
PSPVM: Implementing PVM on a high-speed

Interconnect for Workstation Clusters

Joachim M. Blum, Thomas M. Warschko, and Walter F. Tichy

University of Karlsruhe, Dept. of Informatics
Postfach 6980,76128 Karlsruhe, Germany

email:fblum,warschko,tichyg@ira.uka.de

Technical Report 17/96

Abstract. PSPVM in an implementation of the PVM package on top
of ParaStations high-speed interconnent for workstation clusters. The

ParaStation system uses user level communication for message exchange

and removes the operating system from the critical path of message trans-
mission. ParaStations user interface consists of a user-level socket emu-

lation. Thus, we need only minor changes to the standard PVM package

to get it running on the ParaStation system.
Throughput of the PSPVM is increased eight times and latency is re-

duced by a factor of four compared to regular PVM. The remaining

latency is mainly (88%) caused by the PVM package itself. The under-
lying sockets are so fast (25�s) that the PVM package is the limiting

factor. PSPVM o�ers nearly the raw performance of the network to the

user and is object-code compatible to regular PVM. As a consequence,
we achieve an application speed-up of four to six over traditional PVM

using regular ethernet on a cluster of workstations.

1 Introduction

The PVM package is available on a wide range of parallel machines. These
machines cover dedicated parallel machines as well as networks of worksta-
tions. On many dedicated parallel machines the supplied PVM uses proprietary
send/receive calls to speed up communication. On networks of workstations all
communication is usually done via the Unix socket interface. Socket communica-
tion relies on operating system functionality and common network protocols and
is therefore limited in its speed. As long as these implementations were based
on slow sockets the time lost in the rest of the PVM package (e. g. slow list
implementation, packing/unpacking) was not the limiting factor. In this paper
we present user level sockets on top of a high-speed interconnect where the speed
is so fast that the PVM package limits the performance of the whole system.

2 Related Work

The public domain PVM package supports various multiprocessor environments.
All of these are either based on shared memory multiprocessors (SunMP, SGI)



or on message-passing multiprocessors (iPSC/860, Paragon, CM5). Common
to all is that there is a daemon running on a host computer. This daemon
organizes the communication with the other systems in the virtual machine and
allocates/deallocates compute nodes on the local parallel machine.

A hardware con�guration comparable to the ParaStation is the IBM SP2.
It is built by bundling together regular RS/6000 workstations in a 19-inch rack
and connecting them with a high-speed communication switch. Each node is
controlled by its own instance of the AIX operating system. The interface com-
municates in user space or in system space. Only one process per node can com-
municate in user space concurrently. IBM has implemented a specially adopted
PVM version for the SP2 which is called PVMe[BR92]. This reimplementation is
missing the powerful dynamic task creation of regular PVM. Crays PVM version
for the T3D is also missing dynamic spawning of new tasks. Both implementation
use special hardware features to speed up communication.

3 The ParaStation System

The ParaStation system is based on the retargeted MPP network of Triton/1
[PWTH93, HWTP93]. The goal is to o�er MPP-like communicationperformance
while supporting a standard, but e�cient programming interface such as UNIX
sockets. The ParaStation network provides a high data rate, low latency, scal-
able topologies, 
ow control at link level, minimized protocols, and reliable data
transmission. It is dedicated to parallel applications and is not intended as a
replacement for a common LAN. These properties allow the use of specialized
network features, optimized point-to-point protocols, and controlling the net-
work at user-level without operating system interaction.

The ParaStation system library provides multiple logical communication
channels on one physical link. Multiple channels are essential to set up a multi-
user/multiprogramming environment which is needed to support various inter-
faces such as Unix sockets. Protocol optimization is done by minimizing protocol
headers and eliminating bu�ering whenever possible. Within the ParaStation
network protocol, operating system interaction is completely eliminated, remov-
ing it from the critical path of data transmission. The functionality to support a
multiuser environment is realized at user-level in the ParaStation system library.

3.1 ParaStation System Library

During normal operation the ParaStation system library interfaces directly to
the hardware without any interaction with the operating system (see �gure 1).
The device driver is only needed during system and application startup.
Since the hardware consists of a retargeted MPP network, many protocol features
are already implemented in hardware. The gap between hardware capabilities
and user requirements is bridged within the ParaStation system library (see
�gure 2) which consists of three building blocks: the hardware abstraction layer,
the central system layer, and an application layer which uses the standardized
user interface (sockets).



System

User

TCP/IP

Libc

Ethernet

Network

PVM

NetworkHardware

Application

Workstation ParaStation

Network Protocols

Device Driver

System Library

User Library

Libpsp

PSPVM

Fig. 1. Di�erence between traditional network interfacing and the ParaStation solution

Application
Layer

Library
System

Hardware

Layer
Abstraction

Emulation
RAWDATA

P4

P4

Server Process
Process

Process

Process

ParaStation Hardware

Parallel ParallelClient/

PS Socket
PS Ports

PSP Library

PSI Library

PS
PV

M

ot
he

r 
lib

s

Process
PSPVM

Fig. 2. ParaStation system library

Hardware Abstraction Layer. This layer provides an abstraction of the un-
derlying hardware. It is normally used only by the ParaStation system layer. The
implemented functionality of this layer consists of highly optimized send/receive
calls, status information calls, and an initialization call to map communication
bu�ers into user space.

Since messages at this level are addressed to nodes rather than individu-
al communication channels, message headers simply contain the address of the
target node, the number of data words contained in the packet, and the data
itself. While sending a message, data is copied directly from user-space memory
to the interface board and the receiving function does the same thing vice ver-
sa, eliminating all intermediate bu�ering. This layer provides a true zero-copy
protocol.



System Layer (Ports). The system layer provides the necessary abstraction
(multiple communication channels) between the basic hardware abstraction layer
capabilities and a multiuser, multiprogramming environment. We reassembled
operating system functionality at user level to meet our primary design goal of
e�ciency.

To support individual communication channels (called ports in ParaStation)
on top of the node-addressed hardware protocol, the system layer adds infor-
mation about the sending and receiving port in each packet. This concept is
su�cient to support multiple processes by using di�erent port-ids for di�er-
ent processes. For reasons of e�ciency, semaphores necessary to ensure mutual
exclusion while sending and receiving messages, are implemented at user lev-
el. Deadlock-free communication while sending large messages which cannot be
bu�ered by the hardware is ensured by a combination of sending and receiving
message fragments. Prerequisite for sending a message fragment is that the net-
work will accept it. Otherwise incoming messages are processed to prevent the
network from blocking.

The resulting implementation of these concepts contains no system call on
the critical path of communication. Furthermore we tried to provide a zero-copy
behavior (no bu�ering) whenever possible. To prevent deadlock situations, some-
times a single bu�ering is necessary. This technique leads to high bandwidths
and low latencies.

Socket Interface. The socket interface provides an emulation of the standard
UNIX socket interface (TCP and UDP connections), so applications using sock-
et communication can be ported to the ParaStation system with little e�ort.
Porting an application is as easy as adding a pre�x to all socket calls. For con-
nections outside a ParaStation cluster, regular operating system calls are used
automatically. The interface can even handle �le access when using read/write
calls instead of send/recv. Send/recv calls which can be satis�ed within the
ParaStation-cluster do not need any interaction with the operating system.

Application Layer. ParaStation implementations of parallel programming en-
vironments such as PVM [BDG+93](see section 4), P4 [BL92], TCGMSG [Har91],
and MPICH [GL] use ParaStation sockets for high-speed communication. This
approach allows us to easily port, maintain, and update these packages. We
can use the standard workstation distribution rather than reimplementing the
functionality on our own.

The structure of the ParaStation system library provides well known inter-
faces (UNIX sockets, PVM) to guarantee as much portability between di�erent
systems as possible as well as low-latency, maximum-throughput interfaces (raw-
data port, hardware layer) to get maximum performance out of the hardware.

3.2 ParaStation Hardware

The ParaStation hardware [WBT96] consists of the retargeted and reengeneered
MPP-network of Triton/1 [PWTH93, HWTP93]. Data transport is done via a



table-based, self-routing packet switching method which uses virtual cut-through
routing. Every node is equipped with its own routing table and with four bu�ers.
The bu�ering decouples the network from local processing. The size of the packet
can vary in the range from 4 to 508 bytes. Packets are delivered in order and
no packets are lost. The network topology is either a two-dimensional toroidal
mesh or a bidirectional ring. For both topologies a deadlock-free routing scheme
is provided.

The ParaStation hardware is a PCI interface card. PCI was chosen because it
meets our throughput requirements and it is available in several systems of dif-
ferent vendors (Intel-based systems, Digital's Alpha stations, IBM's PowerPCs,
and Sun's UltraSparcs). The �rst implementation of the ParaStation system
runs on Digital Alpha workstations with Digital UNIX (OSF/1); ports to other
platforms are under way. At the time of this writing the �rst implementation on
PCs running Linux is tested and shows excellent communication results.

4 PSPVM: ParaStation PVM

PSPVM is based on the ParaStation sockets. These sockets have the same func-
tionality and same semantics as regular Unix sockets. The only two visible dif-
ferences to the regular sockets are a pre�x pss to each sockets call, and the
higher speed of these sockets. Due to these sockets the changes to the standard
library are small and an update to new versions of PVM is an easy task. We can
use all advantages of the regular PVM package and communicate in user space
without interaction with the operating system. Multiple processes are allowed
on each node. The loopback of the ParaStation sockets is specially optimized
(80MByte/s) and is mostly limited by the memcpy speed of the system.

An e�ect of a slow communication subsystem is that many programmers use
PvmRouteDefault which sends a messages via the daemon on the same node
which in turn contacts the daemon on the destination node, and delivers the
message �nally to the destination process. This routing scheme causes at least
two process switches and two additional process-to-process latencies. Fast sock-
ets reduce communication time so much that process switching and message
transaction in the daemons are no longer a negligible part of the communication
latency. To speed up communication, users should use the already provided Pvm-

RouteDirect which establishes direct communication channels to the destination
process.

The ParaStation system library supports most of the functionality of PVM
and other message passing environments such as MPI and P4. A current project
adjusts many programming environments to the ParaStation by using the Para-
Station system library as a kernel. This approach enables us to only reimplement
the environment-speci�c functionality and o�er the whole speed of the hardware
to the user.



5 Benchmark Results

The evaluation of PSPVM is done at two important levels. First, the latency
and throughput of the ParaStation implementation is compared to the standard
implementation. Second, an application benchmark is run on both implemen-
tations to compare the e�ect of an e�cient communication subsystem to us-
er applications. The tested ParaStation cluster consists of eight 21064A Alpha
workstations (275MHz, 64MB memory). Our tests are all done with the same
program object code, just linked with the other library.

5.1 Latency and Throughput of Sockets and PVM

Coarse-grained parallel programs depend only on throughput of the communica-
tion system, whereas �ne-grained parallel programs also depend on low latency.
The main reason that �ne-grained parallel computation is ine�cient on worksta-
tion clusters is that the latency of the communication subsystem is on the order
of milliseconds. To measure the throughput und latency of the di�erent com-
munication subsystems we used a simple pairwise exchange benchmark. Both
processes send and receive messages at the same time. This scenario is common
in real applications. In the PVM versions of the program, packing and unpacking
of the data is included. To get a measurement of the communication time and
not of the packing, we used PvmDataInPlace bu�er allocation.

Throughput (in MByte/s) Latency (in �s)

Message Standard ParaStation Standard ParaStation

size PVM sockets PSPVM sockets PVM sockets PSPVM sockets

4 0,01 0.01 0,04 0.31 733 566 200 25

16 0,04 0.05 0,17 1.21 748 631 191 26

64 0,16 0.19 0,61 3.53 764 655 204 36
500 0,69 0.70 3,16 8.34 1480 1411 316 119

2000 0,80 1.07 5,75 8.68 5073 3717 712 460

16000 0,79 0.89 6,41 8.73 41273 35816 5109 3663
64000 0,8 0.83 6,02 8.55 159682 153977 21214 14966

The PVM package adds about 200 �s to the latency caused by the underlying
communication subsystem. This loss is not the dominating factor when built
on top of regular sockets (loss of 29%), but it limits the performance when the
system is built on top of ParaStation's user level sockets (loss of about 800%!!).
Fine-grained parallel programs use many small messages and so these latencies
dominate the performance of the whole application. On the other hand, the
throughput of PVM is about 8 times higher on ParaStation. This improvement
is achieved by just replacing the system calls by user level calls which use an
additional PCI interface card. Therefore PSPVM has a substantial advantage
even for coarse-grained programs. These numbers show that work must be done
on the PVM system itself to speed up the message handling.



5.2 ScaLAPACK

The second application benchmark, xslu, taken from ScaLAPACK1[CDD+95] is
an equation solver for dense systems. Numerical applications are usually built on
top of standardized libraries, so using these libraries as benchmarks is straight-
forward. ScaLAPACK is available for several platforms and presented results are
directly comparable to other systems.

ScaLAPACK on ParaStation with PSPVM

Problem 1 workstation 2 workstations 4 workstations 8 workstations

size (n) Runtime [s] MFlop Runtime [s] MFlop Runtime [s] MFlop Runtime [s] MFlop

1000 5.0 134 3.36 199 2.95 226 2.74 244

2000 34.4 155 20.8 257 13.6 394 9.80 545

3000 109 165 62.3 289 39.2 459 27.9 647

4000 138 309 84.0 508 54.6 782

5000 152 547 96.4 865

6000 251 573 157 920

7000 234 978

8000 334 1022

ScaLAPACK on Ethernet with PVM

Ethernet n=3000 165 n=4000 232 n=6000 320 n=8000 261

The above table con�rms scalability of performance in term of both problem
size and number of processors. The e�ciency of the two, four, and eight pro-
cessor clusters are 94%, 87%, and 77% respectively. Remarkable is that we get
more than a Giga
op on an 8-processor cluster. These are real measured per-
formance �gures and not theoretically calculated numbers. The last line shows
the performance one gets using ScaLAPACK con�gured with standard PVM
(Ethernet). The best performance in this scenario is reached at a problem size of
n=6000 on a 4-processor cluster. Using even more processors results in a drastic
performance loss due to bandwidth limitation on the Ethernet. For ParaStation,
in contrast, we see no close limitation when scaling to larger con�gurations. And
it is even possible to improve the ParaStation performance by using a better
interface than PVM.

6 Conclusion and Future Work

In this paper we have presented an e�cient way of using PVM for �ne-grained
parallel programs on workstation clusters just by replacing the regular socket by
user level sockets which use a parallel communication interface card. This change
results in a much better performance of the whole system. We have experienced
a speedup of three to four over regular PVM on a number of applications. It is
also shown that the PVM library itself is now the limiting factor. To eliminate
this bottleneck we plan to redirect PVM calls to the ParaStation system library,
where most of the PVM functionality is already implemented. This reimplemen-
tation will be object-code compatible to regular PVM and will deliver the native

1 Scalable Linear Algebra Package.



performance of the ParaStation environment. Most additional work will be done
in an e�cient implementation of allocating/deallocating PVM-speci�c bu�ers.
Due to the PCI interface we are not limited to the DEC Alpha workstations and
we are working on a port to Linux on PC/Alpha and ports to other platforms
such as Windows NT on PC and Alphas are scheduled2.

On the network side we target a 100MByte/s application-to-application through-
put in a new-generation ParaStation board with �ber-optic links.

References

[BDG+93] A. Beguelin, J. Dongarra,
Al Geist, W. Jiang, R. Manchek, and V. Sunderam. PVM 3 User's Guide

and Reference Manual. ORNL/TM-12187, Oak Ridge National Lab., 1993.

[BL92] Ralph Buttler and Ewing Lusk. User's Guide to the p4 Parallel Program-

mimg System. ANL-92/17, Argonne National Laboratory, October 1992.

[BR92] Massimo Bernaschi and Giorgio Richelli. PVMe: an enhanced implementa-

tion of PVM for the IBM 9076 SP2. In ISCA, 1992.
[CDD+95] J. Choi, J. Demmel, I. Dhillon, J. Dongarra, S. Ostrouchov, A. Petitet,

K. Stanley, D. Walker, and R. C. Whaley. Scalapck: A portable linear al-
grbra library for distributed memory computers { design issues and per-

formance. Technical Report UT CS-95-283, LAPACK Working Note #95,

University of Tennesee, 1995.
[GL] William Gropp and Ewing Lusk. User's Guide for mpich, a Portable Im-

plementation of MPI. Argonne National Laboratory.

[Har91] R. J. Harrison. Portable tools and applications for parallel computers. In-
ternational Journal on Quantum Chem., 40:847{863, 1991.

[HWTP93] Christian G. Herter, Thomas M. Warschko, Walter F. Tichy, and Michael

Philippsen. Triton/1: A massively-parallel mixed-mode computer designed
to support high level languages. In 7th International Parallel Processing

Symposium, Proc. of 2nd Workshop on Heterogeneous Processing, pages

65{70, Newport Beach, CA, April 13{16, 1993.
[PWTH93] Michael Philippsen, Thomas M. Warschko, Walter F. Tichy, and Chris-

tian G. Herter. Project Triton: Towards improved programmability of par-

allel machines. In 26th Hawaii International Conference on System Sci-

ences, volume I, pages 192{201, Wailea, Maui, Hawaii, January 4{8, 1993.

[WBT96] Thomas M. Warschko, Joachim M. Blum, and Walter F. Tichy. The Para-

PC/ParaStation project: E�cient parallel computing by workstation clus-
ters. Technical report, University of Karlsruhe, Department of Informatics,

March 96.

This article was processed using the LaTEX macro package with LLNCS style

2 The information about the supported systems and many other useful information

are available at http://wwwipd.ira.uka.de/parastation


