kx� xkk
2 � �kh y � Txk; wk i � �kh y � Txk+1; wk i+

2�kh y � Tx; wk i :

Inserting the de�nitions (3.1) and (3.7) of the corresponding polynomials this becomes

kx� xkk
2 � kx� xk+1k

2 = �k[pk; sk] + �k[pk+1; sk]� 2�kh y � Tx; wk i ;

with [�; �] as in (3.2). By (3.8), sk(�) = �k +�q(�) for some polynomial q 2 �k�1, and

hence, it follows from (3.4) and (3.5) that

kx� xkk
2 � kx� xk+1k

2 = �k�k

�
[pk; 1] + [pk+1; 1]

�
� 2�kh y � Tx; wk i

= �k�k

�
[pk; pk] + [pk+1; pk+1]

�
� 2�kh y � Tx; wk i :

Consequently, since [pk; pk] = ky � Txkk
2, the given assumptions yield

kx� xkk
2 � kx� xk+1k

2
> �k�k

kwkk

�k
" � 2�k"kwkk(3.10)

for all k = 0; : : : ; k� � 1. Since  � 2, the right-hand side is nonnegative which

shows that the sequence fkx � xkkg is strictly decreasing for k in the given range.

Furthermore, since x0 = 0 the second assertion follows by taking the sum of (3.10)

from k = 0 to k� � 1.

Corresponding to the assumptions of Theorem 3.1 denote by k(") the stopping

index of the discrepancy principle as the smallest index k = k(") for which

ky � Txkk �


2
" :

It is easy to see that k� in Theorem 3.1 can never be larger than k("): in fact, since

�sk := sk=�k 2 �0

k it follows from the minimization property of cgne that

ky � Txk+1k � ky � Txkk = [pk; pk]
1=2 � [�sk; �sk]

1=2 =
1

�k
[sk; sk]

1=2 =
1

�k
kwkk ;
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and hence, by (3.9),

2ky � Txk
�
�1k

2 � ky � Txk
�
�1k

2 + ky � Txk
�

k2 > 
kwk

�
�1k

�k
�
�1

" � ky � Txk
�
�1k" :

This shows that ky � Txk
�
�1k >


2
", which in turn implies that k� � k(").

Furthermore, since k(") is never larger than what has been called in [11] the

ultimate termination index k = � of cgne, the projected right-hand side Py cannot

belong to an invariant subspace of dimension k�� 1 of TT ? if k� is as in Theorem 3.1.

Lemma 3.2. Under the assumptions of Theorem 3.1 the inequality

ky � Txkk
2 � "kyk(3.11)

implies (3.9) provided that k > 0; furthermore, there are only �nitely many k for which

(3.11) can hold.

Proof. With the same notation as before,

1

�k
kwkk = [�sk ; �sk]

1=2
;

and �sk is the polynomial which has been denoted p
[2]

k in [11]. Consequently, [�sk; �sk] is

strictly monotonically decreasing with k by [11, Theorem 3.2]; in particular,

1

�k
kwkk <

1

�0
kw0k = kyk ;

so that (3.11) implies (3.9). Since the stopping index of the discrepancy principle

is a well-de�ned �nite number (cf. [11, Sect. 3.3]) the remark following Theorem 3.1

implies that (3.11) can only hold for �nitely many indices k.

The following example shows that Theorem 3.1 is sharp in the sense that  cannot

be replaced by any number smaller than two, and that the assertion would not hold

for

ky � Txkk
2
> c"

2(3.12)

instead of (3.9), whatever the value of c might be.

Example 3.3. Let T : X ! Y be a compact linear operator with singular

system fun; vn; �n j n � 0g, i.e.,

Tun = �nvn ; T
?
vn = �nun ; �n > 0 ; n = 0; 1; : : : ;

and fung and fvng are orthonormal bases of X and Y , respectively. Assume without

loss of generality that �0 = 1; recall that �n ! 0 as n!1.

For a given n 2 IN let y := �
3
nv0 + vn, so that the cgne iterates are

x0 = 0 ; x1 = �(�3nu0 + �nun) ; x2 = �
3

nu0 +
1

�n
un ;

with

� = �
�2

n

1 + �
4
n

1 + �2n

:

7



Consequently, for x := �
3
nu0 + (��1n � �n)un the \iteration error" kx � xkk behaves

for large n like

kx� x0k � �
�1

n ; kx� x1k = �n � 2�3n +O(�5n) ; kx� x2k = �n :

Therefore, if n is su�ciently large, kx � xkk is decreasing in the �rst iteration, and

increasing in the second one.

Consider now the quantities ky � Tx1k and kw1k=�1. Straightforward computa-

tions show that

y � Tx1 = y � �TT ?
y ; w1=�1 = y �

�

1 + �
TT

?
y ;

with �
1+�

=
1+�2

n

2�2
n

, and hence,

ky � Tx1k
2 = �

2

n

(1� �
2
n)

2

1 + �2n

;
kw1k

�1
=

1

2
(1� �2n)(1 + �

2

n)
1=2

:

Since the assumptions of Theorem 3.1 hold with " = ky � Txk = �
2
n, the right-hand

side of (3.9) behaves like 
2
�
2
n for k = 1 and n!1, whereas the corresponding right-

hand side of (3.12) behaves like c�4n. As a matter of fact, (3.9) with  � 2 will not

hold, but (3.12) will hold for k = 1 and n su�ciently large.

Another result that will be required in Sect. 5 is the following straightforward

extension of the stability analysis in [11, Sect. 2.6].

Lemma 3.4. For � > 0 let T� : X ! Y be bounded linear operators and y� 2 Y.
Furthermore, denote by x�k the kth cgne iterate for T�x = y�. If T� ! T and y� ! y

as � ! 0, and if Py does not belong to a k�1 dimensional invariant subspace of TT ?,

then x�k is well-de�ned for all � su�ciently small, and x�k converges to the kth iterate

of cgne for Tx = y as � ! 0.

The proof of this lemma is exactly the same as the proof of Theorem 2.11 in [11]

because the corresponding moments h y�; Tm
� y� i, 0 � m � 2k � 1, still converge to

h y; Tm
y i as � ! 0, and this is all that is required for the proof to go through.

4. Convergence analysis for exact data. After these preliminaries reconsider

the nonlinear operator F whose Taylor remainder satis�es (2.5), i.e.,

kF (~a)� F (a)� F
0(a)(~a� a)k � C k~a� ak kF (~a)� F (a)k(4.1)

for some C > 0 and all a; ~a in a certain ball B � D(F ). It will be assumed throughout

this section that F (a) = u has a solution ay 2 B, and that the right-hand side u 2 Y is

given exactly. The following lemma applies the monotonicity result from the previous

section to the nonlinear context.

Lemma 4.1. Consider the (n + 1)st outer iteration of Algorithm 2.1. Let  > 2,

0 < � < 1, and assume that (4.1) holds for some C > 0. If an 2 B with kay � ank �
�
2
=(C) then the inner iteration terminates after kn <1 steps, and

an+1 = an + xkn = an + F
0(an)

?
vn

with a certain vn 2 Y. Moreover, the following inequalities hold:

ku� F (an)k kvnk <


 � 2

1

�2

�
kay � ank

2 � kay � an+1k
2

�
;(4.2)

ku� F (an)k
2
<



 � 2

kF 0(an)k
2

�2

�
kay� ank

2 � kay � an+1k
2

�
:(4.3)
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Proof. According to Sect. 2, x = a
y�an is a solution of (2.3), and ~yn = u�F (an)

satis�es (2.4) with � = 0. By (4.1) and the closeness assumption of the lemma,

k~yn � ynk � C kay� ank ku� F (an)k �
�
2


ku� F (an)k ;

and hence, x satis�es the requirements of Theorem 3.1 with " = �2

 ku � F (an)k .
Substituting " in (3.11) accordingly, it follows from Lemma 3.2 that the stopping

rule (2.6) determines a �nite stopping index kn for the inner iteration, and that (3.9)

is ful�lled with k� = kn. (Note that for k = 0 (3.9) does always hold.) In other words,

Theorem 3.1 applies to the inner iteration with k� = kn.

Consider the updates of an and xk in Algorithm 2.1. It follows that (writing

F
0(an) for T again)

an+1 = an + xkn = an +
kn�1X
k=0

�kdk = an + F
0(an)

?
vn with vn =

kn�1X
k=0

�kwk :

Since

x = a
y � an and x� xkn = a

y � an+1 ;

Theorem 3.1 asserts that kay � an+1k < kay� ank , and that

kay� ank
2 � kay � an+1k

2
>
 � 2


�
2 ku� F (an)k

kn�1X
k=0

�k kwkk :(4.4)

Since �k is always nonnegative, the right-hand side of (4.4) can be estimated from

below by �2

�
2ku� F (an)k kvnk which yields (4.2). The right-hand side of (4.4) can

alternatively be estimated from below by �2

�
2
�0ku�F (an)k kw0k . Since w0 = ~yn =

u� F (an) according to Algorithm 2.1, and since

�0 = kF 0(an)
?~ynk

2
=kF 0(an)F

0(an)
?~ynk

2 � kF 0(an)k
�2
;(4.5)

this yields

kay� ank
2 � kay � an+1k

2
>
 � 2



�
2

kF 0(an)k2
ku� F (an)k

2
;(4.6)

as was to be shown.

Lemma 4.1 states that the inner iteration is a well-de�ned terminating loop, pro-

vided that ay�an is su�ciently small. It is easy to see that the same inequalities (4.2)

and (4.3) would hold if the inner iteration is terminated before the stopping criterion

(2.6) is met. This is important for practical purposes because usually the number of

inner iterations is constrained by some maximum number kmax.

Theorem 4.2. Assume that ~u = u = F (ay) for some ay 2 D(F ), and that F

satis�es (4.1) for some C > 0 in a ball B � D(F ) around a
y. Let 0 < � < 1. If

a0 2 B and kay � a0k < �
2
=(2C) then the iterates fang of Algorithm 2.1 converge to

a solution of (1.1) as n!1.
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Proof. Lemma 4.1 can be applied with  = �
2
=(C kay � a0k). This shows that

kay � ank is monotonically decreasing, and therefore stopping rule (2.6) returns a

well-de�ned stopping index kn for each inner iteration.

It will be shown next that the iteration errors en = a
y�an, n 2 IN, form a Cauchy

sequence. Given m;n 2 IN with m > n let l 2 fn; : : : ;mg be chosen in such a way

that

ku� F (al)k � ku� F (ai)k ; i = n; : : : ;m :(4.7)

Consider now

kel � enk
2 = 2h el � en; el i+ kenk

2 � kelk
2
:(4.8)

Inserting the de�nition of vn from Lemma 4.1 it follows that

jh el � en; el ij =
���
l�1X
i=n

hF 0(ai)
?
vi; el i

��� �
l�1X
i=n

kvik kF
0(ai)elk ;

where the last factor can be estimated by using (4.1) and the de�nition (4.7) of l:

kF 0(ai)elk = kF 0(ai)ei � F
0(ai)(al � ai)k

� ku� F (ai)� F
0(ai)eik + kF (al)� F (ai)� F

0(ai)(al � ai)k + ku� F (al)k

� C kay � aik ku� F (ai)k + C kal � aik kF (al)� F (ai)k + ku� F (al)k

�
3

2
ku� F (ai)k + 2 ku� F (al)k

�
7

2
ku� F (ai)k :

Therefore, (4.2) implies that

jh el � en; el ij �


 � 2

7

2�2

�
kay� ank

2 � kay � alk
2

�
;

which, together with (4.8) yields

kel � enk
2 � c

�
kay � ank

2 � kay � alk
2
�
;

where c = 
�2

7

�2
+ 1 does not depend on l, n, or m. In the same way one obtains

kem � elk
2 � c

�
kay � alk

2 � kay � amk
2
�
;

so that

kam � ank
2 = kem � enk

2 � 2kem � elk
2 + 2kel � enk

2

� 2c
�
kay � ank

2 � kay � amk
2

�
:

The right-hand side tends to zero for n;m ! 1 because of the monotonicity of the

iteration error, and hence, fang is a Cauchy sequence.

10



Denote the limit of an by a. Since kF 0(an)k remains uniformly bounded it follows

from (4.3) by summation that
P

1

n=0 ku�F (an)k
2 converges, and therefore F (an)! u

as n ! 1. Thus, it has been shown that a is a solution of (1.1), and the proof is

complete.

Note that the theorem makes no assertion as to which solution fang does converge.
The proof of Theorem 4.2 uses a technique from [12] which has been developed

for the convergence analysis of the nonlinear Landweber iteration. In [12] a somewhat

weaker assumption on F has been employed, namely

kF (~a)� F (a)� F
0(a)(~a� a)k � � kF (~a)� F (a)k ; � < 1=2 :(4.9)

It is easy to see that the proof of Theorem 4.2 remains valid under the same assumption

(4.9), provided that it holds in a ball B around ay; in this case, however, � must be a

number in the interval (
p
2�; 1).

5. Regularizing properties for inexact data. So far, Algorithm 2.1 has been

considered for exactly given right-hand side u only. In practice only an approximation

~u = u
� will be known with

ku� � uk � � :(5.1)

To emphasize this point the corresponding iterates will be denoted by a�n further on.

In case of perturbed data it is important to stop the outer iteration su�ciently early

to prevent divergence. Algorithm 2.1 terminates the outer loop as soon as the residual

norm is of the order of the noise level �: more precisely, if � is a �xed positive number

then the stopping index n(�) is the smallest iteration index n 2 IN0 for which

ku� � F (a�n)k � �� :(5.2)

The following result shows that this stopping criterion actually does terminate the

outer iteration for adequate values of � .

Proposition 5.1. Let 0 < � < 1 and � > 2=�2. Furthermore, let a be a solution

of (1.1) with F satisfying (4.1) for some C > 0 in a ball B � D(F ) around a. If a�0 2 B

is su�ciently close to a, i.e., ka� a
�
0
k < �2��2

2C(1+�)
, then Algorithm 2.1 is well-de�ned

and terminates after n(�) < 1 outer iterations. Moreover, for n = 0; 1; : : : ; n(�),

ka� a�nk is monotonically decreasing.

Proof. Without loss of generality it will be assumed that n(�) > 0. The proof

goes by induction on n. Assume that

ka� a�nk <
�
2
� � 2

2C(1 + �)
(5.3)

for some n < n(�). By assumption this is ful�lled for n = 0. It will be shown that the

associated inner iteration does terminate, and that ka�a�n+1k < ka�a�nk . According
to (2.3) and (2.4) the given right-hand side ~yn = u

� � F (a�n) is an approximation of

the right-hand side yn of (2.2) with

k~yn � ynk � � + kR(a; a�n)k :

This can be further estimated by using (4.1), namely

k~yn � ynk � � + C ka� a�nk ku� F (a�n)k

�
�
1 + C ka� a�nk

�
� + C ka� a�nk ku

� � F (a�n)k :

11



Since ku� � F (a�n)k > �� as n < n(�) this yields

k~yn � ynk � " :=
1 + (1 + �)C ka� a�nk

�
ku� � F (a�n)k :(5.4)

De�ning

 =
�
2
�

1 + (1 + �)C ka� a�nk
;

it follows that " = �
2ku��F (a�n)k so that (3.11) and (3.9) hold for all inner iterations

up to the stopping index. Since  > 2 by assumption (5.3), the stopping index kn

of (2.6) for the inner iteration is well-de�ned according to Lemma 3.2. Moreover,

Theorem 3.1 shows that the iteration error is decreasing up to the stopping index, and

hence,

ka� a
�
n+1k < ka� a�nk :

This implies that a�n+1 satis�es (5.3) again, which completes the induction step.

It remains to show that the outer iteration terminates. From Theorem 3.1 follows

that

ka� a�nk
2 � ka� a�n+1k

2
>
 � 2



�
2

kF 0(a�n)k
2
ku� � F (a�n)k

2
;

compare (4.6), which means that for some c > 0, independent of n,

ku� � F (a�n)k
2 � c

�
ka� a

�
nk

2 � ka� a�n+1k
2
�
:

Consequently,

1X
n=0

ku� � F (a�n)k
2 � cka� a�

0
k2 <1 ;

showing that F (a�n) ! u
� as n ! 1 if the outer iteration would not terminate.

However, this would also imply that (5.2) holds for some �nite n(�) which is a contra-

diction. It follows that the outer iteration does indeed terminate according to (5.2).

Note that the constraint � > 2=�2 > 2 is somewhat restrictive: in practice, one

would like to choose � close to 1 to enforce a good data-�t of the �nal reconstruction;

on the other hand, the tolerance � for the inexact Newton step should be su�ciently

small to bene�t from the quadratic Newton approximation. Advice on how to choose

� and � is given in Section 6.

It is possible to extend Proposition 5.1 to the case that F satis�es (4.9) instead

of (4.1). This, however, yields even stronger restrictions on possible combinations of

� and � , namely

1 > �
2
> 2� ; � > (2 + 2�)=(�2� 2�) ;

where � is the constant in (4.9). Note that the lower bound for � is similar to the one

in [12].
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To establish regularizing properties of Algorithm 2.1, the inner iteration has to

be slightly modi�ed by a �nal linear backtracking step in order to satisfy (2.6) with

equality:

Modified Inner Iteration. Let fxk j k = 0; : : : ; kng be the iterates of the inner
iteration with residuals frkg as in Algorithm 2.1 within the (n+1)st outer iteration, so

that krknk < �k~ynk � krkn�1k. Then k~yn � Tn(xkn�1 + ��kn�1T
?
nwkn�1)k = �k~ynk

for

� =
krkn�1k

2 � �2k~ynk
2

krkn�1k
2 � krknk

2 +
�
�2k~ynk2 � krknk

2

�
1=2�

krkn�1k
2 � krknk

2

�
1=2

;

and the computation of a�n+1 in Algorithm 2.1 is modi�ed in the following way: de�ne

�̂kn�1 = ��kn�1 ; x̂kn = xkn�1 + �̂kn�1T
?
wkn�1 ;(5.5)

and let

a
�
n+1 = a

�
n + x̂kn :(5.6)

Note that 0 � � < 1 so that x̂kn lies on the linear line segment between xkn�1 and

xkn , and the step from xkn�1 to x̂kn can be interpreted as a damped cgne step. It

follows that all previous results for Algorithm 2.1 remain valid for this modi�cation,

after replacing �kn�1 by �̂kn�1 everywhere. When kn = 1 then krkn�1k = kr0k =

k~ynk and it follows that in this case � is bounded from below by 1� �. Consequently,
when kn = 1 then �̂0 = ��0 � (1 � �)�0, and hence, kF 0(an)k

2 in (4.5), (4.6), and

(4.3) must be replaced by 1

1��
kF 0(an)k2 for the modi�ed algorithm.

When the inner iteration is terminated after a maximum number of kmax iterations

without matching the stopping criterion (2.6) then, of course, no backtracking step is

performed.

To formulate the following results consider a set of approximations fu�g corre-

sponding to di�erent noise levels 0 < � < �0. Throughout, let n(�) be the stopping

index of the outer iteration corresponding to the right-hand side u�. As before, an
and a�n denote the outer iterates of Algorithm 2.1 for the right-hand sides u and u�,

respectively.

Lemma 5.2. With the above modi�cation (5.5), (5.6), Algorithm 2.1 is stable in

the following sense: if n � n(�) for all � su�ciently small, then a�n ! an as � ! 0.

Proof. The proof goes by induction on n, where nothing is to prove for n = 0.

Assume that a�n ! an as � ! 0, and that n + 1 � n(�) for all � su�ciently small.

Denote by T� = F
0(a�n) and y� = u

� � F (a�n) the linear operator and right-hand side

for the inner iteration of Algorithm 2.1 with data u�. In the same way let T = F
0(an)

and y = u�F (an) correspond to the inner iteration with exact right-hand side u. The

modi�ed updates in (5.5) are denoted by x̂� and x̂, respectively.

For the unperturbed right-hand side the inner iteration terminates after kn steps,

say, and according to the remarks following Theorem 3.1, Py does not belong to an

invariant subspace of dimension kn � 1 of TT ?. Now, by assumption,

T� ! T; y� ! y ; � ! 0 ;
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and hence, Lemma 3.4 applies to the present setting. It follows that

x
�
kn ! xkn ; x

�
kn�1 ! xkn�1 ; x

�
kn�2 ! xkn�2 (whenkn > 1) ;

as � ! 0. On the other hand, the right-hand side of (2.6) converges to �kyk as � ! 0,

so that the inner iteration with perturbed right-hand side necessarily terminates either

after kn or kn� 1 iterations for � su�ciently small. (The latter can only occur if (2.6)

holds with equality for k = kn � 1 in the unperturbed data case, and in particular,

only for kn � 1 � 1.) According to (5.5), the �nal output x̂� of the inner iteration is

the unique element on the interpolating linear spline through x�kn , x
�
kn�1

and x�kn�2
(when kn > 1), for which

ky� � T�x̂
�k = � ky�k :

Like the edges of the spline, this element depends continuously on �, and it therefore

follows that x̂� converges to x̂ as � ! 0. This shows that a�n+1 ! an+1 as � ! 0.

It becomes clear from the proof of this lemma why Algorithm 2.1 had to be

modi�ed. Without modi�cation it could happen (although only in very exceptional

situations) that for some k and n

kyn � Tnxkk = � kynk ;(5.7)

in which case the inner iteration will terminate with kn = k + 1. Given arbitrarily

close perturbations u� of u, however, it cannot be predicted whether the perturbed

inner iteration will terminate after kn or kn � 1 steps. When the latter is the case for

some sequence � ! 0, a�n+1 will not converge to an+1 in general.

The above results enable the application of a technique from [12] which states

that convergence for unperturbed data and monotonicity and stability for perturbed

data yield a regularization method.

Theorem 5.3. Fix 0 < � < 1 and � > 2=�2, and let u� and a�n(�) be de�ned

as before. If F satis�es (4.1) in some ball B � D(F ), and if a0 = a
�
0
is su�ciently

close to a solution of (1.1) in this ball then the iterates a�n(�) of Algorithm 2.1 with the

modi�cation (5.5), (5.6), converge to a solution of (1.1) as � ! 0.

Proof. Denote by ay the limit of the iterates an of the modi�ed Algorithm 2.1;

a
y is a solution of (1.1) by Theorem 4.2. Assume �rst that n(�m) = n is constant for

some subsequence �m ! 0 (as m ! 1) and corresponding right-hand sides u�m . By

Lemma 5.2, a�m
n(�m)

! an and hence, F (a�m
n(�m)

)! F (an) as m!1. Taking the limit

�m ! 0 in (5.2) it follows that an is a solution of (1.1), and therefore an = a
y.

For the remainder, it su�ces to consider subsequences fn(�m)gm which are mono-

tonically increasing to in�nity as m!1 and �m ! 0. In other words, n(�m) > n(�l)

for m > l, and therefore it follows from Proposition 5.1 that

ka�m
n(�m)

� ayk � ka�m
n(�l)

� a
yk � ka�m

n(�l)
� an(�l)k + kan(�l) � a

yk :

Given " > 0 the last term on the right-hand side becomes smaller than "=2 for some

l su�ciently large by Theorem 4.2. For this �xed value of l, on the other hand, the

other term on the right-hand side becomes smaller than "=2 for all m su�ciently large

because of the stability of the modi�ed algorithm, cf. Lemma 5.2. This shows that

ka�m
n(�m)

� a
yk < "
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for all m su�ciently large, and hence, a�mn(�m)
! a

y as m!1.

The same result would be true for the original Algorithm 2.1 without any further

modi�cation if it were known that (5.7) never occurs throughout the iteration with

exact data u.

6. Concluding remarks. Instead of cgne other Krylov subspace methods

could be used for the inner iteration. For example, similar properties can be es-

tablished for the Landweber method as inner iteration. In this case, monotonicity

with stopping criterion (2.6) follows from a result of Defrise and de Mol (cf. [6, Propo-

sition 6.3]). Of course, cgne should outperform the Landweber iteration.

The restrictions on � and � , i.e., �2� > 2 are very conservative. Possible combina-

tions of � and � include, for example, � = 0:9 and � = 2:5, or � = 0:8 and � = 3:2, but

smaller values of � and � may work very well in applications. In fact, Theorem 3.1

only states that for certain x and y with ky�Txk � " the iteration error may increase

in the (k�+1)st iteration. In most circumstances the iteration error will still decrease

during subsequent iterations, so that the inner iteration could be continued beyond

the termination index k�. Another reason for this conservative estimate is the fact

that the �rst factor of the upper bound " in (5.4) is a severe overestimation in early

stages of the iteration when � � k~u� F (a�n)k .
To allow more inner iterations it is also possible to switch to the stopping criterion

suggested by Theorem 3.1: terminate the inner iteration with xk when

k~yn � Tnxkk
2 + k~yn � Tnxk+1k

2 � �
2 k~ynk

kwkk

�k
:(6.1)

Here, � is the same parameter as before. It follows from Lemma 3.2 that the corre-

sponding stopping index is never smaller than the one determined by (2.6).

In practical applications the inner iteration will also be terminated when a maxi-

mum number of kmax iterations has been made. As mentioned before, all theoretical

results in this paper allow such an additional constraint. It should be mentioned

that kmax = 1 leads to the method of steepest descent which has been analyzed by

Scherzer [19].

A �nal remark on condition (2.5) may be appropriate. It is an important aspect

of the present work that all results can be formulated under very general conditions

on the nonlinearity of F . Of course, (2.5) is nevertheless restrictive; still, conditions

of this type seem necessary to deduce local convergence for every element u from the

range of F . For comparison, with weaker assumptions on F the papers [1, 2, 17] did

only establish convergence for certain right-hand sides u of (1.1). Blaschke et al. [4, 3]

deduce convergence of their Newton type schemes for all possible elements in the range,

however, only under more restrictive assumptions on F than (2.5). For example, for

the aforementioned problem of identifying the coe�cient a of (1.2) inequality (2.5) is

ful�lled but the assumptions from [4, 3] are not.

Algorithm 2.1 is currently tested on an inverse problem in electrical impedance

tomography. The corresponding numerical results shall be published elsewhere.
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