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Preface

Over the years financial modeling has more and more turned away from the no-
tion that financial returns follow a Gaussian process with independent increments.
Instead properties have been detected in financial returns time series that negate
the classical normal i.i.d. assumption. This has led to call for new methods.

This thesis work focuses on credit instruments and the behavior of their returns.
It examines four phenomena observed in the time series of credit returns:

• Heavy-tailedness and peakedness.

• Time-varying volatility.

• Long memory (long-range dependence).

• Cointegration.

Additionally, it analyzes the interdependence among these phenomena.
On the contrary to known credit risk models based on the normal assumption,

the model for price returns in this thesis will assume a stable distribution. As
empirical studies show, the daily returns of a bond and the resulting credit risk
obey a stable law, exhibiting leptokurtic, heavy-tailed, and skewed distributions.
This leads to the application of stable Value at Risk measures as they provide a
better fit compared to normal ones.

However, recent research has found that credit returns show certain patterns
that give rise to the assumption of autocorrelation, heteroscedasticity, and long-
range dependence (LRD) which enhances the need for a refinement of stable credit
models applied so far.

ARCH-type processes are known to be capable of describing heteroscedasticity
in financial time series. Although such heteroscedastic processes exhibit heavy-
tailedness even under the Gaussian assumption, it is found later that the applica-
tions of ARCH-type processes and stable distributions are not mutually exclusive.

Long memory has been analyzed for financial time series already in the liter-
ature but mostly for high-frequency trading data of non-credit instruments. This
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4 Preface

thesis examines the presence of long memory in daily credit return data, and an-
alyzes its occurrence in both signed returns and volatility process. Moreover, it is
found out that this phenomenon can be attributed to a certain risk factor of the
return-generating process.

Observing the market prices of different credit qualities (rating grades), a joint
long-term behavior becomes visible: different credit qualities of equal maturity are
found to be cointegrated. Thus, the concept of cointegration plays an important
role when describing credit returns. Finally, all information should be embedded
into a system of equations.

The central objective of this research is to build for the first time a model that
integrates the description of all the above phenomena into one model that has the
capability to describe the behavior of corporate credit returns for various credit rat-
ings and maturities. Therefore the concept of stable VAR (Vector Autoregression)
is applied for this model. Cointegrated VARs are estimated for a set of maturities,
assuming the equations of the different credit grades to be simultaneous.

The model identifies several risk factors that have an impact on the credit re-
turns. The long memory and the heteroscedasticity can finally be attributed to one
certain factor only. In addition, it is found that the developed long-memory pro-
cess captures the volatility clustering, and that a joint application of long-memory
models and traditional ARCH-type models does not work. It is demonstrated that
the stable cointegrated VAR with the incorporated long-memory model exhibits
the best performance in forecasting Value at Risk among the compared models.

Due to these results it can be concluded that stable long-memory models for
the description of credit returns will certainly play a greater role in the future.

As a further result of the long-memory based stable cointegrated VAR, the
tail correlations in the model’s innovations have disappeared. This allows the
application of a tractable Gaussian copula with stable marginals to model the
dependence between the different rating grades (copulas provide a much better
description of dependence than traditional measures such as correlation, however,
their application to high-dimensional random vectors used to be difficult under the
stable assumption in the past).

It turns out that the consideration and modeling of the mentioned phenomena
leads to an improvement of the forecast accuracy for credit returns compared to
traditional methods. This enables more precise estimations of Value at Risk.

Aside from this, the developed stable cointegrated VAR model for credit returns
is supposed to have a broad range of usage such as scenario analysis, stress testing,
and portfolio optimization. The latter will be addressed in the final chapter which
serves as an outlook covering possible fields of application.
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Chapter 1

Introduction: The Context Of
Credit Risk Management

This chapter explains the need for sophisticated credit risk models. It briefly
reviews the current state of the art in credit risk management and discusses the
view of the regulators. Furthermore, it explains the characteristics of the three
general types of credit models: structural model, reduced-form model, and hybrid
model. Finally, the chief properties of the well known CreditMetrics(TM) approach
are introduced and its deficiencies with regard to the distributional assumption
are discussed.

1.1 Overview

Traditional methods of credit risk management, i.e. strict underwriting standards,
limit enforcement, and close counterparty monitoring, focus on pure risk reduction
but cannot meet requirements such as risk measurement and the assessment of
portfolio efficiency. Aside from these issues, credit risk managers have looked for a
way to integrate all risk determinants such as exposure and probabilities of rating
changes, or default into a single overall measure. Being such a measure, Value at
Risk (VaR) has gained popularity over the years. Instead of merely measuring each
obligor’s risk separately, risk managers also have to consider portfolio effects such
as concentration risk, which accounts for the correlations among different obligors.

The traditional way to achieve protection from concentration risk was to set
exposure limits for certain obligor groups (e.g. industries). However, this neglected
consideration of the relationship between risk and return. The portfolio view helps
to apply methods of risk diversification. These are the steps towards a risk-based
view of the capital allocation process.

Under the impact of a steadily increasing market for credit derivatives which

11



12 1 The Context Of Credit Risk Management

are difficult to manage, there is a strong need for a quantitative approach. The
use of derivatives has grown during the past years. Their exposure is not visible in
the balance sheet of a financial institution and their structure is often extremely
complex. Thus, the exposure due to credit derivatives is another reason for the
application of sophisticated quantitative methods in credit risk management. In
fact, the increasing use of such derivatives was the reason why the BIS (Bank for
International Settlements) set up new requirements for risk-based capital in 1993.

Among the reasons why credit risk measurement in general has become more
important over the past years is the fact that the number of bankruptcy cases has
rocketed. This increase is due to structural reasons as it is caused by tight global
competition. With the soar in the new economy companies (high-tech sector),
which have brought with them an increasing need for capital on the one hand
but face much higher risks on the other, the volume of high-yield bond markets is
expected to grow further. The difficulties of firms within the new economy together
with the growing number of bankruptcies underlines the riskiness of this segment.

All these effects result in a lower average credit quality in the credit market.
Owing to ever sharper competition in the credit business, the margins for the
creditors are declining, including the high-yield markets.

With increasing volatility in the markets, the values of collateral are more
difficult to predict and are therefore, less likely to be realized. And with property
values growing weaker and less safe, lending has become even riskier.

Advances in computer technology (especially in database technology) have sup-
ported the building of databases with historical loan/bond data and the application
of complex quantitative methods such as multivariate Monte Carlo simulations.

Another major incentive for the development of new risk-based credit models
is the fact that the regulations of the BIS and central banks are not satisfactory
tools for adequate, risk-based decision making on capital allocation. The current
legal requirements say that all loans to private sector companies must have the
same capital reserve of 8%, regardless of the obligor’s credit quality. Furthermore,
according to the regulations, the capital requirements are simply added over all
loans, disregarding possible portfolio effects such as diversification or concentra-
tion.

Starting in 1997, the regulators permitted a large number of banks to use
internal models when calculating capital requirements for their trading books. In
this case, the internal models applied have to observe certain constraints and have
to be verified by backtesting. Such models also consider concentration risk and
permit a precise calculation of the VaR for each trading instrument.

Internal models not only provide a measurement of credit risk and are a tool
for the pricing of loans, bonds, and derivative instruments. Furthermore, they
help with analyzing questions of capital allocation in the context of RAROC (risk
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adjusted return on capital).
The 1988 Basle Capital Accord1 which determines the risk-based capital ad-

equacy requirements imposed on banks, has become exposed to exploitation by
banks as they have reduced their risk-based capital requirements, but not the
actual risk within their portfolios. This development led to a game-theory-like
exercise with banks frequently making use of regulatory capital arbitrage.2

The table below sets out the current risk-based capital (RBC) requirements:3

Type Properties Reserve

Loan Uncollateralized/guaranteed 8.0 %
Loan Collateralized/guaranteed 8.0 %
Loan OECD government 0.0 %
Loan OECD bank/securities dealer 1.6 %
Loan Other collaterals/guarantees 8.0 %

Table 1.1: Overview of current risk-based capital (RBC) requirements for a number of banking book instru-
ments.(OECD = Organization for Economic Cooperation and Development)

Nevertheless, because regulatory capital requirements are determined by the
type of credit instruments, and not by the actual riskiness of the obligor, chances
for capital arbitrage arise.

Regulators are aware of this problem, and thus, the Basle Committee proposed
a framework for a new Capital Accord in January 2001.4 It is the objective of the
new Accord that the capital requirements that lending banks have to provide for
their issued loans depend on the riskiness of the transaction. However, the debates
on the current proposal are ongoing and further reviews will take place. The new
Accord is expected to become effective by 2006.

Generally, the modeling of instruments which are subject to credit risk turns
out to be a more complex task than the modeling of instruments which are driven
merely driven by market risk. A higher number of risk sources exist for credit
products. Credit risk models face difficulties that do not apply to market risk
models.5 Moreover, credit risk models usually differ from market risk models in
that they focus on a longer time horizon.

The creditworthiness of an issuer is determined by various risk drivers: not
only the issuer’s particular financial well-being, but also economic developments
and industry trends have an effect.

1Basle-Committee (1988).
2Saunders (1999, p. 6).
3Federal-Reserve-System-Task-Force (1998).
4Basle-Committee (2001).
5Huang (2000).
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The main elements of credit risks are as follows:6

• Default probability.

• Recovery rate.

• Credit migration.

• Default and credit risk correlation.

• Risk concentration and credit concentration.

Credit risk models usually focus on spotlight credit events such as default or
a change in the credit quality of the obligor. This criterion is used to classify the
models as either default-mode (DM) models or marked-to-market (MTM) models.
The former values credit instruments considering default as the only possible credit
event, while the latter also takes the probabilities of changes in the obligor’s credit
rating into account. An MTM model can capture the likelihood of a decrease in
the value of a credit instrument before default occurs. The credit instrument is
valued as if it were traded in a market.

The credit event ”default” happens very rarely. The event ”change in credit
rating” is also seldom observed and its timeliness depends largely on the reaction
time of the institution assigning the rating (e.g. rating agency). Thus, concentrat-
ing on the behavior of daily credit prices and spreads could be a more successful
way of describing the credit risk of an issuer. However, such an approach is limited
to those instruments which are valued regularly by the market. In this case, the
processes driving the price of a credit instrument need to be analyzed. As men-
tioned above, the prices of credit instruments are influenced by a wider range of
factors than the prices of market instruments.

For traded credit instruments, market risk factors play a key role aside from
individual counterparty risk. Therefore, it is critical to incorporate them into
credit risk models. Moreover, as the impact of market movements is also relevant
for short time horizons, credit risk models will adapt such horizons.

For non-traded instruments which are (usually) held to maturity (e.g. bank
loans), DM-type models will continue to play a role. However, secondary credit
markets are gaining importance and prices for loans in secondary markets depend
on their current credit quality, the likelihood of future changes in credit quality,
and market factors. Hence, DM-type models fail in this respect.

During times of financial crises, the close relationship between credit products
and products exposed to market risk becomes visible, with the individual risk of
the issuer remaining unaffected.7

6Ong (1999, p. 63).
7Huang (2000).
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This demonstrates why credit risk models have to deal with more than coun-
terparty risk itself. In this case, prices of tradable credit securities, market risk
factors, and measures such as liquidity may also play a part. For example, when
the US government announced that it was buying back old treasury bonds and
reducing new issues, this caused an increased spread for long-dated corporates and
a resulting higher liquidity premium.

Thus, credit spreads8 are not driven solely by the issuer’s default probability
and the level of exposure. Specifically, when credit risk is measured on a marked-
to-market basis, the prices of credit instruments interrelate closely with market
interest rates (and other aggregated market factors).

Historically, credit spreads and interest rates have often moved in different
directions. For example, when the markets feel that massive defaults are in the
offing and investors switch to safe treasury bonds, then credit spreads increase,
whereas interest rates drop due to increased demand for the treasury bonds.9

Apart from the distinction which credit events are considered by the model (DM
and MTM models), credit risk models can be classified by another criterion: is the
credit risk of a firm taken as an exogeneous factor or is it modeled depending on
certain properties of the firm such as asset value? The following section presents an
overview of the types of credit models classified according to this criterion. In all,
three general forms are distinguished. The properties of each form are described
and the major differences briefly discussed.

1.2 Structural, Reduced-Form, And Hybrid Mod-

els

Traditional approaches of credit risk models pinpointed single entities, and effects
that occur within portfolios, were not analyzed. Analysis has dealt with expert
systems, rating models, and credit scoring. Later models (see also the approach
of CreditMetrics(TM) in section 1.3) targeted dependence and diversification effects
among the obligors.

Today, three types of models can be distinguished: (i) structural models, (ii)
reduced-form models, and (iii) hybrid models.

Structural models. The name comes from the underlying assumption that a
firm’s credit risk revolves around both its asset value and its balance sheet figures,

8Here credit spread is referred to as the difference between the yield achieved for a treasury
bond and the yield achieved for corporate bonds of equal maturity.

9Huang (2000).



16 1 The Context Of Credit Risk Management

i.e. the structure of the company.10 The first model of this kind was the Merton
Model.11 Structural models require assumptions on the development of the firm’s
asset values. This means the model has to build a link between the firm’s asset-
liability structure and its stock price movements.

Both default probability and recovery rate are contingent on these measures.
As an extension, recovery rates may also be modeled exogeneously.12

Reduced-form models. Reduced-form models ignore the company’s asset-liability
structure or asset value. These models focus exclusively on the firm’s traded li-
abilities (bonds) and the default-free term structure. The observed credit spread
is seen as the result of the firm’s default probability and expected recovery rate,
both of which are exogeneous variables.

A disadvantage of structural models is that they assume the company’s liability
structure to be constant over time. This means that even if the value of corpo-
rate assets changes, the debt structure would be assumed to remain constant.13

Reduced-form models are not affected by these considerations. However, reduced-
form models are criticized for using prices taken from corporate debt markets,
which are known to be less liquid than equity markets.

Hybrid models. Hybrid models incorporate properties of both structural and
reduced-form models in an attempt to reap the benefits of both. A prominent
example for hybrid models is J.P. Morgan’s CreditMetrics(TM), which is described
in the next section.

1.3 The CreditMetrics Approach

CreditMetrics(TM) was developed by J.P. Morgan and is a simulation-based tool
for assessing portfolio risk due to changes in debt value.14 The debt value of an
obligor is influenced by two factors: (i) possible future downgrades in credit quality
or (ii) the default probability of the obligor. The software tool can be applied to a
number of different credit instruments such as loans, bonds, and credit derivatives.
The measure for the risk of a portfolio over a given time horizon is its Value at
Risk (VaR).

CreditMetrics(TM) is a hybrid model that merges a rating transition model with
the assumption that joint credit quality moves are determined by joint movements

10Jarrow and Deventer (1999).
11Merton (1974).
12Longstaff and Schwartz (1995).
13Jarrow and Deventer (1999).
14Gupton, Finger and Bhatia (1997).
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of the firm’s assets.15 The valuation approach is marked-to-market (MTM), which
considers credit migration. This means that the value of a credit instrument is not
determined exclusively by its default probability for future periods but also by the
probabilities of changing credit quality. The current credit quality is represented
by the credit rating (e.g. Moody’s Investors Service, Standard & Poor’s) of the
obligor company. In this model, the risk of a company is assumed to be driven
by its asset value. The correlations among credit events of different companies are
calculated as correlations among their asset returns.16

In case of a default event, the creditor typically only receives a certain frac-
tion of a bond’s or loan’s face value. This fraction is called recovery rate. In
CreditMetrics(TM), the recovery rate is defined as a random variable.

One of the chief assumptions of CreditMetrics(TM) is that asset returns are
normally distributed. The model uses a Merton-type approach that links asset
value or the volatility of the returns to discrete rating migration probabilities of
individual borrowers. The idea is that changes in the firm’s asset value result in
different probabilities for changing credit quality. The following graph depicts this
concept.17

Figure 1.1: Mapping asset value and rating transition probabilities in CreditMetrics.

Figure 1.3 displays the (Gaussian) probability density of a company’s future
asset value. The thresholds on the value scale divide the space under the density

15Rachev, Schwartz and Khindanova (2001).
16Saunders (1999, p. 37).
17Figure taken from Gupton, Finger and Bhatia (1997).



18 1 The Context of Credit Risk Management

function into different sectors. Each sector represents the probability of changing
over into a certain credit rating category during the next period. These proba-
bilities are derived from historical transition matrices. The method of calculating
such thresholds for the asset value is explained in the CreditMetrics(TM) technical
document and will not be gone into here.18

1.4 The Normal Assumption

The distributional assumption for financial returns and for the underlying risk
factors has a considerable impact on the risk measures applied. For derivative
instruments, the assumption of the type of distribution is essential in terms of
pricing models.

In financial models, the distributions of asset returns were commonly assumed
to follow a Gaussian law. Most of the financial theory is based on Bachelier’s
theory of speculation using the normal distribution for the asset returns.19 B.
Mandelbrot20 and E. Fama21 were the first to reject the Gaussian hypothesis and
proposed the use of stable distributions for asset returns which provided a better
fit on empirical samples.

The popularity of the normal distribution for modeling asset returns is based on
its statistical simplicity and the Central Limit Theorem (CLT).22 The assumption
of independent identically distributed (i.i.d.) normal returns supports the Efficient
Market Hypothesis.

The existence of a second moment has desirable properties: (i) the variance
is a common measure used to express the individual riskiness of an asset and (ii)
the dependence between the returns of two different assets are described by the
covariance.

However, the Gaussian distribution is unable to capture heavy-tailedness of
financial returns since its weight lies in the center. The focus of this thesis therefore
centers on a broader class of distributions: the stable distributions.23

Stable distributions are able to capture not only the heavy-tailedness and
peakedness of financial returns but also their skewness.

The following chapter explains the definition, the parameters, and the main
properties of stable distributions. It also introduces stable vectors and demon-
strates how to model dependence between the elements of a stable random vector.

18Gupton, Finger and Bhatia (1997).
19Bachelier (1900).
20See, for example, Mandelbrot (1997a), Mandelbrot (1997b) and Mandelbrot (1999).
21See, for example, Fama (1965a) and Fama (1965b).
22Feller (1971).
23The Gaussian distribution is a special case of the class of stable distributions.



Chapter 2

The Stable Distribution

This chapter first presents the definition, the parameters, and the properties of
stable distributions. It goes on to define stable random vectors and the measure
of dependence between stable random variables. Then it introduces sub-Gaussian
vectors which are a method to represent the dependence between stable random
vectors by applying Gaussian dependence measures. This method is of practical
relevance. Moreover, measures that reflect the risk of stable asset returns are
introduced: variation and Value at Risk. Finally, there is a brief overview of
common financial performance measures defined under the stable assumption.

2.1 Definition And Parameters

Definition. There are several definitions of the stable distribution. The most
common definition is as follows: a random variable X is said to have a stable
distribution if, for any positive numbers A and B, there is a positive number C
and a real number D, such that

AX1 + BX2 =
d

CX + D , (2.1)

where X1 and X2 are independent copies of X, and where =
d

denotes equality in
distribution. X is then called a stable random variable. If the equation holds with
D = 0, then X is said to be strictly stable.1

The domain of attraction. Another definition for stable distributions that uses
the concept of convergence in distribution for the sum of independent identically
distributed random variables with infinite variance is the domain of attraction.

1For all definitions in this section see Samorodnitsky and Taqqu (1994, pp. 2).
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20 2 The Stable Distribution

A random variable X is said to have a stable distribution if it has a domain
of attraction, i.e. if there is a sequence of i.i.d random variables Y1, Y2, ..., Yn, and
sequences of positive numbers {dn} and real numbers {an} such that

Y1 + Y2 + ... + Yn

dn

+ an =⇒d X. (2.2)

The notation =⇒d means convergence in distribution.

The parameters of a stable distribution. Most stable distributions do not
have a closed expression for their density function. However, all univariate stable
distributions are defined by four parameters:

• α: Stability index ∈ (0,2];

• β: Skewness parameter ∈ [-1,1];

• σ: Scale parameter ∈ R+;

• µ: Shift parameter ∈ R;

The Gaussian distribution commonly used in financial models is one member
of the family of stable distributions. Gaussian distributions are characterized by
α = 2, while non-Gaussian stable distributions have an α ∈ (0, 2). In the case of
α < 2 the distributions show heavy tails and peakedness and do not have a finite
variance. The tails decay like a power function, which also indicates that a stable
random variable exhibits greater variability than a normal random variable.

Characteristic function. A random variable is said to have a stable distribu-
tion if there are parameters 0 < α ≤ 2 , σ ≥ 0 ,−1 ≤ β ≤ 1, and µ real such that
its characteristic function has the following form:

Eexp {iθX} = exp
{
−σα|θ|α

(
1 − iβ(sign θ) tan

πα

2

)
+ iµθ

}
, if α �= 1,

Eexp {iθX} = exp

{
−σ|θ|

(
1 + iβ

2

π
(sign θ) log |θ|

)
+ iµθ

}
, if α = 1; (2.3)

where α is the index of stability, β is the skewness parameter, σ is the scale
parameter, and µ is the shift parameter; sign(θ) is the sign-function with sign(θ) =
+1, for θ > 0, sign(θ) = 0, for θ = 0, and sign(θ) = −1, for θ < 0. For a stable
random variable X with a characteristic function (2.3) or (2.3), this is expressed
as X ∼ Sα(σ, β, µ). If β = 0, then X is a symmetric stable random variable and
denoted by SαS.
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2.2 Properties Of Stable Random Variables

Sum of two stable variables. Let X1 and X2 be two independent random
variables with Xi ∼ Sα(σi, βi, µi), i = 1, 2. Then, the parameters of the resulting
distribution for X1 + X2 ∼ Sα(σ, β, µ) are given by

σ = (σα
1 + σα

2 )1/α , (2.4)

β =
β1σ

α
1 + β2σ

α
2

σα
1 + σα

2

, (2.5)

µ = µ1 + µ2 . (2.6)

Extending this property to the case of more than two independent α-stable
random variables Xi, i = 1...n, n ≥ 3, the distribution X =

∑n
i=1 Xi has the

following parameters:

σ =

(
n∑

i=1

σα
i

)1/α

, (2.7)

β =

∑n
i=1 βiσ

α
i∑n

i=1 σα
i

, (2.8)

µ =
n∑

i=1

µi . (2.9)

Multiplication with a constant. Another useful property of α-stable random
variables is the scaling transformation. Let X ∼ Sα(σ, β, µ), and let a be a non-
zero real constant. Then,

aX ∼ Sα(|a|σ, sign(a)β, aµ) (2.10)

for α �= 1, and

aX ∼ Sα(|a|σ, sign(a)β, aµ − 2a

π
(log |a|)σβ), (2.11)

for α = 1.

The above properties are especially useful for modeling the common distribu-
tion of various asset returns, under the assumption that the assets are independent
and the returns of each obey a stable distribution with one common stability index.
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Stable random vectors. A random vector X = (X1, ..., Xd) is said to be a
stable random vector in Rd if, for any positive numbers A and B, there is a positive
number C and vector D ∈ Rd such that

AX(1) + BX(2) =
d

CX + D , (2.12)

where X(1) and X(2) are independent copies of X. The vector is called strictly stable
if the equation holds with D = 0 for any A > 0 and B > 0.

Characteristic function of an α-stable random vector. 2 Let X = (X1, ..., Xd)
be an α-stable random vector in Rd and let Φα(θ) = Φα(θ1, ..., θd) = Eexp{i(θ,X)} =
Eexp{i∑d

k=1 θkXk} denote its characteristic function. Then Φα is the joint char-
acteristic function of the random variables X1, ..., Xd.

The expression of the joint characteristic function of a stable random vector in
the following theorem involves an integration over Sd = {s : ‖s‖ = 1}, which is
the unit sphere in Rd. Sd is a (d − 1)-dimensional surface.3

Theorem 1. Let 0 < α < 2. Then X = (X1, ..., Xd) is a stable random vector
in Rd if and only if there exists a finite measure Γ on the unit sphere Sd of Rd and
a vector µ0 in Rd such that
(a) if α �= 1 then

Φα = exp

{
−
∫

Sd

|(θ, s)|α
(
1 − i sign((θ, s)) tan

πα

2

)
Γ(ds) + i(θ, µ0)

}
, (2.13)

(b) if α = 1 then

Φα = exp

{
−
∫

Sd

|(θ, s)|
(

1 + i
2

π
sign((θ, s))log |(θ, s)|

)
Γ(ds) + i(θ, µ0)

}
.

(2.14)
The pair (Γ, µ0) is unique. The vector X in Theorem 1 is said to have a spectral
representation (Γ, µ0). The measure Γ is called the spectral measure of the stable
random vector X.

Strictly stable random vector. Suppose that X = (X1, ..., Xd) is an α-stable
random vector in Rd with 0 < α ≤ 2. Then X is strictly stable if and only if all
its components Xk, k = 1, ..., d, are strictly stable random variables.

A necessary and sufficient condition for a strictly stable random vector is that
µ0 = 0, and Γ be a symmetric measure on Sd (i.e. Γ(A) = Γ(−A)), for any Borel
set A of Sd.

2Samorodnitsky and Taqqu (1994, pp. 65).
3S1 is the two-point set {−1, 1} and S2 is the unit circle.
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Theorem 2. 4 X is a symmetric α-stable vector in Rd with 0 < α < 2 if and
only if there exists a unique symmetric finite measure Γ on the unit sphere Sd such
that

Eexp{i(θ,X)} = exp

{
−
∫

Sd

|(θ, s)|α Γ(ds)

}
. (2.15)

Γ is the spectral measure of the symmetric α-stable random vector.

A symmetric α-stable distribution in Rd is denoted SαS. The vector X =
(X1, ..., Xd) is said to be SαS in Rd, and the random variables X1, ..., Xd are
jointly SαS.

In order to represent a d-dimensional vector of SαS random variables with
common stability index α, the concept of sub-Gaussian vectors can be applied.
First this property is explained for a single variable: A SαS random variable
X can be constructed as X = A1/2G, with G as a zero-mean Gaussian random
variable, i.e. G ∼ N(0, σ2), and with A as an α/2-stable random variable totally

skewed to the right and independent of G, i.e. A ∼ Sα/2

((
cosπα

4

)2/α
, 1, 0

)
; A is

called α/2-stable subordinated.

This result can be extended to the d-dimensional case: Let G be a d-dimensional
zero-mean Gaussian random vector, G = (G1, ..., Gd). Suppose that G is indepen-
dent of the above-defined α/2-stable subordinator A. A d-dimensional SαS vector
X is defined by

X = (A1/2G1, ..., A
1/2Gd). (2.16)

The vector X is called a sub-Gaussian5 SαS random vector in Rd with under-
lying Gaussian vector G.

As the covariance for stable distributed random variables with α < 2 is al-
ways infinite, the concept of sub-Gaussian SαS random vectors can be applied to
incorporate the Gaussian dependence structure among stable distributed random
variables. Since the Gaussian dependence is easier to calculate, it makes sense to
transfer it into the sub-Gaussian case.

One approach toward generating dependent SαS random variables is to use
truncated Gaussian covariances from the empirical data. Generating a d-dimensional
random vector X is performed by simulating a d-dimensional Gaussian random vec-
tor G with correlated elements Gi , i = 1, ...d, and an α/2-stable random variable
A independent of Gi. For details see Rachev, Schwartz and Khindanova (2001).

4Samorodnitsky and Taqqu (1994, pp. 73).
5Samorodnitsky and Taqqu (1994, pp. 77).
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2.3 Dependence Among Stable Random Elements

The covariation. The covariance function can only be applied for measuring the
dependence among Gaussian random elements (α = 2). The covariation replaces
the covariance for random elements with 1 < α < 2. Before defining the covariation
for jointly SαS random variables, the so-called signed power is introduced. The
signed power a<p> is defined as

a<p> = |a|psign(a) =

{
ap if a ≥ 0

−|a|p if a < 0.
(2.17)

Definition of the covariation. 6 Let X1 and X2 be jointly SαS with α > 1 and
let Γ be the spectral measure of the random vector (X1, X2). Then, the covariation
of X1 on X2 is the real number

[X1, X2]α =

∫
S2

s1s
<α−1>
2 Γ(ds). (2.18)

Let (X1, X2) be jointly SαS, 1 < α ≤ 2, and consider the SαS random variable

Y = θ1X1 + θ2X2, (2.19)

where θ1 and θ2 are real numbers. Denoting σ(θ1, θ2) as the scale parameter of
the random variable Y , there is another definition of the covariation [X1, X2]α
equivalent to the one cited in (2.18):

[X1, X2]α =
1

α

∂σα(θ1, θ2)

∂θ1

∣∣∣∣
θ1=0,θ2=1

. (2.20)

Modeling the dependence in a sub-Gaussian random vector. Let (G1, ..., Gn)
be mean-zero jointly Gaussian random variables with covariance Rij = EGiGj,

i, j = 1, ..., n, and let A ∼ Sα/2

((
cosπα

4

)2/α
, 1, 0

)
be independent of (G1, ..., Gn).

Then, the sub-Gaussian random vector X = (X1, ..., Xn), with Xk = A1/2Gk,
k = 1, ..., n, 1 < α < 2, has the following covariations:

[Xi, Xj]α = 2−α/2RijR
(α−2)/2
jj . (2.21)

Here: if Rii = Rjj then [Xi, Xj]α = [Xj, Xi]α.
However, the covariation in general is not symmetric in its arguments (in con-

trast to the Gaussian covariance). Thus, there is often:

6Samorodnitsky and Taqqu (1994, pp. 87).
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[Xi, Xj]α �= [Xj, Xi]α. (2.22)

The variation. The variance function only exists for Gaussian random elements.
It is replaced by the variation for random elements with 1 < α < 2. The variation
of a SαS random variable X is defined as

V ar(X) = [X,X]α. (2.23)

2.4 Studies Of Stable Value at Risk (VaR) And

The Normal Case

As stable distributions provide a better fit for financial return data compared to
normal fitting, stable Value at Risk (VaR) measures are supposed to outperform
normal VaR in terms of accuracy. Khindanova, Rachev and Schwartz (1999) have
examined stable and normal VaR for market-return data.

A special interest lies in determining the VaR of such financial instruments
subject to credit risk for a given time horizon. VaR is a measure for the riskiness
of an asset and determines the economic capital required to hold the asset.7 VaR
models seek to measure the maximum loss of value on a given asset or liability
over a given time period at a given confidence level (eg. 95%).

Definition of Value at Risk (VaR). The VaR is defined as a threshold regard-
ing the price change of the instrument over the observed time horizon. The return
over the time horizon τ is expected to fall below that threshold with a probability
of (1 − c). This says that, with a probability of (1 − c), the returns are expected
to be less than −V aRc.

8 The VaR is expressed as

P [∆p(τ) ≤ −V aRc] = 1 − c, (2.24)

with

• ∆p(τ): Price change over time horizon τ ;

• c: Confidence level of VaR, e.g. 95%;

• The probability that losses will exceed V aRc is (1 − c).

7Saunders (1999, p. 38).
8The VaR is defined as a positive number.
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Khindanova, Rachev and Schwartz (1999) have performed several empirical
tests to measure the differences between empirical and modeled VaR. The VaR as
a measure of risk is preferred by financial institutions and regulators, in particular.
The quality of modeled VaR is determined by comparing the empirical VaR with
the modeled VaR. The fewer the number of cases the empirical VaR exceeds the
modeled VaR, the more conservative the VaR model is considered to be.

The results can be summarized as follows:

• Stable modeling produces conservative and more accurate estimates for the
VaR at the confidence level 99%, i.e. c = 0.99.

• Whereas, stable modeling slightly underestimates the 95% VaR (c = 0.95),
normal modeling gives more accurate estimates for the 95% level.

• For the 99% VaR, normal modeling leads to overly optimistic forecasts.

The above results were derived from time series of several different market
indices.9 The dominance of stable VaR modeling was also demonstrated for credit
return series.10

Before introducing a modified one-factor credit model in chapter 3 to describe
the returns of credit instruments, a brief summary of known concepts for measuring
the performance of financial assets is given. The focal point is specifically the stable
case when the limiting distributions of the model’s variables and innovations are
assumed to follow a stable law.

2.5 Common Performance Measures Under Gaus-

sian And Stable Assumption

In this section a short review of performance measures is presented. First, common
performance measures are discussed under the Gaussian assumption for the asset
returns. Finally, the section explains how their affiliated models are formulated
under the stable assumption.

The performance measures discussed below are commonly used in financial
applications. The objective in modeling the returns of a risky financial asset is to
find a relationship between risk and return. The risk of an asset can be divided
into systematic risk and unsystematic risk. Systematic risk cannot be diversified
away and can be linked to external factors. However, the diversifiable risk helps
investors to reduce their exposure at no expense. For example, holding a portfolio

9Khindanova, Rachev and Schwartz (1999).
10Rachev, Schwartz and Khindanova (2001).
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consisting of several uncorrelated assets with equal riskiness and equal expected
returns allows the investor to reduce risk compared to investing solely in one of
these assets. In the following, the Capital Asset Pricing Model (CAPM) is reviewed
under both the Gaussian and the stable assumption. The Arbitrage Pricing Theory
(APT) is discussed under similar considerations. The Jensen Measure is given as
an example for a CAPM-based measure. Regression estimators with multiple risk
factors are briefly introduced as well.

2.5.1 The Capital Asset Pricing Model (CAPM)

The Capital Asset Pricing Model (CAPM) assumes a linear relationship between
risk and return. Within this framework, there are two types of risk, diversifiable
and non-diversifiable risk. The total risk of an asset is measured by the variance
of its returns. The systematic (non-diversifiable) risk of a portfolio i describes how
sensitive it reacts to market movements. This is measured by the portfolio’s βim.

βim =
cov(Ri, Rm)

var(Rm)
, (2.25)

where Ri is the return on the portfolio i and Rm is the market return.11

The relationship between the portfolio’s β and the portfolio’s expected return
is expressed by the Security Market Line (SML). For the SML, only the non-
diversifiable risk is relevant:

E(Ri) = rf + (E(Rm) − rf )βim , (2.26)

where E(Ri) is the portfolio’s expected return, rf is the average risk-free rate, and
E(Rm) is the expected return of the market.

Another alternative to describe the expected returns of the portfolio is to plot
them against the standard deviation σi of the portfolio’s returns. The standard
deviation accounts for the portfolio’s total risk, i.e. systematic and unsystematic
risk. The plot is called the Capital Market Line (CML) and follows

E(Ri) = rf + (E(Rm) − rf )σi. (2.27)

2.5.2 The Stable CAPM

For the CAPM of Sharpe (1964) and Lintner (1965), it was assumed that the asset
returns follow a normal distribution. As the CAPM did not prove to be satisfactory
when tested empirically, Fama (1970) was the first to introduce symmetrical SαS
to model the returns in the CAPM. This work was completed by Gamrowski and

11See, for example, Götzenberger, Rachev and Schwartz (2000).
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Rachev (1994). In general, Fama’s model of asset returns has a more intuitive
risk-return relation:

Ri = ρi + biδ + εi, (2.28)

where ρi is a constant and δ and εi are independent SαS random variables. Fama
used SαS random variables for both the returns and the error term within his
stable version for the CAPM. This was due to the following constraints, which the
stable variables have to obey:

1. Only symmetric returns are assumed.

2. For computational reasons, all stable distributed variables must have the
same index of stability α.

In Fama’s CAPM, the equation for the expected returns has the same form as
the Sharpe and Lintner model:

E(Ri) = ρ0 + βim(E(Rm) − ρ0), (2.29)

where E(Ri) is the expected return of asset i, ρ0 is the return of the riskless
asset, E(Rm) is the expected return of the market portfolio, and βim describes
how sensitive the asset i reacts to changes of the market portfolio.

Equation (2.29) can be rewritten as:

E(Ri) = ρ0 +
1

σ(Rm)

∂σ(Rm)

∂(λim)
[E(Rm) − ρ0] , (2.30)

where Rm =
∑

i λimRi represents the return of the market portfolio with
∑

i λim =
1.

Thus, with (2.30) and (2.29), the beta-coefficient βim is determined by:

βim =
1

σ(Rm)

∂σ(Rm)

∂(λim)
=

1

αvα(Rm)

∂vα(Rm)

∂λim

. (2.31)

In the stable case, there is σ(Rm) = (vα(Rm))1/α with vα(Rm) as the variation

vα(Rm) := [Rm, Rm]α. Moreover, ∂vα(Rm)
∂λim

= α[Ri, Rm] with covariation [Ri, Rm]α.
12

The stable beta, βim, can be expressed as:

βim =
[Ri, Rm]α
vα(Rm)

. (2.32)

12See the definitions of variation and covariation in Section 2.3.
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Recall that with the Gaussian assumption (α = 2), there is βim = cov(Ri,Rm)
var(Rm)

in

(2.25). In the stable non-Gaussian case, the variation replaces the variance and
the covariation refers to the covariance.

Fama’s case is restricted to the fact that it assumes independence between the
factor δ and the innovation εi. The same results can also be obtained from Ross’s
mutual fund separation theory.13

2.5.3 The Arbitrage Pricing Theory (APT)

The Arbitrage Pricing Theory was developed by Ross (1976). The underlying
principle of his theory is the absence of arbitrage. Ross assumes that the realized
(ex-post) return of an asset can be described by the (ex-ante) expected return plus
changes that are caused by exposure to a number of risk factors and a stochastic
error term.

The individual return of an asset i is modeled by

Ri = Ei +
k∑

j=1

βijδj + εi , i = 1, ..., N, (2.33)

where Ei is the (ex-ante) expected return, and βij is the sensitivity of Ri to move-
ments of factor j. N is the total number of assets. The vector δ represents the
risk factors j, j = 1, ..., k. The expected return Ei of asset i is modeled as

Ei = E(Ri) = ρ0 + βi1ρ1 + ... + βikρk, i = 1, ..., N, (2.34)

where ρl with l = 1, ..., k is the risk premium for exposure to risk factor l.
The challenge of setting up an APT model and its empirical testing is to identify

the risk factors σ. This requires the use of multi-factor analysis procedures. Two
theories on the APT have evolved from Ross’s initial work. The first notion is the
asymptotic APT, which assumes a sequence of economies with a growing number
of assets. The second is the so-called equilibrium APT, with restrictions imposed
on returns and agents’ utility functions.

2.5.4 The Stable APT

In this section, a stable version of the APT is discussed. It is related to the asymp-
totic APT, where a sequence of economies is considered with the n-th economy
having n assets. In the asymptotic APT, the returns are generated by a k-factor
model14

13Ross (1978).
14See, for example, Rachev and Mittnik (2000, pp. 422) and Huberman (1982).
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Rn
i = En

i + βn
i1δ

n
i + ... + βn

ikδ
n
k + εn

i . (2.35)

Here δn
l , l = 1, ..., k, are the k factors in the n-th economy. In the stable case, the

factors δ and the disturbances ε are SαS.

Rn = En + βnδn + εn. (2.36)

Furthermore, the vector of expected returns En can be expressed as

En = En
0 +

k∑
j=1

βn
j δn

j + cn . (2.37)

The vector cn is orthogonal to βn, and is also chosen in such a way that
it is orthogonal to the unit vector en; cn can be interpreted as the arbitrage
portfolio which uses no wealth. In case of arbitrage, there would exist a subse-
quence ń and with ń → ∞ the expected excess returns would increase to infinity:
limń→∞ E(rńcń) = +∞, with the variation vα(rń, cń) vanishing: vα(rń, cń) → 0.15

In case of no arbitrage for the economy with n assets, n = 1, 2, ..., there exists
an En

0 , a sequence γn
j , and an A, such that

n∑
i=1

∣∣∣∣∣En
i − En

0 −
k∑

j=1

(βn
ijγ

n
j )

∣∣∣∣∣
α

≤ A. (2.38)

The relationship (2.38) says that, in large economies, the mean returns are
linearly correlated with the economy’s risk factors.16

In the Gaussian case, the βn
ij are represented by the covariances between the

asset returns and the risk factors. In the α-stable case, covariations are applied
instead of covariances.

2.5.5 The Jensen Measure

One of the most widely accepted CAPM-based performance measures is the Jensen
Measure, which describes the excess returns of a portfolio by applying a linear
regression over the market excess returns:17

rpt = αp + βprmt + upt. (2.39)

The βp measures the systematic risk of the portfolio, indicating how sensitive
the asset or portfolio reacts to movements of the market. If αp is significantly

15See Götzenberger, Rachev and Schwartz (2000).
16Rachev and Mittnik (2000).
17Jensen (1968).
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greater than zero, the modeled portfolio is expected to outperform the market
portfolio. Jensen’s Multiperiod Model is based on the SML as benchmark (see
equation (2.26)).

The drawbacks of the CAPM were discussed by Roll (1977), who argued that
the true market portfolio would not be observable. Therefore, it would be impos-
sible to determine the benchmark. Furthermore, Roll found that securities would
plot on the SML if and only if the market portfolio is efficient.

Jensen’s αp does not give information as to whether an asset or portfolio shows
superior performance. Moreover, as Roll pointed out, if the market portfolio could
be observed, and if it were efficient, the securities would all plot on the security
market line (SML). This would mean that superior or inferior performance could
not be possible. Significant positive or negative values for αp could not occur.

In 1978, Roll tested the CAPM model with three different benchmarks for
calculating the βs. He received three different rankings regarding the performance
of the observed assets.18

2.5.6 Regression Estimators

In the following, possible estimators for the determination of regression parameters
are discussed - under the assumption that the random variables of the regression
follow a stable law with α < 2. As an example, the focus is on the stable case of
Jensen’s Measure (2.39) as risk-return relation:

rpt = αp + βprmt + upt, (2.40)

where rmt is the single risk factor. Assume the distributions of the risk factor and
the innovation to be SαS-stable with α < 2. The OLSE 19 to determine β̂p is no
longer BLUE20. OLSE is still unbiased but is no more efficient. However, OLSE
can still be used:

β̂p =

∑
t rmtrpt∑

t r
2
mt

,α̂p = r̄p − r̄mβ̂p.

For multiple regressions with several risk factors the OLSE can also be applied.
The case that all risk factors are independent of each other is very unlikely. Thus,
the focus is now on the dependent case. Constructing a sub-Gaussian SαS vector
X =

d
A1/2G, the dependence among the components of X can be described as

E(Xn|X1, ..., Xn−1) = c1X1 + ... + cn−1Xn−1, (2.41)

18Roll (1978).
19OLSE = Ordinary Least Squares Estimator.
20BLUE = Best Linear Unbiased Estimator.
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where
ci = [Xn, Xi]α/vα(Xi) = cov(Gn, Gi)/var(Gi), (2.42)

and G = (G1, ..., Gn) is the underlying mean-zero Gaussian vector of X. Therefore,
it is obvious that the OLS estimates can be applied.

Jensen’s measure containing several (k ≥ 2) risk factors is described as

rpt = αp + β1rf1,t + ... + βkrfk,t + upt. (2.43)

With vector notation, this is written in the form

rpt = rfβ + upt, (2.44)

where βT = (αp, β1, ..., βk) and rf = (1, rf1, rf2, ..., rfk) is a t × (k + 1)-matrix.

The OLSE β̂ is obtained by

β̂ = (rT
f , rf )

−1rT
f rp. (2.45)

In this chapter, the stable distribution and its properties have been intro-
duced to the reader. The modeling of dependent asset returns is performed via
stable random vectors. As the covariation is highly complex to be used, the de-
pendence between stable random vectors should be easier modeled by a so-called
sub-Gaussian vector. Variation and VaR are measures that indicate the riskiness of
an asset. Financial returns exhibit peakedness and heavy-tailedness, which makes
stable VaR superior to its Gaussian counterpart.

The final section has presented an overview on commonly known performance
measures and their definition under the stable assumption.

The properties of stable distributed random variables (e.g. sum, multiplication)
and vectors help to model the behavior of a portfolio consisting of various assets
whose returns follow a stable law.



Chapter 3

Stable Modeling In Credit Risk

This chapter starts with a brief review of recent advances in stable modeling of
credit risk discussing the approach taken by Rachev, Schwartz and Khindanova
(2001).

Then, a new approach based on a modification of their model is presented.
The modification is done by a change in the definition of bond returns. This
approach can be implemented more easily, also because its data requirements are
less problematic. The modified model is built both for the Gaussian and for the
stable assumption. Furthermore, the case when the returns of different credit
instruments are assumed to be independent and the case when the returns are
assumed to be dependent are both covered.

In order to illustrate the effects of the different assumptions (stable vs. Gaus-
sian, dependent vs. independent), an empirical example is set out. A portfolio
consisting of two corporate bonds is chosen and its daily VaR is calculated for each
combination of the assumptions.

3.1 Recent Advances

Academics and practitioners1 have examined the application of stable distributions
for modeling asset returns. As it is well documented in the literature on empirical
finance2, changes in value of a financial asset are heavy-tailed and peaked, whereas
the mass of the commonly used normal distribution is located around its center.
For this reason, the normal assumption fails to model crashes and strong upturns
in financial markets.

Recent research has also examined daily returns of assets subject to credit risk.

1See the work of Mandelbrot (1963), Fama (1965a), and Fama (1965b).
2See, for example, Rachev and Mittnik (2000).

33
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Studies3 found that credit returns are also peaked and heavy-tailed. Moreover,
they turned out to be skewed.

Rachev, Schwartz and Khindanova (2001) suggested the application of stable
distributions for credit instruments to meet those properties. As explained above,
for stable distributions, the peakedness and the heavy tails are determined by the
stability index α, whereas the parameter β is responsible for skewness or asymme-
try.

3.2 A One-Factor Model For Stable Credit Re-

turns

This section reviews the credit model derived by Rachev, Schwartz and Khindanova
(2001).

In their model for credit returns, Rachev, Schwartz, and Khindanova assumed a
linear relationship between the returns of a risky credit instrument and the returns
of a comparable risk-free credit instrument.

For such a credit instrument i, the returns are described by

Ri = ai + biYi + Ui, (3.1)

where

• Ri are the log returns of an asset i that is subject to credit risk.

• Yi are the log returns of a risk-free asset.

• Ui is the disturbance. It represents the spread or the premium for the credit
risk.

• ai and bi are constants which are obtained by ordinary least squares (OLS)
estimation.

In this linear model, the returns of both the risky (Ri) and the risk-free (Yi)
credit instrument are assumed to follow a strictly stable law. Moreover, the dis-
turbance term (Ui) is a strictly stable random variable:

• Ui ∼ Sα(σα, βα, µα) , 1 < α < 2;

• Yi ∼ Sγ(σγ, βγ , µγ) , 1 < γ < 2.

3Federal-Reserve-System-Task-Force (1998), Basle-Committee (1999).
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For credit instruments, the log return Ri,t at time t is defined as

Ri,t = log

(
Pi,t,T

Pi,t−1,T−1

)
, (3.2)

where Pi,t,T is the price of an instrument i subject to credit risk with maturity date
T evaluated at time t. The log returns of the riskless asset Yi,t are determined by

Yi,t = log

(
Bi,t,T

Bi,t−1,T−1

)
, (3.3)

with Bi,t,T as the price of the risk-free asset with maturity date T evaluated at time
t. This means that all prices used for the calculation of the returns are determined
on the basis of constant time to maturity. Therefore, the time series of log returns
(both Yi,t and Ri,t) is calculated such that the time to maturity is the same for all
t.

It must be noted that Yi,t and Ri,t are not directly observable for individual
bonds whose market price movements are recorded on a daily basis. The prices
Bi,t,T , Bi,t−1,T−1, Bi,t−2,T−2, ... are calculated from the yield curve of riskless trea-
sury bonds and Pi,t,T , Pi,t−1,T−1, Pi,t−2,T−2, ... are derived from a yield curve gener-
ated from risky bonds representing a similar level of credit risk (e.g. having equal
credit ratings). Such an approach enables the risk manager to deal with constant
time to maturity. This is crucial, because for the prices of individual bonds, time
to maturity decreases with increasing time t.

The effect of changing time to maturity on credit returns can be demonstrated
by a small example with two riskless zero bonds: one with a time to maturity of
one year, the other with a time to maturity of two years. Furthermore, the term
structure is assumed to be flat, and therefore, both securities have equal yields. If
the yield of both increases by the same percentage, then the price of the two-year
bond reacts more sensitively compared to the one-year bond.

However, the approach of modeling the returns as set out in (3.2) and (3.3)
is very difficult to implement in practice. Historical data of daily yield curves
is available for treasury bonds (for the Bi,t,T , Bi,t−1,T−1, Bi,t−2,T−2, ...), but it is
practically impossible to observe a time series of prices Pt,T , Pt−1,T−1, Pt−2,T−2, ...
for an individual bond. Therefore, a number of different credit risk categories has
to be defined first and individual corporate bonds have to be assigned to them.4

The prices of numerous bonds assigned to the same risk category are then taken
to generate the corresponding yield curve.5

4For example, the rating grades assigned by Standard & Poor’s or Moody’s may be employed
to define the risk categories.

5For example, see McCulloch (1971) and McCulloch (1975).
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In order to avoid such difficulties, a more practical way to define the credit
returns has to be found. Obviously, a risk manager would prefer to deal with the
observed real prices of a bond to fit a model, rather than deriving prices from yield
curves that first have to be generated. Moreover, each yield curve only represents
an average credit risk level. The approach proposed in the following section allows
to determine the individual credit risk of the bond analyzed.

3.3 A New Approach For The Returns

Having historical daily yield curve data of treasury bonds available, this allows to
construct historical daily prices for any treasury bond with given coupon, coupon
dates, and maturity. Thus, a corresponding riskless6 treasury bond i with identical
specifications can be generated for each risky corporate bond i. In this case, the
return Ri,t of a risky corporate bond is defined as its actual (observable) daily price
movement:

Ri,t = log

(
Pi,t,T

Pi,t−1,T

)
. (3.4)

Here, time to maturity is no longer kept fixed. The return Ri,t is that of an
individual bond i with fixed maturity date T . The riskless returns Yi,t are defined
analogously:

Yi,t = log

(
Bi,t,T

Bi,t−1,T

)
. (3.5)

This riskless bond i has the same specifications (maturity, coupon, coupon
dates), as the risky bond i.

With this new approach, the original linear risk-return relation Ri = ai +biYi +
Ui remains, but its components Ri, Yi, and Ui now have a different meaning. Ri

and Yi are individual bond returns, and the disturbance Ui incorporates both credit
spread and the risk of time to maturity.

For the empirical examinations in this chapter, the model with the returns
defined in (3.4) and (3.5) was utilized. In the following, a brief summary of the
advantages and disadvantages of both approaches (definitions (3.2) and (3.3) vs.
definitions (3.4) and (3.5) is presented:

• The model whose returns are defined by the equations (3.2) and (3.3) aban-
dons the problem to deal with changing time to maturity. This is its key
advantage.

6”Riskless” in this context refers to ”free of credit risk”.
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• The drawback of such an approach is that yield curves have to be modeled
first for a number of different risk levels (e.g. corporate credit ratings) and
for the risk-free (treasury) bonds.

• After fitting the parameters a and b of equation (3.1), future scenarios are
simulated for each yield curve. Such a framework enables simulation of
future daily returns for each time to maturity. Finally, the simulated yield
curves can be employed to derive the simulated future returns of individual
corporate bonds. This procedure makes the approach of (3.2) and (3.3) very
complex.

• With the model defined by the returns in (3.4) and (3.5) there is no need
to construct yield curves for a number of different credit risk levels (of risky
corporate bonds), nor is it necessary to simulate future representations of
such yield curves by applying a term structure model. In fact, this model
allows future returns of individual bonds to be simulated directly from their
fitted distributions of Yi and Ui.

• It was expected that for real bonds with decreasing time to maturity, there
would be an impact on the return distribution when time is moving to-
wards maturity. However, performing empirical testing with numerous sam-
ple bonds, a decreasing time to maturity does not seem to have a noticeable
effect on the distribution of the credit returns defined by (3.4) and (3.5).
The test compared the distribution of the returns for different intervals of
the available time series. A systematic difference in the return distribution
between intervals lying more distant to maturity point and intervals closer
to maturity point could not be observed empirically.

This is why the approach based on the definitions in (3.4) and (3.5) is selected.
Thus, the first key advantage of the chosen approach is the ability to work with

the actual historical price data and spread information of the individual bonds,
instead of generating yield curves, each for a certain risk grade. Such yield curves
only represent the average of a risk grade. Studies (e.g. Beck, 2001) found that,
in some cases, a higher rated bond may even have a larger credit spread than
bonds with a lower rating grade. This is due to the fact that the range of credit
spreads within a given rating grade may be relatively wide and that the spread
ranges of neighboring grades usually overlap. This effect has also been illustrated
by (Kealhofer, Kwok and Weng, 1998). 7 In the past other researchers, e.g. such

7A reason for this effect could be that the market values the creditworthiness of an issuer
differently than the rating agencies do. Sometimes the market anticipates a change in the credit
quality of an issuer before the rating agencies react.
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as (Katz, 1974) or (Fisher, 1959), have analyzed risk premiums of bonds and their
relation to rating grades or rating grade changes.

The construction of a yield curve for a given credit rating usually requires data
from a large number of bonds with various issuers. The yield curve of a single
issuer is calculable even only for large corporations with a large quantity of issued
bonds.

The second key advantage of the approach selected is that it can easily be
implemented into practice:

• The model does not require the construction of yield curves for a number of
risk levels (of risky bonds), nor does it necessitate the simulation of future
representations of the yield curves by applying a complex term structure
model.

• The model enables direct simulation of the future returns of individual cor-
porate bonds by generating representations of Yi and Ui according to their
fitted distributions.

However, it has to be noted that the fitted distribution of Ui not only accounts
for the credit risk but also for liquidity risk. Liquidity will not be further considered
for the credit model. Although, the following section provides a brief excursus on
this topic.

3.4 Excursus: Liquidity Risk

Another source of risk that influences the movement of bond prices is the liquidity
present in the market. This section is an excursus and briefly addresses the issue
of liquidity even though the credit model does not allow for it.

Liquidity is defined as the speed and ease at which one can trade. A market is
liquid if one can trade a large quantity shortly after the desire to trade at a price
near the prices of the trades prior and after the desired trade.8

The issue of liquidity should just be touched on here, it will not be treated
extensively.

As there are no perfectly liquid bond markets, in the model (3.1), the distur-
bance term Ui also accounts for liquidity risk. Periods of serious illiquidity are
often visible and the credit spread of bonds is influenced by the changing liquidity
of the market.9

When a seller is not able to find a buyer for an asset at a fair price due to
lack of liquidity, this imposes a negative component on the daily price change.

8Huberman and Halka (1999).
9Chordia, Roll and Subrahmanyan (2000a).
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Considering the given credit model, a way is needed to separate the disturbance
term Ui into a component driven by credit risk and into another component that
accounts for liquidity risk.

Although liquidity varies from security to security, it makes sense to search
for a common measure for liquidity which will describe the liquidity of the whole
bond market. As liquidity is not observable on its own, a proxy has to be ap-
plied to describe it. Huberman and Halka (1999) tested four proxies of liquidity:
spread, spread/price ratio, quantity depth, and dollar depth. When examining
the average time series of liquidity proxies for two mutually exclusive subsets of
stocks, Huberman and Halka found that the innovations of the proxies’ time series
are positively correlated. This indicates a common liquidity shock. Therefore, it
is reasonable to assume a common liquidity component for the market. Chordia,
Roll and Subrahmanyan (2000b) estimate a market model that regresses daily per-
cental changes of liquidity variables for individual stocks on the market averages
of the same variables. Their resulting betas were positive for 85% of all stocks in
their sample. And 42% of the sample showed positive betas that were significant
at the 95% level.

I might be useful to define a common liquidity proxy for the whole bond market
or a subset of the market and then to isolate the liquidity component from the U
in model (3.1). However, as mentioned, this issue shall not be pursued here.

In order to determine the fraction of daily returns that is caused by changes
in liquidity, it would be suitable to have a credit instrument whose credit quality
remains nearly constant over time. Selecting an index over a number of corporate
bonds with a given credit rating would be one alternative. For example, given an
index of BBB-rated corporate bonds, its price changes are, aside from changes of
the riskless interest rate, largely due to changes of liquidity within this particular
bond market.10

In less liquid bond markets (e.g. with small issues, small issuers), strong mis-
matches of supply and demand can occur, causing effects on the credit spread,
but the company’s actual credit risk remains unaffected by this. Chordia, Roll
and Subrahmanyan (2000a) conducted a market study in order to identify the
drivers of liquidity and trading activity. They found interesting regularities which
determined liquidity and trading activity. Liquidity was represented by quoted
and effective spread as well as market depth in this study. Trading activity was
represented by measures such as trading volume and the number of daily transac-
tions. Over the observed time period (1988 - 1998) trading activity showed greater
variances (average absolute change between 10% and 14%), compared to liquidity

10Of course, there may be influences from changes in overall credit quality among the BBB-
rated bonds. For example, during an economic recession the default probability of all BBB-rated
bonds can on average increase. However, the prevalent impact on the spread of the BBB-index
is supposed to be caused by changes in liquidity.
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(average absolute change of about 2%).
According to Demsetz (1968), who assumed that liquidity depends on dealers’

financing costs and inventory risk, the initially chosen explanatory variables for
liquidity in a study performed by Chordia, Roll and Subrahmanyan (2000a) were
short-/long-term interest rates, default spreads (generated from market volatility),
and contemporaneous moves. Moreover, market-wide changes in liquidity were
likely to occur immediately before official announcement events, e.g. key figures
on the state of the economy. Furthermore, Chordia et al. assumed that liquidity
varies during the week and around holidays due to variations in trading cost.

For most series, they found an AR process of 5th order which indicates a
weekly cycling. Equity market performance is also seen as an important factor,
as recent market movements will change investors future expectations and trigger
restructuring of portfolios.

Summing up their results, Chordia et al. concluded that trading activity re-
sponds to short-term interest rates, term spread (the spread between a one-year
and ten-year treasury bill), equity market returns, and recent market volatility.

The liquidity (measured by the spreads), responds to equity, recent market
activity, and recent market volatility.

It would take further examinations to determine how these results could be
transferred to the previously introduced model for credit returns.

3.5 Credit Risk Evaluation For Single Assets

In order to obtain the VaR for a bond i over a time horizon of one period, the
following steps are performed:

• A corresponding risk-free treasury bond with equal maturity, coupon, and
coupon dates is created.

• The estimates for ai and bi are calculated with OLSE.

As set out in Rachev, Schwartz and Khindanova (2001), the estimates are given
by

âi =

∑T
t=1 Y 2

it

∑T
t=1 Rit −

∑T
t=1 Yit

∑T
t=1 RitYit

T
∑T

t=1 Y 2
it − (

∑T
t=1 Yit)2

(3.6)

b̂i =
T
∑T

t=1 RitYit −
∑T

t=1 Yit

∑T
t=1 Rit

T
∑T

t=1 Y 2
it − (

∑T
t=1 Yit)2

(3.7)

where i = 1, ..., N ; t = 1, ..., T.
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With the estimates âi and b̂i, the residuals Ûi are obtained.

Ûi = Ri − âi − b̂iYi. (3.8)

• Finally, a stable fit of Ûi and Yi is performed.

• In order to calculate the VaR of asset i for one period, representations of
Ri = ai + biYi + Ui

are simulated. In this case, a sample size of 1000 simulations is chosen.

3.6 A Portfolio Model With Independent Credit

Returns

Assume there are n different credit instruments i (bonds) in a portfolio and let vi

be the weight of security i within the portfolio.11 The return of the portfolio is
given by

Rp =
n∑

i=1

viRi , (3.9)

with

Rp =
n∑

i=1

vi (ai + biYi + Ui) =
n∑

i=1

viai +
n∑

i=1

vibiYi +
n∑

i=1

viUi, (3.10)

and

n∑
i=1

vi = 1. (3.11)

Rp can be expressed by

Rp =
n∑

i=1

viai + Yp + Up, (3.12)

with YP and Up given by

Yp =
n∑

i=1

vibiYi (3.13)

11vi may also be negative if short-selling is permitted.
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and

Up =
n∑

i=1

viUi. (3.14)

The constant ap of the total portfolio is

ap =
n∑

i=1

viai. (3.15)

Assuming the Ri are driven by independent α-stable distributions, this also
means that both the Ui and the Yi, i = 1...n, are independent of each other.
Assume further that both the Ui and the Yi, i = 1...n, are characterized by a
common index of stability (α for the Ui, γ for the Yi). A common stability index
allows an easy analytical solution for the parameters of the distributions for Up

and Yp. For the properties of stable distributions, the reader is referred to section
2.2 or Samorodnitsky and Taqqu (1994, chapt. 1).

The common index of stability is calculated as an average from the stability
indices of the distributions of the individual Ui and Yi, weighted according to
formula (3.9):

α =

∑n
i=1 |vi|αi∑n

i=1 |vi| (3.16)

and

γ =

∑n
i=1 |vi| γi∑n

i=1 |vi| . (3.17)

With the common stability index, the parameters β, σ, µ first have to be
reestimated for the individual Ui and Yi.

The assumption of independent returns provides an analytical solution for the
portfolio’s Up and Yp.

The parameters of Up and Yp are then determined by the following expressions:

σUp =

[
n∑

i=1

(|vi|σUi
)α

]1/α

, (3.18)

βUp =

∑n
i=1[sign(vi)βUi

(|vi|σUi
)α]∑n

i=1(|vi|σUi
)α

, (3.19)

µUp =
n∑

i=1

viµUi
, (3.20)

σYp =

[
n∑

i=1

(
∣∣∣vib̂i

∣∣∣ σYi
)γ

]1/γ

, (3.21)
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βYp =

∑n
i=1[sign(vib̂i)βYi

(
∣∣∣vib̂i

∣∣∣σYi
)γ]∑n

i=1(
∣∣∣vib̂i

∣∣∣σYi
)γ

, (3.22)

µYp =
n∑

i=1

viµYi
. (3.23)

The portfolio’s returns Rp are given by (3.12).

3.7 A Stable Portfolio Model With Dependent

Credit Returns

This section introduces a solution for modeling the dependence between credit
returns and integrating the skewness-property of their distributions.

Each variable Ui and Yi is split into a dependent, symmetric and into an inde-
pendent, skewed component. Both components are independent of each other:

Ui = U
(1)
i + U

(2)
i , (3.24)

Yi = Y
(1)
i + Y

(2)
i . (3.25)

The example of Ui demonstrates the derivation of the parameters for the two in-
dependent components. Both components are defined as having identical stability
indices:

U
(1)
i ∼ Sα(σ1, β1, 0) , (3.26)

U
(2)
i ∼ Sα(σ2, β2, 0) . (3.27)

Because of the independence of U
(1)
i and U

(2)
i , the parameters’ values of Ui are

calculated as follows:

σ = (σα
1 + σα

2 )1/α, (3.28)

β =
β1σ

α
1 + β2σ

α
2

(σα
1 + σα

2 )
. (3.29)

U
(1)
i is symmetric, therefore β1 = 0. Equal values for the scale parameters σ1 and

σ2 are set: σ1 = σ2 = σ∗.
Thus, the parameters of Ui are:

σ = 21/ασ∗, (3.30)
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β =
1

2
β2. (3.31)

Summing up the results for the parameters: σ1 = σ2 = σ∗ = 2−1/ασ, β2 = 2β
(β2 is for the skewed component U

(2)
i ), and β1 = 0 (β1 is for the symmetrical

component U
(1)
i ),

U
(1)
i ∼ Sα(2−1/ασ, 0, 0), (3.32)

U
(2)
i ∼ Sα(2−1/ασ, 2β, 0). (3.33)

Analogously, Yi is split into Y
(1)
i + Y

(2)
i , and their parameters are obtained the

same way.
The return of the credit instrument i is then given by

Ri,t = a + b(Y
(1)
i,t + Y

(2)
i,t ) + (U

(1)
i,t + U

(2)
i,t ). (3.34)

The symmetric components Y
(1)
i,t and U

(1)
i,t are used to incorporate the depen-

dence among the n assets. The dependence structure of the SαS12 vectors
(U

(1)
1 , U

(1)
2 , ..., U

(1)
n ) and (Y

(1)
1 , Y

(1)
2 , ..., Y

(1)
n ) is modeled by representation as sub-

Gaussian vectors. Thus, (U
(1)
1 , U

(1)
2 , ..., U

(1)
n ) is represented as

(U
(1)
1 , U

(1)
2 , ..., U (1)

n ) ∼ (A1/2G1, A
1/2G2, ..., A

1/2Gn), (3.35)

where A is a totally skewed α/2-stable random variable with A ∼ Sα/2((cos
Πα
4

)2/α, 1, 0)
and G = (G1, G2, ..., Gn) is an n-dimensional Gaussian zero mean random vec-
tor. Let Rij = EGiGj, i, j = 1...n, be the covariances within the vector G =
(G1, G2, ..., Gn). Then

(U
(1)
1 , U

(1)
2 , ..., U

(1)
n ) is generated by simulating a representation of the Gaussian vec-

tor G with correlated elements G1, G2, ..., Gn and an independent representation
of the α/2-stable random variable A.13

The generation of vector (Y
(1)
1 , Y

(1)
2 , ..., Y

(1)
n ) is performed analogously.

The results presented in this chapter so far can be summed up as follows:

• A modification of the model by Rachev, Khindanova, and Schwartz has been
introduced. Changing the definition of bond returns makes the model more
practical and easier to implement.

• The dependence is modeled via a sub-Gaussian vector which is a practical
way to incorporate stochastic dependence measured by Gaussian correlations
into the stable case.

12A SαS vector is a symmetrically stable random vector.
13There are various ways to model the dependence. For example, see Rachev, Schwartz and

Khindanova (2001).
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In the following, the various model assumptions (stable vs. Gaussian, depen-
dent vs. independent) have to be evaluated empirically. This is presented in the
final section of this chapter.

3.8 Comparison Of Empirical Results

3.8.1 The Observed Portfolio Data

For the sample portfolio, two corporate bonds have been selected from the US
corporate bond market. Both bonds pay coupons twice a year. Historical prices
were obtained from Bloomberg14 for the past four years (March 14 1996 - March 13
2000). According to their credit ratings, the bonds exhibit considerable credit risk.
For the given portfolio, there is one unit of each security. Both have a nominal
value of US $ 100 (see table 3.1).

Corporation Coupon Rating (S&P / Moodys) Maturity

1. Pennzoil (Bond 1) 10.25 BBB+ / Baa2 11/05
2. United Airlines (Bond 2) 9.0 BB+ / Baa2 12/03

Table 3.1: Bonds selected for sample portfolio.

3.8.2 Generating Comparable Risk-Free Bonds From The
Yield Curve

First, the daily returns are calculated from the historical market prices for the
period March 14 1996 - March 13 2000. Then, for each bond, a corresponding
riskless bond is generated in order to derive the values of the Yi for the same time
period. The corresponding riskless bond has the same specifications (maturity,
coupon, coupon date) as the risky corporate bond. The history of daily prices of
these artificial treasury bonds is calculated from the daily treasury yield curves.
The treasury-yield curve for each day is approximated by prices of 9 risk-free zero
bonds with maturities: 0.25, 0.5, 1, 2, 3, 4, 5, 7, 10 years. These 9 points are
interpolated by a natural cubic spline algorithm.15

With the daily yield curves obtained, historical prices for the artificial treasury
bonds are generated. Their daily returns are calculated according to (3.5).

Next, the linear regressions to estimate the parameters a and b of the equations
Ri = ai + biYi +Ui are performed. âi and b̂i are OLS estimates (see equations (3.6)
and (3.7) and table 3.2).

14Bloomberg Information System, Corporate Bonds Section.
15Burden and Faires (1997).
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Corporation âi b̂i

Pennzoil (Bond 1) 0.0000 0.9262
United Airlines (Bond 2) 0.0000 0.9878

Table 3.2: Estimates for a and b.

With the values b̂ and â, the estimates for the disturbances Ui can be calculated:
Ûi = Ri − â − b̂Yi. Now, both stable and normal fit are applied to the empirical
distributions of Ri, Yi, and Ûi.

During the available sample period from 1996 to 2000, time to maturity for
the observed bonds drops by 41% and 52%. The question arises whether this has
a systematic effect on the estimated parameters of the distributions of the Yi over
time. However, in the given case, empirical analysis found no evidence to support
this.

3.8.3 Fitting The Empirical Time Series For Ri, Yi, and Ûi

For the stable fit, maximum likelihood estimation (MLE) is applied applied to
obtain the four parameters of the distribution. The stable densities were approx-
imated via Fast Fourier Transformation.16 The procedure was implemented with
Matlab 5.3.

The parameters of the stable and Gaussian distributions fitted for the Ri, Yi,
and Ui are shown in tables 3.3, 3.4, and 3.5:17

stable normal
Corporation alpha beta sigma mu mean sd

Pennzoil (Bond 1) 1.5451 -0.0690 0.0019 0.0000 -0.0001 0.0041
United Airlines (Bond 2) 1.5199 -0.0744 0.00164 0.0000 -0.0001 0.0035

Table 3.3: Parameters for R fitted with stable and normal distribution.

3.8.4 VaR-Results For The Independence Assumption

The assumption of independence between the bonds in the portfolio leads to the
application of the equations in section 3.6. The stable fit for both the Yi and the Ui

is based on a common stability index: α = 1.10 is selected for the Ui and γ = 1.32

16For example, see Rachev and Mittnik (2000, pp. 120).
17”sd” denotes the standard deviation.
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stable normal
Corporation alpha beta sigma mu mean sd

Pennzoil (Bond 1) 1.3639 -0.0297 0.0012 0.0000 -0.0001 0.0027
United Airlines (Bond 2) 1.2811 0.0062 0.0009 0.0000 -0.0001 0.0022

Table 3.4: Parameters for Y fitted with stable and normal distribution.

stable normal
Corporation alpha beta sigma mu mean sd

Pennzoil (Bond 1) 1.0348 -0.0247 0.0006 0.0000 0.0001 0.0027
United Airlines (Bond 2) 1.1663 0.0117 0.0008 0.0000 0.0000 0.0032

Table 3.5: Parameters for the disturbance U fitted with stable and normal distribution.

for the Yi. Re-estimating the parameters by a stable fit applying common stability
indices, one yields the results presented in tables 3.6 and 3.7.

stable
Corporation alpha beta sigma mu

Pennzoil (Bond 1) 1.1000 -0.0047 0.0007 0.0000
United Airlines (Bond 2) 1.1000 0.0828 0.0011 0.0000

Table 3.6: Parameters for the disturbance U fitted with stable and normal distribution assuming α = 1.10.

stable
Corporation alpha beta sigma mu

Pennzoil (Bond 1) 1.3200 0.0089 0.0013 0.0001
United Airlines (Bond 2) 1.3200 -0.0430 0.0010 0.0000

Table 3.7: Parameters for Y fitted with stable and normal distribution assuming γ = 1.32.

The parameters of the portfolio’s Up and Yp are given by

Up = v1U1 + v2U2 (3.36)

and

Yp = v1b̂1Y1 + v2b̂1Y2,

are determined by the relationships presented in section 3.6. With v1 = v2 = 0.5,
Up and Yp are
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Up = 0.5U1 + 0.5U2 (3.37)

and

Yp = 0.5b̂1Y1 + 0.5b̂1Y2.

The results for the parameters of Up and Yp are printed in table 3.8. Their
calculation is performed according to the equations (3.18) - (3.23).

stable
alpha beta sigma mu

Yp 1.3200 -0.0137 0.0009 0.0000
Up 1.1000 0.0497 0.0008 0.0000

Table 3.8: Stable parameters for portfolio Up and Yp.

The resulting equation describes the portfolio’s returns:

Rp = 0.5(â1 + â2) + Yp + Up = 0.0000 + Yp + Up . (3.38)

Based on this, 1000 daily returns Rp are simulated by generating Yp and Up.
This yields the daily VaR of the portfolio. For the stable model with independence
assumption, a one-day VaR of 0.67% is obtained at the 95% level and a one-day
VaR of 2.24% at the 99% level.

So far, both bonds have been assumed to be independent of each other. How-
ever, empirical examinations exhibit strong dependence among the Yi and the Ui.
Therefore, the following section presents the results of the model in 3.7 incorpo-
rating dependence between the Ui and dependence between the Yi.

3.8.5 VaR-Results For The Dependence Assumption

Results of calculating the Gaussian covariances and correlations between the Ui

and Yi of the given bond portfolio are presented in the following tables 3.9 - 3.12:

cov(Yi, Yj) ∗10−4 Y1 Y2

Y1 0.7699 0.5821
Y2 0.5821 0.4785

Table 3.9: cov(Yi,Yj), i,j = 1,2

The modeling of the dependent case - as demonstrated in the previous section
- is performed by splitting both the Yi and the Ui into two components. The first
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Figure 3.1: Stable models for the independent and dependent cases: density of daily log returns (portfolio).
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Figure 3.2: Stable models for the independent and dependent cases: density of daily log returns (portfolio) -
tails on left-hand side.
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cov(Ui, Uj) ∗10−4 U1 U2

U1 0.1038 0.0850
U2 0.0850 0.0748

Table 3.10: cov(Ui,Uj), i,j = 1,2

cor(Yi, Yj) Y1 Y2

Y1 1.0000 0.9591
Y2 0.9591 1.0000

Table 3.11: cor(Yi,Yj), i,j = 1,2

cor(Ui, Uj) U1 U2

U1 1.0000 0.9653
U2 0.9653 1.0000

Table 3.12: cor(Yi,Yj), i,j = 1,2

component includes the dependence, which is modeled by a sub-Gaussian random
vector. The second component illustrates the skewness (see section 3.7).

Table 3.13 provides the Value at Risk (VaR) for the 95% and 99% level with
a horizon of one day, comparing both stable models (independent and dependent
cases) with the empirical data.

95% 95% 99% 99%
log price change perc. change log price change perc. change

Empirical 0.0054 0.54% 0.0108 1.08%
Dependent 0.0060 0.60% 0.0242 2.40%
Independent 0.0068 0.67% 0.0226 2.24%

Table 3.13: Stable portfolio VaR (one day) as log price and percental price changes.

For comparison, table 3.14 presents the VaR, assuming the returns follow a
Gaussian law.

95% 95% 99% 99%
log price change perc. change log price change perc. change

Dependent 0.0061 0.61% 0.0087 0.87%
Independent 0.0044 0.44% 0.0063 0.63%

Table 3.14: Gaussian portfolio VaR (one day) as log price and percental price changes.

The outcome of the empirical examination can be summarized as follows:
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• The results for VaR confirm the earlier findings18 that for credit returns the
Gaussian VaR is only acceptable for the 95% level, but underestimates the
99% level.

• The stable VaR is also appropriate for the 95% level, but it is a more conser-
vative measure for the 99% level. This is actually good because the empirical
VaR tends to underestimate the true VaR due to the low number of obser-
vations in the tails.19

• The Gaussian dependent case achieves much better results than the Gaussian
independent case, however it still underestimates the 99% VaR.

Calculating the VaR for longer horizons also, e.g. 10 days, one would necessitate
building the 10-day returns for both the corporate bonds and their corresponding
treasury bonds from the empirical data and fitting the above models with the
data. It is essential to point out that longer horizons cannot be calculated by
taking the one-day return model and extending it to the desired horizon simply by
applying a Lévy process with independent increments. Subsequent observations of
the credit returns are not i.i.d., as volatility clustering can be observed and long-
memory effects might occur. Thus, the volatility for a multiple-day horizon cannot
be obtained by a simple scaling approach.20 Longer forecast horizons require new
types of models, while sample data should be available for longer periods.

So far the phenomenon of heavy tails in credit returns has been discussed.
Two other aspects, volatility clustering and long-range dependence, have been
mentioned now. The following chapter of this work introduces different types of
stochastic processes that can be applied for modeling the behavior of financial
prices and returns. After introducing AR(I)MA and GARCH processes, the phe-
nomenon of long-range dependence (LRD) is discussed. Both the theory and the
methods for detecting and measuring LRD are treated. Finally, credit return data
are analyzed for the presence of long-range dependence.

18Rachev, Schwartz and Khindanova (2001).
19See Khindanova, Rachev and Schwartz (1999).
20See Christoffersen, Diebold and Schürmann (1998).



Chapter 4

The Economics of Financial Prices

This chapter begins with a review of basic stochastic processes applied to the
modeling of financial prices and then continues with recent advances in this field.
First, it provides an explanation of (univariate) ARMA and ARIMA models (the
latter in the non-fractional case). Furthermore, it introduces (univariate) GARCH.
These processes are possible alternatives for modeling the behavior of financial
returns. For both AR(I)MA and GARCH, the stable assumption is considered as
well. Finally, a combination of ARMA and GARCH, designated as ARMA with
GARCH in errors, is presented as it has become popular in financial applications.
A different type of processes are the so-called subordinated models. In general, these
are a combination of two processes, i.e. a price process and a trading-time process
(intrinsic time process) of a financial instrument, where the resulting process is
subordinated to the price process by the intrinsic time process.

4.1 Overview

The most famous ideas in forecasting financial prices are the martingale and the
random walk.

The theory of the martingale says that if the history of prices for a financial
asset is known up to today, then the expected price for tomorrow is the price
of today.1 Therefore, the expected return is zero. The martingale is a powerful
tool but it stands in contradiction to the idea that higher risk requires a higher
expected return.

The simplest version of a random walk is the one with independent, identically
distributed increments (i.i.d.). For a time series of absolute prices Pt, this random
walk model can be represented as

1Campbell, Lo and MacKinlay (1997).

53



54 4 The Economics Of Financial Prices

Pt = µ + Pt−1 + εt, (4.1)

with εt i.i.d. N(0, σ2). µ is the expected change or drift. (4.1) represents the
simplest version of a random walk. Normality is the most common distributional
assumption for the εt. With εt i.i.d. N(0, σ2), the process is called an Arithmetic
Brownian Motion sampled at regularly spaced unit intervals. The conditional
mean of such a random walk is E[Pt|P0] = P0 +µt. The variance at time t and the
conditional variance is V ar[Pt|P0] = σ2t. From this it is apparent that a random
walk is non-stationary.

As is the case in reality, prices Pt cannot become negative: log prices pt =
log(Pt) are usually applied. Otherwise, there would be a positive probability that
Pt could become negative. Thus, the random walk becomes

pt = µ + pt−1 + εt, (4.2)

with εt i.i.d. N(0, σ2). The assumption of i.i.d. increments does not hold with
prices for financial assets. The increments are still assumed to be independent
but not identically distributed (they are so-called INID increments). This type
of random walk allows unconditioned heteroscedasticity in the εt. Therefore, it
has the ability to model a time-variant volatility. A third version of random
walk allows dependence among its increments although the increments remain
uncorrelated (cov[εt, εt−k] = 0). However, the squared increments are correlated
(cov[ε2

t , ε
2
t−k] �= 0).

In the following sections several types of stochastic processes to describe the
price behavior of financial assets are discussed. The introduced processes incorpo-
rate dependence on past realizations of their variables and disturbances.

Serial dependence in prices of financial assets is very common. Expected future
returns are dependent on lagged realizations. This differs from the concepts of ran-
dom walk and martingale, where the current realization of the variable contains all
forecasting information. These forecasting models are termed conditional models.
The random part is represented by one or a series of stochastic error terms.

ARMA (Autoregressive Moving Average) models are prominent for predicting
short-term values of time series. Such models condition the mean on past values.
For GARCH (General Autoregressive Conditional Heteroscedasticity) models, the
variance of the process is also conditioned by past realizations (heteroscedastic-
ity) of variance and error term. This is different from ARMA models, where the
variance is constant over time. The variances of ARMA models are conditionally
homoscedastic and do not hinge on past realizations.

AR(I)MA and GARCH models are described in more detail in the following
two sections.
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4.2 The Application Of ARMA Models For Credit

Returns

Autoregressive moving average models ARMA(p,q) have both an autoregressive
term of order p, and a moving average term of order q. They are called mixed
models. The ARMA process is stationary with the assumption µ = E(Xt) = 0
and represented by the equation

Xt = Φ1Xt−1 + ... + ΦpXt−p + Θ1εt−1 + ... + Θqεt−q + εt (4.3)

where p and q are integer numbers. The sequence of the εt is defined as a sequence
of i.i.d. Gaussian random variables. The ARMA process can be expressed with
the backward operator. The backward operator B is defined as follows:

BXt = Xt−1 , BmXt = Xt−m etc. , with m ∈ N . (4.4)

Therefore, Xt −Xt−1 = (1−B)Xt, Xt−1 −Xt−2 = (1−B)Xt−1 = (1−B)BXt.
The forward operator F is the inverse operator, defined as F = B−1 with FXt =
Xt+1 and FmXt = Xt+m with m ∈ N .

The autoregressive operator of order p is defined as

Φ(B) = 1 − Φ1B − Φ2B
2 − ... − ΦpB

p. (4.5)

This yields

Φ(B)Xt = Xt −
p∑

j=1

ΦjXt−j. (4.6)

A pure AR(p) process Xt = Φ1Xt−1 + ...+ΦpXt−p + εt can be represented with
backward operator as

Φ(B)Xt = εt. (4.7)

Similarly, the MA(q) process can be written in backward operator form:

Θ(B)εt = Xt. (4.8)

Expressing the complete ARMA(p,q) process by using backward operators only,
one obtains

Φ(B)Xt = Θ(B)εt. (4.9)
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Usually, time series assumed to follow a Gaussian ARMA process are inves-
tigated using the Box-Jenkins method.2 The Box-Jenkins method analyzes the
underlying stochastic process of a time series. The data process is considered to
be time invariant, and its parameters are not supposed to change. The Box-Jenkins
method tries to detect the inner relationship of successive observations in order
to construct an optimal forecast function. The types of processes the Box-Jenkins
method deals with are (i) stationary processes or (ii) homogeneous instationary
processes.

Box-Jenkins is an iterative procedure that is performed in five stages:

• Explorative data analysis

• Model identification

• Model estimation

• Model evaluation

• Prognosis

A standard method for model identification is the calculation of the time series’
sample autocorrelation function (SACF) and the sample partial autocorrelation
function (SPACF). The obtained values are then compared with the theoretical
autocorrelation function (ACF) and the theoretical partial autocorrelation function
(PACF) of alternative models. The theoretical ACF with lag k for a time series yt

is defined as 3

γk =
E[(yt − µy)][(yt+k − µy)]√
E[(yt − µy)2]E[(yt+k − µy)2]

=
cov(yt, yt+k)

σytσyt+k

, (4.10)

with µy as the theoretical mean and σyt the standard deviation of the time series.
For a stationary process, the variance at time t in the denominator of equation
(4.10) is the same as the variance at time t + k. Therefore, the denominator
becomes the variance of the process yt.

γk =
cov(yt, yt+k)

σ2
y

(4.11)

γk in equation (4.10) is the theoretical ACF. In practice, there is only a limited
number of observations available. For this reason, an estimate of the theoretical
ACF, called the sample autocorrelation function (SACF), has to be calculated:

2Box and Jenkins (1976).
3Pindyck and Rubinfeld (1991, p. 446).
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γ̂k =
E[(yt − ȳ)][yt+k − ȳ]√

E[(yt − ȳ)2]E[(yt+k − ȳ)2]
, (4.12)

with ȳ as the sample mean of the available observations of the time series.
Some information about the order of an autoregressive (AR) process can be

obtained from the oscillatory behavior of the SACF; much more information can
be obtained from the partial autocorrelation function (PACF).

The m-th partial autocorrelation is defined as the last coefficient α
(m)
m in a

linear projection of y on its m most recent values.4 An estimate of the m-th
partial autocorrelation is the last coefficient of the following OLS regression:

yt+1 = ĉ + α̂m
1 yt + α̂m

2 yt−1 + ... + α̂m
myt−m+1 . (4.13)

In case of an AR(p) process, α̂m
m would be zero for m = p + 1, m = p + 2, ...

However, for an MA(q) process α̂m
m would asymptotically approach zero with no

abrupt cut-off.
Assume an AR(1) process. Then the ACF shows an exponential decay, whereas

the PACF only differs from zero at α̂m
1 . The PACF provides information on the

order of the autoregressive part of the process.
Because of the duality between MA(1) and AR(1) processes, for the MA(1) the

behavior of ACF and PACF is the other way round compared to AR(1). Following
the Box-Jenkins method, a model fit is performed in three stages:

• Order selection (by applying the SACF, SPACF or the Akaike Information
Criterion).

• Estimation of the parameters.

• Diagnostic checking.

The basic idea of Box-Jenkins is Wold’s theorem: any stationary time series
generating process can be represented by an infinite dimensional MA process.

Combining MA and AR representations usually allows a lower number of pa-
rameters to be used.

The Box-Jenkins method can also be applied when the innovations are assumed
to follow a stable law with α < 2. However, for α < 2, the ACF works poorly, as the
rate of distributional convergence for the autocorrelations is very slow (compared
to the case α = 2).

For data exhibiting sudden bursts of amplitude, the Gaussian ARMA process
is not appropriate. There are two alternatives to encapsulate the burstiness with
an ARMA model:5

4See Hamilton (1994).
5Gallagher (1998).
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1. One gives up the linear structure of the process and moves to a nonlinear
time series.

2. The other replaces the Gaussian innovations by a more general class of dis-
tributions, stable distributions, which show heavy-tailedness and peakedness
for α < 2.

For an extensive coverage of the Box-Jenkins method in order to specify sta-
ble ARMA, see Gallagher’s dissertation work (1998). Additionally, the reader is
referred to Samorodnitsky and Taqqu (1994, pp. 376) for more on stable ARMA.

4.3 Nonfractional ARIMA Models

An ARIMA (p,d,q) process, called autoregressive integrated moving average pro-
cess, is an ARMA(p,q) process with the variable X differenced d times. ARIMA(p,d,q)
processes are a generalization of ARMA(p,q) processes. As empirical time series
may exhibit instationary variables with trends in their mean and variance, the
non-stationarity can be removed by differencing the time series in order to render
it stationary. This is necessary because a process generated by an ARMA(p,q)
model is always stationary.

d is an integer variable and describes the number of differencings applied to
Xt:

wt = ∆dXt , (4.14)

where Xt is a homogeneous non-stationary process of order d. ∆ is the difference
operator and d is the order of differencing. For example:

∆Xt = Xt − Xt−1 = (1 − B)Xt where d = 1; (4.15)

∆2Xt = ∆Xt − ∆Xt−1 = (1 − B)Xt − (1 − B)Xt−1 = (1 − B)2Xt where d = 2;
(4.16)

This leads to the following representation of the ARIMA(p,d,q) process (in
backward operator form):

Φ(B)∆dXt = Θ(B)εt, or (4.17)

Φ(B)Xt = Θ(B)∆−dεt, (4.18)
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where the sequence of innovations εt is defined as a sequence of i.i.d. Gaussian
random variables. For non-fractional ARIMA processes, d, which denotes the
number of differencings, can only take integer values.

ARIMA(p,d,q) models can be applied to time series with a long-term growth
trend component. It depends on the time series whether higher than first-order
differences are required to obtain stationarity (see equation (4.14).

The stationary time series wt yields an ARMA(p,q) process. Xt is driven by
a classical (non-fractional) ARIMA(p,d,q) with an integer-differencing. ARIMA
models can be further generalized by allowing fractional noise, which is the case for
non-integer d. Such fractional ARIMA models are introduced later in this work.

When dealing with financial time series, the notion of homoscedasticity is rarely
true.6 For empirical return data, researchers often found that large (absolute)
returns are often followed by large (absolute) returns. The variance of the process
is usually conditioned by past realizations. These processes show signs of clustered
volatility.

4.4 Modeling Credit Risk With GARCH(p,q)

Observations of the credit returns Ri and of the risk spread Ui exhibit clustered
volatility.7 This indicates heteroscedasticity so that the application of autoregres-
sive conditional heteroscedastic (ARCH) models seems to be promising. The basic
autoregressive conditional heteroscedastic model ARCH(q) was developed by En-
gle in 1982.8 For a time series Xt with mean µ, it is described by the following
equations:

Xt − µ = σtεt , with

σ2
t = f0 +

q∑
i=1

fiε
2
t−i , (4.19)

where q is a positive integer and εt ∼ N(0, 1). The size of the error term’s variance
σ2

t is determined by the q previous representations of the squared error term ε2
t .

GARCH(p,q) is a general form of of ARCH(q), where the variance parameter
is also determined by the p previous representations of the conditional variance σ2

t :

6Mittnik, Rachev and Paolella (1997).
7Rachev, Schwartz and Khindanova (2001).
8Bollerslev (1992); Engle (1982).
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Xt = σtεt, with

σ2
t = f0 +

q∑
i=1

fiε
2
t−i +

p∑
j=1

gjσ
2
t−j , (4.20)

where εt ∼ N(0, 1). Compared to linear-dependent AR and MA processes, (G)ARCH
models are nonlinear. Moreover, their frequency distribution is peaked and heavy-
tailed, even if their innovations are Gaussian.

(G)ARCH models show a time-dependent variance. In case of ARCH, the ex-
pected variance of the model is conditioned by previous representations of the
model’s squared error terms. In case of GARCH, it is conditioned by previous rep-
resentations of the squared error term and previous representations of the variance
itself. Conditional heteroscedasticity is given by the proceeding time.

One of the most striking properties of (G)ARCH is the fact that small changes
will most likely be followed by small changes. Hence, the signs of the changes are
unpredictable. The plot of such a process exhibits different volatility clusters.

Because of the nonlinearity, large changes amplify and small changes contract.
This results in fat tails and peaked distributions for (G)ARCH models.

Focusing on the model for credit returns Ri,t = ai,t + bi,tYi,t + Ui,t (introduced

in section 3.2), the empirical plot of the Ûi exhibits fat tails and peakedness.9

Moreover, a clustering behavior of their volatilities can be observed.
Applying a GARCH representation for the Ûi, one obtains:

Ui,t = σi,tεi,t, with

εi,t ∼ N(0, 1);

σ2
i,t = f0,i +

p∑
j=1

gi,jσ
2
i,t−j +

q∑
k=1

fi,jU
2
i,t−k. (4.21)

GARCH is not able to meet properties such as self-similarity (see equation
(5.1)). It does not comply with fractal processes (see chapter 5), and is rather
appropriate when investigating period-specific data.

A stationary GARCH process Xt is defined by E(Xt) = 0 and V ar(Xt) = 1. It
can easily be fitted with the log returns of speculative prices. The clustering of the
volatility is called dependence in the tails. The Pareto-like marginal distribution
shows a power-law behavior: P (X > x) ∼ c0x

−k, as x → ∞, for some c0, k > 0.
A GARCH process might turn out to show tiny autocorrelations among its

data.10 But even more, the sample autocorrelations of absolute and squared values

9Rachev, Schwartz and Khindanova (2001).
10Mikosch and Starica (2000a).
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are significantly different from zero, and this is the case even for large lags. The
ACFs for GARCH-driven log prices decay to zero at exponential rate. Although the
sample ACFs of absolute and squared values do not seem to be zero for large lags,
which usually indicates a long memory, these values for such ACFs are insignificant
due to wide confidence intervals. Therefore, the long-range dependence behavior of
the GARCH-process’s volatility (represented by the ACFs of the squared values)
would not be in contradiction to the short-term memory property of the GARCH
process.

Mikosch and Starica (2000a) try to explain this behavior of the sample ACFs
of absolute and squared log returns with shifts in the unconditional variance of the
model. These shifts are due to changing parameter values of the GARCH model.
Therefore, they propose the applied GARCH process should focus on shorter time
series, as a change of its parameter values could occur with longer time series.

4.5 Stable GARCH Models

Studies of GARCH-filtered time series often showed that the innovations remain
heavy-tailed.11 A GARCH process with stable innovations is quite common.

Therefore, GARCH and α-stable assumption are not considered to be compet-
ing hypotheses but could be complementary ones.

Testing for GARCH. A common way to test for a GARCH behavior of the
volatility is calculating the autocorrelation functions of the squared series, i.e.
both the sample autocorrelation function (SACF) and the partial autocorrelation
function (PACF). The partial autocorrelation helps to determine the order of the
autoregressive process. Assume an AR(p) process has an autocorrelation function
which is infinite in extent. It can be described by p non-zero functions of the
autocorrelations. The PACF of a p-th order process has a cut-off after lag p.

Definition of stable GARCH. A time series Xt , t ∈ Z, follows a stable
GARCH (α, p, q) process 12 if

• Xt = σtSt with St i.i.d. random variables following an SαS distribution with
scale 1, SαS(1). 1 ≤ α < 2.

• σt = σ +
∑q

i=1 αi|Xt−i| +
∑p

j=1 βjσt−j , t ∈ Z. The αi, with i = 1...q, and
βj, with j = 1...p, are non-negative constants and σ > 0.

11Rachev and Mittnik (2000, p. 4).
12Rachev and Mittnik (2000, p. 282).
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As most financial time series show a finite mean, the assumption of 1 < α ≤ 2
is not really restrictive.

Furthermore, the stable GARCH(α, p, q) can be generalized to the asymmetric
case with the sequence Xt, t ∈ Z, having a time-varying mean.

Definition of asymmetric stable GARCH. An Sα,β GARCH process is de-
fined if the following conditions are true:

• Xt = µt + ctεt with εt ∼ i.i.d. Sα,β . The mean of the series is time-varying:
E(Xt) = µt , which allows for a broad range of mean equations.

• ct = a0 +
∑q

i=1 αi|Xt−i − µt−i| +
∑p

j=1 βjct−j.

Sα,β denotes the standard asymmetric stable Paretian distribution with stability-
index α, skewness parameter β ∈ [−1, 1], zero location parameter and unit scale
parameter.

For examples and simulations on stable GARCH processes, the reader is re-
ferred to Rachev and Mittnik (2000, chapt. 6), and Mittnik, Rachev and Paolella
(1997).

4.6 ARMA Models With GARCH In Errors

ARMA processes are the traditional tools for modeling of serial dependence, and
GARCH processes stand for volatility clustering. Both effects can be combined in
so-called ARMA-GARCH models, an ARMA process whose innovations are driven
by GARCH processes. The model is represented by the following equations:

Xt = µ +

p∑
i=1

aiXt−1 + εt +

q∑
j=1

bjεt−j , (4.22)

εt = ctut , withut i.i.d.

For Gaussian innovations ut ∼ N(0, 1):

c2
t = w +

r∑
i=1

αiε
2
t−i +

s∑
j=1

βjc
2
t−j

For stable innovations ut ∼ Sα(1), this yields

ct = w +
r∑

i=1

αi|εt−i| +
s∑

j=1

βjct−j ,
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with ct > 0.
For q = 0 this becomes an AR-GARCH model. ARMA-GARCH or AR-

GARCH models are popular for fitting financial returns as they absorb both het-
eroscedasticity and serial correlation. The identification procedure is identical to
that for separate ARMA and GARCH models.

For stable ARMA-GARCH, the conditional distributions usually show a greater
α than for the unconditional distributions because the ARMA-GARCH compo-
nents partially absorb the kurtosis.13

4.7 Subordinated Models

Another way to model the dynamics of an asset price or index is to apply the
recognized lognormal price model, which is driven by Brownian Motion, and add
one more constant parameter to it. The physical time in the stochastic process
that governs the lognormal asset price model is substituted by an intrinsic time.
The intrinsic time, which represents the trading time (i.e. the number of trades
effected up to a certain point of time), has the ability to provide tail effects as
observed in the market.

The method of subordination works with a stochastic process W = {W (T ), T ≥
0}, for the behavior of the log price and with a non-decreasing stochastic process
T = {T (t), t ≥ 0} describing the trading time.14 The resulting process is W (T (t)),
t ≥ 0.

The process of W (T (t)) is said to be subordinated to W by the intrinsic time
process T (t).

The price S(t) of an asset can be modeled by a stochastic process of the fol-
lowing form:

log(S(t)) = log(S(t0))+µ(t−t0)+ρ(T (t)−T (t0))+σ(W (T (t))−W (T (t0))). (4.23)

The noise process is described by a standard Wiener process W . W and T
are assumed to be independent of each other. The intrinsic time denoted by
T represents the market activity. Higher market activity results in higher price
changes. Market time evolves at a different rate, depending on the information
flow occurring.

The resulting stochastic process Z = W (T (t)), t ≥ 0, is the new driving
process for the lognormal model. µ represents the drift in physical time, ρ the
drift in intrinsic time, and σ the volatility.

13Mittnik, Rachev and Paolella (1997).
14See Marinelli, Rachev and Roll (2001) and Marinelli, Rachev, Roll and Göppl (1999).
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The intrinsic time process T (t) can be designated as the stochastic deformation
of the time scale. It is assumed that the price process W (t) is a Standard Brownian
Motion. The skewness of the log price distribution is caused by the intrinsic time
process.

Assume the scaling behavior is determined by a maximally skewed (β = 1)
α/2-stable process with α ∈]0, 2[ having independent increments:

T (t) − T (s) ∼ Sα/2(c|t − s|α/2, 1, 0),

c = 2cos
(πα

4

)2/α

. (4.24)

c is chosen so that increments are closed under convolution. For Z(t) =
W ◦ T (t) = W (T (t)), T ∈ R+

0 , one obtains a standard symmetric α-stable Lévy-
process with stationary independent increments, following the symmetric α-stable
distribution Sα(|t − s| 1

α , 0, 0). Although the process W is Gaussian, Z(t) exhibits
heavy-tailed increments.

Return to the log price model yield

log(S(t)) = log(S(t0))+µ(t−t0)+ρ(T (t)−T (t0))+σ(W (T (t))−W (T (t0))). (4.25)

The differences in the logarithmic price between physical time t and s, which
are the increments of the log price process, follow a symmetric α-stable distribution

Sα(σ|t − s|1/α, 0, µ|t − s|). (4.26)

This model is referred to as the log-stable model. For α moving towards 2, it
provides the classical lognormal model with the scaling behavior σ|t− s|1/2 for the
distribution of log price differences.

For more on subordination and the log-stable model, see Hurst, Platen and
Rachev (1997).



Chapter 5

Long-Range Dependence In
Financial Time Series

The first part of this chapter introduces the theory of fractionally integrated pro-
cesses and long-range dependence (LRD). The second part explains methods for
detection and measurement of LRD within a time series. Finally, the tests are
applied to time series of the returns of corporate bond indices. In this empirical
example, half of the observed bond indices are found to exhibit significant LRD.

All the stochastic processes discussed in the previous chapter are characterized
by an integer order of integration. The processes considered now have a non-integer
order of integration, with some of them incorporating a phenomenon called long-
range dependence or long memory.

Time series can have a long memory. These systems are not i.i.d. This phe-
nomenon is often referred as burstiness in the literature.1 The underlying stochas-
tic processes for such burstiness are called fractal . Fractal processes with a long
memory are denoted as persistent. A common characteristic of such fractal pro-
cesses is that their space time is governed parsimoniously by power law distribu-
tions. This effect is called the Noah Effect and explains the occurrence of heavy
tails and infinite variance. It can be observed as the tendency of time series to-
ward abrupt and discontinuous changes. Another property of fractal processes
are their hyperbolically decaying autocorrelations, which is known as the Joseph
Effect. This is the tendency of a persistent time series to have trends and cycles.

For a long-memory process, larger-than-average representations are more likely
to be followed by larger-than-average representations instead of lower-than-average
representations. Hurst developed a statistic to examine the long memory of a
stochastic process. As significant autocorrelations are frequently not visible, he
came up with a new methodology to provide a measure, the so-called Hurst Expo-

1Willinger, Taqqu and Erramilli (1996).
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nent, for long-range dependence within a time series.2

The examination of fractal processes in finance has become a popular topic
over the years.3

5.1 Self-Similar Processes

Due to the failures of traditional capital market theory, which is largely based
on the theory of martingales, researchers experienced that markets do not follow
a purely random walk. Hence, the fractal market hypothesis, where the exis-
tence of self-similar structures comprises a major component, was developed. For
self-similar processes, small increments of time are statistically similar to larger
increments of time.

Self-similarity is defined as follows:4 Let Xt be a stochastic process with a
continuous time t. Xt is self-similar with self-similarity parameter H (H-ss), if the
rescaled process with time scale ct, c−HXct, is equal in distribution to the original
process Xt.

Xt =
d

c−HXct. (5.1)

Hence, for a sequence of time points t1, ..., tk and a positive stretch factor c, the
distribution of c−H(Xct1 , ...Xctk) is identical to that of Xt1 , ...Xtk . In other words,
the path covered by a self-similar process always looks the same, regardless of the
scale it is observed with. In terms of financial data this means that no matter
whether the data in question was intraday, daily, weekly, or monthly data, the
plots of the resulting processes have similar looks.

For a self-similar process, its limiting behavior (t moving towards infinity)
exhibits the following properties, depending on the value of H.

Xt → 0 if H < 0, (5.2)

Xt → X1 if H = 0, (5.3)

Xt → ∞ if H > 0, (5.4)

where → means convergence in distribution. A non-degenerate H-ss process cannot
be stationary. As a stationary process would show equality in distribution at any

2See Hurst (1951).
3For example, see Mandelbrot (1997a), Mandelbrot (1997b), Mandelbrot (1999) and Peters

(1994).
4Beran (1994).
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point of time, one obtains X(t) =
d

X(at), t > 0, a > 0. On the other hand, for
an H-ss process X(at) =

d
aHX(t) holds true. However, for a → ∞ this yields

aHX(t) → ∞ Therefore, a non-degenerate H-ss process cannot be stationary.5

There is a key correspondence between self-similarity and stationarity:

• If X(t), 0 < t < ∞, is an H-ss process, then Y (t) = e−tHX(et), −∞ < t < ∞
is stationary.

• Conversely, if Y (t), −∞ < t < ∞ is stationary, then X(t) = tHY (log(t)),
0 < t < ∞, is H-ss.

For example, the SαS-Lévy-motion X, 0 < α < 2 is H-ss with self-similarity
parameter H = 1/α ∈ (0.5,∞). X = {X(t), t ∈ T} has independent increments:

X(t) − X(s) ∼ Sα

(|t − s|1/α
)
. (5.5)

The concept of self-similarity is of interest in the presence of scale invariance.
The idea of scale-invariance in financial data goes back to Mandelbrot, who main-
tains that, for a chosen time scale T , the distribution of the price changes can be
calculated from a distribution for a shorter time scale τ < T .

PT (x) =
1

λ
Pτ

(x

λ

)
with λ =

(
T

τ

)H

, (5.6)

where H is the self-similarity parameter.
For further information on self-similarity the reader is referred to Samorodnit-

sky and Taqqu (1994, chapt. 7), or Beran (1994).
In the following section common fractional processes are explained: Fractional

Brownian Motion and a fractional process with stable innovations, Fractional Lévy
Motion.

5.2 Fractional Processes And The Hurst Expo-

nent

First, consider a process without a long memory. A perfect example is Standard
Brownian Motion, which is characterized as a standard random walk.6 Commonly
known is Einstein’s to the one-half rule, which describes the distance covered by a
particle driven by Standard Brownian Motion. It states that the distance between

5Samorodnitsky and Taqqu (1994, pp. 312).
6See Campbell, Lo and MacKinlay (1997).
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consecutive values of the observed time series of this particle is proportional to the
square root of time:7

R ∼ T 0.5. (5.7)

The power of 0.5 refers to the Hurst Exponent which is also known as the
self-similarity parameter. For Standard Brownian Motion, the Hurst Exponent H
is equal to 0.5, which means that it is an unbiased random walk. A process with a
Gaussian limiting distribution but a Hurst Exponent H different from 0.5 is called
Fractional Brownian Motion. Fractional Brownian Motion differs from Standard
Brownian Motion in that it is a biased random walk. The odds are biased in one
direction or the other.

5.2.1 Stationary Increments

Definition. A process with real values X(t), 0 < t < ∞ has stationary incre-
ments if

{X(t + h) − X(h), t ∈ T}=
d {X(t) − X(0), t ∈ T}, for all h ∈ T . (5.8)

A process {X(t), t ∈ T}, is called H-sssi if it is self-similar with index H and
has stationary increments. Brownian Motion is H-sssi with H = 1/2 and α-Lévy
Motion is H-sssi with H = 1/α.

Fractional Brownian Motion is the unique H-sssi process for the Gaussian case,
which is important in the context of long-range dependence. The properties of
Fractional Brownian Motion are described in the following.

5.2.2 Definition of Fractional Brownian Motion

Assume a self-similar Gaussian process with Xt, t ∈ R having mean zero and the
autocovariance function

Cov(Xt1 , Xt2) =
1

2
(|t1|2H + |t2|2H − |t1 − t2|2H)V arX(1), (5.9)

where H is the self-similarity parameter and H ∈ (0, 1).
Such a process is called a Fractional Brownian Motion. The process is H-sssi.

For H = 0.5 it becomes a Standard Brownian Motion.
The increments of Fractional Brownian Motion, Yj = BH(j+1)−BH(j), j ∈ Z,

form a stationary sequence Yj, which is called Fractional Gaussian Noise.8

7Peters (1994, p. 55).
8See Samorodnitsky and Taqqu (1994, pp. 318).
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5.2.3 Definition of Fractional Gaussian Noise

A sequence of Fractional Gaussian Noise has the following properties:

• (i) its mean is zero,

• (ii) its variance EY 2
j = EB2

H(1) = σ2
0, and

• (iii) its autocovariance function is r(j) =
σ2
0

2
[(j + 1)2H − 2j2H + (j − 1)2H ],

where j ∈ Z, j ≥ 0, and r(j) = r(−j) for j < 0.

For j → ∞, r(j) behaves like a power function.

lim
j→∞

r(j) → 0. (5.10)

The autocorrelations are given by

ρ(j) =
1

2
[(j + 1)2H − 2j2H + (j − 1)2H ], (5.11)

where j ≥ 0 and ρ(j) = ρ(−j) for j < 0. As j tends to infinity, ρ(j) is equivalent
to H(2H − 1)j2H−2.

In the presence of long memory, 0.5 < H < 1, the correlations decay to zero so
slowly that they are no longer summable:

∞∑
j=−∞

ρ(j) = ∞. (5.12)

For H = 0.5, i.e. a Gaussian i.i.d. process, all correlations at non-zero lags are
zero. For 0 < H < 0.5, the correlations are summable, and it holds that

∞∑
j=−∞

ρ(j) = 0. (5.13)

H = 1 implies ρ(j) = 1. For H > 1, the condition −1 ≤ ρ(j) ≤ 1 is violated.

For 0 < H < 1, a Gaussian process with mean zero and the given autocovari-
ance function is self-similar and has stationary increments (H − sssi). The above
autocovariance function is shared by all Gaussian H-sssi processes.
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5.2.4 Fractional Processes With Stable Innovations

There are many different extensions of the Fractional Brownian Motion to the
α-stable case with α < 2. Most common is the so-called Linear Fractional Stable
Motion or, Linear Fractional Lévy Motion.

In an analogy to the Gaussian case with α = 2, the increments of Linear
Fractional Stable Motion9 show long-range dependence for H > 1/α. LRD for
α < 1 does not exist, as H must lie in (0,1). Processes with H = 1/α are called α-
stable Lévy Motion whose increments X(tj+1)−X(tj) are all mutually independent.

For the stationarity of the increments of a Lévy Motion it is sufficient to show
X(at) − X(as) =

d
a1/α(X(t) − X(s)).

For α-stable Lévy processes with infinite variance, the value obtained for H
has to be interpreted carefully due to its relation to the parameter d indicating
the degree of long-range dependence.

H, the Hurst Exponent, is the scaling parameter and describes asymptotical
self-similarity:

For finite variance processes, the relation between H and d is

H = d + 1/2. (5.14)

For processes with infinite variance (α < 2), the relation is

H = d + 1/α. (5.15)

If d > 0, the time series is governed by a long-memory process.
Cont, Potters and Bouchaud (1992) use the S&P index futures to analyze the

scaling behavior of the price increments of high-frequency financial data. They
observe anomalous scaling properties for the kurtosis, indicating departure from
the i.i.d. hypothesis. Although the ACF of the price changes decays rapidly, the
squares exhibit a power law. The square of the increments shows long-memory
properties.

Mandelbrot proposed that the increments follow an α-Lévy-Motion with self-
similarity index H = 1/α. But for longer time series, the properties of scale
invariance disappear and therefore the scaling properties are no longer i.i.d. Cont,
Potters, and Buchoud propose truncated Lévy flight models.

If the ACF of price changes decays quickly with increasing lag number, the
absence of significant linear correlations in asset returns is usually a support for
the Efficient Market Hypothesis (EMH). The fast decay of the ACF implies the
additivity of the variances (in the Gaussian case).

9Samorodnitsky and Taqqu (1994, p. 343).
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This section has provided some theoretic background about self-similarity and
fractional processes. The following section will introduce methods to detect and
measure long-range dependence (LRD) in financial data.

5.3 Detecting and Measuring LRD

There are a number of methods to distinguish a purely random time series from
a fractional one. Some directly measure the Hurst Exponent H, others perform
a hypothesis test to check the presence of long memory. For example, the clas-
sical R/S analysis determines the parameter H of a time series.10 The resulting
graph is called pox-plot of R/S or rescaled adjusted range plot. Other methods to
determine the Hurst Exponent are the Aggregated Variance method and a similar
method called Absolute Values of Aggregated Series.11 Lo’s test (1991) is a mod-
ification of the classical R/S and checks the null hypothesis no LRD. While Lo’s
test works under the Gaussian assumption, the statistic proposed by Mansfield,
Rachev and Samorodnitsky (1999) is independent of the actual tail index α and is
thus applicable to both Gaussian and stable time series.

5.3.1 The Aggregated Variance Method

The original time series X = (Xi, i = 1...N) is divided into blocks. Each block is m
elements in size. The index k labels the block. The aggregated series is calculated
as the mean of each block:

X(m)(k) =
1

m

km∑
i=(k−1)m+1

Xi with k = 1, 2, ...,

[
N

m

]
. (5.16)

After building the aggregated series, the sample variance of X(m)(k) is obtained
as

ˆV arX(m) =
1

N/m

N/m∑
k=1

(X(m)(k))2 −

 1

N/m

N/m∑
k=1

X(m)(k)




2

. (5.17)

The procedure is repeated for different values of m {mi, i ≥ 1}. The chosen
values for m should be equidistant on a log scale, i.e. mi+1/mi = C.

As X(m) scales with m(H−1), the sample variance ˆV arX(m) behaves identical
to m(2H−2). Thus, when plotting a log-log representation of m and ˆV arX(m), the

10Mandelbrot and Wallis (1968).
11Teverovsky, Taqqu and Willinger (1995), and Teverovsky, Taqqu and Willinger (1998).
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plots form a straight line with slope 2H − 2.

5.3.2 Absolute Values Of The Aggregated Series

This method is similar to the Method of Aggregated Variance explained above.
Starting again with the aggregated series, the sum of the absolute values of the
aggregated series is calculated.

1

(N/m)

N/m∑
k=1

∣∣X(m)(k)
∣∣ . (5.18)

If the original series has a long-range dependence parameter H, the log-log plot
of m versus the corresponding values of the statistic yields a line with slope H −1.

5.3.3 Classical R/S Analysis

Assume there is a time series of N consecutive values. Y (n) =
∑n

i=1 Xi ,n ≥ 1, is
the partial sum and S2(n) = 1

n

∑n
i=1[Xi − n−1Y (n)]2, n ≥ 1, is the corresponding

sample variance.
Define Z(t) = Y (t) − t

n
Y (n). The rescaled-adjusted-range statistic or R/S

statistic is given by

R

S
(n) =

1

S(n)
[max
0≤t≤n

Z(t) − min
0≤t≤n

Z(t)]. (5.19)

R/S is called the rescaled adjusted range as its mean is zero, and it is expressed
in terms of the local standard deviation. For large n, the expected value of the
statistic approaches c1n

H :

E[R/S(n)] ∼ c1n
H , (5.20)

where c1 is a positive, finite constant and does not depend on n. In case of long-
range-dependence in a Gaussian process, the values for H range in the interval
(0.5, 1.0). For an i.i.d. Gaussian process (i.e. pure random walk) or a short-range
dependent process, the value of R/S(n) approaches c2n

0.5. c2 is independent of n,
finite, and positive.

E(R/S(n)) ∼ c2n
0.5. (5.21)

The practical application of the R/S analysis is performed graphically. It is set
out in Mandelbrot and Wallis (1968) in detail.
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With this procedure, K different estimates of (R/S(n)) are obtained by divid-
ing the total sample of N consecutive values into K blocks, each of size N/K.

k(m) =
(m − 1)N

K
+ 1 (5.22)

defines the starting points of each block, where K is the total number of blocks
and m = 1...K is the current block number. Now the R(n, k(m))/S(n, k(m)) are
computed, for each lag n such that k(m) + n < N . All data points before k(m) are
ignored in order to avoid the influence of particular short-range dependence in the
data.

Plotting the log(R(n, k(m))/S(n, k(m))) for each block versus log(n) allows the
slope of the fitted straight line to be estimated. The classical R/S analysis is quite
robust against variations in the marginal distribution of the data. This is also true
for data with infinite variance.

Calculating the Hurst Exponent H and the stability index α of the process
innovations, the long-range dependence parameter d is obtained by

d = H − 1/2, (5.23)

for finite variance (α = 2) , and by

d = H − 1/α, (5.24)

for infinite variance (α < 2).
Long-range dependence occurs if d is greater than 0.
The R/S analysis is a nonparametric tool for examining long-memory effects.

There is no requirement for the time series’s underlying limiting distribution. In
case of an underlying Gaussian process (α = 2), a Hurst Exponent of H = 0.5
implies that there is no long-range dependence among the elements of the time
series.

For 0.5 < H < 1, a Gaussian time series is called persistent.12 A persistent
time series is characterized by long-memory effects. If long memory is present,
the effects occur regardless of the scale of the time series. All daily changes are
correlated with all future daily changes, and all weekly changes are correlated with
all future weekly changes. The fact that there is no characteristic time scale is a
primary property of fractal time series.

0 < H < 0.5 signals an antipersistent system for finite variance. Such a system
reverses itself more frequently than a purely random one. At the first glance, it
looks like a mean-reverting process. But this would actually require a stable mean,
which is not the case in such systems.

12Peters (1994, p. 61 and chapt. 13).
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5.3.4 The Modified Approach By Lo

Hurst’s R/S statistic turned out to react sensitively towards short memory pro-
cesses. Hence, Lo (1991) modified the classical R/S statistic, which shows robust-
ness towards short-range dependence. Lo’s statistic focuses solely on lag n = N ,
the length of the series.13 Multiple lags are not analyzed, the statistic does not
vary n over several lags < N .

Compared to the graphical R/S method, which delivers an estimate of the
parameter H, Lo’s modified statistic merely indicates the presence of long-range
dependence, but does not deliver an estimate of the Hurst Exponent. The statistic
performs a test of the hypotheses H0: no long-range dependence.

Instead of the ordinary sample standard deviation S for normalization, there is
an adjusted standard deviation Sq in the denominator. Sq effects the elimination
of short-term memory to the statistic. As it is known that the R/S statistic
responds very sensitively towards short-range dependence, the influence of short-
range dependence may be offset by normalizing R with a weighted sum of short-lag
autocovariances. To the variance S2, Lo added weighted autocovariances up to
order q. 14 His modified statistic Vq(N) is defined by

Vq(N) = N−1/2 R(N)

Sq(N)
, (5.25)

with Sq(N) =

√√√√S2 + 2

q∑
j=1

wj(q)γ̂j, (5.26)

where γ̂j is the autocovariance of order j for the observed time series. wj(q) is
defined as

wj(q) = 1 − j

q + 1
with q < N . (5.27)

The statistic Vq(N) is applied for a hypothesis test. It checks whether the null
hypothesis of the test can be rejected or not, given a certain confidence level. The
two hypotheses are as follows:

• H0: no long-range dependence present in the observed data, 0 < H ≤ 0.5.

• H1: long-range dependence is present in the data, 0.5 < H < 1.

13Teverovsky, Taqqu and Willinger (1998).
14Lo (1991)).
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The statistic assumes a Gaussian process (α = 2). In cases where the value
of Vq(N) lies inside the interval [.809, 1.862], H0 is accepted since the statistic is
in the 95% acceptance region. For Vq(N) outside the interval [.809, 1.862], H0 is
rejected.

Lo’s results are asymptotic assuming N → ∞ and q = q(N) → ∞.15 However,
in practice the sample size is finite and the value of the statistic depends on the
chosen q. Thus, the question of what would be the proper value for q in order to
perform the hypothesis test arises. Andrews (1991) has developed a data-driven
method for selection of q:16

qopt =

[(
3N

2

)1/3(
2ρ̂

1 − ρ̂2

)2/3
]

, (5.28)

where [ ] stands for the greatest integer smaller than the value in between. ρ̂ is the
first-order autocorrelation coefficient. Therefore, choosing Andrews’s q assumes
that the true underlying process is AR(1).

Critique of Lo’s statistic. Lo’s statistic is applied by calculating Vq for a
number of lags q and plotting those values against q. The confidence interval for
accepting H0 at the 95% confidence level is plotted as well.

Simulations have shown that the acceptance of H0 (and therefore the value of
Vq(N)) varies significantly with q. Teverovsky, Taqqu and Willinger (1998) found
that the larger the time series and the larger the value for q, the less likely H0 is
rejected.

Whereas Lo’s statistic simply checks for the significance of long-range depen-
dence, the graphical method of the classical R/S provides relatively good estimates
of H.

For small q, the results of Vq usually vary strongly. Then a range of stability
follows after the so-called extra short-range dependence has been eliminated, and
the only effect measurable for the statistic would be long-range dependence.

Applying the statistic to Fractional Brownian Motion with H > 0.5, which is a
purely long-range dependent process without short memory effects, Vq is expected
to stabilize at very low values of q. Unfortunately this could not be confirmed in
testing done by Teverovsky, Taqqu and Willinger (1998). Moreover, they demon-
strate that, if q is large enough, the following holds for Vq(N) and q0.5−H :

Vq(N) � q0.5−H . (5.29)

15Teverovsky, Taqqu and Willinger (1998).
16See Lo (1991).
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For H > 0.5, Vq decreases with increasing q. Even for strongly fractional pro-
cesses with time series containing 10,000 samples, Taqqu, Willinger, and Teverowsky
found that, with increasing values for q, the probability that Vq will lie inside the
H0 95% confidence interval, thus accepting the null-hypothesis, grows. To men-
tion three cases only: for q=500 and H = 0.9 the null-hypothesis (no long-range
dependence) is accepted with 90% for Fractional Brownian Motion, with 92% for
FARIMA(0.5, d, 0), and with 94% for FARIMA (0.9, d, 0).17

Lo’s test is decidedly conservative in rejecting the null hypothesis. It works for
short-range dependence, but in cases of long-range dependence it largely accepts
the null hypothesis. The statistic proposed by Lo is certainly an improvement
compared to the short-range sensitive classical R/S, but it should not be used
alone, i.e. without comparing its results to other tests for LRD.

In practical applications, the issue of a proper choice of q remains. The value of
Andrews’s data-driven qopt depends on the econometric model underlying the ob-
served time series, but, the appropriate model is not known in advance. Andrews’s
choice bears the assumption that the time series obeys an AR(1) process.

A common way to assess long-range dependence used to be by looking at the
rate at which the autocorrelations decay. With a Hurst Exponent H different from
0.5, the correlations are no longer summable. Such non-summability of autocorre-
lations used to be seen as a comfortable way of assuming long-range dependence.
But there are pitfalls: if the underlying process is considered to follow a stable
law with α < 2, a second moment does not exist, which precludes the existence of
autocorrelations.

It can be concluded, that when testing for long-range dependence, the appli-
cation of a single technique is insufficient.

5.3.5 The Mansfield, Rachev, And Samorodnitsky’s Statis-
tic (MRS)

Long-range dependence means that a time series exhibits a certain kind of or-
der over a long coherent period. Instead of pure chaos with no rule in the price
movements of an asset, one can find periods of time with their sample mean signif-
icantly different from the theoretical mean. The stronger the long-memory effects
in the time series, the longer an interval of the series whose mean deviates from
the expected value.

Mansfield, Rachev and Samorodnitsky (1999) concentrate on this property of
LRD-exhibiting time series. This property of LRD is valid regardless of the as-
sumed underlying stochastic model.

17FARIMA(0.5, d, 0) means a fractional ARIMA process with an AR(1) coefficient of 0.5 and
an MA(1) coefficient of 0.
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The authors define a statistic that delivers the length of the longest interval
within the time series, where the sample mean lies beyond a certain threshold.
The threshold is set greater than the finite mean EXi of the overall time series.
Furthermore, the time series is assumed to follow a stationary ergodic process.

Expressed in mathematical terms, the statistic is defined as

Rn(A) = sup{j − i : 0 ≤ i < j ≤ n,
Xi+1 + ... + Xj

j − i
∈ A}, (5.30)

which is defined for every n = 1, 2, .... If the supremum is taken over the empty
set, the statistic is defined to be equal to zero.

The set A is defined either as

A = (θ,∞) with θ > µ, (5.31)

or as
A = (−∞, θ) with θ < µ, (5.32)

where µ is the theoretical mean of the time series.
Rn(−∞, θ) and Rn(θ,∞) are interpreted as ”greatest lengths of time inter-

vals when the system runs under effective load that is different from the nominal
load”.18 In the following, the examination is restricted to Rn(θ,∞).

A theoretical method to examine a time series for long-range dependence would
be the log-log plot of Rn(θ,∞) versus n. In the case of long-range dependence,
the slope of the plot would be expected to be greater than 1/α with α as the tail
index. However, α is not known in advance. For this reason, Mansfield, Rachev,
and Samorodnitsky developed a statistic that does not rely on an a-priori tail
index. They defined

Wn(θ) =
Rn(θ,∞)

Mn

, (5.33)

where Mn = max(X1, ..., Xn) is the largest of the first n observations, n ≥ 1. This
statistic has a self-normalizing nature and, because of the denominator, it has the
ability to compensate for the effects of the tail index α.

In case of short-range dependence, the ratio Wn(θ) approaches a weak limit
as n → ∞. In case of long-range dependence, Rn grows faster than Mn and the
statistic diverges.

For visualization, the statistic θWn(θ) is plotted against θ. Its limiting distri-
bution is independent of θ. A difficult task is the selection of the proper range
of θ, which has to be determined empirically by examining where the values for
θWn(θ) stabilize.

18See Mansfield, Rachev and Samorodnitsky (1999).
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Index Explanation

X0H0 High Yield 175
C8B0 Corporates C rated, cash pay
J0A3 AAA-AA rated Corporates, time to maturity 15 yrs
C0A0 US Corporate Master

Table 5.1: Explanation of the selected indices.

Index No. of Observations Starting Date Ending Date

X0H0 3083 10—31—86 04—30—00
C8B0 3470 10—31—86 04—30—00
J0A3 2920 08—04—88 04—30—00
C0A0 3472 01—04—88 04—30—00

Table 5.2: Data sets used for testing LRD.

Once the value of the statistic is at least 19 for a certain θ, then long-range
dependence is present at a significance level of 0.05.

5.4 Empirical Results: LRD In Credit Returns

For empirical examination of long-memory effects in daily credit return data, the
returns of bond indices provided by Merill Lynch are chosen.19 Four indices with
time series of daily index returns have been selected (between January 1988 and
April 2000). The number of available observations for each time series ranges from
2920 to 3472. Each index represents a number of bonds with similar properties
(see explanation in table 5.1). As the analysis of long-memory effects requires
large data samples, an important criterion for the selection of an index was the
available sample size. The sample sizes are listed in table 5.2.20

Three different methods for estimating the self-similarity parameter H are ap-
plied. Two methods perform a hypothesis test regarding the presence of LRD. As
explained before,

• (i) the Aggregated Variance method,

• (ii) the Absolute Values of Aggregated Series method,

• (iii) the classical R/S analysis developed by Mandelbrot and Wallis,

19The time series were obtained via Bloomberg’s Index Section.
20The results are shown in Martin, Rachev and Schwartz (2002).
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• (iv) Lo’s modified R/S statistic,

• (v) the statistic of Mansfield, Rachev, and Samorodnitsky (MRS).

All these methods have been implemented with Matlab 5.3. Methods (i) - (iii)
provide an estimate of the Hurst Exponent H. Method (iv) examines whether the
null hypothesis no long-range dependence has to be accepted or rejected at a given
confidence level. Method (v) is also a hypothesis test, however, in contrast to Lo’s
test, it works independently of the tail index.

When testing the index returns for long-range dependence, the daily changes
of the index log prices are calculated as follows:

rt = log(pt) − log(pt−1). (5.34)

The results of the methods Aggregated Variance and Absolute Values
of the Aggregated Series. For methods (i) and (ii), the values of each statistic
are plotted over m (number of elements in each block), with m ranging from 10
to 40. Finally, the slope of the data points is determined in order to obtain H.
The values for H are set out in table 5.3. Both methods (i) and (ii) find Hurst
Exponents greater than 0.5 for all observed indices. Thus, under the Gaussian
assumption, the underlying processes are long-memory processes. X0H0 and J0A3
show strong LRD, whereas C8B0 and C0A0 have a weaker long memory.

Index H for Aggreg. Variance H for Abs. Values of Aggreg. Ser.

X0H0 0.7632 0.7596
C8B0 0.5527 0.5511
J0A3 0.8070 0.8022
C0A0 0.5856 0.5838

Table 5.3: The results for Aggregated Variance and Absolute Values of the Aggregated Series.

The results of classical R/S and Lo’s statistic. As there are only about
3000 observations for each time series, the data set is not divided into several
blocks for the classical R/S statistic. Thus, it makes sense to choose K = 1.

The results of classical R/S and the values of Lo‘s statistic Vq (for q the range
of 1...50 is chosen) are presented in table 5.4. Both the log(R/S)-log(n) and the
Vq − q graphs are plotted for the observed indices X0H0, C8B0, J0A3, and C0A0
(see figures 5.1, 5.2, 5.3, 5.4 for classical R/S , and figure 5.5 for Lo’s test). The
second column in table 5.4 presents the Hurst Exponent estimated with the R/S
statistic. In the third column the table depicts the intervals in which the values
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Figure 5.1: Plot of log(RS) − log(n) for X0H0.

of Lo’s Vq are located for q = 1...50. The fourth column provides the optimal
lag q, determined by Andrews’s data-driven method.21 The results of the R/S
statistic are similar to those obtained by the Aggregated Variance method and
the Absolute Values of the Aggregated Series. The time series of X0H0 and J0A3
exhibit strong LRD indicated by their Hurst Exponent H. This is supported by
the result of Lo’s test that rejects the null-hypothesis no LRD at the 95% level.
However, for C8B0 and C0A0, the Hurst Exponent already appears in the area
of antipersistence. Another interesting finding is that for C0A0 - which has the
lowest value for H - the sample autocorrelation of order 1 is negative. Therefore,
the optimal q for C0A0 cannot be calculated.

21See Lo (1991).
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Figure 5.2: Plot of log(RS) − log(n) for J0A3.

The results of the Mansfield, Rachev, and Samorodnitsky’s (MRS)
statistic. Figures (5.6) - (5.9) show the plots of θWn(θ) over the range of
θ. For the time series of the index X0H0, the statistic θWn(θ) increases linearly
with θ in the range of [0.5e−4, 3.5e−4] (the empirical mean of the overall series is
0.497e−4). The value of θWn(θ) reaches levels of about 19 and then declines until
it stabilizes at a level of about 1 (see figure 5.6). This result clearly indicates
the presence of LRD. The presence of long memory is significant at the 0.05 level
once the value of the statistic is at least 19. Thus, the MRS statistic supports
the LRD hypothesis for X0H0. Lo’s statistic and classical R/S also indicate long-
range dependence for the index X0H0, but this was based on the assumption that
the underlying process of the time series follows a Gaussian law, i.e. that α = 2.
However, the MRS statistic is independent of α.

The second bond index that exhibits strong LRD in its returns with the former
tests, was the J0A3-index (C rated corporates). Its empirical mean is −3.2e−4.



82 5 Long-Range Dependence In Financial Time Series

1 2 3 4 5 6 7 8
0.5

1

1.5

2

2.5

3

3.5

4

4.5

Figure 5.3: Plot of log(RS) − log(n) for C0A0.

θW (θ) increases sharply for θ ∈ [0, 6.5e−4] to a value of about 15, finally dropping
to a level of about 1. Thus, the hypothesis of long-range dependence can also be
confirmed for the J0A3 series as the MRS statistic also exhibits significant values
(see figure 5.7). However, the significance is not as great as for the X0H0 series.

The returns of the two other indices, C0A0 and C8B0, do not exhibit long-range
dependence with the θW (θ) statistic, and this is consistent with the results of the
previously applied tests. The returns of the C8B0 index show a higher probability
for the LRD-hypothesis than the returns of C0A0; yet, both are not significant.
Thus, for both indices C0A0 and C8B0, there is no significant indication for long-
range dependence with the MRS statistic (see figures 5.8 and 5.9).
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Figure 5.4: Plot of log(RS) − log(n) for C8B0.

5.5 Conclusion

The idea of the Fractional Market Hypothesis is based on the notion that price
movements do not obey a purely random walk, instead showing certain patterns
of long-memory behavior.

A sign of long memory or long-range dependence (LRD) is the burstiness of
plotted time series. Long-range dependence is characterized by hyperbolically de-
caying autocorrelations and the property that large (small) representations are
more likely to be followed by large (small) representations than small (large) rep-
resentations.

While three of the five tests that have been applied to the corporate bond
indices measure the Hurst Exponent, the other two are hypothesis tests which
check significance of LRD.

Applying the Aggregated Variance and Absolute Values of Aggregated Series
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Classical RS Lo’s Statistic

Index Fitted H Range of Vq(q = 1...50) Optimal q (Andrews)

XOHO 0.7579 [1.74, 3.44] 11
C8B0 0.4874 [1.33, 1.40] 6
J0A3 0.9213 [2.04, 4.29] 10
C0A0 0.4493 [1.23, 1.40] -

Table 5.4: Results for the classical R/S statistic and Lo’s test.

methods, all four time series analyzed exhibit a Hurst Exponent H greater than 0.5,
which indicates long-range dependence under the Gaussian assumption. For two of
the four credit return series, the modified R/S statistic developed by Lo confirms
LRD as significant. This is remarkable because Lo’s test tends to confirm the null
hypothesis no LRD for large sample sizes and increasing lag q, even when the actual
process is strongly long-range dependent.22 Also allowing infinite variance (α < 2),
the MRS statistic is applied. It analyzes a process for LRD without relying on the
tail index. For the X0H0 and J0A3 series, which have been confirmed for LRD by
Lo’s test, the MRS statistic θW (θ) also indicates significant long memory.

The most distinct result of the LRD studies in this chapter is that long-range
dependence in credit returns is also found to be significant in combination with
the non-Gaussian stable assumption.

The examinations here have only focused on the returns. However, for other
financial series such as stock prices, LRD has also been discovered in the trading
time process as demonstrated by Marinelli, Rachev, Roll and Göppl (1999).

The use of bond indices for the empirical examination instead of individual
bonds is advantageous in two respects:

• First, each index incorporates numerous bonds of a certain market segment.
Thus, the results obtained can then be considered a widespread phenomenon.
If only a small number of bonds within the observed indices were to exhibit
such an effect, it would probably fade away.

• Second, LRD analysis requires large samples, which are more readily avail-
able for indices than for single bonds.

Chordia, Roll, and Subrahmanyan’s findings (2000a) on the liquidity anomaly
are another interesting aspect. They maintain that illiquid periods - when discov-
ered by the agents - will further reduce liquidity. Similarly, rising markets attract
more investors. Such a phenomenon is also characteristic of both GARCH and
long-memory processes.

22See Teverovsky, Taqqu and Willinger (1998).
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Finally the conclusion can be drawn that the issue of long memory may not
be neglected for time series of credit returns. The increments of the underlying
stochastic process are not i.i.d.

The proven LRD in the time series of credit returns and the demonstration
that the distribution of credit returns is better captured with stable non-Gaussian
models offers a powerful tool for generating accurate forecasts of VaR, especially
for longer horizons.

These tools will play a vital role in the following chapters.
The next chapter discovers another phenomenon observed for credit data: log

prices of corporate bonds with different credit qualities exhibit common long-term
behavior for given time to maturity. Such behavior is called cointegration.

Chapter 6 examines the phenomenon. Chapter 7 introduces techniques suitable
for capturing this long-term behavior. Chapter 8 builds the model.
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Figure 5.6: Plot of θW (θ) − θ for X0H0.
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Figure 5.7: Plot of θW (θ) − θ for J0A3.
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Figure 5.9: Plot of θW (θ) − θ for C8B0.



Chapter 6

Modeling The Returns Of
Different Credit Ratings

6.1 Empirical Evidence: New Phenomena In Credit

Data

In section 3.2, a one-factor model for bonds bearing credit risk has been introduced.
The returns of the individual bonds are described by the following components:

• the returns of a corresponding treasury bond.

• the movement in credit spread.

The model is based on the stable assumption which shows a much better fit
and forecast results for VaR.

So far, dependence between the returns of different corporate bonds has been
captured by modeling (i) the dependence between the corresponding treasury
returns and (ii) the dependence between the disturbance terms (credit spread
changes). This accords the model in chapter 3 the ability to capture portfolio
effects.

However the direct modeling of individual corporate bonds’ returns is not op-
timal for a number of reasons:

1. Aside from short-term dependence, there are also long-term relationships
between the log price paths of different credit qualities, given equal maturity.

2. The model introduced in section 3.2 works directly with the observed price
data of the corporate bonds. However, so far this model has not been able
to take into account that changing time to maturity might have an impact

91
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on the model’s parameters. This issue can be avoided by working with a set
of defined, constant times to maturity.

In this chapter, for the first time, a stable cointegrated vector-autoregressive
approach is proposed as a common framework to describe corporate bond returns
of different credit qualities with fixed time to maturity. A set of fixed times to
maturity has been defined. For each time to maturity, a cointegrated vector-
autoregressive model is built. This model incorporates the requirements resulting
from the essence of the above items 1. and 2. This approach enables both short-
and long-term properties to be captured.

The chapter begins with preliminary analyses of the data as a prerequisite for
the model building process. Then the theory of cointegrated processes is explained.
The following chapter 7 goes into the theory of cointegrated vector-autoregressive
(VAR) models and presents the methods used to obtain their proper specification.
In chapter 8, the suggested model is specified and fitted with empirical data.
Chapter 9 discusses the behavior of the volatility of the credit returns over time
and its implications on VaR. As a result, the performance of several multivariate
volatility models based on the stable assumption is compared for VaR.

Prices of corporate bonds with different credit ratings show similar behavior
over time. In particular those corporate bonds with equal maturity exhibit certain
relationships in their price paths. It is the objective of the following part of the
thesis to analyze and describe such behavior for zero-coupon corporate bonds over
all credit ratings and maturities.

For risk management purposes, it is essential to determine the potential daily
price changes of a bond with a given credit rating and a given time to maturity.
Instead of modeling the daily yield curves, it is advantageous to focus directly
on the daily returns as risk managers are interested in the calculation of a credit
portfolio’s VaR. Figure 6.1 presents a four-year history of the average log prices for
US dollar-denominated bonds maturing in 10 years. It is displayed for all credit
ratings from AAA to B.

The log prices of different corporate credit ratings are largely determined by
common movements and similar trends in the long term. Furthermore one finds
that the returns of the corporate credit ratings are to a great degree driven by trea-
sury bond returns of equal maturity. The higher the credit rating, the greater is
the influence of the treasury bond returns. Regressing the corporate bond returns
over the treasury returns, the regression explains roughly 40% of the corporate
bond returns for credit quality B and about 72% of the returns for credit quality
AAA.1 Figure 6.2 depicts the historical 10-year treasury returns and the 10-year
returns of rating grades AAA - B over an observation period of four years. As the

1Data is available for corporate bonds with credit ratings from AAA to B.
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Figure 6.1: Daily average log prices for corporate rating grades AAA - B with 10-year maturity from 8/96 to
7/00, US market.
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residuals of the regressions indicate strong dependence, the application of seem-
ingly unrelated regressions may be a feasible for a vector-autoregressive system of
six equations.

Rating R2

AAA 72.3 %
AA 73.3%

A 73.4%
BBB 72.3%

BB 52.2%
B 41.0%

Table 6.1: Fraction of corporate bond returns explained by the regression over treasury returns (10-year matu-
rity).

The obtained regression parameters are listed in table 6.1. Further examination
of the residuals shows that these are heavy-tailed. The plot of the residuals also
illustrates signs of clustering volatility. This means volatility varies over time with
periods of large and periods of small volatility. This phenomenon is examined
later in this work. Examination of the log prices in figure 6.1 above shows that
they follow a common long-term trend. Thus, the idea is now to capture such
a behavior with a system of equations through the application of a cointegrated
vector-autoregressive (VAR) system. The dependent variables on the left-hand
side of the VAR are the returns of the corporate zero-bonds, each belonging to a
different credit rating. The riskless credit returns enter the model as an exogeneous
variable. The cointegrated VAR will finally be represented by an error correction
model (ECM) whose mechanism is introduced in the following sections.

Both the impressions gained from figures 6.1, and 6.2 and table 6.1 indicate an
improvement of information by applying such a systematic multivariate approach
compared to the approach presented in section 3.2 (separate modeling of individual
bonds).

But before the cointegrated VAR model for the credit returns is specified in
depth, the concept of cointegration is introduced with a special focus on the case
when the innovations of the cointegrated model follow a stable law. Moreover,
the functionality of error correction models is explained. Testing procedures for
detection of cointegration are discussed. A section on unit root theory provides the
theoretical background. Section 6.2.5 discusses unit-root theory and cointegration
under and the stable non-Gaussian assumption.
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Figure 6.2: Daily average returns for corporate rating grades AAA - B with 10-year maturity from 8/96 to 7/00,
US market. X denotes the treasury bond returns.
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6.2 The Concept Of Cointegration

This section reviews the general concept of cointegrated series for the bivariate
case, explains the functioning of error correction models, and presents tests for
cointegration.

Generally, trended data is a major problem of empirical econometrics. Trends
can cause spurious regressions. Goodness-of-fit measures might lead to doubtful
results. In financial econometrics, most variables are subject to some kind of trend,
stochastic or deterministic. As a result, differenced or log-differenced variables,
e.g. financial returns, are preferred for prediction models in order to deal with
stationary variables. However, rendering variables stationary means that long-
term properties cannot be described. The concept of cointegration was developed
in order to obtain models demonstrating both long- and short-term properties
and stationarity in all variables of the model. The assumption behind this is
that the observed time series follow a long-term equilibrium. Cointegration means
that there exists a linear combination of non-stationary (trended) variables that is
stationary itself. Series exhibiting such properties are called cointegrated series.2

The following subsection presents an example of cointegration for the case of two
variables.

6.2.1 A Case With Two Variables

Assuming there is a bivariate process generating yt and xt with

xt = c + xt−1 + εt , εt i.i.d. with N(0, σ1) , (6.1)

and a linear combination of xt and yt such that

yt = a + xt + ut. (6.2)

Suppose, ut is generated by

ut = f + ρut−1 + νt with νt ∼ N(0, σ2) . (6.3)

If ut results in non-stationarity, then both series xt and yt are drifting apart.
In this case, the series yt and xt are not cointegrated. If ut is stationary then the
series are cointegrated. The formal definition of cointegration was developed by
Engle and Granger (1987) for the two-variable case:

Two time series, xt and yt are said to be cointegrated of order (d, b), written
as xt, yt ∼ CI(d, b), with d ≥ b ≥ 0, if

2Charemza and Deadman (1997).
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1. Both series are integrated of order d, xt ∼ I(d) and yt ∼ I(d). That is these
time series have to be differenced d times in order to become stationary.

2. There exists a linear combination of these variables which is integrated of
order d− b. [β1, β2] is the vector of parameters of the linear combination. It
is called the cointegrating vector.

To achieve stationarity, a time series may have to be differenced more than
once.

The order of integration is defined as follows:3 A non-stationary series which
can be transformed into a stationary series by differencing d times is said to be
integrated of order d. It is conventionally denoted as Xt ∼ I(d). For example, if
Xt ∼ I(2), the time series has to be differenced twice in order to obtain stationarity:

∆2Xt = ∆(Xt − Xt−1) = Xt − 2Xt−1 + Xt−2 (6.4)

Standard tests to detect the order of integration are the Dickey-Fuller test or
the augmented Dickey-Fuller (ADF) test.4 Dickey-Fuller tests are a so-called unit
root tests which check the null hypothesis that the observed time series has a unit-
root. If the null hypothesis is confirmed, then the process is non-stationary and
exhibits a trend. An explanation of the term unit root and a description of the
Dickey-Fuller testing procedure are given in section 6.2.4.

6.2.2 Error Correction Models

A vector error correction model (VECM) is a restricted VAR incorporating cointe-
gration restrictions in its specification. The restrictions are derived from the coin-
tegrating equations which describe the long-run equilibrium relationship among
the involved variables. The simplest case of cointegration is a two variable system
with the cointegrating equation y2,t = βy1,t and no lagged difference terms. The
error correction for this case is

∆y1,t = γ1(y2,t−1 − βy1,t−1) + ε1,t

∆y2,t = γ2(y2,t−1 − βy1,t−1) + ε2,t. (6.5)

If the cointegrating equation contains a constant, then there is a trend in the
error correction model (ECM). The ECM links the realized value y2,t to its target

3See Engle and Granger (1987).
4Dickey and Fuller (1979); Dickey and Fuller (1981); Said and Dickey (1984) .
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value (determined by the cointegrating relation) y∗
2,t = β′y1,t. In case of a vector-

autoregressive system, each equation of the ECM will also include terms of lagged
∆y. Moreover, ECMs can include trends.

6.2.3 Testing For Cointegration

For conventional cointegration, the elements of yt are assumed to be integrated of
order 1 (denoted by I(1)) and there exists a linear combination among them that
is integrated of order 0 (denoted by I(0)).5

β′yt = ut , with ut ∼ I(0). (6.6)

β is the cointegrating vector. β′yt = ut is the cointegrating regression. If there exist
two vectors β1 and β2 such that β′

1yt = u1t and β′
2yt = u2t are both I(0), then any

linear combination of the two vectors is again a cointegrating vector. This is due to
the fact that linear combinations of I(0) variables are again I(0). Thus, in case of
more than two variables, the cointegration vector is no longer unique. The earliest
cointegration test stems from Granger and Engle. It estimates the cointegration
relation by ordinary least squares (OLS) estimation and applies a unit-root test
to ut in order to check for stationarity. Critical values for this unit-root test are
tabulated.6 Since the test focuses on ut, it is called a residual-based test.

6.2.4 Unit-Roots And Integrated Processes

Before analyzing the cointegration relations between two or more variables, the
individual orders of integration of the endogeneous variables have to be checked.

A time series yt is said to have an autoregressive unit-root if it can be described
by

yt = dt + zt , (6.7)

with

zt = ρzt−1 + εt and ρ = 1 , (6.8)

where εt is stationary and dt is a deterministic component. With ρ = 1, ∆zt is
stationary, and ∆yt is stationary around the change of the deterministic component

5CI(d, b) with d = 1 and b = 1. d − b = 0.
6See Engle and Granger (1987).
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dt. In this case, yt is said to be integrated of order 1, i.e. I(1), and the stationary
series, ∆zt and ∆yt, are said to be I(0).7

With a unit root, i.e. an autoregressive parameter ρ = 1, the variance of
process yt increases over time. Thus, with an autoregressive parameter ρ = 1,
the OLS estimator ρ̂ no longer has an asymptotic normal distribution.8 This also
means that t-type or F-type tests based on an OLS estimator ρ = 1 do not follow
the conventional t- or F-distribution.

By differencing a trended original variable yt, obtaining ∆yt = yt−yt−1, a trend
can often be removed. Sometimes the original variable has to be differenced more
than once.

Most publications that analyze the asymptotic behavior of OLS estimates for
ρ̂ deal with the AR(1) model, yt = ρyt−1 + εt, where εt ∼ N(0, σ2).

Taking the autoregressive process of order 1, the transformed model is

∆yt = (ρ − 1)yt−1 + εt. (6.9)

The hypothesis H0 : ρ = 1 is tested against H1 : |p| < 1 under the application
of the t-statistic for ρ̂:

tp̂ =
ρ̂ − 1

ŝp

, where (6.10)

ρ̂ − 1 is the OLS estimate of the transformed model. ŝp is the usual estimate for
the standard deviation of the OLS estimate.

ŝ2
p = s2

(
T∑

t−1

y2
t−1

)−1

, (6.11)

with s2 as the estimate for the variance of the error term εt.
9 It has to be noted

that tp̂ does not have the usual t- or asymptotic standard normal distribution. The
relevant values are tabulated in Dickey and Fuller (1979).

Modifying equation (6.9) by adding a constant term yields

∆yt = v + (ρ − 1)yt−1 + εt. (6.12)

Even if v is assumed to be zero, the t-statistic under the null hypothesis ρ = 1
has a different limiting distribution than in the former case since v has to be

7Annotation: Assuming yt would be stationary, I(0), then ∆yt would be a moving-average
unit root. MA unit roots arise from differencing stationary time series which is known as overdif-
ferencing.

8Maddala and Kim (1998).
9Lütkepohl (1994).
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estimated in addition to ρ. The relevant values are also in Dickey and Fuller
(1979).

Further generalization is achieved by adding a deterministic trend to the model:

∆yt = v + ξt + (ρ − 1)yt−1 + εt. (6.13)

Here the relevant t-statistic of the null hypothesis ρ = 1 again has a different
limiting distribution, which is, for example, tabulated in Dickey and Fuller (1979)
or Hamilton (1994).

However, the processes in (6.9), (6.12), and (6.13) might not always be relevant
for practical purposes. Sometimes, the actual process is more complex and has an
autoregressive order greater than 1. Therefore, the Dickey-Fuller tests were made
applicable also for AR processes of order p > 1. Such an autoregressive process

yt = α1yt−1 + ... + αpyt−p + εt , (6.14)

results in the transformation

∆yt = −(1 − α1 − ... − αp)yt−1 + π1∆yt−1 + ... + πp−1∆yt−p+1 + εt. (6.15)

Then, for the null hypothesis H0 : yt is I(1), it has to be confirmed that
1 − α1.... − αp = 0. H0 can be checked with the t-statistic for the coefficient
of yt−1 in combination with the Dickey-Fuller distribution.10 This test is called
augmented Dickey-Fuller (ADF).11 This is the test that is commonly applied to
examine stationarity for a wide range of AR-type processes. It may even be applied
for ARMA processes, etc.

However, when testing for unit roots, merely applying available tests is not
appropriate. Instead, a thorough test strategy considering pre-information should
be developed.12

6.2.5 Unit Roots In The Stable Case

This section addresses unit root analysis under the assumption that the variables
follow a stable law, based on the recognized equations introduced in the previous
section. Following Rachev and Mittnik (2000, chapt. 15), the innovations of the
processes obey a stable distribution and their time series are a Lévy process with

10Lütkepohl (1994).
11Said and Dickey (1984); Dickey and Fuller (1981); Dickey and Fuller (1979).
12Elder and Kennedy (2001).
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strictly stable increments. The three relevant regression equations that are selected
for the standard Dickey-Fuller test are listed below:

∆yt = βyt−1 + ut (Case I) (6.16)

∆yt = µ + βyt−1 + ut (Case II) (6.17)

∆yt = µ + τt + βyt−1 + ut (Case III) . (6.18)

For the first two regressions, the data-generating process (DGP) is of the form
yt = yt−1 + ut . For the third equation, the DGP is yt = µ + yt−1 + ut. The
following analysis covers the cases I and II only.

The asymptotic behavior of the estimate for β and the t-statistic is examined
for the first two of the above equations. The stable distribution which is assumed
for the error terms is restricted to 1 < α < 2, and the ut are in the domain
of a strictly stable law. Now the asymptotic behavior of β̂ and the t-statistics
is analyzed under the null hypothesis β = 1. For the first-order autoregressive
process ∆yt = βyt−1 + ut (case I), with y0 = 0 and the ut i.i.d., OLSE yields

β̂ =

∑n
t=1 ytyt−1∑n
t=1 y2

t−1

. (6.19)

Moreover, the t-statistic tβ̂ = β̂−1
sβ̂

, with s2
β̂

=
n−1

∑n
t=1(yt−β̂yt−1)2

y2
t−1

, has a weak

limit:

tβ →w
∫ 1

0
Lα(s−)dLα(s)√

[Lα](1)
∫ 1

0
L2

α(s)ds
. (6.20)

Adding a drift and keeping the prior assumptions for ut, results in ∆yt =
µ + βyt−1 + ut (case II). The OLS estimator for β is then

β̂ =

∑2
t=1 ytyt−1 − 1/n(

∑n
t=1 yt−1)(

∑n
t=1 yt)∑n

t=1 y2
t−1 − 1/n(

∑n
t=1 yt−1)2

(6.21)

Assume that the assumptions on postulations regarding β̂ hold. Under the null
hypothesis (µ = 0, β = 1), the OLS estimator for µ is

µ̂ =

∑n
t=1 yt

∑n
t=1 y2

t−1 −
∑n

t=1 yt−1

∑n
t=1 ytyt−1

n
∑n

t=1 y2
t−1 − (

∑n
t=1 yt−1)2

(6.22)
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The t-statistics tβ̂,µ̂ = (β̂−1)
sβ̂

with s2
β̂

=
n−1

∑n
t=1(yt−µ̂−β̂yt−1)2∑n

t=1 y2
t−1−n−1(

∑n
t=1 yt−1)

2 , converges

weakly as n → ∞.
As mentioned, cointegration can be roughly interpreted as the situation when

variables are trended but a linear combination between them is, in the long run,
stationary. This defines a long-term equilibrium relationship. The representation
theorem of Engle and Granger (1987) states that if there is a set of cointegrated
variables then there exists a valid error correction representation of the data. For
more detailed information on cointegration under the stable assumption, the reader
is referred to Rachev and Mittnik (2000, chapt. 15).

6.3 Conclusion

This chapter has specified the idea of modeling corporate bond returns of different
credit qualities with equal maturity as a system of equations by a cointegrated
vector-autoregressive model.

There are two main reasons for this approach:

• A long-term relationship between zero-bond log price paths of different credit
qualities can be observed for given time to maturity. The paths exhibit
similar trends. The approach presented succeeds in capturing these effects.

• The problem of changing time to maturity that came from working with
observed prices of real individual bonds can be resolved.

Initial empirical analysis demonstrates that the treasury returns are a signifi-
cant risk driver for all corporate credit qualities (for equal time to maturity).

Selecting a set of defined maturities, a cointegrated VAR model consisting of
one equation for each credit quality can be fitted for each of them.

Finally, the returns of a given credit quality can be obtained for each maturity
by interpolating between the returns of the defined set of maturities.

To sum up, this chapter has presented a review of unit root theory and the or-
der of integration, the theory of cointegration, and the concept of error correction
models. Furthermore, unit root tests have been introduced. For unit root test-
ing, the most common regression equations for the Dickey-Fuller test have been
discussed.

As credit returns are known to follow a stable law, the last section has been
dedicated to unit roots and cointegration in the stable case.



Chapter 7

Cointegrated VAR

This chapter reviews how to specify a vector error correction model. It presents
methods for determining the three specification features:

• the lag order.

• the cointegration rank according to Johansen and an alternative method.

• the estimation of the cointegrating relations.

7.1 Lag Order Of The VECM

When building a cointegrated VAR model, the cointegration rank is typically not
known at the beginning when the decision about the lag order has to be made.
It is therefore sensible to focus on the unrestricted VAR first (Lütkepohl and
Breitung, 1996). This form should be used to determine the lag order. Thus, the
autoregressive order of the model is derived before the cointegration rank is known.
There are a number of ways to determine the lag order. Among the most common
are the Akaike Criterion and the Schwarz Criterion. Both are of the form

Cr(m) = log(det(Σ̃u(m))) + cT φ(m), (7.1)

with m as the tested lag length and T as the sample size. Σ̃u(m) is the residual
covariance matrix estimator for a model of order m. log(det(Σ̃u(m))) measures the
fit with the model. cT φ(m) is a term imposing a penalty for an increasing number
of lags. The test proposes the selection of that m which delivers the lowest value
for the term Cr(m). The exact specifications of the Akaike (AIC(m)) and Schwarz
(SC(m)) criteria are given by1

1See Akaike (1973), Akaike (1974) and Schwarz (1978).
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AIC(m) = log(det(Σ̃k(m))) + 2(m)k2/T , (7.2)

and

SC(m) = log(det(Σ̃k(m))) + (m)k2log(T )/T . (7.3)

where k is the number of equations in the system and T is the sample size. The
restrictions in a cointegrated VAR reduce the dimensionality of parameter space.
Such restrictions are based either on economic theory or other assumptions.

Alternatively, t-ratios and F-tests are also common tools for testing the lag
length. Unfortunately, problems may arise when they are applied to the VAR
in levels before the cointegration rank is known although they keep their usual
properties when checking for the short-run parameters of a VECM.

Moreover, sequential testing procedures can be applied:

H
(1)
0 : p = pmax − 1(Apmax = 0) against H

(1)
1 : p = pmax(Apmax �= 0);

H
(2)
0 : p = pmax − 2(Apmax−1 = 0) against H

(2)
1 : p = pmax − 1(Apmax−1 �= 0);

...etc...

Such tests are performed by applying a likelihood ratio or Wald test. It termi-
nates when the null hypothesis is rejected for the first time.

7.2 Estimating Cointegrating Relations When Coin-

tegration Rank is Known

The procedure introduced in this section is based on the assumption that there
is currently one cointegrating relation among the variables of a VAR (Lütkepohl,
1994). The relationship is assumed to be linear with stochastic regressors. The
VAR consists of k dependent variables, each with a time series of length t. The
cointegrated variable is known. Thus, the variables of the VAR may be divided
into two groups:

yt =

[
y1t

y2t

]
, (7.4)

where y1t consists of the cointegrated variable and y2t is a k−1-dimensional vector
containing the variables that are not cointegrated. The cointegrating relation is
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y1t = η + y′
2tγ + u1t

∆y2t = u2t, (7.5)

where y1t consists of a single variable only. ut is stationary around mean zero and
η and γ are parameters. Estimating η and γ, one obtains by least squares:

[
η̂
γ̂

]
= (Y ′

2Y2)
−1Y ′

2y1, (7.6)

where

Y2 =

[
1 ... 1

y2,1 ... y2,T

]
and y1 =




y1,1

.

.

.
y1,T


 . (7.7)

Assuming the y2 are strictly exogeneous and the residuals follow a normal
distribution, then

ut =

[
u1t

u2t

]
∼ N

([
0
0

]
,

[
σ2

1 0
0 Σu2

])
. (7.8)

Then the least square estimators follow a normal distribution. For this reason,
the usual test statistics and confidence intervals may be employed.√

T (η̂ − η) and T (γ̂ − γ) have a regular asymptotic distribution: because of T ,
γ̂ has a faster convergence. It is therefore a superconsistent estimator.

The system above is called a triangular system.2 The case above has a sin-
gle cointegrated variable, but, of course, vector y1 may consist of more than one
cointegrated variable. A triangular system requires pre-information on the coin-
tegrating relations: it is essential to know which of the dependent variables are
cointegrated and which are not beforehand. There exists a cointegration matrix
containing the cointegration vector for each cointegrated variable. r denotes the
number of cointegrated variables. Thus, y1t is an r-dimensional vector and y2t is
a k − r-dimensional vector. The variables in y2t are not cointegrated.

For the case with r < k cointegrated variables, the least squares estimator for
γ is analogously given by

γ̂ = (Y ′
2Y2)

−1Y ′
2Y1 . (7.9)

2See Maddala and Kim (1998)



106 7 Cointegrated VAR

γ̂ is superconsistent, however, its asymptotic distribution depends on nuisance
parameters, as the regressors are endogeneous and serial correlation in the errors
exist (Park and Philipps, 1988).

In order to overcome the problems related to endogeneity and serial correlation,
a number of modifications have been presented in order to make the estimates
more efficient. Both Saikkonen (1991) and Philipps and Loretan (1991) examined
a model that included leads and lags of y2t (Maddala and Kim, 1998).

Having the triangular system in error correction model (ECM) form, the pre-
information about the r cointegrated variables is applied for estimation:

∆yt = v + αβyt−1 + Γ1∆yt−1 + .... + Γp−1∆yt−p+1 + εt, (7.10)

where α̂β is obtained by a direct least squares approach. As it is known that
β = [Ir,−β1] , the first r columns of α̂β may be used for α̂.

A least squares approach is then applied to the remaining k− r columns of α̂β
denoted by H. β1 is then obtained by

β̂1 = −(α̂′Σ̂−1
ε α̂)−1α̂′Σ̂εĤ, (7.11)

where Σ̂ε =
∑T

t=1 ε̂tε̂
′
t/T is a usual estimate for the covariance matrix of the resid-

uals. In general, the estimates are asymptotically efficient. The estimator for α̂β
is superconsistent in the single-equation case.

7.3 Estimating Cointegrating Relations When Coin-

tegration Rank Is Unknown

When analyzing VAR-based cointegration with more than two variables, the num-
ber of cointegrating relations is not known in most cases. Thus the first step is
to determine this parameter. This number is equal to the number of cointegrated
variables.

Assuming there is a VAR of order p,

yt = A1yt−1 + ... + Apyt−p + Bxt + εt , (7.12)

where yt is a vector of k non-stationary I(1) variables (variables in levels). xt is a
vector of I(0) exogeneous variables, εt is the vector of innovations. The VAR can
be written as an error correction model:

∆yt = Πyt−1 + Γ1∆yt−1... + Γp−1∆yt−p+1 + Bxt + εt . (7.13)
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The matrix Π can be rewritten as3

Π = −(Ik − A1 − A2 − ... − Ap), (7.14)

with Ik as the k-dimensional unity matrix.
The Γi are the negative sum of all matrices Aj for j = i + 1, ..., p − 1, p:

Γi = −(Ai+1 + Ai+2 + ... + Ap), i = 1, ..., p − 1, (7.15)

Γp−1 = −Ap. (7.16)

Equation (7.13) is the basic reduced-form error correction model for cointegra-
tion in terms of a reduced-rank hypothesis on matrix Π, as presented in Johansen
(1995). Π defines the cointegrating vectors β and the adjustment coefficients α.

Recalling the two-variable case with y1t and y2t and the cointegration equation
yt + β′xt + ut and the vector error correction (VEC) mechanism ∆yt = α1∆xt +
α2(yt−1 − βxt−1) + εt, this can be expressed in vector notation as

∆yt = α1∆xt + α2(1,−β)(yt−1, xt−1)
′ + εt. (7.17)

If ∆yt and ∆xt are stationary, β is replaced by its OLS estimate β̂.
Focusing on the cointegrated VAR model (7.13) with k > 2 variables, Π is

the product of the matrices α and β. Its coefficients reflect the impact of the
one-period lagged yt−1 on ∆yt. Both α and β are k × r matrices:

αβ′ = Π (7.18)

where matrix α contains the adjustment parameters of the VEC model. One
parameter of each row in matrix β is equal to 1. A row represents one cointegrating
vector. The rank of Π indicates the number of cointegrating relations, which is the
cointegration rank. It is the maximum number of linearly independent columns in
the matrix. For the rank of a product of two matrices, the following relationship
holds: r(AB) ≤ min(r(A), r(B)). Thus, the rank of Π lies between zero and k.

The above statements are generalized by the so-called Granger representation
theorem:4

1. If the rank of the matrix Π is equal to the number of variables k in the
VAR, then the vector process yt is stationary, i.e. all the variables in yt are
integrated of order zero, I(0).

3See Johansen (1991) and Johansen (1995).
4See Charemza and Deadman (1997).



108 7 Cointegrated VAR

2. If the rank of Π is r < k, then there exists a representation of Π such that
Π = αβ′. α, β are k × r matrices. β is called the cointegrating matrix and it
has the following properties:

• βyt is I(0) and yt is I(1).

• The cointegrating vectors β1, β2, ..., βr are particular rows of the coin-
tegrating matrix β.

The cointegration rank of a VAR can be determined by the Johansen procedure.
This procedure is introduced later in detail. It considers the above reduced-form
error correction model of the form

∆yt = αβ′yt−1 +

p−1∑
i=1

Γi∆yt−1 + Bxt + εt (7.19)

under the reduced rank condition

Π = αβ′. (7.20)

If the VAR has k endogeneous variables, each having a unit root, there could
be from 0 to k − 1 cointegrating relations. For each cointegrating relation, an
additional error correction term of the form αijβ

′
jyt is added to each equation of

the VAR, where αij is a constant and βj is a k-dimensional cointegrating vector.
If there are k cointegrating relations, none of the series has a unit root. The

VAR may be represented solely by the levels yt of the time series involved. This
refers to the I(1) model, which is named as H(k). In the reduced-form repre-
sentation above, the levels are only lagged in the first differences. The following
expresses the relations among the possible restrictions for the VAR. The formula-
tion shows that the I(1) models form a nested sequence of models.

H(0) ⊂ ... ⊂ H(r) ⊂ ... ⊂ H(k). (7.21)

H(0) corresponds to the restriction Π = 0, which is the VAR model based on
the process in differences.

7.4 Determining The Cointegration Rank Of A

VAR

As mentioned above, Johansen presented a system estimation method in order to
identify the rank of a cointegrated VAR and to determine the parameters of its
reduced-form error correction model (see equation (7.13)). The procedure is based
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on a likelihood ratio test with Johansen assuming that the error terms follow a
Gaussian law. Johansen has shown that the first r estimated eigenvectors are the
maximum likelihood (ML) estimates of the system’s cointegrating vectors. The
procedure performs a hypothesis testing, starting with the testing of the null hy-
pothesis H0

0 : r = 0 (no cointegrating relations) versus H0
1 : r = 1 first, and then

performing tests of

H1
0 : r = 1 versus H1

1 : r > 1,
H2

0 : r = 2 versus H2
1 : r > 2,

....,
Hk

0 : r = k − 1 versus Hk
1 : r = k.

This test is called the trace test. It checks the hypothesis that there are at
most r cointegrating vectors.

Another testing procedure, called maximum eigenvalue test, examines the hy-
pothesis H0 : r cointegrating vectors versus H1 : r + 1 cointegrating vectors.

Both the trace test and the maximum eigenvalue test terminate the first time
the null hypothesis is no longer rejected.

Focusing on the VAR in the known VECM form

∆yt = αβ′yt−1 + Γ1∆yt−1 + ... + Γp−1yt−p+1 + εt, (7.22)

for the Johansen test, in order to be consistent, αβ′ should not be full rank since
∆yt−1...∆yt−p+1 are all I(0) but yt−1 is I(1).

Let the rank be r. To execute the Johansen test, the Γi are eliminated first
by regressing ∆yt on ∆yt−1...∆yt−p+1. R0t are the residuals of the regression.
Moreover, yt−1 is regressed on ∆yt−1...∆yt−p+1 with R1t as the residuals. Thus,
the regression equation can be reduced to

R0t = αβ′R1t + ut . (7.23)

The regression problem is multivariate. The sums of the squared residuals are
denoted as follows:

S00 =
T∑

t=1

R2
0t, and (7.24)

S11 =
T∑

t=1

R2
1t, (7.25)

where T is the size of the sample.
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Moreover,

S10 = S01 =
n∑

t=1

R0tR1t (7.26)

provides the matrix

[
S00 S01

S10 S11

]
of sums of squares and sums of products for R0t

and R1t. Each of these matrices is of order k × k.
First, the likelihood function is maximized with respect to α, holding β con-

stant. In the second step, the maximization with respect to β is performed. α̂′ is
an r × k matrix and the conditional maximum likelihood function is given by

α̂′ = (β′S11β)−1β′S10 . (7.27)

The conditional likelihood function for β is then

[L(β)]−2/T = |S00 − S01β(β′S11β)−1βS10|. (7.28)

Maximization of the likelihood means that the determinant on the right of the
equation has to be minimized. The determinant can be reformulated as follows:

|β′S11β
′S10S

−1
00 S01β

′| · |S00|
|βS11β| (7.29)

The elements of the matrix α determine the speed of adjustment in terms of
a disturbance. After normalization, the elements of matrix β are interpreted as
long-run parameters.

Thus, the maximum of the likelihood function is given by minimizing the up-
per equation. This is performed, after some substitutions and reformulations, by
solving the following eigenvalue problem:

|S10S
−1
00 S01 − λS11| = 0 , or finding the eigenvalue of (7.30)

|S−1
11 S10S

−1
00 S01 − λI| = 0. (7.31)

If λi are the canonical correlations given by solving equation (7.31), then (1−λi)
are the eigenvalues of

(I − S−1
11 S10S

−1
00 S01). (7.32)

Since the value of the determinant of a matrix is equal to the product of its
eigenvalues, one obtains
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k∏
i=1

(1 − λi) = |I − S−1
11 S10S

−1
00 S01|. (7.33)

The maximum of the likelihood is finally given by

L−2/T
max = |S00|

k∏
i=1

(1 − λi). (7.34)

The procedure has just been briefly sketched here. For a more detailed presen-
tation, please see Maddala and Kim (1998).

7.5 The Trace Test And The Maximum Eigen-

value Test

The Johansen procedure leads to two test statistics for the rank of cointegration.
The first is called the trace test. It tests the hypothesis that there are, at most, r
cointegrating vectors.

The likelihood ratio test statistic for at most r cointegrating vectors (trace test)
is

λtrace = −T
k∑

i=r+1

log(1 − λ̂i), (7.35)

where λ̂r+1, ..., λ̂k are the (k − r) smallest eigenvalues of the determinant equation
(7.31).

The maximum eigenvalue test examines the null hypothesis of r cointegrating
vectors versus the hypothesis of r + 1 cointegrating vectors. The likelihood ratio
test statistics is

λmax = −T log(1 − λ̂r+1). (7.36)

Both tests are based on eigenvalue-eigenvector decomposition of matrix αβ′.
The critical values (quantiles expressing the confidence levels) are tabulated. These
values increase with the size of the VAR system. The tables with the corresponding
values are given in detail in Osterwald-Lenum (1992).

The Johansen test was extended to include trends and drifts. Three cases are
distinguished:5

1. Error correction models without a drift.

5Maddala and Kim (1998).
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2. Error correction models with separate drifts.

3. Error correction models with constants in their error correction.

The trace test or maximum eigenvalue test is performed for an ascending num-
ber of cointegrating relations. Testing is carried out until the null hypothesis is no
longer rejected for the first time.

McKinnon (1991) calculated the approximated values for both tests considering
up to 12 cointegrating relations.

7.6 Determining Cointegration Rank With Model

Selection Criteria

Most popular in determination of cointegration rank are the sequential testing
procedures with ML estimates proposed by Johansen. As presented, the two pos-
sible testing sequences are maximum eigenvalue and trace test. Alternatively, the
model selection criteria can be applied to consistently estimate the rank.

Thus, the concept of Akaike Criterion and Schwarz Criterion may be set up for
the determination of the cointegration rank of a system as well. The statistic for
rank determination is also of the form

CT (r) = QT (r) + ρ(r)cT with r = 0...k. (7.37)

where ρ(r) is any strictly monotonically increasing function of r and cT is a se-
quence of numbers which is o(T ). QT (n) is defined to be zero. n is the number of
variables in the system. For the cointegration rank the r is chosen that minimizes
CT (r).
Suppose, QT (r0) is a test statistic for testing the null hypothesis H0(r0), with the
properties

plim QT (r)/T > 0 for r < r0 and

QT (r) = Op(1) if r ≥ r0. (7.38)

For the application of the Akaike Criterion and Schwarz Criterion in this con-
text, the reader is referred to Lütkepohl (1998).

A further option for specification of the cointegration rank of a system is the
Stock-Watson test (see Lütkepohl, 1998; Stock and Watson, 1988).

If the rank of cointegration has been determined, the coefficients of the VECM
can be obtained by least squares estimation. In case of lag order 1, the estimate
for Γ is then
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Γ̂ = (∆Y − ΠY−1)X
′(XX ′)−1 (7.39)

With M = I − X ′(XX ′)X, the substitution ∆Y M = ΠY−1M + Û can be
performed and Π̂ estimated. However, as Π = αβ′, both α̂ and β̂ have to be
determined separately. β is obtained according to Johansen (1995):

• First define S00 = n−1∆Y M∆Y ′, S01 = n−1∆Y M∆Y ′
−1, and

S11 = n−1∆Y−1M∆Y ′
−1. n is the number of observations.

• Then, the eigenvalue problem det(λS11 − S ′
01S

−1
00 S01) = 0 has to be solved.

The eigenvalues are ordered according to λ1 ≥ ... ≥ λk where vi are the
corresponding eigenvectors. The eigenvectors satisfy λisiivi = S ′

01S
−1
00 S01.

The normalized eigenvectors which satisfy V ′s11V = Ik are the estimates of
the cointegrating vectors β̂.

• Having β̂, α̂ is obtained by OLS estimation

α̂ = ∆Y MY ′
−1β̂(β̂′Y−1MY ′

−1β̂)−1. (7.40)

• Thus, the estimator of Π is then Π̂ = α̂β̂′ Under the Gaussian assumption,
the OLS estimates refer to the ML estimates conditional on the presample
values (Johansen, 1988).The estimates of Π and Γ are consistent and asymp-
totically normal under general assumptions.

It is important to mention that the obtained β̂ might not refer to the econo-
metric identification. β̂ solely describes the cointegration space which is estimated
with this procedure. It allows several possible linear combinations of cointegrating
vectors. Thus, other identifying restrictions for the product αβ′ = Π need to be
imposed. In order to make β unique, so-called uniqueness restrictions are applied.
In this case, β is specified to have a left part that is an r × k-dimensional identity
matrix with r as the cointegration rank and k the number of endogeneous vari-
ables, yielding [Irβ

′
1]. If r = 1, this leads to normalizing the coefficient of the first

variable. With these uniqueness restrictions, T (β̂−β) and
√

T (α̂−α) converge in
distribution (Johansen, 1995). As β̂ converges faster with rate T , the estimator is
called superconsistent. The covariances of the cointegrated VAR are obtained in
the same way as for the unrestricted VAR.
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7.7 Cointegration In Credit Modeling

The cointegration tests help in solving the questions of whether a VAR system
should be modeled in levels or in differences - or both with some restrictions.
The cointegrating relations define a long-term relationship among the endogeneous
variables involved.

In the given case, the concept of cointegration will be applied to model the
relationship among US market daily credit returns for each credit rating and each
maturity. Not only are the returns for different credit ratings driven by a common
exogeneous factor, the treasury rate, they also show a common behavior which
cannot be explained by exogeneous factors.

The historical daily credit returns are obtained from daily yield curves for
given credit ratings. They represent the average yield to maturity for the given
creditworthiness. Such average yield curves are calculated from the daily prices
of numerous traded corporate bonds with equal credit rating and equal time to
maturity.

While series of daily log prices of bonds are not stationary, the differences
(returns) exhibit stationary behavior. The objective is to construct a cointegrated
VAR model that describes the behavior of the bond returns, yet also considering
the long-term behavior of the variables in levels (log prices).

Johansen’s test focused on models where all the variables depend on each other
and none of them is exogeneous. This is considered as the closed form. But, when
describing corporate bond returns, the development of the treasury bond’s price
is the major driver of the system.

Of course, in the given case it would have been possible to model the price of
the treasury bond as another dependent variable of the system. The decision not
to do so has two main reasons:

• First, consistency with the initial single-equation model for individual bonds
- presented in sections 3.7 and 3.6 - is assured. Those models have the log
returns of the riskless asset as an exogeneous factor.

• Second, the cointegrated VAR model would become more complex by choos-
ing seven dependent variables.

• And, it is implied by economic understanding, that a change in the trea-
sury yield curve causes an effect on corporate bond returns. Yet there is
not necessarily an influence of the corporate bond returns on the treasury
returns. Corporate bond returns hinge on several factors aside from the
treasury returns - e.g. market liquidity, average credit risk, etc. Thus, the
treasury returns cause changes in corporate bond returns but the treasury
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returns themselves are not understood to be affected by representations of
the corporate bond prices or returns.

7.8 Conclusion

This chapter has reviewed possible methods to determine the specification of the
cointegrated VAR (lag order, cointegration rank) and to estimate the parameters.
It has dealt both with the case where the cointegrated variables are known in
advance and with the case where the cointegrating vectors are to be determined.
For future modeling under the stable assumption, applying the Johansen procedure
based on the Gaussian assumption even for the stable case is suggested. To do
so, the procedure is then applied to the truncated time series sample. In the next
chapter, a closer look will be taken at exactly this issue.
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Chapter 8

VAR Models For Credit Returns

In this chapter, three stable cointegrated VAR models based on the available data
are specified and built. Each VAR describes the corporate bond returns of six
rating grades for a given time to maturity. The chosen maturities are 2 years, 10
years and 30 years. Section 8.5 analyzes the behavior of the treasury returns and
develops an appropriate model for their description.

The building of the cointegrated VAR models proceeds in the following manner:

• The preconditions for cointegration (I(1) in levels and I(0) in differences) are
checked by unit-root tests, applying an appropriate testing strategy.

• The lag order of the unrestricted VAR in levels is determined by the Schwarz
Criterion and the Akaike Criterion.

• The ”traditional” cointegrating relations and cointegration rank are specified
with the Johansen procedure. However, as the innovations of the VAR are
assumed to follow a stable law, further considerations and adjustments have
to be made before applying the procedure.

The main findings of this chapter are:

• The ”traditional” cointegrating relations based on the Johansen procedure
are found too weak to describe the real long-term behavior of the price paths.
Thus, an alternative set of cointegrating relations is developed that makes
the intersecting of neighboring price paths less likely.

• Besides the treasury returns there is another common risk factor driving the
returns of all corporate rating grades: This risk factor represents the common
changes of credit spread over all rating grades.

117
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• The influence of the treasury returns on the corporate bond returns is the
greater the better the credit quality of the corporate bonds. The daily log
prices of the treasury bonds are found to follow a mean-reverting process.

• The residuals of the cointegrated VAR models exhibit signs of volatility clus-
tering. This phenomenon will be treated in chapter 9.

8.1 The Data And Variables

The model introduced in this chapter is capable of describing the returns of cor-
porate zero-bonds depending on credit risk (represented by rating grades) and
maturity. As observed in the chapter 6, for a given maturity the average log prices
of different corporate credit ratings seem to have common long-term trends. In
addition, they are driven by the returns of treasury bonds with equal maturity as
an exogeneous variable.

According to Park (1997) it is generally accepted in the literature that treasury
bill yields are not stationary and follow an I(1) process.1 It is reasonable that
this can be assumed for the log prices of corporate zero-bonds with fixed time to
maturity as well. Tests will prove this later.

The time series of log prices for the corporate zero-bond were derived from
daily yield-to-maturity data. The historical fair market yield curves for different
corporate bond ratings and different maturities were obtained from the Bloomberg
System. The returns are obtained as the difference of the log prices of two subse-
quent days. In addition, the returns of treasury bonds with equal maturity were
calculated as well.

For the chosen time period of 8/1996 through 7/2000, daily yield-to-maturity
data of corporate bonds for six credit rating grades and various maturities were
available within the US bond market. These yields represent averages for a given
rating category and maturity, derived from the prices of numerous traded US
corporate bonds of the industrial sector. The yields are presented for the corporate
credit rating grades AAA, AA, A, BBB, BB, B.2 Data has been chosen for three
maturities: 2 years, 10 years, and 30 years. The sample size of each time series is
1044.

For the purpose of VaR, the interest is on the average daily price movement
for bonds of a given credit rating i and given time to maturity T . Therefore, the
variables explained by the model are the credit returns at time t. Generally, at
time t the return Rt,T of a bond with maturity T is defined the following way:

1Park, for example, has tested this for Canadian treasury bill yields.
2Standard & Poors rating grade system.
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Rt,T = log(Pt,T ) − log(Pt−1,T−1) , (8.1)

where Pt,T is the price of the bond with maturity T , valued at time t. The prices
are driven by the daily movements of the corporate bond yield curves. Note that
for the definition of bond returns in equation (8.1) the maturity T − t in the
numerator is identical to the maturity T − 1 − (t − 1) in the denominator.

The average log prices of corporate zero bonds with Standard & Poors credit
grades AAA, AA, A, BBB, BB, B are plotted over the time period from 8/96 to
8/00, having one chart for each maturity. It is not surprising that they clearly
show patterns of cointegration as the paths exhibit equal trends. However, the
trends do not look deterministic.

The charts of log prices for the three maturities are presented in figures 8.1 -
8.3.
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Figure 8.1: Log prices of 2-year maturity corporate zero bonds.

As argued in chapter 6, a suitable approach for capturing such a long-term
behavior with a system of equations is the application of a cointegrated vector-
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Figure 8.2: Log prices of 10-year maturity corporate zero bonds.

autoregressive (VAR) system. Here the system for each maturity has six equations,
one for each rating grade. log(Pt,T ) are the levels that should be integrated of order
1, and Rt,T are the differences that should be integrated of order 0. This will be
examined by a unit root test first. Furthermore, the unit root test is also applied
to check the cointegrating relations.

8.2 Testing For Unit Roots

The testing for unit roots should consider prior knowledge on the observed time
series in order to exclude unrealistic outcomes and make the testing less compli-
cated. Following Elder and Kennedy (2001), such a testing strategy will be applied
here. By looking at the data of corporate bond log prices, it can be easily seen that
those are not growing. It makes sense to exploit such information before selecting
the test.

The general testing of the augmented Dickey-Fuller (ADF) is performed with
the equation
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Figure 8.3: Log prices of 30-year maturity corporate zero bonds.

∆yt = (ρ − 1)yt−1 + α + βt + εt, (8.2)

and it is tested for ρ = 1 which indicates the presence of a unit root.
In the case of log prices for corporate zero-bonds the presence of a time trend

β can be denied. Analyzing the resulting equation,

∆yt = (ρ − 1)yt−1 + α + εt, (8.3)

there would be only a unit root if there was a zero intercept. In this case,
the joint hypothesis ρ = 1 and α = 0 has to be tested. If this null hypothesis is
rejected, it can be concluded that the process is nonstationary and has a mean zero.
This could be shown by applying an F-test. However, if ρ = 1, it is not reasonable
if α was not zero. Therefore a t-test would be preferable as it has a higher power
because it is one-sided. For the null-hypothesis, however, the t-statistic does not
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have a t-distribution. The special critical values can be obtained by Monte Carlo
studies. They are available from many text books (e.g. Hamilton, 1994).

The unit root tests for the log prices yi,t were performed with an ADF-test
routine in Matlab. For all rating grades and maturities, the absolute values for the
test statistic were less than the absolute value of −2.594, which is the critical value
for the 10% level. It can be concluded that the log prices are I(1), i.e. integrated
of order 1. Contrary, the corresponding log price differences ∆yi,t are found to be
stationary, and thus are I(0).

8.3 Specification Of The VECM

The dependent variables on the left side are the corporate zero-bond returns for a
fixed time to maturity. The returns of a treasury zero-bond with equal maturity
enter the VAR as an exogeneous variable. The resulting Cointegrated VAR is rep-
resented by a Vector Error Correction Model (VECM) (Charemza and Deadman,
1997), with

∆yt,T = Πyt−1,T−1 +

p−1∑
j=1

Γj∆yt−j,T−j + Bxt,T + rest, (8.4)

where p is the order of the unrestricted VAR, ∆yt,T is the vector of returns, yt−1,T−1

is the vector of lagged log prices, and xt,T are the treasury returns. The matrix Π
can be decomposed as Π = αβ′. The innovations rest,i, i = 1 . . . 6, for AAA, AA,
A, BBB, BB and B, are a six-dimensional symmetrically stable random vector,
with 1 < α < 2. For the properties of stable non-Gaussian distributions, the
reader is referred to section 2.2 and Samorodnitsky and Taqqu (1994, chapt. 1).
The time series of the innovations are Lévy processes with symmetrically stable
increments.

The VECM in (8.4) is modeled without a constant term as the dependent
variables of the VECM have means around zero.

yt,T =




log(Pt,T,AAA)
log(Pt,T,AA)
log(Pt,T,A)

log(Pt,T,BBB)
log(Pt,T,BB)
log(Pt,T,B)




(8.5)

The VECM in (8.4) represents one time to maturity T −t. Thus, for each of the
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maturities 2 years, 10 years and 30 years, a cointegrated VAR with six equations
is built.

First, the unrestricted VAR is built as the lag length p is determined from
the unrestricted VAR in levels. This is done before the cointegration rank is
known. The test statistics applied in this case are the Akaike Criterion and the
Schwarz Criterion. The lag order is obtained by minimizing these criteria for the
unrestricted VAR. While the Akaike Criterion finds a lag order of p = 2, the
Schwarz Criterion delivers p = 1.

The decision for the final choice of p between Akaike and Schwarz is made
under the premise to select the one that keeps more information in the given case.
Thus, p is set to be 2 (this results in a lag of p− 1 = 1 for the VECM). Therefore,
the mean equation is then modeled as a cointegrated VAR of order 1.

Usually, cointegrated VARs do not have exogeneous variables. However, these
may be added. As stated above, the treasury returns have a considerable influence
on the movements of corporate bond prices. Therefore, the returns of a treasury
zero bond with the same maturity as the endogeneous corporate bond returns
will enter the right side of each equation in the form of an exogeneous variable.
As known from the initial examinations in chapter 6, this is expected to explain
a large fraction of the movements of the corporate bonds’ prices. Performing a
regression, the following results: The higher the corporate credit rating, the greater
is the influence of the treasury returns on a corporate bond’s returns.

After the determination of the lag order, the Johansen test is performed in
order to obtain the cointegration rank and the cointegrating space.

As indicated in the previous chapter, the Johansen procedure has been devel-
oped under the Gaussian assumption.

The risk factors of the cointegrated VAR to be developed here are considered to
follow a stable law. However, the stable model of Johansen’s test is untractable at
the moment. The literature does not provide rigorous results on stable Johansen as
this has turned out to be an extremely difficult problem. Thus, this work tackles
the problem as follows:

For the given case, the fact that the Johansen model is still valid when the
innovations are in the Gaussian domain of attraction is used. To demonstrate
this, the pre-limit theorems (Rachev and Mittnik, 2000) are applied.

The truncated stable distribution provides a superior fit of the innovations’
distributions compared to the Gaussian fitting. On the other hand, the innovations
are in the Gaussian domain of attraction. Therefore, the limiting results for the
Johansen test are still valid.

Both the trace test and the maximum eigenvalue test provide a cointegration
rank of 2.3 A cointegration rank r = 2 means that the variables log(Pt,T,AAA)

3The test was performed with a routine implemented in Matlab.
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and log(Pt,T,AA) are cointegrated since the highest eigenvalues are obtained for
them. These variables are explained by linear combinations of the other variables
log(Pt,T,A), log(Pt,T,BBB), log(Pt,T,BB), and log(Pt,T,B).

The cointegrating relations have been tested both with and without a constant
term. However, fitting the cointegrating relations with a constant turned out
not to be significant. The normalized eigenvectors obtained for the cointegrating
relations in case of r = 2 are

β2 =

[
1 0 −1.645 0.585 0.046 0.015
0 1 −1.712 0.656 0.036 0.020

]
(8.6)

for the 2-year maturity cointegrated VAR,

β10 =

[
1 0 −1.539 0.462 −0.036 0.115
0 1 −1.496 0.502 −0.141 0.137

]
(8.7)

for the 10-year maturity cointegrated VAR, and

β30 =

[
1 0 −0.973 −0.285 −0.039 0.348
0 1 −1.035 −0.116 −0.093 0.281

]
(8.8)

for the 30-year maturity cointegrated VAR.

8.4 Revised Cointegrating Relations

The cointegrating relations obtained by the Johansen procedure neglect the fact
that there is a certain order among the price paths. Thus, the chosen cointegrating
relations should make it very unlikely that the price paths of different credit risk
grades will intersect. The traditional cointegrating relations try to explain the
relationship between the different paths by the lowest possible cointegration rank.
Unfortunately, they permit crossing and changed order of the price paths. In
order to reduce the likelihood of a changed order, the following restrictions are
introduced:

yi,t − yi+1,t = ci + ui,t , (8.9)

where ui,t is five-dimensional symmetrically stable, with i = 1 . . . 5 for the first five
credit rating grades. The estimated model is yi − yi+1 − ci = 0. The restrictions
insure that the intersecting of neighboring paths becomes less likely. Now, there are
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five restrictions compared to the two restrictions obtained by Johansen’s reduced
rank regression. It should be noted that these relationships are different from the
traditional cointegrating relationships, and have a cointegration rank of 5.

The plot of the log prices show that the distance between two neighboring price
paths is relatively constant over time and varies generally around a mean. This
behavior is described by the relations in (8.9). Fitting the cointegrating relations,
the results for the β are given in 8.10 - 8.12.

β2 =




1.0000 0 0 0 0
−1.0000 1.0000 0 0 0

0 −1.0000 1.0000 0 0
0 0 −1.0000 1.0000 0
0 0 0 −1.0000 1.0000
0 0 0 0 −1.0000

0.0010 0.0031 0.0045 0.0152 0.0190




(8.10)

for the 2-year maturity cointegrated VAR and

β10 =




1.0000 0 0 0 0
−1.0000 1.0000 0 0 0

0 −1.0000 1.0000 0 0
0 0 −1.0000 1.0000 0
0 0 0 −1.0000 1.0000
0 0 0 0 −1.0000

0.0055 0.0243 0.0295 0.1223 0.1242




(8.11)

for the 10-year maturity cointegrated VAR and

β30 =




1.0000 0 0 0 0
−1.0000 1.0000 0 0 0

0 −1.0000 1.0000 0 0
0 0 −1.0000 1.0000 0
0 0 0 −1.0000 1.0000
0 0 0 0 −1.0000

0.0233 0.0873 0.0996 0.3049 0.4227




(8.12)

Co-integrating ADF test. For most of the cointegrating relations yi,t−yi+1,t =
ci +ui,t, i = 1 . . . 5, testing with the co-integrating ADF test clearly indicates that
they are stationary and have the I(0) property. Thus, they are valid cointegrating
relations. The absolute values of the t-statistic are greater than the absolute
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value of −3.038, which is the 10% critical value. The cointegrating relations are
stationary and do not have a unit root, i.e. they are I(0). Thus, they are valid
cointegrating relations.

However, for the cointegrating relation between the neighboring investment and
speculative rating grades BBB and BB, the unit root hypothesis cannot be rejected
at the 10% level. The same is true for the cointegrating relation between the two
speculative grades BB and B. It can be concluded that cointegrating relations
are weak not only between the investment grade and speculative grade area but
also between the two speculative grades. However, there exist mechanisms that
prevent the average price paths of neighboring rating grades from intersecting.
Furthermore, it can be observed that the better the credit quality of neighboring
grades, the stronger the cointegrating relations.

The restrictions in a cointegrated VAR reduce the dimensionality of parameter
space. They come either from economic theory or from other constraints. However,
the parameter space itself has no economic meaning. And while there are many
linear combinations of cointegration vectors that can form the parameter space,
economic meaning can be attributed only to certain cointegrating vectors.

The treasury returns xt,T are present as a risk driver in all equations of the
VAR. For the AAA bonds, it explains about 73% of the price movements. For the
B-rated bonds, it explains roughly 40%.

After estimating the VECM with OLSE, the residuals of the model show three
attributes:

• Heavy-tailedness.

• A relatively high degree of correlation.

• Clustering volatility.

The first two properties seem familiar. Applying a stable fit to the residuals
of the VECM, the dependence within the vector of the stable innovations can
be captured via a sub-Gaussian vector. The residuals of the credit return model
have a symmetrical distribution and can be fitted by SαS distributions. The
SαS random vector can be represented by a product of a Gaussian random vector
with dependent elements and a totally skewed α/2-stable random vector which
is independent of the Gaussian random vector.4 By so doing, the dependence
structure of the Gaussian vector can be transferred into the stable vector.

However, since the residual plots also show signs of clustering volatility, they
imply a further examination of their behavior.

4Rachev, Schwartz and Khindanova (2001).
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8.4.1 Checking Model Settings and Further Evaluation

Alternatively, the appropriate model specification for each single equation of the
VAR could, for example, be obtained by applying the Box-Jenkins methods.5 This
provides the number of lagged variables or the specific mechanism that drives the
variance (variation) of the error terms (for example, the resulting process could
be a VAR-GARCH with an error correction mechanism ECM and with stable
innovations).

With the Box-Jenkins method, the lags of an AR process are usually deter-
mined by analyzing the correlogram of the observed variable. Aside from the
determination of the autoregressive lag, it has to be tested whether lagged I(0)
variables of the other system variables have a significant impact as well. This can
be performed by checking for Granger causality.

Once a model has been specified and estimated, there are numerous tests and
procedures which may follow. Many tests are based on the residuals of the final
cointegrated model (full residual vectors or single equations). However, the ap-
plication of the coefficient of determination (R2) as the traditional criterion for
evaluation of the performance of an econometric model is not always suitable for
the special characteristics of a VAR. Values of R2 belonging to different mod-
els with different explanatory variables cannot be compared. A better criterion
to assess a VAR is the coefficient of determination adjusted for the number of
explanatory variables. Both t-values and F-statistic can be used to analyze the co-
efficients. Well-known are the Akaike Information Criterion and and the Schwarz
Bayesian Criterion. Others are the final prediction error (FPE), the forecast Chi,
the Durbin Watson statistic, or the Chow test.

As the cointegrated credit return model is supposed to work for Value at Risk
(VaR) measurement, test statistics which evaluate the accuracy of the VaR forecast
have to be applied. These will be introduced in a later chapter.

8.4.2 Analysis Of The Residuals

The residuals of each equation are plotted in a chart (see figure 8.4). The three
properties mentioned above are analyzed in more detail now:

1. The residuals show a high degree of dependence and are therefore highly
correlated.

2. In addition, the residuals have peaked and heavy tailed distributions. This
supports the application of stable distributions with α < 2.

5See Box and Jenkins (1976).
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3. Another striking property of the residuals is that they expose time-varying
volatility (volatility clusters). Such heteroscedastic behavior would seem to
suggest the application of multivariate conditional volatility models. A pure
unconditional stable fitting of the residuals is not able to explain persistence
in volatility. Studying the plots of the residuals raises the assumption that
the conditional volatility could be contingent on lagged representations of
conditional volatility and lagged representations of the residuals.

It is noteworthy that the presence of clustering volatility causes heavy-tailed
unconditional distributions even when the conditional distribution is Gaussian.
However, heavy-tailed (conditional) distributions and heteroscedasticity models
are not mutually exclusive. This discussion is again picked up in chapter 9. How-
ever, first an elaborate analysis of observation 1 is given:

As there is a high degree of correlation among the residuals, it raises the as-
sumption that their moves systematically depend on each other. A ”common force”
seems to drive the residuals. The impact is especially strong for the investment
grade ratings, becoming weaker with decreasing credit quality. The residuals can
be interpreted as the daily change in credit risk or spread (Khindanova, Rachev
and Schwartz, 1999). The moves of the credit spread are driven chiefly by a sys-
tematic component due to the strong common behavior of the residuals. The
residuals largely show identical signs for all grades. It seems that the residuals of
the equations for the AA, A, BBB, BB, and B returns mainly follow the move-
ments of the residuals of grade AAA, especially for large representations. Thus, a
closer look at whether changes in the credit spread of AAA systematically drive
the credit spread of the other rating grades is needed.

8.4.3 The Systematic Credit Risk Component

It can easily be demonstrated that - just as observed for stock markets6 - the cross-
correlations between the residuals of the VECM increase during highly volatile
periods. The risk of a given asset portfolio is seen as a result of both volatility
and correlation fluctuations. The idea is to choose a stable one-factor model that
has the ability to capture the essential features of the residuals’ cross-correlations
between different rating grades in the VECM.

For the credit return model in equation (8.4), the residuals are decomposed
into two components:

• A common factor significant for all rating grades.

6Longin and Solnik (1999) and Longin and Solnik (1995) argue for the stock market that
cross-correlations between stocks actually fluctuate over time, and increase substantially in a
period of high market volatility.
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Figure 8.4: Residuals of the VECM for rating grades AAA - B.
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• An independent residual part.

In a generic factor model, the residuals are supposed to be combinations of all
influencing factors except the chosen common factor and are therefore independent
of it. It seems that the residuals of the VECM systematically follow the residuals
of the AAA grade equation. Choosing a stable non-Gaussian one-factor model7,
the decomposition of the resi in (8.4) is performed according to

resi,t = diresc,t + εi,t , where i = 1, ..., 5. (8.13)

resi,t are the residuals of the VECM equations with i = 1...5 (for AA, A, BBB,
BB, B).8 resc,t are the residuals of the AAA equation and represent the common
factor. εt is a stable random vector with 1 < α < 2 with elements εi,t, i = 1...5.
Both resi,t and resc,t are supposed to have a zero mean, the one-factor model does
not have a constant term.

The εi,t are supposed to be independent of each other. However, if there exist
any other common risk factors not captured by the factor model, the εi,t will not
be independent.

The coefficient di for the one-factor model is given by

di =

∑n
t=1 resi,tresc,t∑n

t=1 res2
c,t

. (8.14)

In the non-Gaussian case, the coefficient di for the one-factor model can also
be obtained by ordinary least squares (OLS) estimation. The properties of OLS
estimation for stable random variables are discussed in Rachev and Mittnik (2000,
p. 90).

The stable one-factor model is an advantageous alternative towards the mod-
eling of innovations with constant correlations. Analyzing the performance of a
stable one-factor model, it can be stated that the apparent increase of correlations
in high volatile periods can be satisfactorily explained within a simple one-factor
model that accounts for heavy tails, although the model remains an approximation
(Cizeau et al., 2000). This simplifies the problem of correlation risk and reduces
it to a unique factor. However, it is meaningful to have a factor whose volatility
is less persistent. In this respect, the use of the AAA residual as the common
factor is advantageous. The other residuals of the bond return model show greater
persistence in volatility (see also table 8.4).

Thus, within the VAR models, a significant part of the residuals of the equations
AA, A, BBB, BB, and B is described by the residuals of the AAA equation. This
is one of the key findings in this chapter.

7Similar to that proposed by Cizeau, Potters and Bouchaud (2000) for stock market returns.
8The index i now starts with the AA equation.
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8.4.4 Results for the Systematic Credit Risk Component

For the residuals of the cointegrated model, the coefficients of the common factor
are obtained by regressing the residuals of the AAA equation over the residuals
of the other equations, as stated in (8.13). Aside from other effects, the common
factor resc can be interpreted principally as common change of credit spread over
all rating grades.

di R2 t − statistics

AA 0.7221 0.505 32.59
A 0.5294 0.2915 20.7

BBB 0.5109 0.24 18.13
BB 0.4297 0.054 7.71

B 0.4599 0.0384 6.45

Table 8.1: Coefficients of the common credit risk factor for the 2-year maturities.

di R2 t − statistics

AA 0.8409 0.7252 41.83
A 0.7904 0.627 52.41

BBB 0.791 0.5862 38.4
BB 0.7888 0.2499 18.62

B 0.778 0.156 13.87

Table 8.2: Coefficients of the common credit risk factor for the 10-year maturities.

di R2 t − statistics

AA 0.6517 0.4882 31.51
A 0.558 0.3386 23.08

BBB 0.5225 0.2517 18.71
BB 0.3529 0.0413 6.7

B 0.456 0.0451 7.01

Table 8.3: Coefficients of the common credit risk factor for the 30-year maturities.

For the 10-year maturity, the di values turn out to be highly significant and
vary between 0.78 and 0.84. As tables 8.1 - 8.3 show, the explanatory power (R2)
is very high for the investment grade bonds AA, A, BBB. However, R2 plummets
for the speculative grades. For the 2-year and 30-year maturities, the common
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factors exhibit less impact. Nevertheless, for the investment grades, R2 is mostly
beyond 0.25. From the results presented in the tables, it can be concluded that the
introduction of the common factor is justified. By analyzing the residuals εi,t, i =
1...5, however, it becomes clear that the correlations among the rating grades did
not completely vanish, although they have dropped sharply. This might indicate
the existence of other common influencing factors. It could also be partially due to
the clustering volatility in the resi,t which increases with decreasing credit quality.

The remaining (unsystematic) parts εi,t of the residuals still exhibit correlation
but to a much smaller degree. The systematic component reduces the scale pa-
rameter of the remaining residuals εi,t of the equations for AA, A, BBB, BB, and
B. The εi,t keep the clustering volatility.

As a benefit of the model, the apparent increase of correlations in highly volatile
periods can be satisfactorily explained within a simple one-factor model that ac-
counts for heavy tails (Cizeau et al., 2000).

Now both the persistence of the common factor resc and the persistence of the
other resi are compared. For the common factor resc,t, it is preferable that its
conditional variance does not exhibit any dependence with the lagged shocks. The
process should instead be close to i.i.d. And in fact, when observing the residuals’
plots, it seems that volatility clustering increases with decreasing credit quality.
Fitting each of the residuals resi, i = 1...6 with a GARCH(1,1) specification, the
results for the 10 year maturities are presented in table 8.4.

ARCH (res2
i,t) GARCH (res2

i,t)

AAA 0.422 0.033
AA 0.119 0.728

A 0.194 0.729
BBB 0.129 0.861

BB 0.077 0.842
B 0.044 0.956

Table 8.4: Results of GARCH specification for the resi,t.

Table 8.4 clearly evidences that the AAA residuals exhibit the least persistence
in variance, having the lowest sum of ARCH and GARCH component. Thus,
the clustering volatility is mainly in the residuals of the equations for AA - B.
Therefore, the clustering volatility is expected to remain in the εi,t after subtracting
the impact of resc,t, given by diresc,t, from the resi,t.

This section has successfully explained the strong dependence and common
behavior of the VARs’ residuals (observation 1). Observation 2 (heavy-tailedness)
and observation 3 (clustering volatility) will be examined in chapter 9. The final
section of this chapter analyzes the other common risk factor, the treasury returns.
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8.5 The Behavior Of The Treasury Returns

In this section the behavior of the treasury bond returns and log prices is analyzed.
There have been examinations in the past on treasury yields and their relation with
corporate bond yield spreads, such as (Duffee, 1998). However, in the given case
the focus is on the stochastic process of daily log-price changes of treasury bonds
(assuming constant time to maturity).

Instead of incorporating the treasury returns as an additional equation into the
cointegrated VAR model, the treasury returns enter the model as an exogeneous
variable and represent the risk factor for interest risk.

The basic question that arises is ”Are the treasury returns xt in equation (8.4)
just a noise or do they depend on the former representations of their log prices or
returns?” The objective is to find an appropriate stochastic process that describes
xt.

Intuitively, it would not be appealing to assume xt as a noise with i.i.d. repre-
sentations.

The reasons for this are two-fold:

• Historical observations imply for the prices of treasury bonds that - for a
given maturity - the interest rates, and thus the prices are most likely to
move within a certain range.

• It is reasonable to assume that interest rate and price of treasury bonds move
around a long-term mean. The more distant the current price is from the
long-term mean, the more likely it is that the price will move in the direction
of the mean.

The literature provides a study by Longstaff and Schwartz (1995), who have
analyzed the behavior of credit spreads (defined here as the difference between a
bond’s market yield and the treasury yield of equal maturity).

Longstaff and Schwartz (1995) describe the log of credit spread, here expressed
by spt, to be a mean-reverting process which is represented by an equation

∆spt+1 = γ0 + γ1spt + εt, (8.15)

where γ1 is negative in all regressions. For high-rated bonds the log of the spread
is more volatile than for lower-rated bonds.

A look at the log prices of the treasury bonds over time shows that they demon-
strate signs of a mean-reverting process too (see figure 8.5). The unit root test
reveals that the log prices of the treasuries are I(1) for all maturities.

The relevant regression equation for the mean-reverting process is
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Figure 8.5: Daily log price of 10-year treasury bond over the four-years observation period.
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xt,T = ∆y
(x)
t,T = µ + βy

(x)
t,T + wt, (8.16)

where y
(x)
t,T is the daily log price of a zero treasury bond with constant time to

maturity T , valued at t. It becomes a mean-reverting process if β is negative. The
results of estimating µ and β are presented in table 8.5.

Maturity Coefficient Std.-dev.

2 year µ 0.018175 0.012962
β -0.004045 0.002884

10 year µ 0.022178 0.012559
β -0.005502 0.003121

30 year µ 0.015656 0.00855
β -0.005512 0.003054

Table 8.5: Parameters of a mean-reversion process describing daily treasury returns.

The results are significant for all three maturities. The negative sign for the
β and the positive sign for the µ clearly indicate the mean-reverting character of
the process. Thus, the description of the treasury returns by assuming a mean-
reverting process for the treasury log prices is justified. This finding gains sig-
nificance when simulating future credit returns for the different corporate credit
rating grades with the model (8.4). xt is the risk factor with by far the strongest
impact in each equation of the cointegrated VAR. Thus, this influences the price
paths of the corporate rating grades also to become a mean-reverting process.

8.6 Conclusion

Chapter 8 has described the specification and fitting of the credit return model
for the three maturities 2 years, 10 years and 30 years. It has explained the
available data and described the selection of the appropriate lag order, the unit
root tests, and the results of the cointegration tests. Moreover, the residuals of
the cointegrated VAR models and the treasury returns have been analyzed.

Specifying the cointegrated VAR, one obtains a lag order of 1 for the VECM. It
could be observed that the impact of the treasury returns on the corporate bond
returns drops with decreasing credit quality. While the treasury bond returns
explain roughly 70% of the returns for AAA - BBB grades, their impact on the
BB and B falls off strongly.

The chapter comes up with four important results that also have implications
on the further course of this thesis:



136 8 VAR Models For Credit Returns

1. The traditional cointegrating relations obtained by Johansen turned out to
be too weak. When simulating future price paths with the cointegrated
VAR model, it was found that the Johansen cointegrating relations were not
successful in preventing price paths of neighboring rating grades from inter-
secting. Such intersections, however, are almost never observed in practice.
Therefore, a new set of more restrictive cointegrating relations have been
developed. These have a rank of 5 (compared to the cointegration rank of 2
obtained by the Johansen test).

2. The residuals of each equation of a cointegrated VAR follow the behavior
of the AAA residuals of the same system. The AAA residuals can be in-
terpreted as a common risk factor driving the changes in credit spread for
each rating grade. The impact of the AAA residuals on the residuals of
the other investment grade equations is marked but becomes weaker for the
non-investment grades BB and B.

3. The treasury returns are the strongest common risk factor within the cointe-
grated VAR model and follow a mean-reverting process. They are therefore
not i.i.d. This knowledge is important when simulating future price paths
with the cointegrated VAR models.

4. The remaining residuals εi,t in the AA, A, BBB, BB, and B equations exhibit
both heavy-tailedness and clear signs of heteroscedasticity. The following
chapter 9 will further analyze the volatility behavior of the residuals and
develop a multivariate model to describe their dynamic volatility under the
stable non-Gaussian assumption.



Chapter 9

Dynamic Volatility

This chapter continues the research to describe the behavior of the residuals εi,t.

For this purpose, an appropriate model to capture the heteroscedastic behavior
of the credit returns of grades AA - B is developed. As stated in section 8.4.4,
the heteroscedasticity is evident in the innovations of the cointegrated VAR credit
return model.

First, two alternatives of multivariate models with time-varying volatility are
introduced, both under the stable and under the Gaussian assumption. After
fitting the models, their empirical performance is compared. A special focus centers
on their capability to make accurate Value at Risk forecasts.

Heteroscedasticity has been studied in the stock market for many years. The
works of Mandelbrot (1963), Fama (1965a) and Fama (1965b) show evidence
that time series of stock market prices are characterized by leptokurtis, heavy-
tailedness, and time-variation in conditional variance. As the plots in the pre-
vious chapter illustrate, there seems to be a dynamic relationship between the
daily representations and volatility of the residuals. Volatility is not constant over
time. Bollerslev (1986) and Engle (1982) have introduced models describing such
linkages.1 The models that capture such behavior are generalized autoregressive
conditional heteroscedasticity (GARCH) models. For the GARCH(p,q) model,
the volatility is dependent on the p prior conditional volatilities and on q previous
representations of the time series’s squared values. Such autoregressive models for
volatility have been extended to the multivariate case as well - for example when
describing the returns of different stock markets.

Mandelbrot and Fama found that the volatilities of different securities have
common persistent components, which indicates linkages between markets. It
is worth examining whether such linkages causing volatility spillovers also exist
between bond markets with different credit ratings.

1See Bollerslev (1992) for an overview.
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For the given cointegrated VAR models, the objective is now to isolate the het-
eroscedastic behavior of the credit returns as part of the residuals, which represent
changes in credit spread. Another goal is that the model should be practical and
tractable, and not become too complex.

Relevant literature2 has analyzed the overall returns of an asset for heteroscedas-
ticity. However, thus far research has not been done to attribute this behavior to
a certain risk factor. In the given case, the heteroscedasticity is isolated in the
disturbance terms of the model. Thus, aside from the traditional approach, the
heteroscedasticity is now ascribed to the component that represents the credit rat-
ing’s individual changes in credit spread.

The chapter is structured in three parts:

• Two multivariate stable volatility models are introduced: the multivariate
stable GARCH(1,1) and the multivariate stable exponentially weighted mov-
ing average (EWMA) model. Their Gaussian counterparts are also applied
for comparison.

• The volatility models are fitted for the residuals εi,t of the credit return
model. Then, the models are compared in terms of their forecast accuracy
for volatility.

• For application of the credit return model in a risk-management context, it
is essential to check the forecast performance of the multivariate volatility
models for VaR.

In this chapter, the cointegrated VAR credit return model is extended to a
system that (i) controls the long-term relationships between the different rating
grades and (ii) accounts for the short-term movements influenced by the residuals’
cross correlations and their common heteroscedastic behavior.

As the main result of this chapter, the stable multivariate EWMA model ex-
hibits the best performance for Value at Risk and is therefore chosen for the resid-
uals of the cointegrated VAR model.

9.1 Dynamic Interdependence In A Multivariate

Framework

Cross-shocks occur if movements in one equation are affected by past movements in
other equations. This causes volatility spillovers. Such interdependence behavior

2See, for example, the numerous publications of T. Bollerslev.
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has been studied for international stock markets.3 The examination reveals which
markets are influenced by other markets. However, it becomes clear that such
lagged interference between different rating grades of the cointegrated VAR is not
observable. Rather, simultaneous behavior of the volatilities over the different
credit grades is found. Volatility spillovers caused by lagged representations of the
volatilities of other rating grades’ residuals are not significant. In addition, the
lagged credit returns of other grades within the cointegrated VAR are of hardly
any significance.

Here each equation of the cointegrated VAR (rating grade) represents a segment
of the same national bond market (US Corporate Bonds, industrial sector). So
it is not an examination of shock effects between different international markets,
and the effect of lagged spillovers does not seem to be likely. Instead, the previous
chapter has detected the AAA residuals as a common risk factor for all rating
grades. Nevertheless, significant correlations between the (remaining) residuals4

of the volatility models are still present.

9.2 The Multivariate GARCH Model With Con-

stant Correlation Matrix

The multivariate Constant-Correlation-GARCH (CC-GARCH) bears, as the name
says, the restriction of constant correlations. However, compared to multivariate
GARCH models with more flexible specifications, it is rather parsimonious.

For the univariate GARCH(p,q) model, the conditional volatility at time t is
dependent on the p former representations of the time series’s squared values, and
on the q former conditional volatilities.5 The multivariate GARCH framework is
a straightforward extension of the univariate case as it is defined as a variance-
covariance matrix following a GARCH process. However, the general multivariate
GARCH(1,1) model’s number of parameters increases dramatically with a growing
number of variables (equations). The model with two equations has 21 parameters,
three equations have 78 parameters, and five equations have 465 parameters. As
the general model is not tractable for five-dimensional multivariate GARCH, the
application of the general model is out of question. The remedy is to impose
restrictions. One option is to keep the correlation matrix constant. The CC-
GARCH(1,1) specification (Bollerslev, 1990) is

3See Scheicher (2001) and Isakov and Perignon (2000).
4After deducting the impact of the AAA residuals.
5The definition of univariate GARCH is presented in section 4.4.
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εi,t =
√

hi,i,tei,t, where ei,t ∼ i.i.d. N(0, 1),

hi,i,t = ai,0 + ai,1ε
2
i,t−1 + bi,1hi,i,t−1,

hi,j,t = ρi,j

√
hi,i,thj,j,t,

with i, j = 1...5, (9.1)

where hi,i,t is the variance of εi,t, and ρi,j is a constant correlation coefficient. The
indices i, j = 1...5 denote the credit ratings AA, A, BBB, BB, and B.

When applied to financial models, the GARCH(1,1) is the most popular of the
GARCH specifications (Hull, 2000). Testing the GARCH(p,q) univariate case for
each of the εi,t in the cointegrated VAR for various p and q, the highest likelihood
values have also been obtained with the GARCH(1,1) specification. Thus, in the
given case the choice for the CC-GARCH is the (1,1)- specification.

The definition in (9.1) refers to the Gaussian case. However, as Rachev and
Mittnik (2000) maintain, stable distributions and models with clustering volatility
are not mutually exclusive. Although a GARCH process exhibits heavy tails even
in the Gaussian case, it has been found from research work with financial time
series that - after filtering out the GARCH effects - the remaining process is still
heavy-tailed. Thus, it makes sense to allow the GARCH innovations to follow a
stable law with α ≤ 2.

The stable non-Gaussian case of CC-GARCH(1,1) also works with constant
correlations and is handled analogously. Section 9.4 explains the concept for mul-
tivariate ARCH-type models in the stable case. It is constructed via so-called
stable subordination.6

The correlation matrix of the CC-GARCH is derived from the historical data
set and has no predictive property. As previously mentioned and set out in Longin
and Solnik (1995), correlations between different financial time series were found
to be time dependent. Therefore, it might be desirable to introduce a forecast
model that also accounts for conditional correlations.

Another representative of restricted multivariate GARCH models is the so
called BEKK model. It was developed by Balsa, Engle, Kraft, and Kroner (Engle
and Kroner, 1995) and contains terms for the transmission of volatility shocks,
thus allowing interactions between the observed variables while not restricting the
model’s correlations. However, in the case of five variables, a large number of pa-
rameters (exactly 65) still remains. In practice, this type of model just might be
applicable for the bivariate case with 11 parameters. For five equations, the BEKK

6The specification of univariate stable GARCH is given in Rachev and Mittnik (2000, chapt.
6). However, this concept differs from the approach chosen for the multivariate stable case here
using stable subordination.
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model is also intractable as the parameters of the cointegrated VAR model have
to be considered as well. The CC-GARCH of Bollerslev (1990) is less complex. It
incorporates the assumption that all dynamics come from the individual variances
themselves.

However, the CC-GARCH can be extended by including spillovers of the other
variances in the equation for hi,i,t. One obtains

hi,i,t = ci,i + ai,ihi,i,t−1 +
k∑

j=1

bi,jε
2
j,t−1, (9.2)

where k is the number of equations. The modified approach considers the impact
of volatility shocks that come from the lagged volatilities of other equations.

The constant-correlation GARCH model without extension for cross-volatility
shocks has k(k + 5)/2 parameters.

Given a sample of observations of εt, the parameters of a multivariate GARCH
system are estimated via computing the conditional log-likelihood of the system for
each time period and maximizing their sum.7 The optimization procedure is usu-
ally performed with the algorithm developed by Berndt, Hall, Hall and Hausman
(1974).

It is necessary and sufficient for covariance matrix Ht if all conditional vari-
ances are positive and the constant correlation matrix is positive definite. The
BEKK also has these properties but with more parameters. In the BEKK, the
covariance matrix is a linear function of its own lagged values and of lagged val-
ues of the squared unpredictable returns. It remains to be shown that there are
significant conditional correlations. The BEKK could provide conditional correla-
tions. However, with an increasing number of equations there is the danger that
the estimation of the model could fail.

Longin and Solnik (1995) and Andersen, Bollerslev, Diebold and Labys (1999)
show that, for stock markets, the assumption of constant correlations is violated.
In fact, they found increasing correlations for increasing volatility. This was the
initial motivation for the BEKK. In contrast to CC-GARCH, the BEKK model is
capable of handling dynamic correlations. However, due to the very large number
of parameters still remaining in the five-dimensional case, it is not suitable for the
credit return model.

The correlation matrix of the CC-GARCH derived from the historical data set
has no predictive property. If correlations among different financial time series are
found to be time dependent, it is useful to introduce a model that can also forecast
conditional correlations.

7See Bollerslev and Wooldridge (1992).
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In the following section, a suitable multivariate model that stands both for
conditional volatilities and for conditional correlations is presented. Moreover, for
the purpose of this model, the presence of dynamic correlations between the εi,t of
the credit return model is analyzed.

9.3 The Multivariate EWMA Model

In order to overcome the restriction of constant correlations in the CC-GARCH
while keeping a relatively parsimonious multivariate framework for conditional
volatilities, the multivariate exponentially weighted moving average (EWMA) model
is introduced here. It is a frequently used estimator for volatility and correlation.

A simple correlation forecast model such as the historical correlation forecast,
mentioned by Lopez and Walter (2000) is considered to be impractical as there is
no obvious way to select the interval length.

With the EWMA model, all lagged observations are included. However, current
observations have a greater weight than past observations for the calculation of
conditional variances and covariances. The model is also present in J.P. Morgan’s
RiskMetrics(TM).

The EWMA model for volatility is originally defined as

ht = (1 − λ)
∞∑
i=0

λiε2
t−i−1, (9.3)

with λ as the weighting factor and εt the representation at time t.
The conditional variance can be reformulated as

ht = (1 − λ)(ε2
t−1 + λε2

t−2 + λ2ε2
t−3 + ...). (9.4)

ht = (1 − λ)ε2
t−1 + λ(1 − λ)(ε2

t−2 + λε2
t−3 + ...), (9.5)

with the right term becoming λht−1.
Thus, the univariate EWMA is expressed as

ht = λht−1 + (1 − λ)ε2
t−1. (9.6)

The EWMA process is equivalent to a GARCH(1,1) process when the GARCH
intercept is zero and when a1 + b1 = 1. Therefore, EWMA can be interpreted as a
special case of GARCH in which the persistence parameter is set to unity. For the
multivariate case of EWMA, the conditional covariances are calculated as follows:
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hi,j,t = λhi,j,t−1 + (1 − λ)εi,t−1εj,t−1. (9.7)

The dynamic (conditional) correlations are obtained by

ρi,j,t =
hi,j,t√

hi,i,thj,j,t

. (9.8)

As mentioned above, the model is able to forecast conditional correlations as it
allows correlations to have a dynamic behavior. The model assumes that observa-
tions which are closer to the present have a greater impact on future correlations
than those that are further in the past. The degree to which past information influ-
ences the forecast is determined by the decay factor λ ∈ (0, 1). The proposed value
in the J.P. Morgan RiskMetrics (TM) system is 0.94, derived from various empirical
analyses. The decay factor does away with the problem of interval building. All
observations are included to calculate the conditional correlations; however, the
more recent an observation, the greater its weight. Furthermore, by exponentially
smoothing out the effect of a change, EWMA correlation forecasts do not exhibit
the abrupt changes common to historical correlation forecasts once such a change
falls out of the observation period.8 Unlike GARCH, EWMA does not have a no-
tion of long-run volatility at all and is therefore more robust under regime shifts.
Another advantage is its simplicity.

At this point, the thesis work examines whether the observed εi,t exhibit sig-
nificant dynamic correlations. Hence, the correlations between the 10-year A and
BBB equations are observed. Figure 9.1 plots the conditional correlation obtained
with the multivariate EWMA model and compares it with the historical correla-
tion calculated with a moving interval of 100 observations. Both plots exhibit that
the conditional correlation increases during highly volatile periods. The volatility
can be taken from the plot of εi,t for the A equation. During volatile periods,
large jumps in conditional correlation occur. Due to the relatively short interval,
the historical correlation reacts more abruptly to changes and its plot looks very
jumpy.

The transition to the stable multivariate case of the EWMA is done analogously
as for the stable CC-GARCH. The stable multivariate case is performed via the
concept of stable subordination, which is explained in section 9.4.

In conjunction with the Gaussian distribution, the EWMA does not allow
great jumps. However, due to the heavy weights on more current realizations, the
EWMA is able to quickly reflect market shocks.9 In combination with the stable

8Lopez and Walter (2000).
9Gibson and Boyer (1999).
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Figure 9.1: Comparison of the EWMA-forecasted conditional correlation with the historical correlation (obtained
in a moving interval of length 100) for the 10-year A and BBB equations. In order to illustrate the clustering
volatility, the εi,t for the A equation are plotted as well.
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distribution extreme jumps can be modeled more suitably. The application of
stable distributions with EWMA and GARCH is more appropriate for considering
catastrophe scenarios in the bond market, especially in the junk bond areas, or
interventions by central banks. Turmoils in bond markets, as in 1994, are a central
issue for risk management and regulatory authorities.10 The performance of a
financial security over a given time is often the result of a few exceptional trading
days during the year since other days contribute only marginally to the bottom
line.11 The variance-covariance method based on the normal distribution tends
to underestimate the tails of the distribution. A Monte Carlo simulation method
based on such an econometric model is subject to model risk. Through application
of the stable distribution for the credit model, extreme scenarios can be captured
with its tails. Here, the focus is on rare events that cannot be captured by the
Gaussian distribution. As the stable method is parametric, it allows out-of-sample
stress evaluation for high probability values. Stable GARCH-type models react
better to unexpected market shocks and are also somewhat more flexible as they
can take skewed conditional distributions into account.12

Instead of choosing a proposed value13 for λ, it is best to fit the proper decay
factor for the model by applying maximum-likelihood estimation over the complete
multivariate system. The significance can be tested using a likelihood ratio test.

One benefit of the EWMA framework compared to regime-driven models is that
volatilities or correlations are not forced to be constant within the regimes. In a
regime-driven model, volatilities and correlations can vary solely across regimes.
In the regimes approach, the determination of the breaking days poses additional
problems.

Analyzed for VaR applications, the Gaussian EWMA was tested to have the
lowest capital requirements of various volatility models. Both multivariate GARCH
and EWMA performed well in forecasting the covariance matrix.14 However,
EWMA outperforms GARCH in a Value-at-Risk framework.15

9.4 Stable Subordination For Multivariate Sta-

ble GARCH-Type Models

In order to keep the dependence structure, the stable multivariate GARCH models
forecast the variance-covariance matrix, and the concept of stable subordination

10Christoffersen, Diebold and Schürmann (1998).
11Longin (1999b).
12See skewed stable GARCH in Rachev and Mittnik (2000, pp. 289).
13J.P. Morgan proposes a value of λ = 0.94 in its RiskMetrics(TM) technical document.
14Lopez and Walter (2001).
15Covariance forecasts from implied covariance matrices performed poorly in these tests.
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is applied.
For dependent random variables following a stable distribution, the variance-

covariance matrix does not actually exist. Thus, the truncated variance-covariance
matrix is estimated with the multivariate Gaussian volatility model: in this case
either with the multivariate EWMA or with the multivariate GARCH(1,1).16

Σt = {hi,j,t} is the Gaussian variance-covariance matrix and hi,i,t = 2σ2
i,t, where

σi,t is the scale parameter referring to the Gaussian conditional variance hi,i,t.
The concept of stable subordination via the application of a sub-Gaussian vec-

tor is demonstrated in the following:
Let Z ∼ Sα(σ∗, 0, 0) be the vector of a sub-Gaussian SαS random variable. Z

can be represented by the product

A1/2X = Z, (9.9)

where X is a Gaussian random vector with variance-covariance matrix Σ, X ∼
S2(σ, 0, 0) = N(0, 2σ2). A is a totally-skewed α/2 stable random variable with

A ∼ Sα/2

(
σ∗2
σ2 [cos(πα/4)]2/α , 1, 0

)
. X and A are independent.

Two multivariate volatility models based on the stable assumption, the stable
CC-GARCH(1,1) and the stable EWMA, have been introduced and their concep-
tional differences discussed. Furthermore, it has been demonstrated that empirical
data shows dynamic correlations.

The following sections introduce measures for analysis of the accuracy of volatil-
ity models:

• Statistical loss functions that measure the deviation of the conditional vari-
ance forecast from the realized conditional variance are presented (section
9.5.1).

• However, such statistical loss functions have no economic meaning, and as
VaR forecasts are the major purpose of the model, it is more important to
evaluate their accuracy. Therefore, functions for evaluation of VaR estimates
are presented as well (see section 9.5.2).

9.5 Performance Measures For Volatility And Co-

variance Models

A key criterion for in-sample evaluation of the model fit is the log likelihood.
A higher likelihood achieved by the parameters of the system indicates that this

16Bravo-Group (2001).
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specification is superior to another. The likelihood of a multivariate heteroscedastic
model is measured as the sum of the log likelihoods over all equations. For a
proper evaluation framework, as described by Lopez, the volatility forecast has to
be transformed into a probability forecast. This is not easy for multi-step-ahead
volatility forecasts. However, for the given problem, the evaluation is restricted to
one-step-ahead forecasts.

Originally, volatility forecast evaluation was done by minimizing a statisti-
cal loss function, for example, mean squared error (MSE). In the past, economic
loss functions were unavailable.17 Most studies have used traditional statistical
loss functions to evaluate the performance of volatility models. However, there
is a related problem, i.e. squared asset returns were used as a proxy for the la-
tent volatility process. Alternatively, Lopez proposes a framework with a set of
loss functions tailored by the appropriate economic interest. However, first the
commonly applied statistical loss functions to evaluate the accuracy of variance-
covariance models are introduced.

9.5.1 Statistical Loss Function

Mean Squared Error (MSE). MSE is a purely statistical loss function that
can be applied to in-sample and out-of-sample testing. It is the average squared
difference between the actual conditional variance ht+l and the corresponding fore-
casted volatility ĥt+l. This poses a problem: ht+l cannot be directly observed.
Hence, for the calculation of MSE, the squared residuals ε2

t+l are used as a proxy.
The multivariate MSE is defined as

MSEi,j = 1/n
n∑

l=1

(εi,t+lεj,t+l − ĥi,j,t+l)
2 , (9.10)

where εi,t+l and εj,t+l are the individual residuals and ĥi,j,t+l is the forecast.18 n is
the size of the tested sample.

Mean Absolute Error (MAE). MAE is another typical statistical perfor-
mance measure that can be applied for volatility models. It penalizes deviation
linearly unlike the MSE, which weights large deviation somewhat stronger. The
multivariate MAE is defined as

MAEi,j = 1/n
n∑

l=1

|εi,t+lεj,t+l − ĥi,j,t+l| . (9.11)

17Lopez (1999).
18Lopez and Walter (2001).
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An unattractive property of both MSE and MAE regarding the evaluation of
volatility forecasts is that they do not penalize non-positive variance forecasts.

Logarithmic Loss (LL) and Heteroscedasticity-adjusted MSE (HMSE).
The logarithmic loss (LL) function with an asymmetric loss penalty function at-
tempts to achieve an improvement compared to MSE and MAE. With the LL
function, the penalties are higher when the forecast ĥt+l deviates from lower values
of ε2

t+l than from higher values of ε2
t+l. However, the LL cannot be used for covari-

ance forecasts because these could be negative. Similarly, the heteroscedasticity-
adjusted MSE (HMSE) proposed by Bollerslev and Ghysels (1996) allows for asym-
metry. The LL is defined as

LLi = 1/n
n∑

l=1

[
log(ε2

i,t+l) − log(ĥi,i,t+l)
]2

, (9.12)

and the HMSE is

HMSEi,j = 1/n
n∑

l=1

[
εi,t+lεj,t+l

ĥi,j,t+l

− 1

]2

. (9.13)

A property common to MSE, MAE, LL, and HMSE is that they can be applied
with no regard for the distributional assumption.

The volatility forecasts considered to be most accurate are those which show
the lowest value for a loss function.

However, the major deficiency of the statistical loss functions is their lack of
economic meaning. Therefore, it is advantageous to have a performance measure
that incorporates economic inference.

9.5.2 Loss Functions With Economic Inference

Forecast evaluation results are greatly contingent on the applied loss function.
For a proper evaluation of the volatility forecasts, these have to be transformed
into probability forecasts. Therefore, it is important to have a framework that
provides the tailored economic loss function based on probability forecasts. The
forecast of volatility models can be transformed by integration or simulation into
probability forecasts of the events of interest. The user then selects a scoring rule
and calibration tests over the subsets of the unit interval of interest.

For the given purpose of VaR evaluation, the value of forecasted conditional
volatility itself is basically not interesting. According to Lopez, in the case of Value
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at Risk estimates, the distributional assumptions have a greater impact than the
covariance matrix forecasts themselves. Generally, for the accuracy of Value at
Risk estimates it is of interest how often the empirical value of the observed asset
returns exceeds the forecasted 95% or 99% confidence level of their conditional
distribution. Thus, the analysis is based on the counting of exceptions, which are
the event of interest. The accuracy of Value at Risk models is determined by the
frequency with which the empirical VaR exceeds the estimated VaR.

The task is now to find the volatility model with the best performance in VaR
for the credit return model. In the given case, the focus is solely on assessing the
performance of the volatility models for εt as the cointegrated VAR model with all
the other risk factors is the same for each of the compared volatility models.

Unconditional coverage. If c is the theoretical confidence level of the VaR
(e.g. 95% or 99%), then the unconditional coverage X/n, where X is the number
of exceptions and n is the taken sample size, should equal 1 − c.

A conservative view would be minimization of the coverage X/n. However, it
is the objective here that the measured unconditional coverage is to reflect the
theoretical confidence level of the VaR as precisely as possible.

Along with common practice, one-step-ahead VaR estimates are examined.
Applying the definition of VaR19 to the case of the εi,t governed by time-varying
volatility, one obtains:

P (εi,t+1 < −V aRi,t(c)) = P (ei,t+1

√
hi,i,t+1 < −V aRi,t(c)) = 1 − c , (9.14)

where the expression can also be represented as P (ei,t+1 <
−V aRi,t(c)√

hi,i,t+1
= 1 − c.20

Not only are the number of exceedings but also the magnitude of the exceedings
important aspects (Hendricks, 1996; Berkowitz, 1999). However, the latter shall
not be considered here.

9.5.3 Evaluation Of VaR Estimates For Unconditional Cov-
erage

Assuming the examined VaR model to be accurate, the exceptions εi,t+1 < −V aRi,t(c)
are modeled as independent draws from a binomial distribution. The occurrence of
the event εi,t+1 < −V aRi,t(c) should have a probability of 1−c. Defining α = 1−c,
this means that there is an unconditional coverage α̂ = X/n, with n as the sample

19The concept of VaR has been introduced in section 2.4.
20The VaR is defined as a positive number.
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size and X the number of exceptions. In order to evaluate the estimate α̂ com-
pared to the assumed significance level α of the VaR, a likelihood ratio statistic is
applied:

LRuc = 2[log(α̂X(1 − α̂)n−X) − log(αX(1 − α)n−X)], (9.15)

where LRuc has an asymptotic distribution of χ2
(1). α̂ is the unconditional coverage

and α is the theoretical significance level of the VaR. This test examines the
unconditional coverage of VaR estimates as it counts the exceedings over the entire
period. In the bivariate case, the above likelihood ratio statistic is

LRuc =

2
[
log(α̂X1

1 α̂X2
2 (1 − α̂1 − α̂2)

n−X1−X2) − log(αX1
1 αX2

2 (1 − α1 − α2)
n−X1−X2)

]
,

with

[α̂1, α̂2] = [X1/n,X2/n]; (9.16)

The ratio of the binomial case follows a χ2
(2) structure and the trinomial case

has a χ2
(4).

The evaluation of the credit return model’s VaR forecast is performed sepa-
rately for each equation using the univariate likelihood ratio. A five-dimensional
case would be intractable.

VaR estimates are a forecast of the α percent tail of the one-step-ahead return
distribution. The evaluation of exceptions can be performed conditionally or un-
conditionally. If exceptions are counted over the whole period, the test is called
unconditional.

Conditional coverage would additionally require serial independence of the ex-
ceptions. The testing here is restricted to unconditional coverage. The occurrence
of exceptions over the observed sample did not show suspicious clusterings. Thus,
it is sufficient to demonstrate the difference in forecast accuracy with unconditional
coverage.

9.6 Persistence Of Bond Market Volatility

The volatility of bond market returns and the fact that it is correlated over time
has been studied by Fama (1970) and by Bollerslev, Chou and Engle (1992). This
was as a rule done empirically; however, not much is known on the theory as yet.
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Volatility is interpreted by the information flow.21 It is assumed that information
public to market participants arrives in clusters. Therefore, the volatility is auto-
correlated and not independent over time. Jones, Lamont and Lumsdaine (1998)
examined the sources of autocorrelated volatility by looking at the response of
asset prices to the release of public information. The measurement of how long
information is handled in the market is determined by the degree of persistence.
Jones, Lamont and Lumsdaine have explored the relationship of announcement
dates to risk and return for bond markets. Moreover, they have studied day-of-the
week effects, showing that the volatility over the week is U-shaped. For example,
in their study, Monday and Friday show high volatility whereas Wednesday has the
lowest. This is different from French’s (1980) study of stock market volatility22,
where he found that the volatility declined over the week.

In a normal univariate GARCH(1,1) model, the persistence in variance is mea-
sured by a1 + b1. For larger values of persistence, but still < 1, a shock in the
error term εt will generate a large variance that remains for a longer time. For
values ≥ 1, the process is no longer covariance stationary. It becomes explosive
for a1 + b1 > 1 with a tendency to infinity. For GARCH(1,1), the expectation of
the unconditional variance is

lims→∞E
[
ε2
t+s|Φt

]
=

a0

1 − (a1 + b1)
. (9.17)

Φt denotes the information at time t which ceases to provide useful information
when s → ∞. This formula provides the link between persistence in variance
and unconditional volatility. Therefore, increasing a1 + b1 raises the expected
unconditional volatility.

A commonly proposed measure for persistence uses the j-step-ahead forecast
of conditional variance,

ht+j − σ2 = (a1 + b1)
j(ht − σ2), (9.18)

where ht+j is the expectation at t + j of conditional volatility, and σ2 is the un-
conditional volatility. The so-called half-line j describes the average time it takes
for the conditional variance ht to revert half-way to the unconditional variance:

j = − log(2)

log(a1 + b1)
. (9.19)

In case a1 + b1 > 1, a negative value for j is obtained.

21Roll (1989).
22French (1980).
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9.7 Forecast Horizon Of Volatility

Christoffersen, Diebold and Schürmann (1998) studied the forecastability of as-
set return volatilities with regard to the forecast horizon. For short forecasting
horizons, traditional dynamic volatility models such as GARCH exhibit strong
performance. Andersen and Bollerslev (1997) attest traditional GARCH models
as having a good forecasting property for conditional volatility; however, this is
different from the so-called end-of-period portfolio value volatility.

In order to obtain volatilities for a long-term forecasting horizon, risk managers
used to apply scaling as a popular method. However, its application is not suitable
for time-varying volatility models such as the GARCH family since scaling only
works in i.i.d. environments. For a GARCH(1,1) environment, the correct conver-
sion from an one-day to an h-day volatility is given by the so-called Drost-Nijman
formula, which is very complex. Scaling produces volatilities that are correct on
average, but it causes large fluctuations.

In the case of GARCH(1,1), Christoffersen, Diebold and Schürmann (1998) re-
port the volatility as forecastable at all horizons, although forecastability decreases
with horizon in accordance with the Drost-Nijman formula (the reader is referred
to their paper). However, GARCH modeling may only be an approximation of the
true time series process. In order to forecast volatility over longer time horizons,
Christoffersen has built a model for the evaluation of interval forecasts. As the VaR
measure is known to be the boundary of a one-sided interval forecast, the adequacy
of VaR crucially hinges on the volatility dynamics. Christoffersen, Diebold, and
Schürmann realize a quick decay of volatility forecastability. Therefore, for long
time horizons they would rather focus on direct modeling of extreme tails of return
densities. The ability to assess extreme quantiles directly enables extreme risks
such as stock market crashes or large bond defaults to be managed. Such great
movements are captured by heavy-tailed distributions such as the pareto-stable
distribution. The view of the stable GARCH and stable EWMA models held here
is the following: both models and their Gaussian counterparts are evaluated exclu-
sively for one-step-ahead forecasts. Theoretically, GARCH models could be scaled
in order to obtain a variance-covariance matrix for a longer horizon. This and the
use of the stable distribution enhance their long-term forecasting property. The
combination of models for volatility dynamics and stable distributions accounts
for both volatility forecasting and the capturing of extremal events. However, the
objective of this chapter is to demonstrate the dominance of stable multivariate
GARCH-type models especially in the one-step-ahead forecasting of VaR.

The next section presents the results of the forecast accuracy of both the stable
GARCH(1,1) and the stable EWMA models. The performance measures presented
in 9.5 are applied. In the tables, not only the statistical loss functions MSE, MAE,
and LL but also the results of the test for unconditional coverage are set out.
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9.8 Results For The Stable GARCH And Stable

EWMA - Comparison

So far, for a given maturity, the credit returns of different credit qualities (rating
grades) have been represented by cointegrated VAR models. Heteroscedasticity is
clearly present in the innovations of the cointegrated VAR, which represent the
changes in the credit spread. The residual plots in chapter 8 demonstrate the
occurrence of volatility clusters.

This section presents the following results:23

• The fitting results of the multivariate GARCH(1,1) and EWMA model in-
troduced in this chapter: for each cointegrated VAR (each represents a given
maturity), the volatility models have been applied to the εt. The maturities
are 2, 10, and 30 years.

• The predictive accuracy of the forecasted variance evaluated by in-sample
tests for both the CC-GARCH(1,1) and the EWMA: for comparison, the
traditional statistical loss measures, MSE, MAE, and LL are applied.24

• The assessment of the accuracy of both Gaussian and stable VaR: VaR is
tested by unconditional coverage α̂ = X/n over the sample for one-step-
ahead forecasts. The univariate likelihood ratio test LRuc ( 9.16) is performed
for each estimate α̂.

The parameters of the GARCH(1,1) are displayed in tables 9.1, 9.7, and 9.13.
For the evaluation of EWMA, two values for λ are chosen:

• λ = 0.94, which is the standard value proposed by RiskMetrics (TM).

• λ = 0.9840, which is obtained by maximum likelihood estimation.

The comparison of multivariate EWMA and CC-GARCH(1,1) for both the
stable and the Gaussian assumptions evidences the predominant performance of
the stable distribution in terms of Value at Risk (VaR) forecasting. The 99% stable
VaR clearly outperforms the 99% Gaussian VaR because the 99% Gaussian VaR
largely underestimates the empirical 99% VaR.

Although the CC-GARCH yields a better log-likelihood value than the EWMA
for fitting the variance-covariance matrix, CC-GARCH with Gaussian marginals
performs worse in terms of unconditional coverage. This is the especially true

23Parts of these results are also presented in Martin and Rachev (2001).
24Only the forecasts for the variance but not for the covariance have been evaluated here.
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Equation α0 α1 β MSE (10−11) MAE (10−5) LL -Logl
AA 0 0.186 0.585 0.0063 0.0118 9.0955 -3.2094

A 0 0.192 0.581 0.0135 0.0157 6.7397 (104)
BBB 0 0.143 0.826 0.0534 0.0223 9.0049

BB 0 0.150 0.910 0.6015 0.0620 10.1862
B 0 0.034 0.967 0.8422 0.1475 9.6246

Table 9.1: Stable CC-GARCH(1,1) for 2 Year Maturity: Parameters, Log-Likelihood, and MSE.

Equation Stable 95% Stable 99% Gaussian 95% Gaussian 99%
AA 0.0691 0.0125 0.1401 0.1017

A 0.0605 0.0010 0.1507 0.0979
BBB 0.0566 0.0077 0.0758 0.0393

BB 0.0537 0.0038 0.0355 0.0144
B 0.0701 0.0038 0.0710 0.0288

Table 9.2: Stable GARCH(1,1) for 2 Year Maturity: Comparing Stable and Gaussian Unconditional Coverage
for the 95% and 99% Value at Risk.

Equation Stable 95% Stable 99% Gaussian 95% Gaussian 99%
AA 0.9927 0.5650 1.0000 1.0000

A 0.8684 0.9998 1.0000 1.0000
BBB 0.6620 0.5632 0.9996 1.0000

BB 0.4120 0.9787 0.9762 0.8195
B 0.9951 0.9787 0.9967 1.0000

Table 9.3: Stable GARCH(1,1) for 2 Year Maturity: Likelihood Ratio Test for Stable and Gaussian Unconditional
Coverage.

Equation MSE (10−11) MAE (10−4) LL MSE (10−11) MAE (10−4) LL -LogL (104)

(λ = 0.9840) (λ = 0.94)
AA 0.0059 0.0119 10.7386 0.0059 0.0119 8.3596 (λ = 0.9840)

A 0.0130 0.0155 7.8675 0.0129 0.0157 8.3733 -3.2543
BBB 0.0513 0.0202 10.6148 0.0518 0.0204 10.4092 (λ = 0.94)

BB 0.5189 0.0752 10.1221 0.5247 0.0750 10.6083 -3.2212
B 0.8376 0.1228 10.4895 0.8511 0.1245 11.7623

Table 9.4: Stable EWMA for the 2 Year Maturity: Log-Likelihood, MSE, MAE, and LL.

for the 2 year and 30 year maturities. The Gaussian EWMA shows much better
performance here.

EWMA exhibits better forecasting results for the conditional variance evalu-
ated by MSE and MAE as statistical loss functions. Under LL, CC-GARCH is
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Equation Stable 95% Stable 99% Gaussian 95% Gaussian 99%

AA 0.0585 0.0019 0.0557 0.0221
A 0.0547 0.0019 0.0528 0.0173

BBB 0.0576 0.0058 0.0489 0.0211
BB 0.0633 0.0058 0.0566 0.0259

B 0.0710 0.0058 0.0566 0.0259

Table 9.5: Stable EWMA for 2 Year Maturity: Comparing Stable and Gaussian Unconditional Coverage for the
95% and 99% Value at Risk.

Equation Stable 95% Stable 99% Gaussian 95% Gaussian 99%
AA 0.7803 0.9987 0.5933 0.9993

A 0.5074 0.9987 0.3190 0.9681
BBB 0.7288 0.8608 0.1299 0.9983

BB 0.9419 0.8608 0.6620 1.0000
B 0.9967 0.8608 0.6620 1.0000

Table 9.6: Stable EWMA for 2 Year Maturity: Likelihood Ratio Test for Stable and Gaussian Unconditional
Coverage.

Equation a0 a1 b1 MSE (10−8) MAE (10−4) LL -LogL (104)
AA 0 0.0889 0.9114 0.0038 0.0277 8.8331 -2.4797

A 0 0.0943 0.9291 0.0058 0.0357 8.8002
BBB 0 0.0811 0.9355 0.0620 0.0506 11.0577

BB 0 0.2284 0.8708 0.2688 0.2059 11.2862
B 0 0.0390 0.9702 0.4005 0.3673 12.3725

Table 9.7: Stable CC-GARCH(1,1) for 10 Year Maturity: Parameters, Log-Likelihood, and MSE.

Equation Stable 95% Stable 99% Gaussian 95% Gaussian 99%
AA 0.0451 0.0038 0.0595 0.0202

A 0.0451 0.0019 0.0393 0.0144
BBB 0.0643 0.0038 0.0480 0.0230

BB 0.0528 0.0038 0.0384 0.0115
B 0.0758 0.0058 0.0537 0.0221

Table 9.8: Stable CC-GARCH(1,1) for 10 Year Maturity: Comparing Stable and Gaussian Unconditional Cov-
erage for the 95% and 99% Value at Risk.

slightly better. However, it remains questionable if - for the purpose of this model
- deviations from lower variances should be more heavily penalized than deviations



156 9 Dynamic Volatility

Equation Stable 95% Stable 99% Gaussian 95% Gaussian 99%
AA 0.5396 0.9788 0.8291 0.9964

A 0.5396 0.9987 0.9001 0.8199
BBB 0.9581 0.9788 0.2346 0.9997

BB 0.3193 0.9788 0.9265 0.3657
B 0.9996 0.8612 0.4124 0.9993

Table 9.9: Stable CC-GARCH(1,1) for 10 Year Maturity: Likelihood Ratio Test (p-values) for Unconditional
Coverage.

Equation MSE (10−8) MAE (10−4) LL MSE (10−8) MAE (10−4) LL -LogL (104)

(λ = 0.9840) (λ = 0.94)
AA 0.0038 0.0236 8.8331 0.0038 0.0240 10.5047 (λ = 0.9840)

A 0.0037 0.0333 8.8002 0.0056 0.0334 7.5681 -2.4576
BBB 0.0594 0.0440 11.0577 0.0606 0.0447 10.1062 (λ = 0.94)

BB 0.2127 0.1759 11.2862 0.2148 0.1768 9.6193 -2.4282
B 0.3907 0.3026 12.3725 0.3934 0.3049 10.028

Table 9.10: Stable EWMA for 10 Year Maturity: MSE, MAE, LL, and Log-Likelihood.

Equation Stable 95% Stable 99% Gaussian 95% Gaussian 99%
AA 0.0499 0.0038 0.0528 0.0202

A 0.0480 0.0029 0.0489 0.0202
BBB 0.0605 0.0048 0.0537 0.0240

BB 0.0614 0.0010 0.0566 0.0278
B 0.0825 0.0048 0.0681 0.0336

Table 9.11: Stable EWMA for 10 Year Maturity: Comparing Stable and Gaussian Unconditional Coverage for
the 95% and 99% Value at Risk.

Equation Stable 95% Stable 99% Gaussian 95% Gaussian 99%
AA 0.0118 0.9788 0.3193 0.9964

A 0.2346 0.9934 0.1300 0.9964
BBB 0.8687 0.9397 0.4124 0.9999

BB 0.8978 0.9998 0.6625 1.0000
B 1.0000 0.9397 0.9892 1.0000

Table 9.12: Stable EWMA for 10 Year Maturity: Likelihood Ratio Test (p-values) for Unconditional Coverage.

from larger variances - as caused by LL.

When assessing the performance for VaR, the Gaussian models do not qual-
ify. If a decision in favor of one of the remaining alternatives needs to be made,
the stable EWMA is preferred. Not only is its performance for VaR better, its



9.8 Results For The Stable GARCH And Stable EWMA - Comparison 157

Equation α0 α1 β MSE (10−6) MAE (10−3) LL -LogL (104)
AA 0 0.15 0.58 0.0016 0.0259 8.4269 -1.9410

A 0 0.04 0.92 0.0051 0.0376 8.3486
BBB 0 0.11 0.85 0.0132 0.0511 8.8360

BB 0 0.10 0.89 0.1397 0.1845 9.3149
B 0 0.02 0.98 0.2319 0.2753 10.4608

Table 9.13: Stable CC-GARCH(1,1) for 30 Year Maturity: Parameters, MSE, MAE, LL, and Log-Likelihood.

Equation Stable 95% Stable 99% Gaussian 95% Gaussian 99%
AA 0.0384 0.0029 0.1689 0.1104

A 0.0413 0.0019 0.1046 0.0480
BBB 0.0441 0 0.0720 0.0413

BB 0.0518 0.0019 0.0710 0.0336
B 0.0547 0.0029 0.0672 0.0384

Table 9.14: Stable CC-GARCH(1,1) for 30 Year Maturity: Comparing Stable and Gaussian Unconditional
Coverage for the 95% and 99% Value at Risk.

Equation Stable 95% Stable 99% Gaussian 95% Gaussian 99%
AA 1.0000 0.5632 1.0000 1.0000

A 0.6970 0.9934 0.9951 1.0000
BBB 0.0118 0.9934 0.2344 1.0000

BB 0.8684 0.9987 0.7288 0.9993
B 0.7803 0.7452 0.5074 1.0000

Table 9.15: Stable CC-GARCH(1,1) for 30 Year Maturity: Likelihood Ratio Test for Stable and Gaussian
Unconditional Coverage.

Equation MSE (10−6) MAE (10−3 LL MSE (10−6) MAE (10−3 LL -LogL (104)

(λ = 0.9840) (λ = 0.94)
AA 0.0014 0.0215 8.4354 0.0014 0.0217 8.1679 (λ = 0.9840)

A 0.0050 0.0309 8.8667 0.0050 0.0312 8.4267 -1.8895
BBB 0.0134 0.0445 9.7536 0.0132 0.0443 9.2582 (λ = 0.94)

BB 0.1373 0.1530 10.7555 0.1383 0.1555 10.2044 -1.8652
B 0.2326 0.2262 11.3956 0.2343 0.2277 10.9303

Table 9.16: Stable EWMA for 30 Year Maturity: MSE, MAE, LL, and Log-Likelihood.

simplicity is also a deciding factor. Moreover, it allows for dynamic correlations
while CC-GARCH works with constant correlations. The hypothesis of constant
correlations is contradicted by the plots of figure 9.1. This is, for example, similar
to the findings of Longin and Solnik for stock markets: they state that correlations
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Equation Stable 95% Stable 99% Gaussian 95% Gaussian 99%
AA 0.0518 0.0010 0.0576 0.0230

A 0.0518 0.0048 0.0518 0.0211
BBB 0.0518 0.0058 0.0451 0.0221

BB 0.0653 0.0019 0.0557 0.0192
B 0.0701 0.0058 0.0595 0.0336

Table 9.17: Stable EWMA for 30 Year Maturity: Comparing Stable and Gaussian Unconditional Coverage for
the 95% and 99% Value at Risk.

Equation Stable 95% Stable 99% Gaussian 95% Gaussian 99%
AA 0.2091 0.9998 0.7288 0.9997

A 0.2091 0.9395 0.2091 0.9983
BBB 0.2091 0.8608 0.5392 0.9993

BB 0.9699 0.9987 0.5933 0.9919
B 0.9951 0.8608 0.8287 1.0000

Table 9.18: Stable EWMA for 30 Year Maturity: Likelihood Ratio Test for Stable and Gaussian Unconditional
Coverage.

are not constant over time and increase during highly volatile periods.25

As the cointegrated vector-autoregressive (VAR) model is built for three dif-
ferent maturities (2, 10, and 30 years), it may be used to simulate future credit
returns for all maturities. The returns of maturities lying in the intervals

• ] 1 month , 2 years [,

• ] 2 years , 10 years [, and

• ] 10 years , 30 years [

are obtained by cubic-spline interpolation between the boundaries of the inter-
val. Furthermore, the prices of a one-month bond may be used as fix-points as
they show almost no fluctuation compared to the other three maturities.

The risk factors of the credit model are set out below:

• The treasury returns xt following a mean-reverting process.

• The common credit spread movement resc,t.

• The heteroscedastic vector of dependent innovations, εi,t.

25Longin and Solnik (1999).
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The common credit risk factor and the behavior of the treasury returns have
already been discussed in sections 8.4.4 and 8.5.

The proposed simulation framework consists of three cointegrated VAR models
(maturities 2, 10, and 30 years). It is useful to consider dependence not only
between the innovations of the same maturity, but also among the innovations of
two different cointegrated VARs. The same applies for both the common credit
spread movement and the treasury returns of the different VARs.

9.9 Conclusion

This chapter has developed a solution for describing the multivariate heteroscedas-
tic behavior of the credit returns, which has been isolated in the residuals of the
cointegrated VAR.

The results of this chapter can be summarized as follows:

• In order to describe the dynamic volatility of the innovations of the credit
return model, the first part has introduced the concepts of multivariate
GARCH(1,1) and multivariate EWMA (under both stable and Gaussian as-
sumption). Although GARCH(1,1) is tractable in the five-dimensional case,
EWMA has only one parameter to be estimated. The stable cases of GARCH
and EWMA are performed via the concept of stable subordination.

• Statistical loss measures to evaluate variance-covariance forecasts are dis-
cussed. However, the actual measure of interest is not the volatility itself,
but Value at Risk. Value at Risk bears economic meaning as it represents the
economic capital required to cover potential credit losses. To evaluate the
accuracy of VaR forecasts, a test for unconditional coverage is performed.

• Although the CC-GARCH model achieves a slightly greater log likelihood
due to the larger number of parameters, it does not outperform the EWMA
model in terms of statistical loss functions. The applied test of unconditional
coverage shows that, for the 99% VaR, the stable models are clearly better
than the Gaussian models since the latter largely underestimate the empirical
99% Value at Risk. More importantly, the stable EWMA outperforms all
other models including the stable CC-GARCH (1,1) in terms of Value at Risk
forecast accuracy. The forecasting results, the parsimonious parametrization,
and the simplicity of estimation lead to the selection of the multivariate stable
EWMA for description of the volatility of the residuals of the credit return
model.

• In contrast to CC-GARCH, multivariate EWMA considers time-varying cor-
relations. Figure 9.1 has demonstrated that historical correlations change
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over time and increase during volatile periods. The plotted correlation esti-
mates of the multivariate EWMA model capture such changes quite well.

However, EWMA and GARCH are ”traditional models” in that they deal with
processes which have an integer order of integration. In the cointegrated VAR
model, the log prices are assumed to be an I(1) process and the returns are assumed
to be an I(0) process.

The following chapter covers fractionally integrated processes. These processes
allow non-integer values for the order of integration and leave behind the tradi-
tional jack-knife notion that there are only I(0) or I(1) processes. This restriction
excludes a range of possible other processes. Due to the greater flexibility gained
by allowing fractional processes, the expected yield is a more precise description
of the credit returns and improved forecasting performance of VaR.



Chapter 10

Fractional Models For Credit
Data

This chapter introduces the concept of fractionally integrated processes and long
memory. Long memory is found in the data of the credit model. The chapter
develops an appropriate solution for the description of the credit model’s εi,t by a
long-memory process.

Thus far the variables and innovations of the credit return model are assumed
to have an integer order of integration: either I(1) or I(0). Such a knife-edge dis-
tinction is very restrictive. Allowing fractionally integrated processes results in a
better description of the credit return generating processes and, as a consequence,
better forecasting results. The basics of fractal processes and long memory have
already been presented in chapter 5. Moreover, the returns of corporate bond
indices have been analyzed for long-range dependence, and signs of long memory
have been found. Now the current chapter applies the concept of fractional inte-
gration and long-memory processes in researching for an improved modeling of the
εi,t compared to the traditional volatility model EWMA of the previous chapter.

There are two main objectives this chapter targets:

1. Testing the innovations of the credit return model for fractional integration,
which includes both the signed innovations and absolute values of the inno-
vations.1

2. If fractional integration is found, a powerful and tractable multivariate model
describing the process of the innovations has to be built.

Two possible alternatives are examined under 1:

1The absolute values can be seen as a proxy for conditional volatility.

161
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• If fractional integration is significantly present in the signed values of εi,t,
then the innovations ei,t of the previously applied GARCH(1,1) and EWMA
models should also be tested for fractional integration. A credit return model
that keeps its ”traditional” multivariate volatility model (GARCH(1,1) or
EWMA) is imaginable where the innovations of the volatility model them-
selves exhibit fractional integration. This kind of approach would easily be
tractable in multivariate frameworks with more than two dimensions. Aside
from the combination with a classical GARCH or EMWA model, the signed
εi,t should be tested alone for long memory as well.

• Alternatively, the volatility or absolute values of the credit model’s innova-
tions exhibit fractional integration.

The findings of this chapter are the following:

• The absolute values of the innovations are driven by a fractionally integrated
process which has a long memory. In this case, the above notion of tradi-
tional multivariate GARCH or EWMA models with fractionally integrated
innovations turns out not to be applicable.

• The absolute values of the credit return model’s innovations can best be
described using a tractable multivariate FARIMA(p,d,q) process with sta-
ble distributions. In this case, the fractional integration is modeled in the
credit return model’s innovations while the conventional cointegration rela-
tions based on I(1) and I(0) are kept.

To be demonstrated in the following chapters is that the chosen long-memory
model outperforms the accuracy of the traditional volatility model presented in
the previous chapter 9.

An introduction to fractionally integrated processes has already been given in
chapter 5 of this thesis. Fractionally integrated processes that are persistent are
said to have a long memory. The definition and key properties of fractionally
integrated processes and long memory are briefly reviewed here.

10.1 Fractionally Integrated Time Series

It is known for Gaussian fractional time series exhibiting long memory that their
autocorrelations decrease with increasing lag.2 The sample autocorrelation func-
tion (SACF) exhibits a hyperbolic decay.

2The definitions given in this section refer to the Gaussian case.
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Figure 10.1: Example for an SACF with hyperbolic decay. ’k-values’ denotes the lag.
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In contrast to a short memory process with geometrically decaying autocorre-
lation function ACF, a weakly stationary process has a long memory if its ACF
ρ(h) has a hyperbolic decay:3

ρ(h) ∼ Ch2d−1 as h → ∞, (10.1)

where C �= 0, d < 0.5.
Baillie (1996) refers to the definition of McLeod and Hipel (1978): a process

has a long memory if

lim
n→∞

n∑
j=−n

|ρj| (10.2)

is non-finite. Otherwise it has short-range dependence.4 A process Xt is said
to be integrated of order d, or I(d), if

(1 − L)dXt = ut, (10.3)

where L is the lag operator, −0.5 < d < 0.5, and ut is a stationary and ergodic
process with a bounded and positively valued spectrum at all frequencies.5 If ut

is I(0), i.e. white noise, and covariance stationary, and 0 < d < 0.5, the process
has a long memory.6 For −0.5 < d < 0, the process is antipersistent and is said to
have an intermediate memory.

The above process in (10.3) represents a FARIMA(0,d,0) process. Fractionally-
differenced white noise is defined by the representation

(1 − L)d(Xt − µ) = ut, (10.4)

where E(ut) = 0, ut is i.i.d., and d is possibly non-integer.
The fractional differencing operator (1−L)d, which represents a lag polynomial

1 − α(L) of infinite order, can be described by

(1 − L)dXt =
∞∑

j=0

Γ(j − d)

Γ(j + 1)Γ(−d)
Xt−j, (10.5)

3Brockwell and Davis (1991).
4Mikosch and Starica (2000b).
5Baillie (1996).
6In the Gaussian case.
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where Γ(.) denotes the Gamma function. Thus, the jth coefficient αj of the lag
polynomial 1 − α(L) has the following form:

αj =
−Γ(j − d)

Γ(−d)Γ(j + 1)
,

with αj ∼ −1

Γ(−d)
j−(1+d) as j → ∞. (10.6)

This representation of the αj coefficients was first seen in Mandelbrot and Ness
(1968) and also used by Baillie (1996). Other representations exist, for example
Andel (1986), whose polynomials are associated with the Gegenbauer process.
Ding and Granger (1996) introduced polynomials defined by the ratio of two beta-
functions.

With fractional processes, correlations and weights of the coefficients are char-
acterized by a power law decay. For d > 0, partial and inverse correlations also
decay hyperbolically.7

10.2 Motivation For LRD In Financial Data

As longer time spans of data are available, and more and more high-frequency data
is recorded, the basis for alternative volatility estimators and models is created. A
more accurate estimation of the inner dependencies of financial time series can be
obtained.

Andersen, Bollerslev, Diebold and Labys (1999) address alternative volatility
models. For stock markets they found that multivariate aspects of unconditional
distribution indicate that the realized covariance tends to be highly skewed, but
a simple transformation to correlation delivers normality. Realized correlation is
almost always positive. Moreover, realized correlation is often itself highly corre-
lated with realized volatility. Andersen, Bollerslev, Diebold and Labys (1999) call
it the ”volatility effect in correlation”.

In examining conditional volatilities and correlations, Andersen et al. observe
a slow hyperbolic decay in the distribution of market volatility. This is a sign for
a fractionally integrated long-memory process. A process exhibits long memory
if shocks die out at slower than exponential rate, which is characteristic for the
persistence of such processes. Baillie, Bollerslev and Mikkelsen (1996) they also
obtain a slow hyperbolic rate of decay for the influence of lagged squared innova-
tions of stock market returns using a fractionally integrated GARCH (FIGARCH)
model. They argue that the pure distinction between I(0) and I(1) processes is

7Peters (1994, p. 192).
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too restrictive. Whereas an I(1) process shows infinite persistence, an I(0) pro-
cess exhibits exponential decay towards shocks. Baillie, Bollerslev and Mikkelsen
(1996) state that, for the integrated GARCH of Engle and Bollerslev (1986), the
pricing of risky securities may show extreme dependence on the initial conditions.
Such extreme dependence could not be observed for the behavior of real prices.
With FIGARCH, they have developed a new class of conditional variance which
should provide a better explanation for the observed temporal dependencies in the
volatilities of financial markets. The influence of the lagged innovations on condi-
tional variance has a slow hyperbolic decay; however, possible shocks to volatility
have impulse response weights that tend toward zero.

Long memory builds a bridge between short memory and perfect persistence.
Fractionally integrated processes are a framework for time series that show very
long dependencies but still seem to be stationary. Another characteristic of long-
memory models is that they are supposed to exhibit better forecasting properties
for longer horizons than short-memory models with exponential decay of their
autocorrelations.

The long-memory property, also known as long-range dependence, describes
the high-order correlation structure of a series. In case of long-range dependence,
there is a persistent autocorrelation between distant observations. It is a non-linear
dependence concerning the first moment of the distribution.

Long memory is present in fractional processes under certain conditions. As
set out in chapter 5, there are two different types of fractional processes: persistent
and antipersistent ones. Persistent fractional processes exhibit long-range depen-
dence and have a fractional differencing parameter d with 0 < d ≤ 0.5, whereas
antipersistent processes, which are said to have an intermediate memory, have
−0.5 ≤ d < 0.8

Evidence as to whether long memory is present can be obtained by direct
estimation of the long-memory parameter d. In order to determine the fractional
differencing operator d and, thus, the degree of long memory in the data, several
procedures have been developed with time, e.g. maximum likelihood estimation
procedures, and spectral regression methods (see Geweke and Porter-Hudak, 1983).
A short review of the common estimators and a description of the one used in this
context follow in a later section.

This chapter examines whether and to what degree the credit return model’s
innovations εt, which have been described by the EWMA model in the previous
chapter, exhibit long-range dependence. If long memory is present, this could
allow a more precise description of the credit return model.

As known from chapter 5, long memory in the returns of indices of corporate

8Under the Gaussian assumption.
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bonds could also be confirmed under the stable non-Gaussian assumption.9 The
following section now analyzes the εi,t for the presence of LRD in both signed
values and absolute values.

10.3 Testing For LRD In The Data

Recall the credit return model whose innovations εi,t have been described by a
multivariate GARCH(1,1) or EWMA process in chapter 9:

∆yt,T = Πyt−1,T−1 +

p−1∑
j=1

Γj∆yt−j,T−j + Bxt,T + rest,

resi,t = diresc,t + εi,t , where i = 2 . . . 6, and resc,t = res1,t, (10.7)

where p is the order of the unrestricted VAR, ∆yt,T is the vector of returns, yt−1,T−1

is the vector of lagged log prices, and xt,T are the treasury returns. The matrix Π
can be decomposed by Π = αβ′. rest is a six-dimensional, symmetrically stable
distributed random vector with elements resi,t, i = 1 . . . 6, for the AAA, AA, A,
BBB, BB and B grades, and stability index 1 < α < 2.

resi,t, i = 2...6, are the residuals of the VECM equations for the AA, A, BBB,
BB, B grades. resc,t are the residuals of the AAA equation and represent the
common factor.

In chapter 9 the εi,t have been described applying a five-dimensional multivari-
ate EWMA or GARCH(1,1) model.

In order to acquire information about the existence of long memory in the εi,t

of the credit return model, a number of alternative choices are investigated here:

1. The innovations εi,t of the model follow a traditional volatility process, GARCH
or EWMA, but the noise of the GARCH or EWMA process is not i.i.d. and
exhibits long memory.

2. The signed innovations εi,t of the credit model exhibit long memory.

3. The signed innovations εi,t do not show long memory, but the absolute values
of εi,t, |εi,t|, have a long memory. Thus, the LRD is in the volatility.

The fact that a long memory has been found in the credit returns in chapter 5
raises hope for alternatives 1 and 2 above.

9See also Martin, Rachev and Schwartz (2002).
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Alternative 1 would be a new kind of model: a combination of a traditional
GARCH-type volatility model with a fractional noise. This could be a promising
and tractable framework for a multivariate approach.

Martin, Rachev and Schwartz (2002) have demonstrated that credit return
series can exhibit significant LRD in the returns.

However, when testing the log returns of the credit model, the εi,t, and the
noise of the GARCH/EWMA for long-range dependence, results showed that only
the two speculative credit grades BB and B demonstrate signs of LRD (d is found
around a value of 0.05).

Instead, the application of the MRS statistic10 indicates by far a higher sig-
nificance for long memory in the absolute values of εi,t (representing conditional
volatility) than in the signed εi,t or in the noise of the traditional GARCH / EWMA
model. Figures 10.2 , 10.3, and 10.4 present the MRS statistic for some selected
|εi,t|. In all cases, the value of the statistic reaches levels that exceed 19 by far.
This indicates long-range dependence at a confidence level of more than 95%. In
fact, for all chosen samples, the value lies beyond 30.

This is a remarkable result. Certainly, while there may be significant LRD
in the signed εi,t or GARCH/EWMA noise, d usually has only very low positive
values in this case.

Thus, long memory is detected in the volatility represented by the absolute
returns.

This result is in line with the findings of Mikosch and Starica (2000b) who also
confirm that the log returns of financial time series might only show slight long-
range dependence, even when it is significant. LRD is usually measurable more
noticeable in the volatility (represented by absolute returns in the stable non-
Gaussian case) of the price process. Of course, a pattern such as long memory in
the data of absolute returns is also present in the signed returns themselves. Yet,
the stochastic process which determines the sign makes the long-memory effect
fade for the signed returns.

Thus, it is necessary to focus directly on the process that causes the long-range
dependence and to develop a long-memory model for the volatility.

The focal point now targets long-memory models describing volatility. The
following section provides a brief literature review of Gaussian long-memory mod-
els, describing conditional volatility in the univariate case. Later the models are
discussed in the multivariate case.

First univariate long-memory volatility models are discussed (LM-ARCH, FI-
GARCH). Next, the multivariate cases of these models are described.

Finally, an explanation is provided as to why these multivariate volatility mod-
els are not applicable for the given credit return model. Instead, a multivariate

10Introduced in chapter 5.
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Figure 10.2: Plot of θW (θ) − θ: MRS statistic for absolute values of εi,t for AA with 30-year maturity.
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Figure 10.3: Plot of θW (θ) − θ: MRS statistic for absolute values of εi,t for BBB with 30-year maturity.
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Figure 10.4: Plot of θW (θ) − θ: MRS statistic for absolute values of εi,t for B with 30-year maturity.
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fractional ARIMA process is chosen to forecast the absolute values of the εi,t.

10.4 Models For Long Memory In Volatility

This section covers known long-memory conditional volatility models under the
Gaussian assumption. It starts with a basic form, the LM-ARCH, and explains
the main features of its general form, the FIGARCH.

According to Mikosch and Starica (2000b), empirical work has shown that a
simple ARCH(p) process has a reasonable fit to real financial data only if the
number of parameters is rather large. This has been an incentive for the notion of
GARCH(p,q) processes. However, traditional GARCH models themselves are not
designed to capture LRD in volatility.

GARCH models can fit financial returns only for relatively short periods of
time11 and have to be updated regulary due to changes in parameters. Because
of the inability of ARCH(p) and GARCH(p,q) to explain LRD, a more general
framework with infinite number of parameters has been introduced. The common
form of LM-ARCH has a conditional variance with long-range dependence and is
represented by

σ2
t = α0 +

∞∑
j=1

αjX
2
t−j. (10.8)

Models of this type have been introduced, among others, by Baillie, Bollerslev
and Mikkelsen (1996) and Ding and Granger (1996). It has a long-memory infinite
order lag polynomial and its coefficients αj are strictly positive. This model is
a representative of more general models, so-called fractionally integrated GARCH
(FIGARCH) models. FIGARCH embraces the idea of applying fractional integra-
tion to the variance of a process. Although traditional GARCH models account
for persistence in volatility, persistence decays relatively fast. In contrast, inte-
grated GARCH (IGARCH)12 shows a strong impact of volatility shocks. Shocks
to conditional variance never die out here. The impact is usually stronger than
can actually be observed for real data. FIGARCH is the bridge between GARCH
and IGARCH. Thus, the GARCH(1,1) and EWMA13 models applied in an earlier
chapter mark two extremes in terms of persistence.

There are two theories for the presence of persistence in volatility. Lamoreux
and Lastrapes (1990) claim that structural breaks are responsible for this phe-

11See also Christoffersen, Diebold and Schürmann (1998) and Mikosch and Starica (2000b).
12IGARCH is a form of GARCH(1,1) where a1 and b1 sum up to 1.
13EWMA is a form of IGARCH.
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nomenon. Another explanation is that persistence in trading volume causes per-
sistence in volatility. Long memory in trading volume and in the increments of
trading time was analyzed for stocks and foreign exchange rates by Marinelli et al.
(1999, 2000) and Brunetti and Gilbert (2000).

As for EWMA, the FIGARCH process is strictly stationary even though it
is not covariance stationary. Andersen and Bollerslev (1997) consider the long
memory of volatility to be an intrinsic feature of the return generating process.

The FIGARCH defined in Baillie, Bollerslev and Mikkelsen (1996) is formu-
lated similar to a FARIMA (fractionally integrated autoregressive moving average)
process.

Their FIGARCH(p,d,q) is represented by

φ(L)(1 − L)dX2
t = α0 + (1 − β(L))νt ,

νt = X2
t − σ2

t , (10.9)

where φ(L), (1−β(L)) are polynomials in the lag operator L with zeros outside the
unit circle, d ∈ [0, 1] and α0 > 0. The FIGARCH model is a generalization that
switches to a GARCH model when d = 0 and to an integrated GARCH (IGARCH)
model when d = 1. Baillie, Bollerslev and Mikkelsen (1996) found slowly decaying
autocorrelations for the S&P 500. The conditional variance of the FIGARCH is
then expressed as

σ2
t =

α0

1 − β(1)
+ λ(L)X2

t ,

where λ(L)X2
t = 1 − {[

Φ(L)(1 − L)d
]
/ [1 − β(L)]

}
. (10.10)

Baillie, Bollerslev and Mikkelsen (1996) consider their FIGARCH stationary
and ergodic for 0 < d < 1, the persistence allowed in the variance is larger than in
the mean. If all the roots lie outside the unit circle, then the X2

t are a stationary
process.

Comparing the FIGARCH with a FARIMA process, it has to be noted that
FARIMA has no sign restriction whereas for FIGARCH it has to be ensured that
all conditional variances are non-negative.

However, Mikosch and Starica (2000b) point out that, for LM-(G)ARCH mod-
els, the issue of stationarity has not yet been clarified. According to them, the
definition in (10.9) is only valid if the existence of a stationary solution can be
proved for the following representation:

σ2 =
α0

1 − β(1)

(
1 − Φ(L)(1 − L)d

1 − β(L)

)
, (10.11)
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together with a stationary solution for Xt = σtZt.
Therefore, the FIGARCH needs some additional constraints if stationary solu-

tions are to be obtained (see Giraitis, Kokoszka and Leipus, 2000). Clarifying the
stationarity issue is important since LRD effects might be due to non-stationarity.

Compared to LM-ARCH, FIGARCH is more flexible, however it takes a greater
number of restrictions to keep the conditional variance strictly positive. It follows
from the results of Bollerslev and Mikkelsen (1996) and is presented by Brunetti
and Gilbert (2000) and Teyssiere (2000). Positive definiteness is ensured for FI-
GARCH(1,d,0) and FIGARCH(1,d,1) by imposing the following restrictions:

FIGARCH(1,d,0) requires

β ≤ d ≤ 1 and α0 > 0. (10.12)

FIGARCH(1,d,1) requires more restrictions:

α0 > 0,

β − d ≤ (2 − d)/3,

d(φ − (1 − d)/2) ≤ β(φ − β + d). (10.13)

Thus, it can be seen from these examples that even the estimation of a simple
FIGARCH model becomes very complex, and this already in the univariate case.

The following section explains the multivariate forms of LM-ARCH and FI-
GARCH.

10.5 Multivariate LRD Models

First, the representation of the multivariate LM-ARCH with constant conditional
correlations is introduced:

si,i,t = σ2
i,i,t =

∞∑
k=1

αkX
2
t−kwith i = 1, ..., n

si,j,t = ρi,jσi,i,tσj,j,t

with i, j = 1, ..., n and i �= j. (10.14)

The conditional covariance matrix is always positive definite. The multivariate
long-memory ARCH process is stationary if all the univariate processes on the
main diagonal are stationary.14

14See also Bollerslev (1990).
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For the multivariate FIGARCH, a setting with constant correlation matrix is
proposed as well.15 The multivariate constant-correlation FIGARCH is described
by

si,i,t = σ2
i,i,t =

α0

1 − βi(1)
+

(
1 − (φi(L))(1 − L)d

1 − βi(L)

)
X2

i,t ,

with i = 1, ..., n.

si,j,t = ρi,jσi,i,tσj,j,t ,

with i, j = 1, ..., n and i �= j. (10.15)

The constant correlation parametrization is the most parsimonious among all
multivariate FIGARCH specifications (similar to CC-GARCH). Furthermore, un-
der weak conditions the variance-covariance matrix is positive definite. The con-
ditions for positive definiteness are given in (10.12) and in (10.13). Due to the
constant correlations, the stationarity is ensured for the multivariate process if the
elements on the main diagonal are stationary.

Brunetti and Gilbert (2000) propose a bivariate framework for FIGARCH with
fractional cointegration.

It combines the multivariate GARCH with univariate FIGARCH models. The
long-term dependence between two closely related markets is captured by a frac-
tional cointegration model.

In a multivariate environment, if the observed markets show long memory
in volatility, this model requires different markets to exhibit a common order of
fractional integration. Only if there is a common order of integration, it makes
sense to ask if the time series are cointegrated.

It could be that the multivariate volatility processes are independent but are
driven by a common information arrival process. Therefore the question rises if
the processes exhibit a common order of integration (Brunetti and Gilbert, 2000).
There could exist a long-run linear relationship between the volatilities which has
a lower order of integration than the volatility processes themselves. If the price
movements of the different markets have a common source of information then
they are supposed to have a common order of integration.

As known from chapter 6, in order to establish a linear cointegrating relation-
ship, a common order of integration is a necessary condition.(Abadir and Taylor,
1999; Robinson and Marinucci, 1998)

The general definition of cointegration (Engle and Granger, 1987; Granger,
1986) also includes the fractional case:

• Two time series, Xt and Yt, are fractionally integrated of order (d,b) if Zt =
(Yt − βXt) ∼ I(d − b), where d > 1/2 and d ≥ b > 0.

15Brunetti and Gilbert (2000).
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• The standard test for fractional cointegration requires the determination
of the orders of integration for both series under consideration, d1 and d2.
In order to be able to continue, both series must have a common order of
integration. Thus, a hypothesis test d1 = d2 has to be performed.

• If d1 = d2 cannot be rejected, the linear cointegrating relationship is esti-
mated and the order of integration d′ of the cointegrating residuals has to be
determined.

• In case d = 1 was found for both cointegrated series, d′ gives a test for
fractional cointegration. The OLS estimation of the cointegrating vector is
only consistent for d > 1/2. 16

• If d �= 1, a further step is required which performs a test for d′ < d.

The error correction for a fractionally cointegrated model is relatively complex.
The reader is referred to Baillie (1996) or Brunetti and Gilbert (2000).

This section has provided an overview on multivariate long-memory volatility
models discussed in the literature. However, for a number of reasons they are not
suitable for modeling the conditional volatility of the given credit return model:

• The presented long-memory conditional volatility models are relatively com-
plex in the multivariate case, especially for the FIGARCH model. (For ex-
ample, five-dimensional multivariate FIGARCH for the innovations of the
returns including a replacement of the model’s existing I(0)-I(1) cointegra-
tion relation by fractional cointegration is not tractable.)

• The FIGARCH with fractional cointegration increases complexity and it is
only applicable if there is a common order of integration.

• The long-memory conditional volatility models are defined for the Gaussian
case. An application in a multivariate environment with stable distributions
would require a concept such as stable subordination that would increase the
complexity and worsen tractability.

Due to the complexity and intractability of high-dimensional multivariate coin-
tegrated FIGARCH models, a new unconventional approach is seeked to handle
cointegration, multivariate dependence and long memory of the cointegrated credit
return model.

Moreover, fractional cointegration can only be implemented if different credit
ratings have identical fractional differencing parameters d. For this reason, it is

16See Robinson and Marinucci (1998).
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reasonable for to keep the traditional integer cointegration model for the long-term
relationship, but allow each equation to have a different fractional differencing
parameter for the LRD model.

As conditional variance does not exist in the stable non-Gaussian case it is
preferrable to directly model the absolute values of the εi,t, |εi,t|.

A multivariate fractionally integrated autoregressive moving- average (FARIMA)
model provides the desired properties. The following section reviews the properties
of Gaussian FARIMA. The stable FARIMA follows afterwards.

10.6 The Gaussian FARIMA

The FARIMA (p,d,q), process has a fractionally integrated conditional mean. The
standard Gaussian FARIMA process of order (p,d,q) with mean µ may be written
in backward-operator notation:

Φ(L)(1 − L)d(Xt − µ) = Θ(L)ut ,

with ut ∼ i.i.d. N(0, σ2
u), (10.16)

where L is the backward operator or stable operator and (1 − L)d = ∆d.17 The
ut follow a Gaussian law. Integer values of d would lead to an ARIMA process.
FARIMA generalizes the class of ARIMA models to non-integer values of d. Like
an ARIMA(p,d,q) model, the FARIMA(p,d,q) can be differenced, in case d ≥ 0.5,
to obtain a FARIMA(p,d-1,q) process.

A FARIMA(p,d,q) process includes short-memory AR or MA processes over a
long-memory process. According to E.E. Peters (1994), those properties provide
the potential to describe financial markets.

For the defined Gaussian case, the process is both stationary and invertible if all
roots of Φ(L) and Θ(L) lie outside the unit circle and |d| < 0.5.18 For d > 0.5 , the
process is non-stationary as it possesses infinite variance. For d < 1, the process
is mean-reverting. The autocorrelations of the FARIMA process show hyperbolic
decay for high lags: ρk ≈ ck2d−1.

For d ∈ (0.5, 1.5), the differenced time series ∆Xt will be stationary, with
intermediate memory for d < 1 and long memory for d > 1.

According to Baillie (1996), the impulse response function of FARIMA is ob-
tained by first differencing of the above equation (10.16):

AL(ut) = (1 − L)Xt = (1 − L)1−dΦ(L)−1Θ(L)ut. (10.17)

17Please recall section 4.3 for non-fractional ARIMA processes.
18Invertibility comes from d > −1.
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The impulse response function describes how endogeneous variables respond
over time to a one-period shock in that variable and every other endogeneous
variable. The function traces the behavior to shocks (Pindyck and Rubinfeld,
1991, pp. 385). This shock filters through all following periods.

The impulse response function I(l) can be thought as the effect of a shock of
size one at time t on following representations Xt+l. The impulse responses for a
stationary process are the coefficients of its infinite moving average representation.
For FARIMA(0,d,0), the MA representation is given by

yt = (1 − L)−dut =
∞∑

j=0

cjut−j,

with cj =
Γ(k + d)

Γ(d)Γ(k + 1)
, (10.18)

which demonstrates the decay of a shock to such a process.
For FARIMA(0,d,0), the impulse response is represented by:

A(L)ut = (1 − L)Xt = (1 − L)1−dut. (10.19)

The prediction from a FARIMA(p,d,q) process is given in Granger and Joyeux
(1980) and Geweke and Porter-Hudak (1983) by using the infinite autoregressive
representation:19

Xt =
∞∑

j=1

πjXt−j + ut,

where π(L) = (1 − L)dΦ(L)Θ(L)−1. (10.20)

An important implication from the differences in coefficient decay rates is that
fractionally differenced models provide better forecast results compared to the
knife-edge choices I(0) and I(1). Between fractionally differenced models and I(0)
models, the rate at which past information is useful in forecasting future values
differs significantly. For example, comparing an AR(1) with an AR(d) process,
the first autocorrelations of both series are almost identical.20 After that, the au-
tocorrelations of the fractional series fall slowly while the AR(1) autocorrelations
fall rapidly which signals the difference between exponential and hyperbolic de-
cay. When comparing AR(1), FARIMA(1,d,0) and FARIMA(0,d,1), it shows that

19See also Baillie (1996).
20See Peters (1994, pp. 194-195).



10.6 The Gaussian FARIMA 179

FARIMA (0,d,0)
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Figure 10.5: Sample autocorrelations for AR(1), FARIMA(0,d,0), and FARIMA(1,d,0).

FARIMA(1,d,0) and AR(1) have almost identical decay for the first autocorrela-
tions, followed by more rapid decay of AR(1). FARIMA(0,d,1) starts with more
rapid decay than FARIMA(1,d,0). After that its autocorrelations increase for some
lags and move towards FARIMA(1,d,0). For larger lags, the autocorrelations of
both processes move in parallel ways. Even high order ARMA processes show a
more rapid decay than fractional ARMA processes.

Hosking (1981) suggested a procedure to specify a FARIMA(p,d,q) model for
a time series Yt, determining the appropriate lag order for Φ(L) and Θ(L) as well
as estimating the parameters of Φ(L), Θ(L), and d (Peters, 1994, p.196).

1. Estimate d in the ARIMA(0,d,0) model Yt(1 − L)d = at.

2. Define ut = Yt(1 − L)d.

3. Using the Box-Jenkins modeling procedure, identify and estimate the Φ and
Θ in the FARIMA(p,0,q) model Φ(L)ut = Θ(L)at.
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4. Define Xt = (Θ(L))−1 ∗ (Φ(L)Yt).

5. Estimate d in the FARIMA(0,d,0) model (1 − L)dXt = at.

6. Check for the convergence of the d, Φ, and Θ; if not convergent, then goto
step 2.

10.7 The Stable FARIMA

The stable fractional ARIMA (Kokoszka and Taqqu, 1996; Samorodnitsky and
Taqqu, 1994) time series is defined by:

Φ(L)Xt = Θ(1 − L)−dut, (10.21)

where the innovations ut are i.i.d. and have infinite variance, and where d is a pos-
itive fractional number. The formula representation of the stable FARIMA(p,d,q)
is basically identical to the Gaussian. The definition of (1−L)d is the same as for
Gaussian FARIMA.

The difficulty for the stable case is the estimation of d, together with the
parameters of the polynomials Φ and Θ. This problem will be treated in chapter
8.

Assuming the ut to be i.i.d. with zero mean and following a stable law with
1 < α < 2, there is a unique moving average representation

Xt =
∞∑

j=0

cjut−j, (10.22)

where
∑∞

j=0 cjz
j = Θ(z)

Φ(z)(1−z)d , |z| < 1. Moreover, it is required that Φ and Θ have

no zeros in common and no zeros in the closed unit disk D = z : |z| ≤ 1. d is
restricted to d < 1 − 1/α.

The system has a unique solution if and only if Φ(z) has no roots in the closed
unit disk D = z : |z| ≤ 1. The sequence Xt, n ∈ Z is then stationary and α-stable.

If Θ(z) has no unit roots in the closed unit disk z : |z| ≤ 1 then the process
is invertible. Invertibility is defined as

∑∞
j=0 cjXt−j = ut and is very useful as it

allows Xt to be expressed by previous observations.

Fractional stable noise. Assuming the innovations ut of the process follow a
stable law, ut ∼ Sα(β, γ, µ), in the following the properties of fractional stable noise
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FARIMA(0,d,0) are described by Samorodnitsky and Taqqu (1994, pp. 380). The
stability index is restricted to 1 < α < 2:

FARIMA(0,d,0) is defined for all d < 1 − 1/α. On the other hand, fractional
stable noise is defined only for 0 < H < 1. The condition H < 1 is equivalent
to d < 1 − 1/α. The lower bound, H > 0, expressed by d = H − 1/α, becomes
d > −1/α. Thus, 0 < H < 1 becomes −1/α < d < 1 − 1/α. This is an important
range for fractional ARIMA.

10.8 The Multivariate FARIMA Model

X̃t is a vector of fractional integrated ARIMA processes, defined by

Φ(L)D
[
(1 − L)d

]
(X̃t − µ) = Θ(L)at, (10.23)

where L lag operator, Θ(L) and Φ(L) are matrix polynomials. D
[
(1 − L)d

]
is a

k × k diagonal matrix, with the values on the diagonal, and d = (d1, d2, ..., dk).
The innovations at are a k-dimensional vector. The stationarity and invertibility
conditions are the same as for the univariate case.

The stationary and invertible process has also an infinite moving average rep-
resentation

X̃t − µ =
∞∑

j=0

Ψjat−j (10.24)

As in the univariate case, it can be proven that for the Vector-FARIMA model
the cumulative impulse response

∑j
k=0 Ψk diverges hyperbolically for j → ∞ while

a stationary and invertible vector ARMA model has geometrically convergent cu-
mulative impulse responses.

10.9 Conditional Volatility And FARIMA

Andersen, Bollerslev, Diebold and Labys (1999) assume the log volatility of market
returns to fall within a standard Gaussian ARMA class of models. They apply the
natural logaritm to the volatility in order to reduce the skewness to the right of
the original conditional volatility’s distribution. By taking the log volatilities, the
innovations of the ARMA are rendered more symmetric. In addition, this ensures
that the volatility cannot become negative.
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They furthermore realize the long-memory characteristics of the historical volatil-
ity series. This switches the initially proposed ARMA model into a FARIMA
model.

However, it has to be noted that their proposed FARIMA model is different
from the FIGARCH model applied by Bollerslev, Baillie, Mikkelsen (1996) which
can also be written as a FARIMA model.

The steps of Andersen, Bollerslev, Diebold, and Laby (1999) to estimate the
parameters of their model are organized as follows:

1. First they determine the degree of fractional integration d in the realized
series.

2. Thus, their model is set up as follows: ut = (1−L)dlog(σ2
t ). This procedure

should remove the LRD in the observed time series. The ut are supposed to
be i.i.d. normally distributed.

3. The ut are analyzed if they are really i.i.d. by studying their SACF and
SPACF.

4. The FARIMA model can now be applied for prediction.

As known, when applying stable non-Gaussian distributed random variables for
the innovations of the credit model, εi,t, a variance does not exist. Furthermore,
conditional variance is not directly observable anyway.

The idea for the credit return model is to describe the absolute values of εi,t with
a multivariate FARIMA(p,d,q) model based on stable non-Gaussian distributions.
The next section develops a tractable multivariate model.

10.10 Developing A Multivariate LRD Process

For The Innovations Of The Credit Return

Model

After the theoretical introduction of the different long-memory models, the goal
is to develop a tractable model on the basis of multivariate FARIMA that de-
scribes the behavior of the εi,t of the credit return model. Before stepping into the
process of model building, the implications from the empirical examinations and
introduced types of LRD processes are summarized first so far:

• Multivariate FIGARCH models (with / without fractional cointegration)
turn out to be highly complex and are at most tractable for the Gaussian
bivariate case.



10.10 A Multivariate LRD Process For The Credit Return Model 183

• Multivariate FARIMA models are better tractable. Andersen, Bollerslev,
Diebold and Labys (1999) have applied such a model for conditional log
volatilities. As in the stable non-Gaussian case conditional variance does not
exist, the forecasting of the absolute values of the εi,t is preferrable. The
application of the MRS statistic has proven highly significant LRD in the
absolute values of εi,t.

One the one hand, the model should capture most of the predictive information
and, on the other hand, be parsimonious and tractable in a multivariate framework.
It should be easily integrated into the cointegrated VAR credit return model.

Furthermore, the model should keep the existing I(0)-I(1) cointegrating rela-
tions instead of designing a complicated fractional cointegration relation. Frac-
tional integration should only be modeled as part of the εi,t.

In addition, each fractionally integrated variable of the multivariate system
should be allowed to have its own fractional differencing parameter. Each combi-
nation of credit rating/maturity can have its own d. (Such would not be possible
with an approach of fractional cointegration that requires identical fractional dif-
ferencing parameters for all included variables)

It is furthermore desirable to have a robust and tractable estimator for the
fractional differencing parameter d, especially when dealing with heavy-tailed data
(α < 2). The applied estimator will be treated in chapter 11.

All these objectives mentioned can be achieved by a multivariate FARIMA
model describing the absolute values of the stable distributed εi,t. The expected
skewness in the noise of the FARIMA model can be handled by stable distributions.

It has to be noted here that if long memory does exist in the absolute returns,
then of course this information is also present in the signed returns themselves.
The signed returns contain all information that can be obtained from the absolute
returns series as well. However, there is not yet a measure defined that can describe
the effects of LRD in the volatility directly for the signed returns.

The absolute returns as a measure for conditional volatility can be directly
observed (unlike conditional variance that cannot be directly observed and does
not exist for α < 2). Forecasting the absolute values of the credit model’s residuals
means a direct prediction of the size of the residuals for the next period while the
forecasting of conditional variance basically means a prediction of the probability
distribution of the residuals.

The specification of the proposed multivariate FARIMA(p,d,q) for the credit
return model is:

(|εt| − µ)(1 − L)dΦ(L) = Θ(L)ut. (10.25)
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εt is the five-dimensional vector of innovations for the credit return model with
given maturity. ut represents the five-dimensional vector of the noise of the
FARIMA model. The other parameters are known from equation (10.23). Both
the elements of |εt| and the elements of ut are assumed to follow a stable law. The
elements of ut are dependent.

10.11 Conclusion

This chapter can be summed up as follows:

• The theory of fractional integration and long memory has been explained.

• The innovations of the credit return model have been analyzed for LRD.

• An overview of various fractionally integrated processes has been presented.
Moreover, an appropriate choice to describe the long memory in the credit
return model has been made.

The important findings of this chapter are:

• The LRD in the signed innovations εi,t is only measurable for the speculative
rating grades, but still relatively weak. Instead, LRD is highly significant in
the absolute values of εi,t.

• LRD is not found in the noise of the GARCH/EWMA model of chapter 9
for the credit returns.

• Multivariate fractional models for conditional volatility (e.g. FIGARCH)
turn out to be highly complex in the five-dimensional case and are not
tractable.

• It makes sense to keep the original I(1)-I(0) cointegrating relation instead
of implementing fractional cointegration that requires identical values for d
in each equation. Instead, the chosen multivariate stable FARIMA model
allows an individual d for each equation.

Thus, equation (10.25) is a new and suitable multivariate approach to describe
the LRD in the volatilities of the multivariate credit return model. It is tractable,
bears flexibility, and does not require additional restrictions.

The following chapter introduces the chosen estimator for the fractional differ-
encing parameter d: A suitable estimator for the given problem is a modification
of the conditional sum of squares (CSS) estimator. The modification is necessary
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as this estimator is per se only applicable to Gaussian time series and cannot be
used for stable distributed time series. A test for the robustness of the estimator
is presented as well. The significance of the estimates is tested with a special
moving-blocks bootstrapping procedure designed for long-memory samples.
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Chapter 11

Estimation Of The Long-Memory
Parameter For The Credit Return
Model

This chapter describes the modification of the Conditional Sum of Squares (CSS)
Estimator for the α stable case with α < 2.

The chapter is organized as follows:

• The known types of estimators are briefly reviewed.

• The CSS estimator is introduced and its properties are discussed.

• Finally, section 11.2.2 demonstrates how to transform the original CSS esti-
mator so that it can be used for the case α < 2.

11.1 Review Of Existing Estimators

Several types of estimators for FARIMA models have been suggested in the liter-
ature over time. Geweke and Porter-Hudak (1983) developed a log periodogram
estimator, based on the regression of ordinates of the periodogram of the time series
on a trigonometric function. It was followed by an averaged periodogram estimator
of Robinson (1994). Fox and Taqqu (1986) have proposed a maximum likelihood
estimator in the frequency domain. This estimator assumes conditional normal-
ity. It was extended to the α-stable case by Kokoszka and Taqqu (1996). Sowell
(1992) has developed a full maximum likelihood estimator (MLE) for normally dis-
tributed innovations. A disadvantage of the estimator is that it is computationally
quite burdensome because of the inversion of the large autocorrelation matrix and
the fact that each element is a nonlinear hypergeometric function. Chong (2000)
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proposed the estimation of the fractional differencing parameter via the partial
autocorrelation function (PACF).

11.2 The Conditional Sum Of Squares Estimator

11.2.1 Properties Of The CSS Estimator

The alternative conditional sum of squares (CSS) estimator is computationally less
demanding. It is also capable of dealing with quite complicated FARIMA models
having non-normal disturbances1 or exhibiting time-dependent heteroscedasticity.
Hosking (1984) has suggested it for fractional processes first. The CSS estimator
is asymptotically equivalent to full MLE provided that the initial observations, eg.
X0, X−1, X−2 are kept fixed.

The (Gaussian) CSS estimator minimizes the sum

S(λ) =
1

2
log(σ2) +

1

2σ2

n∑
t=1

u2
t , (11.1)

where the ut are the residuals of the model which are assumed to be Gaussian i.i.d.
CSS is advantageous for all processes where full MLE turns out to be intractable

for FARIMA models. Chung and Baillie (1993) have done simulation studies about
the performance of the CSS estimator. They were especially interested in the
behavior of the estimator when the mean µ of the FARIMA process is unknown.
µ can be estimated in advance either by (i) the sample mean or by (ii) the median.
The median is more robust to outliers, especially in small samples. Alternatively,
µ can be estimated simultaneously with d by (iii) the CSS estimation procedure.
Significant biases towards d occur with simultaneous estimation of µ and d when
the number of samples is low.

If d is estimated conditional on known µ, the magnitude of the bias drops.
Furthermore, an increase of the sample size n also reduces the bias of the estimates
of d. It has to be noted that the sample sizes Baillie and Chung have worked with
are very small (100 - 300 samples). The time series applied for estimating the
credit return model have more than 2000 samples, so there should be less bias.
In order to reduce bias for d̂, the estimation of d with CSS will be performed
conditional on known µ - as µ is intended to be estimated in advance. Thus, the
applied estimator is supposed to be robust.

A useful check of the appropriateness of the estimator for mean µ or a possible
bias is to use all three estimation techniques (sample mean, sample median, CSS)

1e.g. the application of the student-t distribution, see Chung and Baillie (1993).
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and compare the obtained results. Radical differences would indicate a specifica-
tion problem.

Clearly, an estimator based on conditional sum of squares cannot be used for
heavy-tailed time series (α < 2) without modification. In the following, a proper
modification is derived in order to make the CSS estimator applicable for heavy-
tailed time series.

11.2.2 Modification of The CSS Estimator

The modification of the CSS estimator is actually done by transforming the time
series the estimator is applied to. The known Gaussian CSS estimator is then used
for the transformed time series.

First, the tail index α of the time series must be determined. For the time
series of the residuals εt, the value of α will be between 1 and 2. In this case not
the conditional sum of squares but the conditional sum of p-th powers has to be
applied for proper estimation of the parameters, with 1 ≤ p < α.

For estimation procedures based on least-squares techniques in the Gaussian
domain, the p-th sample absolute moment m̂p = 1/n

∑n
i=1 |ûi|p has to be applied

in the stable non-Gaussian domain, where n represents the sample size and α is
restricted to 1 ≤ α < 2). The fact is proven in the following.

Lemma 1 The ut are i.i.d. disturbances2 in the normal domain of attraction of
a symmetric α-stable random variable X. Let X be a symmetric α-stable random
variable with characteristic function EeiθX = e|δθ|α , 0 < α < 2.

Then E |X|p = C(p, α)σp, 0 < p < α.

where C(p, α) = 2p+1Γ(p+1
2

)
Γ(−p

α
)

α
√

ΠΓ(−p/2)
and Γ(.) is the Gamma function.

Therefore, for 0 < p < α, the estimator σ̂p for σ is defined as σ̂p =
(

m̂p

C(p,α)

)1/p

,

where m̂p is the p-th sample absolute moment m̂p = 1
n

∑n
i=1 |ûi|p.

From this it can be concluded: σ̂p → σ, almost surely, that is: σ̂p is a strongly
consistent moment estimator for σ, 0 < p < α. If ut follows a stable law with
index α, then all absolute moments E(ut)

p of order 0 < p < α exist. For p ≥ α,
the moments are infinite.

The proof is given in Rachev and Mittnik (2000).

2See Rachev and Mittnik (2000).
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Next the limiting behavior of |ui|p/2 is analyzed for 0 < p < α.
The p-th absolute sample moment is written as

1

n

n∑
i=1

|ui|p, (11.2)

where 0 ≤ p < α < 2 and u is a symmetric α-stable random variable which has a
zero mean and n is the sample size. Recall that, as λ → ∞, P (|ui| > λ) ≈ Cλ−α,
and thus

P (|ui|p > λ) ≈ C

λα/p
as λ → ∞. (11.3)

and p > α/2.
Thus, |ut|p is in the domain of attraction of the stable Paretian law with index

α/p.
Feller’s Central Limit Theorem for the α-stable law implies

n(α−p)/α

(
1

n

n∑
j=1

|ui|p − E(|ui|p)
)

→w Sα/p , (11.4)

where Sα/p is a stable random variable with index α/p (see Feller (1971)).
Since 1 ≤ p < α, then the variance

var(|ui|p/2) = E(|ui|p) −
(
E|ui|p/2

)2
(11.5)

is finite, and therefore, |ui|p/2 is in the domain of attraction of a Gaussian law:

n1/2

(
1/n

n∑
i=1

|ui|p/2 − E(|ui|p/2

)
→w N(0, var(|ui|p/2)), (11.6)

while the variance var(|ui|p/2) can be expressed by equation (11.5). Thus, if the
time series of |εi,t| is transformed according to

zi,t = |εi,t|pi/2, with i = 2...6, (11.7)
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the CSS estimator can be applied to it, where 1 ≤ pi ≤ αi.
3 Analyzing the tail

indices αi of the εi,t, 1 < αi < 2 will be found in all cases. Setting pi = 1, the
final estimator is suitable for all 1 < αi < 2 and becomes equal for all time series
|εi,t|. Thus, it will be set for all equations of the credit return model: zi,t = |εi,t|1/2.
The CSS estimator can now be applied to the model (zi,t − µz,i)(1 − L)diΦi(L) =
Θi(L)ui,t. Measuring the stability indices of the zi,t it can be found that those are
close to 2 or even equal to 2.

The estimator will be applied to fit the stable FARIMA(0,d,0) model first:

(zt − µz)(1 − L)d = ut. (11.8)

Then it has to be tested, if AR or MA components are significant and have to
be added.

Annotation: It does not matter if the random variable of interest with αi < 2
is transformed from |εi,t| into |εi,t|pi/2 or if the estimator is modified from sum of
squares to the sum of p-th powers. The resulting sums are identical.

The modified CSS estimator for stable distributed time series with α < 2 is
a new estimator to obtain the fractional differencing operator for heavy-tailed
processes, eg. stable FARIMA. As demonstrated - the limiting behavior of the
estimator is in the Gaussian domain of attraction.

In order to obtain the estimate for µ, the sample mean will be chosen. As
mentioned, the sample size is relatively large and because of the transformation
|εt|1/2 the impact of outliers is reduced. Therefore, the selection of the sample
median as an estimator for the mean of the process should not be an improvement
compared to the sample mean.

The next section discusses two testing methods to validate the estimator:

• First, it presents how to test the robustness of the modified CSS estimator
for stable time series.

• Second, it describes a moving-blocks bootstrapping procedure that empir-
ically derives the asymptotic distribution of the estimates and tests their
significance.

11.3 Checking Inference For FARIMA

11.3.1 Robustness Of The Estimator

Assessing the robustness of the estimator, the stability of the estimates of the sum
of p-th powers has to be examined for moving p. Assuming p would move from 1

3i = 1...5 represents the five credit rating grades AA, A, BBB, BB, B.
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to α, how would this affect the estimates of the parameter d and eventual other
parameters? Thus, the parameters have to be estimated for various values of p,
p ∈ [1; α). Several values for p are selected from the interval in ascending order
with constant distances between subsequent p.

A robust estimator should exhibit only slight changes for the values of the
estimates over the range of p.

Parametric bootstrap methods show that inference in FARIMA processes is
quite reliable in finite samples (Ooms and Doornik, 1999). The significance of
the parameter estimates confirms the choice of the model. Especially, the deter-
mination of the significance of the fractional differencing parameter is difficult.
To empirically obtain the asymptotic distribution of the estimate, traditional re-
sampling methods do not work. Thus, a special bootstrapping method has been
developed for this problem.

11.3.2 Significance Of The Estimates

In order to evaluate the significance of the estimates of the fractional differenc-
ing parameter d, a moving-blocks bootstrapping procedure will be applied. The
bootstrapping procedure provides the empirical distribution of the estimate. For
the fractional differencing parameter d, the variance of the estimate cannot be
calculated directly (as for example in a linear regression). In order to test the hy-
pothesis H0 : d = 0 against H1 : d �= 0, the asymptotic distribution of the estimate
d̂ is required.

Traditional bootstrap and jackknife methods, invented by Efron (1979), are
based on independent and identically distributed obeservations. However, this
method is not suitable for a long-memory process as it destroys the long-range
dependence in the sample.

To obtain a variance for the estimated long-memory parameter d̂, a moving-
block bootstrapping algorithm is suggested. This method has been introduced
for cases when the data is not independent. Maharaj (1999) has proposed such
a test for the estimation of the fractional differencing operator d̂, determined on
a stationary dependent data set.4 The idea is to keep the dependence structure
between the observations. So-called moving blocks are defined from the original
time series of length n, x1, ..., xn. For the original time series, there exist n− b + 1
moving blocks consisting of b consecutive observations. These moving blocks are
B1, ..., Bn−b+1. The j-th block consisting of b consecutive observations is Bj =
{xj, ..., xj+b−1}. A resampling of the blocks is performed by randomly drawing k
blocks with replacement, and the blocks are pasted together forming a new time
series of k∗b ≈ n observations again. This produces a set of blocks {B∗

1 , ..., B
∗
k}. It

4In her publication the test is applied for a different type of estimator for d.
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is important to select a block size b that is large enough to capture the long-range
dependence among the observations (the autocorrelation structure of the samples
should not be destroyed). It can be assumed that observations that are more than b
units apart show only weak dependence or are almost independent. As mentioned,
a resampling from independent observations clearly cannot be applied as it would
of course destroy the dependencies.

The moving-blocks bootstrapping method is a non-parametric method and
thus, does not require that a parametric or semi-parametric model has to be fitted
to the dependent data first.

According to Hall, Horowitz and Jing (1995), the choice of the block size b
depends on the context of the problem and is a data driven selection. Asymptotic
theory makes the block size increase with the sample size. The bootstrap test
statistic is a metric with d̂ as the estimate of the original time series and d as
the value of the fractional differencing operator in the null-hypothesis. The test
statistic is

W = |d̂ − d|. (11.9)

To obtain a first order asymptotic approximation to the distribution of W under
the null hypothesis, the bootstrap method is performed J times. Each bootstrap
sample delivers an estimate d̂∗, and the test statistic W ∗ is calculated for each:
W ∗ = |d̂∗−d̂|. All J values of W ∗ form the bootstrap estimate of the distribution of
W . The bootstrap p∗-value is an estimate of the p-value that would be associated
with the test statistics W . p∗ is obtained as the frequency that the value of W ∗

exceeds W , divided by J :

p∗ = #(W ∗ > W )/J . (11.10)

Introducing a nominal significance level δ, H0 is rejected if p∗ < δ.
The moving-blocks bootstrap procedure is applied to each estimate of the alto-

gether 15 fractional differencing parameters di in the above introduced multivariate
model. The time series zi,t are divided into 10 blocks, each having a length of 217
units. This indicates a ratio between block size b and sample size T of b = T 0.7

which is similar to the example in Maharaj (1999). J is set to 1000, meaning that
each time series is resampled 1000 times. The block length (217 units) is sufficient
not to destroy the long-memory structure in local areas of the time series. It is
furthermore sufficient to detect if the long-memory parameters strongly vary from
block to block, and if for certain resamplings the long memory would vanish. For
the estimation of the di, the infinite lag polynom was cut at lag 500.
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Analyzing the obtained empirical distribution of W , it is important to check if
it is moving towards a normal distribution. If this can be confirmed, the p-values
of the hypothesis test can be calculated.

The introduced moving-block bootstrapping test applied to the CSS estimates
helps to reveal if the processes governing different blocks of a time series are homo-
geneous or, if they are inhomogeneous and the obtained estimate for the fractional
differencing turns out not to be significant.

Berkowitz, Birgean and Kilian (1999) however point out that there could be a
bias in the estimate of a statistic when resampling blocks of b consecutive observa-
tions from the original sample. The bootstrap procedure treats consecutive blocks
as conditionally independent. The jumps between the blocks are reported as the
reason for the bias of the estimates.

Indeed, it might be questionable to what degree such jumps are quantitatively
relevant within large sample sizes of more than 2000 observations as in this case
here. Thus, the given moving-blocks bootstrapping specification complies with the
underlying problem as autocorrelations decay hyperbolically over the lags. Only
those observations that are very close to the left boundaries of the blocks face
the impact of the boundaries. Due to the large size of the blocks, the fraction of
affected observations should not be meaningful.

However, for the objective of the bootstrapping procedure is not the exact
estimation of the desired parameter with the least bias. Instead, it is important
to have a sufficient precision for testing the significance of the obtained parameter
estimates d̂.

11.4 Conclusion

The results of this chapter can be summed up as follows:

• A new estimator to obtain the fractional differencing parameter d for heavy-
tailed times series has been developed, based on the modification of the
Gaussian Conditional Sum of Squares (CSS) estimator. The advantage of
this estimator is that it is less complex and difficult to implement than other
estimators under the stable assumption. Additionally, it is less computation-
ally burdensome than other estimators.

• The estimator is defined for p with 1 ≤ p < α. The robustness of the estima-
tor has to be tested for different values of p. The significance of the estimates
of the fractional differencing parameter d can be tested by a moving-blocks
bootstrapping procedure.

The following chapter presents the estimation results of the multivariate FARIMA
for the credit return model. In addition, the significance of the estimates is tested
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with the introduced moving-blocks bootstrapping procedure. The accuracy of the
long-memory model for Value at Risk forecasts is evaluated and compared with
the forecast accuracy of the EWMA model of chapter 9.
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Chapter 12

Empirical Long-Memory Analysis

This chapter presents the fitting results of the multivariate FARIMA model for
the credit return model. The exact FARIMA specification is determined and the
fractional differencing parameter d is estimated for each combination of credit
rating / maturity. FARIMA(0,d,0) turns out to be the proper specification and
the estimates of d are all significant.

Analyzing the accuracy in one-step-ahead Value at Risk forecasts, it is found
that the long-memory model exhibits on average a better performance over all
credit rating / maturity combinations than the formerly chosen EWMA model.

Furthermore, the chapter introduces copulas, which are a better and more
natural description of dependence than Gaussian correlations. It can be demon-
strated that the developed long-memory FARIMA model allows the application of
a Gaussian copula, which is especially tractable for the high-dimensional case, for
a random vector with stable marginals.

12.1 The Data

For building the cointegrated VAR with an LRD model in the residuals, a longer
sample time series was used (2170 observations) compared to the VAR with tra-
ditional GARCH models. The estimation of LRD parameters usually require a
larger set of data to obtain significant estimates. The parameters of short-memory
GARCH processes are - which is known from experience - less stable over time and
have to be updated regulary.

For modeling the transformed absolute values |εi,t|p/2, 1 ≤ p < αi, the parameter
p is set to 1. This choice satisfies the condition 1 ≤ p < αi for all i and enables an
equal parameter p for all variables |εi,t|p/2.

197
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12.2 Analysis Of The SACF

First, a graphical examination of the five residuals of each maturity (after regres-
sion on the common credit risk factor resc) is performed.

Clustering volatility is both a sign of long memory and traditional autoregres-
sive heteroscedatic models. The autocorrelations of LRD models show a hyperbolic
decay. The following figure 12.1 presents the sample autocorrelation functions
(SACF) for the transformed absolute values |εi,t|1/2 of the residuals of the 2, 10,
and 30 - year-maturity cointegrated VAR.

As it can be seen from figure 12.1, all graphs show mainly positive, slowly
decaying, autocorrelations. Slight negative autocorrelations are only measured at
lags beyond 40. Especially, the B ratings exhibit a steady hyperbolic decay which
indicates that they show a stronger long memory than the AA rated, and are
therefore supposed to have a greater fractional differencing parameter d.

12.3 Estimation And Model Testing

The building and estimating of the proper FARIMA(p,d,q) specification for the
residuals of each equation of the cointegrated VAR is performed step by step with
validation following.

First, the time series zt = |εt|1/2 are built. The first model to be estimated is
the FARIMA(0,d,0):

(zt − µz)(1 − L)d = ut, (12.1)

where

zt = |εt|1/2. (12.2)

The elements of vector ut are supposed to be i.i.d. and follow a stable law. d
is a vector containing the di for each maturity / credit rating combination.

If significant short-term autocorrelations would be found in the ut, this would
indicate a specification error. Thus, both the SACF and SPACF will be plotted
and analyzed for the elements of ut.

As the autocorrelations of zt for the first lags are relatively low and do not
decline sharply, the presence of a short-term AR polynomial can probably be de-
nied. To demonstrate that there is no short term AR component, FARIMA(0,d,0)
and FARIMA(1,d,0) are estimated simultaneously. The addition of a short-term
AR component can be tested with the residuals-based F-test. The results of the
estimation procedure are presented in table 12.1:
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Figure 12.1: SACF of |ε|1/2. The plots for AA are on the left and the plots for B on the right, with maturities
2, 10, and 30 years (starting with upper row).
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d̂ d̂ AR(1) AR(1) p-Value F-Test

AA 2y 0.1337 0.0919 0.1082 0.1092
A 2y 0.1473 0.1020 0.1163 0.0807

BBB 2y 0.1411 0.1426 -0.0038 0.9540
BB 2y 0.1539 0.1503 0.0113 0.8356

B 2y 0.1757 0.1502 0.0746 0.1724
AA 10y 0.1320 0.1232 0.0219 0.7434

A 10y 0.1543 0.1760 -0.0512 0.4325
BBB 10y 0.1220 0.1529 -0.0772 0.2469

BB 10y 0.1559 0.1556 0.0007 0.9893
B 10y 0.1609 0.1671 -0.0180 0.7475

AA 30y 0.1159 0.0961 0.0559 0.3867
A 30y 0.1084 0.1067 0.0043 0.9488

BBB 30y 0.1212 0.1306 -0.0241 0.7192
BB 30y 0.1595 0.1669 -0.0227 0.6704

B 30y 0.1763 0.1782 -0.0053 0.9173

Table 12.1: CSS-estimates of d for FARIMA(0,d,0) and FARIMA(1,d,0), the parameter value for the AR(1)
component and the p-value of the F-test.

The second column from the left is the CSS-estimate of d for the FARIMA(0,d,0)
model. The d̂i lie all in the interval [0.1084, 0.1763]. The fractional differencing pa-
rameters di seem to increase from higher to lower credit quality. The addition of an
AR(1)-component does not improve any of the 15 models, only the A-2y-equation
has a probability value of less than 0.10 for the F-test.

The validity of the model specification is further examined by analyzing the
behavior of the ui,t. The plots of SACF and SPACF for all equations indicate no
short-term AR or MA component, it can be confirmed that the ui,t are i.i.d.

In figure 12.2, the kernel plots of the empirical density of the elements of ut

show that the distribution is extremely skewed to the right. This is confirmed
by the results of fitting the empirical distributions with the four-parameter stable
distribution.

The shape of the distributions does not exhibit strong peakedness and the
stability index mainly appears to be close to the Gaussian case. This is related
to the transformation |εt|1/2 which causes a contraction of the range of the sample
data and especially outlier-observations are shifted closer to the center. In case
of αi < 2, the skewness property is expressed by a skewness parameter βi �= 0.
However, if αi = 2 is obtained by the ML-procedure, βi is fixed to be zero.

The parameters of the stable fitted ut are given in table 12.2.

The αi of the fitted ut vary between 1.7 to 2. It has to be noted that the
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Figure 12.2: Kernel plots of the probability density for selected elements of ut: the 2-year (left), 10-year (center),
and 30-year (right) of BBB.
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α β γ δ

2y AA 2.0000 0 0.005656 -0.0002655
2y A 1.718539 1 0.004902212 -0.001619482

2y BBB 2.0000 0 0.005721 -0.0006651
2y BB 1.6929973 1 0.006014521 -0.002246872

2y B 1.7472074 1 0.006706087 -0.00201588
10y AA 1.7916044 1 0.010917696 -0.003059942

10y A 2.0000 0 0.01232 -0.001362
10y BBB 1.7214655 1 0.010692806 -0.00403184

10y BB 1.7505914 1 0.013735287 -0.004745075
10y B 1.6851007 1 0.01536055 -0.00613727

30y AA 1.7641642 1 0.017257767 -0.004701462
30y A 2.0000 0 0.02039 -0.0006025

30y BBB 1.7150517 1 0.017816765 -0.005805664
30y BB 1.6855322 1 0.022266536 -0.007859206

30y B 1.7011069 1 0.025222148 -0.008027554

Table 12.2: Stable fitting of ut allowing individual stability indices. Some elements exhibit αi = 2.

skewness parameter βi is equal to 1 for all cases with αi < 2. In case the fitting
procedure determines αi = 2 the skewness property cannot be modeled.

In order to keep the extreme skewness property which is important for the
accuracy of Value at Risk measurement, the skewness parameter β can be fixed in
advance. Thus, the fitting of the elements of ut by Maximum Likelihood is now
performed with 3 parameters only, setting β = 1. This has an impact on the fitted
parameters of the elements 2y AA, 2y BBB, 10y A, and 30y A. The results are
given in table 12.3.

As the ut exhibit strong skewness to the right, the right tail is important for
the Value at Risk estimation. The results of the four-parameter fit is that for those
elements of ut which have α < 2, the skewness parameter becomes 1. For those
elements of ut with αi = 2 originally, setting βi = 1 results in αi around 1.7 which
is similar to the αi of the other elements of ut. By doing this the skewness of all
elements of ut is kept.

In order to model the dependence between the elements of ut applying the
sub-Gaussian approach1, a common index of stability for all equations would be
required. The average of all stability indices is 1.8690. As this value is less than
2, the extreme skewness property of the ut is kept as β is allowed to be different
from zero. The approach of Rachev, Khindanova and Schwartz (2001) splits each

1See Rachev, Schwartz and Khindanova (2001)
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α γ δ

2y AA 1.7532765 0.00512446 0.000648712
2y A 1.7193429 0.004883423 0.000678346

2y BBB 1.7332084 0.005161207 0.000714781
2y BB 1.6910177 0.006007861 0.000938096

2y B 1.7433563 0.006655177 0.000801312
10 y AA 1.793435 0.010933613 0.000660316

10 y A 1.8361544 0.011384275 0.000528621
10 y BBB 1.7212313 0.01065713 0.000948069

10 y BB 1.7512531 0.013690179 0.000877043
10 y B 1.6871254 0.015316269 0.002055915

30 y AA 1.7644 0.017209445 0.001980125
30 y A 1.7448896 0.017081686 0.002081445

30 y BBB 1.717224 0.017819211 0.002710935
30 y BB 1.6849063 0.022264373 0.004202894

30 y B 1.7032394 0.025113989 0.004566008

Table 12.3: Stable fitting of ut under the restriction β = 1, allowing individual stability indices.

element of ut into a dependent symmetric and into an independent skewed part.
However, the sub-Gaussian approach exhibits some disadvantages:

• The necessary choice of a common stability index for all elements of the
vector ut results in a loss of goodness of fit.

• In addition, the estimation of the Gaussian correlation between two stable
distributed time series poses the problem of proper truncation of the time
series.

• Furthermore, it is doubtful that the dependence between two random vari-
ables is represented appropriately by a linear measure such as correlation.

In order to overcome the above mentioned deficiencies of the sub-Gaussian
approach, advanced approaches use copulas to model the dependence between
random variables. Copulas are a natural way to model dependence. The type of
copula that will be chosen for a skewed stable random vector here does neither
require common stability indices nor splitting each element of the random vector
into a skewed independent and a symmetric dependent component. The approach
is capable of describing the dependence structure of a high dimensional multivariate
stable random vector. This should result in a more accurate Value at Risk as each
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element of ut is allowed to keep its original stability index which determines the
density in the tail.

Copulas are introduced in section 12.7.

12.4 Results Of Robustness Check

The robustness of the estimator for the fractional differencing parameter d has to
checked depending on the value of p. Transforming the vector of interest |εt| by
taking the p/2-th power , 1 ≤ p < α, it has to be checked how the estimates of d
behave for a range of values taken from p ∈ [1, α).

d̂ 1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.45

AA 10y 0.1569 0.1578 0.1586 0.1593 0.1599 0.1604 0.1607 0.1610 0.1611 0.1611
B 10y 0.1631 0.1643 0.1655 0.1666 0.1677 0.1687 - - - -

Table 12.4: Testing the robustness of the estimator for d, depending on the value of p.

The robustness of the estimator is tested for two residual series εi,t; one is the
AA with 10-year maturity, the other is the B with 10-year maturity. The two series
have been chosen as representatives of the lowest and the highest credit quality
within the model. The αi for 10-year AA residuals is 1.47 while for 10-year B
residuals it is 1.27.

As it can be seen from figure 12.3, the obtained estimates for various p differ
only slightly. Within the range of p ∈ [1, α), the estimate of di for 10-year AA
increases by 2.68% and for 10-year B by 3.43%. Thus, it can be concluded that
the chosen CSS-estimator for d is quite robust. As the estimates remain quite
stable for different values of p, it is justified to set p = 1 for the estimator in each
of the series |εi,t|p/2. The results of table 12.4 indicate that the robustness of the
estimator does not seem to be influenced by the credit quality. It is reasonable to
assume the same for the series of the 2-year and 30-year maturities as well.

12.5 Results Of Moving-Block Bootstrapping

The results of the moving-blocks bootstrapping procedure are given in tables 12.5
- 12.7. For each time series |εi,t|1/2, the fractional differencing parameter has been
estimated with 1000 resamplings. It is desirable that the density of the obtained
empirical distribution of the estimates moves towards a normal distribution. The
skewness and the kurtosis of the obtained empirical distributions will be measured
and compared with the values that are characteristic for the Gaussian. Possible
biases are usually indicated by skewed distributed empirical results.
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Figure 12.3: Robustness of CSS-estimator for various values of p.

2 year AA A BBB BB B
estimate (1) 0.133656 0.147312 0.141121 0.153875 0.175750

bootstrap-mean (2) 0.127999 0.132907 0.135833 0.140305 0.159345
bootstrap-std 0.028362 0.027818 0.020811 0.021837 0.025927
diff. (1) - (2) 0.005656 0.014405 0.005287 0.013569 0.016404

skewness -0.326504 0.017937 -0.769932 -0.976921 -0.054311
kurtosis 3.034757 2.531610 3.996542 4.509883 2.566734

Table 12.5: Analysis of the empirical distribution of moving-block bootstrapping estimates d̂, for 2-year maturity.

The first line (”estimate (1)”) in tables 12.5 - 12.7 provides the estimates for
the original time series. The second line gives the mean of the moving-blocks
bootstrapping estimates (”bootstrap-mean (2)”). The difference between the es-
timate and the bootstrap-mean is given by ”diff. (1) - (2)”. ”bootstrap-std” is
the standard deviation of the empirical distribution of bootstrap estimates. The
deviation from the Gaussian distribution is measured by the empirical kurtosis
and skewness. The skewness of the distribution of the bootstrap estimates d̂i is
computed as
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10 year AA A BBB BB B
estimate (1) 0.131980 0.154250 0.121976 0.155875 0.160875

bootstrap-mean (2) 0.123733 0.133348 0.106432 0.206238 0.201524
bootstrap-std 0.031002 0.034637 0.037061 0.065315 0.049112
diff. (1) - (2) 0.008247 0.020901 0.015544 -0.050363 -0.040649

skewness -0.291501 0.000630 0.003259 0.469126 0.122658
kurtosis 2.744693 2.919323 2.726910 2.355432 2.806747

Table 12.6: Analysis of the empirical distribution of moving-block bootstrapping estimates d̂, for 10-year matu-
rity.

30 year AA A BBB BB B
estimate (1) 0.115882 0.108359 0.121164 0.159500 0.176343

bootstrap-mean (2) 0.111381 0.099378 0.110523 0.134360 0.163698
bootstrap-std 0.018348 0.013727 0.029297 0.033559 0.033403
diff. (1) - (2) 0.004500 0.008980 0.010640 0.025140 0.012644

skewness -0.389375 -0.208527 -1.416338 -1.857207 -0.267275
kurtosis 3.340196 2.936556 5.600807 7.769564 2.538950

Table 12.7: Analysis of the empirical distribution of moving-block bootstrapping estimates d̂, for 30-year matu-
rity.

S =
1

N

N∑
i=1

(
d̂i − d̄

σ̂

)3

, (12.3)

where σ̂ is based on the biased estimator for the variance. Positive skewness means
a long right tail and negative skewness a long left tail. For the normal and all other
symmetric distributions, the skewness is zero. N is the number of samples (i.e.
the number of resamplings with the bootstrap procedure). The kurtosis is defined
as

K =
1

N

N∑
i=1

(
d̂i − d̄

σ̂

)4

, (12.4)

where σ̂ is based on the biased estimator for the variance. For the normal distri-
bution, the kurtosis is 3. For K > 3, the distribution is peaked, for K < 3 the
distribution is flat. N denotes the number of samples.

In general, the means of the bootstrap estimates deviate only slightly from the
estimates of the original series. Exceptions are the 10-year BB and B models. How-
ever, the differences between original estimates and bootstrap-mean are always less
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than one standard deviation of the bootstrapping estimates. For the speculative
grades, slight skewness can be observed for the distribution of the estimates which
means a minor deviation from the shape of the normal distribution. The estimates
for the 30-year BBB and BB exhibit the largest values for the empirical kurtosis
and a distinctive skewness. While for the investment grade series the bootstrap
estimates are almost normally distributed, the estimates for BB and B are slightly
skewed to the left. I remains a question if this could be overcome by choosing a
larger number of bootstrapping samples. As the speculative grades tend to have
a larger d, the autocorrelations for longer lags are larger, and thus, could lead
to greater jumps between consecutive blocks. Increasing the length of the blocks
might be a remedy. On the other hand, the 10-year A investment grade also ex-
hibits a relatively large d̂ of 0.15425, but skewness of the empirical distribution of
the estimate is obviously not the case. Generally speaking, the empirical asymp-
totic distributions of the bootstrapping estimates for the fractional differencing
parameter are roughly normal with few exceptions. Performing a larger number of
resamplings should improve the shape of the distribution towards normal. After
calculating W = |d̂∗ − d̂| in order to obtain W ∗, the resulting bootstrap-based
p-values are given in table 12.8.

p-values AA A BBB BB B

2 year 0 0 0 0 0
10 year 0 0 0.0010 0.0680 0.0060
30 year 0 0 0 0.0050 0

Table 12.8: Bootstrap-based p-values for estimates of d.

Except for the estimate in the 10-year BB model, all estimates of parameter
d are significant at a level of 0.01. This justifies both the inference of a fraction-
ally integrated process for |εi,t|1/2 and the selection of the FARIMA(0,d,0) model.
Additionally, it confirms the performance of the chosen estimator for d.

The following section 12.6 examines the dependence among the elements of
ut, both for the centers of their distributions and for the tails. In section 12.7
a copula will be introduced that is capable of describing the dependence between
skewed stable distributed elements of high-dimensional multivariate stable random
vectors.

12.6 Analyzing Dependence In ut

After the FARIMA process has been estimated and the significance of the estimates
has been demonstrated, the vector ut representing the FARIMA-noise is examined.
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Analyzing the dependence between the elements of the ut, correlations are
measured for the whole sample without truncation first. The results are presented
in table 12.9.

2 year AA A BBB BB B

AA 1 0.4212 0.3902 0.2211 0.1628
A 0.4212 1 0.4222 0.24 0.1478

BBB 0.3902 0.4222 1 0.2411 0.1453
BB 0.2211 0.24 0.2411 1 0.2986

B 0.1628 0.1478 0.1453 0.2986 1

10 year AA A BBB BB B

AA 1 0.5603 0.5255 0.2765 0.2189
A 0.5603 1 0.5011 0.2538 0.2043

BBB 0.5255 0.5011 1 0.2779 0.1966
BB 0.2765 0.2538 0.2779 1 0.3822

B 0.2189 0.2043 0.1966 0.3822 1

30 year AA A BBB BB B

AA 1 0.3531 0.3649 0.154 0.1635
A 0.3531 1 0.3584 0.1728 0.1861

BBB 0.3649 0.3584 1 0.1475 0.1393
BB 0.154 0.1728 0.1475 1 0.3347

B 0.1635 0.1861 0.1393 0.3347 1

Table 12.9: Correlations between the elements of ut, taking the whole sample without truncation.

Examining the un-truncated samples, it is found that they exhibit considerable
correlations. However, it has to be analyzed if those correlations are mainly present
due to the tails of the right-skewed distributions of ut or if they are equally present
both in the center and tail. To get a deeper insight, the correlations are now
calculated separately for the observations in the tail and for the observations in
the center.

The distinction if an observation belongs to the center or the tail is made
according to the following rule: An observation (vector) at time t, ut, is counted
as an observation of the tail if at least one of its elements is greater than the 90%
quantile of the empirical distribution. All other observations are counted for the
center. This means, that for the 2-year maturity, 1144 vector-observations lie in
the center and 535 are in the tails. The 10-year maturity has 1154 in the center
and 525 in the tails, the 30-year maturity has 1107 in the center and 572 in the
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tails. The sample size of ût is 1679 as the residuals ût cannot be calculated for the
first 500 observations.2

The observations in the tails usually have a greater distance from the series’s
mean than the observations in the center. Thus, observations in the tail areas cause
a larger contribution to the correlation coefficient than an observation taken from
the center. However, the kind of conditioning for the tail is important. Therefore,
at this stage, a closer look at the problem of tail correlations is required.

Having a sample of observations with a given threshold, the tail of a distribu-
tion can be perfectly described by the three parameters: the tail probability, the
dispersion parameter, and the tail-index.

In the multivariate case, asymptotic independence of extreme returns is reached
very often. The following rule is presented by Longin and Solnik (2001): If all cor-
relation coefficients between any two components of a multivariate normal process
are different from +/−1, then the return exceedances tend to independence as the
thresholds used to define the tails tend to the upper endpoint of the distribution
(+∞ for the normal distribution). In particular, the asymptotic correlation of
extreme returns is equal to zero.

The correlation drops the more distant the returns are from the process mean.
For extreme returns it goes to zero.

The question if correlation is higher in periods of volatile markets (large abso-
lute returns) was usually examined by conditioning the estimated correlation on
the observed (ex post) realizations of market returns. Dividing a bivariate sample
in 50% large and 50% low returns3 and assuming constant correlation between
the series, the conditional correlation of large returns is certainly higher than the
conditional correlation of low returns. This can be easily proved by simulation.
However, Gibson, Boyer and Loretan (1999) show that conditional correlation is
highly non-linear in the level of return the sample is conditioned.

Thus, the major source of differences comes from the way of conditioning. If
conditioned on the absolute value of the realized returns, the conditional corre-
lation increases with the threshold. This is because the truncated distribution
retains the same mean as the total distribution. The estimated correlations are
larger than the true correlation. However, if the sample is conditioned on signed
extremes (positive or negative), which means that the mean of the signed distri-
bution is not equal to the mean of the total distribution, then the conditional
correlation of a multivariate normal distribution decreases with increasing thresh-
old and finally reaches zero for extreme returns.

Therefore, it would be wrong to assume that extreme returns of dependent
multivariate normal distributions appear highly correlated as they are large in

2The infinite lag polynomial was cut off at lag 500.
3According to their absolute size.
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comparison with the mean of all returns. Two extreme returns are not necessarily
correlated as they might not be large compared to the mean of the extreme returns.

Table 12.10 displays the correlations obtained for both the tails and the centers
of the samples. It can be observed that correlations among center observations
seem to be more balanced as the are more stable even beyond neighboring rat-
ing grades. Correlations in the tails are rather lower than correlations between
the whole sample and positive almost only between neighboring series. Between
neighboring investment grade series, tail correlations are higher and remain sta-
ble when the threshold increases, and they drop very late. To demonstrate this,
a more detailed look is held at the tail correlations between neighboring rating
grades of equal maturity.

For illustration, figure 12.4 provides scatterplots of the ui,t-representations of
the neighbored A and BBB for maturities 2 years, 10 years, and 30 years. The
graphs below plots the corresponding tail correlations for increasing thresholds.
While the tail correlations drop evenly for the 2-year and 30-year maturities, the
behavior of the 10-year maturity tail correlation remains relatively high with in-
creasing threshold first and suddenly plunges.

For the tail correlations, it can be concluded:

• If ever - tail correlations only play a role for neighboring rating grades.

• Between distant rating grades the tail correlations are sometimes not sig-
nificant. For example, tail correlations between speculative and investment
grade series are mostly weak and even become negative at lower thresholds.
This is due to the fact that the corresponding tail observations of two series
are often located on the opposite sides of their respective means (i.e. the
means of the tail observations of the series).

• However, even neighboring rating grades show a rapid decline in tail corre-
lations when the threshold increases.

• Only the ui,t of neighboring 10-year investment-grades4 have tail correlations
that are greater than their center correlations, and that drop relatively late.

Thus, it can be concluded that, at least for the most cases here, the correlations
in the tails decline for increasing threshold. A systematic increase of correlations
in the tails caused by outliers could not be observed. This is important as now
the dependence can be modeled by methods based on the Gaussian correlation
matrix without further adjustments of the time series. Such methods that describe
the dependence between random variables with stable marginals based on the

4This means the rating grades AA - BBB.
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Figure 12.4: Scatterplots and tail correlations within ut for the neighbored grades A and BBB for maturities 2
years (left), 10 years, and 30 years.
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Gaussian correlation matrix are, for example, the above introduced sub-Gaussian
vector and the Gaussian copula with stable marginals introduced in section 12.7.2.
A truncation of the outliers in the tails of the sample is not required for the
application of these methods.

With the model

(zt − µz)(1 − L)d = ut, (12.5)

where zt = |εt|1/2,

the LRD and the strong heavy-tailedness are captured, and thus do no more
appear in the ut.

The elements of ut are i.i.d. and follow associated skewed stable distributions
with common stability index, Sα(β, γ, µ). Their stability index is mostly close to
2.

The dependence between the elements of ut can, for example, be modeled
by splitting each stable random variable ut,i into two independent components:
a totally skewed stable and a symmetric stable random variable. The symmet-
ric component models the dependence between the time series of different rating
grades by the application of a sub-Gaussian vector. However, the application of
such a sub-Gaussian vector is quite awkward for the given problem.

An advanced method of modeling the dependence between the elements of a
stable random vector is the application of copulas. Copulas describe the depen-
dence within a random vector much better than the correlation as a traditional
measure. However, so far the use of copulas for the multi-asset case seemed to be
too complex, especially for the stable non-Gaussian case. Examples have mostly
just considered the bivariate or low-dimensional cases.

Considerable progress has been made in the development of copulas recently.
The reader is here - for example - referred to Embrechts et al.5 A big step forward
in describing the dependent behavior of multi-asset returns under the stable non-
Gaussian assumption has just been developed by Bravo Risk Management Group.6

12.7 Copulas As Measure For Dependence

The commonly used covariances are only one particular measure of stochastic de-
pendence and are based on the assumption of multivariate normally distributed
returns. The application of covariances respectively correlations becomes prob-
lematic in case of heavy-tailedness and skewness. Under the α-stable assumption,

5See Embrechts, McNeil and Straumann (1999) as well as Embrechts, Lindkog and McNeil
(2001).

6Bravo-Group (2002).
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for symmetric heavy-tailed returns sub-Gaussian vectors are able to model the de-
pendence based on Gaussian covariances. Stable random vectors with asymmetric
distributions so far could not be directly represented with their dependence struc-
ture. They had to be split into a symmetric dependent and a skewed independent
component.

Currently copulas are seen as the best approach understanding the stochastic
dependence between random variables.7 The following section explains the general
idea of copulas. Finally, a copula is introduced that describes the dependence for
skewed stable non-Gaussian marginals.

12.7.1 General Idea of Copulas

This section explains the theory of copulas and provides the general formal concept.
Copulas deal with probability integrals and quantile transforms. Thus, before

defining the concept of copulas, an important proposition will be illustrated first:8

Proposition 1 Let X be a random variable with distribution function F . Let F−1

be the quantile function of F , i.e.

F−1(α) = inf {x|F (x) ≥ α} , α ∈ (0, 1) (12.6)

Then

1. For any standard-uniformly distributed U ∼ U(0, 1) there is F−1(U) ∼ F .
This gives a simple method for simulating random variates with distribution
function F .

2. If F is continuous then the random variable F (X) is standard-uniformly
distributed, i.e. F (X) ∼ U(0, 1).

The dependence between the real-valued elements of a k-dimensional random
vector (X1, ..., Xk) is described by their joint distribution function F (x1, ..., xk) =
P [X1 ≤ x1, ..., Xk ≤ xk]. The random vector X could be transformed component-
wise to have a standard uniform marginal distribution, U(0, 1). Assuming X1, ..., Xk

have continuous marginal distributions F1, ..., Fk so that this can be achieved by a
probability-integral transformation function:

T : Rk → Rk, (x1, ..., xk)
t → (F1(x1), ..., Fk(xk))

t (12.7)

7Embrechts, McNeil and Straumann (1999).
8Embrechts et al. (1999).
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The joint distribution function C of (F1(X1), ..., Fk(Xk))
t is then called the

copula of the random vector (X1, ..., Xk)
t or the multivariate distribution F . It

follows that

F (x1, ..., xk) = P [F1(X1) ≤ F1(x1), ..., Fk(Xk) ≤ Fk(xk)]

= C(F1(x1), ..., Fk(xk)). (12.8)

Definition. A copula is the distribution function of a random vector in Rk with
uniform-(0, 1) marginals. Alternatively, a copula is any function C : [0, 1]k → [0, 1]
which has the three properties:

1. C(x1, ..., xk) is increasing in each component xi.

2. C(1, ..., 1, xi, 1, ..., 1) = xi for all i ∈ {1, ..., k}, xi ∈ [0, 1].

3. For all (a1, ..., ak), (b1, ..., bk) ∈ [0, 1]k with ai ≤ bi there is :∑2
i1=1 ...

∑2
ik=1(−1)i1+...+ikC(x1i1 ...xkik) ≥ 0, where xj1 = aj and xj2 = bj for

all j ∈ {1, ..., k}.
Property 2 comes from the fact that the marginals are uniform-(0,1). Property 3
is true because the sum can be interpreted as P [a1 ≤ X1 ≤ b1, ..., ak ≤ Xk ≤ bk],
which is non-negative.

Copulas are a natural way to measure the dependence between random vari-
ables. The properties of copulas are invariant under strictly increasing transforma-
tions of the underlying random variables. Linear correlation is not a copula-based
measure and can often be quite misleading. It should not be taken as canonical
dependence measure (Embrechts, McNeil and Straumann, 1999).

The concept of tail dependence relates to the amount of dependence in the
lower left and upper right quadrant tail of a bivariate distribution. Tail dependence
especially becomes important for extreme values. It has to be mentioned that tail
dependence between two bivariate random variables is a copula property, and the
amount of tail dependence is invariant under strictly increasing transformations of
X and Y .9

12.7.2 Gaussian Copula with Stable Marginals

As the analysis of the correlations in section 12.6 evidence that significant tail
correlations are mostly not seen, it makes sense to argue for the application of a
Gaussian copula for the stable random vector ut.

9Copulas such as the T-copula can model tail dependence but they are relatively complex.
The Gaussian copula, however, is not suitable for tail dependence but is less complicated.
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For their risk management software Cognity, Bravo Risk Management Group
propose the application of a Gaussian copula with stable marginals. It is es-
pecially tractable for high-dimensional stable random vectors with even skewed
stable marginals.

Unlike for the sub-Gaussian vector approach, the copula approach does not
require the elements of the stable random vector to be split into a symmetric
dependent and skewed independent component.

The procedure for the implementation of Gaussian copulas for stable random
vectors is outlined in the following:10

Having an I-dimensional vector of random variables, X, where Xi,j is the j-th
observation of the i-th element of X, where i = 1...I and j = 1...J . The Xi have
stable-non-Gaussian marginal distributions. However, their dependence will be
described by a Gaussian copula now. The copula is built as follows:

1. For each observation j = 1...J of a random-vector element Xi, the value
of the cumulative density function is estimated: Ui,j = Si(Xi,j) , i = 1...I,
where Si is the fitted stable cumulative distribution function (CDF) for the
i-th random variable. Ui,j = Si(Xi,j) ∈ U(0, 1) .

2. For each set of observations j an I-dimensional multivariate vector Nj of a
multivariate normal distribution is constructed, with components Ni,j. The
i-th sample has a normal distribution N(mi, vi) with mean mi and variance
vi. mi and vi are the sample mean and the sample variance estimated from
the sample Xi,j, j = 1...J . The I-dimensional multivariate vector Nj with
Gaussian marginals is obtained by transforming the I-dimensional vectors Uj:
Nj = (Φ−1

1 (U1,j), ..., Φ
−1
I (UI,j)), where Φi is a CDF of N(mi, vi). Assuming

that the real dependence is described by a Gaussian copula, this vector will
be a multivariate normal vector.

3. With the Nj, j = 1...J , a multivariate normal distribution is fitted, N(., Σ).

4. To simulate scenarios, samples are drawn from the multivariate N(., Σ)

5. The current Gaussian marginals have to be transformed into stable ones.
Thus, each coordinate of each draw is converted to U(0, 1) by
Wj = (Φ1(N1,j), ..., ΦI(NI,j)). The transformed simulations are denoted with
Wi,j.

6. For each i = 1..I, S−1
i (Wi,j) is constructed. The result are simulated multi-

variate random vectors with stable marginals and Gaussian copula.

10For a description in detail the reader is referred to the technical document of Cognity by
Bravo-Group (2002).
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The key advantage of this type of copula is the simplicity of its application,
especially for high-dimensional random vectors.

For stable distributed asset returns, the T-copula has been used in so far in
publications. The Gaussian copula could not be applied due to the tail correlations
present between different assets. However, the T-copula that can model such tail
correlations is quite complex and more difficult to implement than the Gaussian
copula, which is much more comfortable to be used. The long-memory model of
the developed credit return model and the resulting ut allow to fit the Gaussian
copula. This is a key finding of this chapter.

12.8 Value at Risk Estimation For The Long-

Memory Model

Recalling the FARIMA(0,d,0) model for the |εt|1/2, where the innovations are de-
scribed by the long-memory model:

(|εt|1/2 − µz)(1 − L)d = ut. (12.9)

The way the Value at Risk caused by the innovations is determined differs from
the common way as the model (12.9) forecasts the absolute values of the residuals,
|εt|1/2. This is different from the way Value at Risk is determined for GARCH-type
models as discussed in chapter 9.

In order to evaluate and compare the VaR accuracy of both EWMA and the
long-memory model with an in-sample test for one-step-ahead VaR forecasts, it is
useful to focus on the examination of isolated volatility models for the εi,t only -
instead of the whole cointegrated VaR.

However, for the long-memory model the VaR is forecasted in a different man-
ner. |εt|1/2 is forecasted by

|εt|1/2 = Ld
(|εt|1/2 − µz

)
+ µz + ut. (12.10)

The probability distribution of the forecast |εt|1/2 is determined by the proba-
bility distribution of ut.

The estimation of the VaR for the fractional model and the counting of the
exceptions are done in the following way: The forecasted variables are the elements
of the vector of the absolute values |εt|, however, not the signed elements εi,t. The
processes driving the |εi,t| are not i.i.d. because of the long-memory present in the
absolute values. On the other hand, the stochastic process determining the sign
of the εi,t is i.i.d. Thus, on each stage of the process, the probability for the sign
in the following period is 0.5 for both ”-” and ”+”.
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While the distribution of |εt|1/2 is skewed to the right, the distribution of
sign(εt)|εt|1/2 is symmetric. The skewness is caused by the use of absolute val-
ues. For the variable |εt|1/2, both positive and negative extreme values of εt fall in
the right tail of the distribution.

Studying the plot of one-step ahead forecasts of the |εt|1/2, it can be seen,
despite of large residuals, that the path of the forecasted |εt|1/2 captures the move-
ments of the process’ volatility surprisingly well.

The probability forecast of the |εi,t| is driven by the probability distribution
of the ui,t. Assuming that the (conditional) probability of positive and negative
values of εi,t is always 0.5, the VaR for the long-memory model is obtained as
follows:

Assuming the probability that the absolute value |εi,t| exceeds a (positive)
level C is α. Thus, with the above assumption that the probability of positive and
negative signed returns is 0.5 each, the probability that a loss of C is exceeded in
absolute value by a negative εi,t is α/2.

Estimating, for example, the 90% quantile of |εi,t|, it refers to the 95% quantile
of the distribution of εi,t. Estimating C as the 1 − α quantile of |εi,t|, all negative
observations whose absolute value is greater than C are counted as exceptions.
The unconditional coverage is

α̂/2 =
#exceptions

n
. (12.11)

n is the observed sample size.
Aside from the given model (|εt|1/2 − µz)(1 − L)d = ut, which is referred to as

model 1, three other models for εt will be evaluated simultaneously:

• The |εt|1/2 are assumed to be i.i.d. and follow a stable law, referred to as
model 2.

• The εt are assumed to be i.i.d and follow a stable law, referred to as model
3.

• Finally, the multivariate stable EWMA model of chapter 9, referred to as
EWMA model.

The vector of the skewed ut in model 1 is fitted with the initial restriction
β = 1. That means that even those vector elements that were found with αi = 2
originally can now be fitted by skewed stable distributions. This is important in
order to capture the tail well.

The four elements 2y AA, 2y BBB, 10y A, 30y A of vector ut originally exhibit
a stability index αi equal to 2 (Gaussian) if they are fitted without restrictions.
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The obtained unconditional coverages in case of αi = 2 for the ut series of 2y
AA, 2y BBB, 10y A, 30y are displayed in parenthesis. It can bee seen that the
empirical VaR is underestimated by the Gaussian distribution as it lacks both
heavy-tailedness and skewness. The unconditional coverage clearly exceeds the
theoretical value in this case.

The unconditional coverage for model 1, model 2, and model 3 are given in
tables 12.11 - 12.19. The results for the EWMA model are known from chapter 9.

The results of the long-memory model model 1 are presented in tables 12.11 -
12.13.

For model 2 (i.i.d. distributed |εt|1/2) and model 3 (i.i.d. process with stable
distributed signed residuals εt) the results of the unconditional coverage are given
in table 12.14 and 12.19).

The results in tables 12.11 - 12.19 demonstrate that model 1 outperforms model
2 and model 3 in terms of one-step-ahead VaR. More important, model 1 also
seems to be better than the EWMA model of chapter 9. This can be especially
seen when calculating the mean-absolute deviation and the mean-squared deviation
of unconditional coverage from the theoretical values over all rating / maturity
combinations. This is shown in tables 12.20 and 12.21.
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12.9 Conclusion

The VaR estimates of model 1 over all 15 combinations of rating grade and maturity
show on average the best results for unconditional coverage for the 95% and 99%
VaR compared to the three other competing models.

Especially interesting is the comparison with the accuracy of the the stable
EWMA which has been chosen as the favorite model among the traditional volatil-
ity models in chapter 9. The long-memory model 1 clearly outperforms the stable
EWMA model in terms of overall accuracy, as demonstrated by the mean absolute
deviation and mean squared deviation in tables 12.20 and 12.21.

The application of the skewed stable distribution for the ut performs extremely
good for both the 95% VaR as well as for the higher quantiles 99% and 99.5%
VaR.

The proceeding in chapter 12 can be summarized as follows:

• The FARIMA model describing the |εt|1/2 has been specified and the param-
eters have been fitted.

• With this model, the 95%, 99% and 99.5% one-step ahead Value at Risk are
determined and its forecast accuracy has been compared with the forecast
accuracy of three other models:

– The |εt|1/2 are i.i.d. and follow a stable law, referred to as model 2.

– The εt are i.i.d. and follow a stable law, referred to as model 3.

– The stable EWMA model of chapter 9, referred to as EWMA model.

• Furthermore, a Gaussian copula with stable marginals is introduced to de-
scribe the dependence between the elements of the given stable random vector
ut.

The key findings derived in this chapter are:

• The best specification for the FARIMA model describing the |εt|1/2 is (0,d,0).
As found by the moving-blocks bootstrapping test, the parameter estimates
for the di are all significant. Except for the 10 year BB, they are even
highly significant. This also confirms the choice of this model to describe the
behavior of the credit returns. In addition, the robustness of the estimator
developed in the former chapter 11 has been demonstrated.

• Analyzing the forecast accuracy for the one-step-ahead Value at Risk at
the 95%, 99% and 99.5% level, the long-memory model clearly outperforms
its competitors, among them the multivariate stable EWMA model as the
preferred choice among the volatility models discussed in chapter 9.
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• Modeling the dependence among the elements of a stable random vector, the
application of a sub-Gaussian vector exhibits some practical problems: for
example, the requirement of a common stability index for all vector elements,
the splitting of each element into a dependent symmetric and an independent
skewed component, or the estimation of the correlation based on truncated
samples. Copulas are a better but often too complex way to model the
dependence.11 However, section 12.7.2 exhibits that the dependence between
the elements of the stable random vector ut can be fitted by a Gaussian
copula as tail correlations are almost not present. Thus, a Gaussian copula
with stable marginals is introduced which is less complicated and burdensome
in the high-dimensional case than, for example, the T-copula.

The chosen multivariate stable FARIMA (0,d,0) demonstrates that a long-
memory model can be parsimonious on the one hand while showing great flexibility
on the other hand. Furthermore, despite of the stable assumption it has a tractable
estimator (modified CSS). In terms of forecast accuracy it has outperformed the
multivariate stable EWMA as the former benchmark.

Another advantage of the stable FARIMA(0,d,0) process is its self-similarity.12

Self-similar processes can be easily scaled by the application of the self-similarity
property. This property is beneficial when it comes to extend the forecast horizon
of the long-memory model from one-day forecast periods to longer forecast periods.

Furthermore, the comparison of model 1 with the two i.i.d. stable models
model 1 and model 2 also demonstrates that the properties of the phenomenon
long memory cannot just be explained by the heavy-tailedness of the process.

Chapter 13 provides an outlook on possible future applications of the credit
return model developed in this thesis. It explains state-of-the-art methods for
portfolio optimization based on Value at Risk measures and proposes a way to
integrate the credit return model into a simulation-based portfolio optimization
framework.

11See, for example, the T-copula.
12See definition in chapter 5.
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2 year:
Center: AA A BBB BB B

AA 1 0.3136 0.3656 0.2102 0.0833
A 0.3136 1 0.3421 0.2275 0.0826

BBB 0.3656 0.3421 1 0.2253 0.0952
BB 0.2102 0.2275 0.2253 1.0000 0.1892

B 0.0833 0.0826 0.0952 0.1892 1

Tails: AA A BBB BB B

AA 1 0.2997 0.2002 -0.0583 -0.0555
A 0.2997 1 0.2884 -0.0295 -0.0869

BBB 0.2002 0.2884 1 -0.0105 -0.0862
BB -0.0583 -0.0295 -0.0105 1 0.1376

B -0.0555 -0.0869 -0.0862 0.1376 1
10 year:
Center: AA A BBB BB B

AA 1 0.43 0.3878 0.1785 0.1422
A 0.43 1 0.3559 0.1697 0.1504

BBB 0.3878 0.3559 1 0.1864 0.1731
BB 0.1785 0.1697 0.1864 1 0.3652

B 0.1422 0.1504 0.1731 0.3652 1

Tails: AA A BBB BB B

AA 1 0.5139 0.4619 0.0674 -0.0191
A 0.5139 1 0.4334 0.0203 -0.0619

BBB 0.4619 0.4334 1 0.0529 -0.0969
BB 0.0674 0.0203 0.0529 1 0.1285

B -0.0191 -0.0619 -0.0969 0.1285 1
30 year:
Center: AA A BBB BB B

AA 1 0.2725 0.3075 0.1486 0.1327
A 0.2725 1 0.3097 0.149 0.1224

BBB 0.3075 0.3097 1 0.1687 0.1461
BB 0.1486 0.149 0.1687 1 0.3599

B 0.1327 0.1224 0.1461 0.3599 1

Tails: AA A BBB BB B

AA 1 0.2296 0.2313 -0.1137 -0.0666
A 0.2296 1 0.218 -0.0711 -0.0105

BBB 0.2313 0.218 1 -0.1254 -0.1116
BB -0.1137 -0.0711 -0.1254 1 0.0983

B -0.0666 -0.0105 -0.1116 0.0983 1

Table 12.10: Center- and tail-correlations of the ui,t.



222 12 Empirical Long-Memory Analysis

AA A BBB BB B

2y 0.0590 (0.0673) 0.0470 0.0554 (0.0644) 0.0512 0.0601
10y 0.0595 0.0524 (0.0578) 0.0584 0.0512 0.0530
30y 0.0560 0.0536 (0.0513) 0.0482 0.0500 0.0494

Table 12.11: Model 1: Unconditional coverage for 95% VaR. The results for the unrestricted fitting are in
parenthesis.

AA A BBB BB B

2y 0.0054 (0.0209) 0.0024 0.0024 (0.0238) 0.0060 0.0054
10y 0.0054 0.0060 (0.0131) 0.0060 0.0066 0.0054
30y 0.0018 0.0042 (0.0161) 0.0042 0.0054 0.0030

Table 12.12: Model 1: Unconditional coverage for 99% VaR. The results for the unrestricted fitting are in
parenthesis.

AA A BBB BB B

2y 0.0000 (0.0155) 0.0006 0.0000 (0.0137) 0.0012 0.0018
10y 0.0018 0.0024 (0.0083) 0.0018 0.0012 0.0000
30y 0.0006 0.0000 (0.0107) 0.0006 0.0006 0.0000

Table 12.13: Model 1: Unconditional coverage for 99.5% VaR. The results for the unrestricted fitting are in
parenthesis.

AA A BBB BB B

2y 0.0637 0.0488 0.0572 0.0458 0.0530
10y 0.0578 0.0506 0.0584 0.0476 0.0476
30y 0.0560 0.0566 0.0524 0.0458 0.0429

Table 12.14: Model 2: Unconditional coverage for 95% VaR.

AA A BBB BB B

2y 0.0041 0.0023 0.0023 0.0011 0.0023
10y 0.0053 0.0053 0.0059 0.0023 0.0011
30y 0.0023 0.0053 0.0047 0.0005 0

Table 12.15: Model 2: Unconditional coverage for 99% VaR.
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AA A BBB BB B

2y 0 0.0006 0 0 0
10y 0.0017 0.0011 0.0029 0.0006 0
30y 0.0006 0 0.0006 0 0

Table 12.16: Model 2: Unconditional coverage for 99.5% VaR.

AA A BBB BB B

2y 0.0513 0.0483 0.0453 0.0304 0.0369
10y 0.0572 0.0572 0.0447 0.0328 0.0340
30y 0.0548 0.0524 0.0507 0.0250 0.0268

Table 12.17: Model 3: Unconditional coverage for 95% VaR.

AA A BBB BB B

2y 0.0036 0.0060 0.0030 0.0012 0.0036
10y 0.0030 0.0054 0.0066 0.0030 0.0036
30y 0.0024 0.0060 0.0024 0.0012 0.0018

Table 12.18: Model 3: Unconditional exceptions for 99% VaR.

AA A BBB BB B

2y 0.0012 0.0012 0.0012 0.0012 0.0006
10y 0.0012 0.0006 0.0006 0.0018 0.0012
30y 0.0000 0.0012 0.0012 0.0000 0.0012

Table 12.19: Model 3: Unconditional exceptions for 99.5% VaR.

model 1 model 2 model 3 Stable EWMA

95% VaR 0.0044 0.0051 0.0100 0.0102
99% VaR 0.0054 0.0069 0.0065 0.0061

Table 12.20: Mean absolute deviation from the theoretical value of unconditional coverage, for both 95% VaR
and 99% VaR.



224 12 Empirical Long-Memory Analysis

model 1 model 2 model 3 Stable EWMA

95% VaR 3.0145 3.7617 16.391 18.122
99% VaR 3.0960 5.2740 4.4816 4.1133

Table 12.21: Mean squared deviation from the theoretical value of unconditional coverage, for both 95% VaR
and 99% VaR. The values have to be multiplied with e−5.



Chapter 13

Outlook - Further Applications
Of The Credit Return Model

This chapter describes further applications where the credit return model should
proove useful:

• determination of the VaR for a portfolio of individual corporate bonds.

• optimization of the portfolio risk by restructuring its positions.

In detail, the chapter covers three major topics:

• It sketches the modeling of the price path of individual corporate bonds in
relation to the credit return model.

• It proposes a simulation framework to obtain the VaR of a corporate bond
portfolio.

• It discusses the state of the art on VaR optimization by restructuring the
positions of a given portfolio with respect to the application of stable distri-
butions for asset returns.

13.1 Proposal For Bond-Portfolio VaR

This section sets out the application of the cointegrated VAR model developed in
the previous chapters to describe the returns of individual corporate bonds.

A possible solution of linking the risk of an individual corporate bond to the
cointegrated VAR credit return model is given. By simulating future credit returns
for a given time horizon, the VaR of the portfolio of corporate bonds is computed.

225
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However, measuring the VaR of a corporate bonds’ portfolio is only one step in
the risk management process. The simulation framework developed in this thesis
may also form a basis for scenario analysis or portfolio optimization as well. The
latter becomes an issue once investors are no longer satisfied with the risk of their
portfolios.

Depending on their risk appetite and the funds available for covering economic
capital, the investors might prefer to restructure the portfolio - for example in order
to obtain a lower VaR or a different risk-return profile. Thus, this chapter also
outlines a brief overview on portfolio optimization based on VaR measures (the
discussion of optimization procedures is thought as an outlook and not considered
to be a substantial part of this work).

13.1.1 Simulation-Based Risk Measurement

Simulation-based tools are commonly applied for scenario analysis of a given port-
folio. In particular, they provide additional insights:

• When the portfolio contains non-linearities.

• When market distributions are not normal.

• Or when there are multiple horizons.1

Complex models such as the cointegrated VAR for credit returns developed in
this thesis require computational simulation methods to determine the VaR for a
future time horizon which takes the impact and interdependence of all risk factors
into account.

In order to determine the VaR of a given portfolio, a set of scenarios has to
be simulated with the credit return model for the desired time horizon. For each
scenario, the value of all single assets, and thus the value of the whole portfolio,
is then calculated. With the portfolio value for each scenario, the empirical dis-
tribution of the future portfolio value is obtained. The VaR is taken as a defined
quantile of this distribution.

13.1.2 Modeling The Risk Of A Single Bond-Position

The credit return model describes the path of the average log prices for a given
credit grade. The average credit risk within a given rating grade is assumed to
remain relatively stable in the long term because it is derived exclusively from
corporate bonds of very similar credit quality. However, the average price difference
between the rating grade and the treasury bond may change due to a number of

1See Mausser and Rosen (1999).
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effects. During an economic recession, for example, the market assumes a weaker
credit quality for a certain number of bonds within a rating grade, and the average
log price of the rating grade thus declines while the rating agencies do not change
the credit rating of the firms affected. The underlying idea is that economic cycles
affect the average probabilities of default within a rating grade. Certainly, such
effects are limited, as bonds whose spread changes dramatically compared to the
other bonds of the same rating grade will sooner or later be up- or downgraded
by the rating agencies, then having no further influence on the average spread of
their former rating grade.

Market trends and liquidity effects in the corporate bond market typically
have an impact on each bond of a given rating grade, changing the average credit
spread of that grade. For example, if investors prefer to switch to treasury quality,
then liquidity is withdrawn from the corporate bond markets. The spreads of the
corporate bonds therefore increase.

Rating agencies provide annual transition matrices giving the probabilities of
firms migrating from one rating grade into another. However, such transition
matrices neither contain information about when the switch in rating happens
nor reveals the price path a corporate bond follows during a rating change. So,
when the rating change is announced, the spread of the bond might not change
because the market has already anticipated the change in credit quality. Thus,
when dealing with forecasts of VaR for short horizons of 10, 20, or 60 days, such
transition matrices are not very helpful in drawing conclusions to the potential
spread or price changes. Instead, it is essential to focus on the price processes of
the corporate and treasury bonds.

The approach presented here identifies three main drivers for the price changes
of a corporate bond:

• The movements of the treasury yield curve.

• The movements of the average spread of the given rating grade.

• Individual effects which might be mainly due to changes in the credit quality
of the issuer.

Thus, the next step is to develop a mechanism to describe the price movement
of an individual corporate bond on the basis of the cointegrated VAR credit return
model.

A credit analysis based purely on rating migration and default events would
not allow a valuation on a daily basis. The price path a certain corporate bond
takes when its credit rating changes hinges on the individual circumstances and
information available to the market before and during the rating change. In many
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cases the market anticipates changing credit quality before the rating agencies
react.2

Therefore, for individual corporate bonds, annual rating migration probabilities
are not a good indicator for the short-term price behavior.

How can up- and downside risks of individual bonds be captured? From this,
again the question arises how a link between the credit return model and the
behavior of individual corporate bonds may be built.

First, the behavior of individual corporate bonds with given rating has to
be analyzed and compared to the average of the corresponding rating grade -
assuming that the ”average bond” has exactly the same specifications (coupons,
coupon dates, maturity) as the individual bond.

Next follows the construction of the individual bond’s price under the assump-
tion that its yield follows the average of its rating grade. This is done by taking
historical price series of the rating grade’s averages for 1 month, 2 years, 10 years,
and 30 years maturity.

For the series in the credit return model, the time to maturity for each obser-
vation day is the same (constant time to maturity with 1 month, 2 years, 10 years,
30 years), whereas the individual corporate bond’s time to maturity declines from
day to day.

In order to compute the historical daily log prices of a corporate bond which
obeys exactly the yield curve of its rating grade average, the following procedure
is applied:

• The time from t to each component Ci of the bond’s cash flow has to be
measured for each day t. This time is denoted by Ti.

• For each component Ci, its present value PVi at t is determined by interpo-
lation between the log prices of the known maturity points 1 month, 2 years,
10 years, and 30 years at t. Here, a cubic spline interpolation is applied.3

• The present value of the corporate bond - as if it were following the average
yield to maturity of its rating grade exactly - is obtained by summing the
PVi.

Plotting both price paths, it is often the case that the observed price of a bond
does not match the average price of its rating grade.

Figure 13.1 illustrates that the log price of an individual corporate bond and
the log price of its rating grade average often move in parallel. Thus, the individual
corporate bond’s price path usually lies between the averages of two neighboring
rating grades.

2See also Beck (2001). Research on the problem of rating agency announcements was also
done by citep*HaHL92.

3Burden and Faires (1997).
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Figure 13.1: Plot of log prices of an individual bond and neighboring average rating grades (dotted lines).
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The idea is to express the movement of the individual bond’s log price log(pIndB),
which can be expressed by the movement of the five rating grades of the credit
grade model with the same maturity as the individual bond.

log(pIndB,t) = g1(t)log(p1,t) + g2(t)log(p2,t) + g3(t)log(p3,t) + g4(t)log(p4,t)

+g5(t)log(p5,t) + g6(t)log(p6,t). (13.1)

. The gi(t), i = 1...5, are autoregressive processes of order 1 and sum up to a
constant:

∑5
i=1 gi(t) = constant.

Now those two of the gi(t) are selected, gi1(t) and gi2(t), which are most sig-
nificant according to the Akaike Criterion. The selected i are i1 and i2.

The autoregressive process is then described by

gi1(t) = constant − gi2(t) and

gi2(t) = c1 + c2gi2(t − 1) + at , (13.2)

where at is a stable distributed random variable. gi1(t) and gi2(t) control the
change in credit quality of an individual bond relative to the paths of the credit
rating grade averages.

Such a model is designed to perform simulations of future returns for short
periods of time (days). The fitting of (13.2) can be derived from the historical
path of the individual bond.

For many corporate bonds available in the market, historical prices are often
not available. They are often traded over the counter (OTC), and prices are not
accessible because they are not published by the financial institutions involved.
Other bonds are not traded every day, meaning that only a fragmentary price
history is available.4

For the pricing of corporate bonds without price history, it is reasonable to
assume for the given model that their prices exactly follow the average of their
rating grade. Thus, their prices can be constructed.

13.1.3 Measuring Bond Portfolio Risk

After the gi(t) coefficients have been fitted, future scenarios can be simulated
with the credit return models for 2 years, 10 years, and 30 years. The log prices
for the one-month maturity are kept fixed for simplicity as they hardly move at
all compared to the other maturities. With the credit return model, a specified
corporate bond can now be valued as if it were following the movements of rating
grades i1 and i2. There are three risk factors of the credit return model:

4Sometimes pricing sources exist, but their subscription is fairly expensive.
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• The returns of the treasury bonds for each maturity.

• The common credit risk factor for each maturity.

• The vector of disturbance terms of the model that describes the innovations
ε,t for each maturity.

The credit return model simulates future representations for the combinations
of maturities and credit ratings displayed in table 13.1:

Maturity/Rating AAA AA A BBB BB B

2 year • • • • • •
10 year • • • • • •
30 year • • • • • •

Table 13.1: Matrix of maturity and rating combinations.

For maturities lying between two maturity points of the model, a cubic spline
interpolation is applied to obtain the corresponding return.

The introduced framework of the credit return model to obtain the VaR of
a corporate bond portfolio is simulation based, making an optimization of the
portfolio with to VaR as risk measure computationally very burdensome, especially
for portfolios with a large number of positions.

The fact that three risk factors and the long-term relationship of the price
paths are identified is a key advantage of this credit return model.

Due to the number of risk drivers, the credit return model makes it possible
to extract a lot of information. This is helpful when performing scenario analysis
and stress testing, for example.

This credit return model thus allows the returns and prices of individual bonds
to be described. The link to the price process of the individual bond can be
modeled by the relation defined in equations (13.1) and (13.2).

The topic of the following section is portfolio optimization. However, for port-
folio optimization based on VaR as risk measure, a solution can only be obtained
with this model by simulating scenarios. This is because an optimization with
VaR causes difficulties due to some unpleasant properties of VaR on the one hand
and the complexity of the model on the other.

The following section provides an overview of current state of the art in portfolio
optimization and also covers the case when the returns follow a stable law. The
section discusses alternative VaR measures and their applicability for optimization
algorithms. While it is supposed to provide an overview on portfolio optimization,
it is restricted in that it does not discuss a possible algorithmic solution in terms
of the given credit return model.
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13.2 Scenario Optimization - An Overview

The identification and measurement of the current portfolio risk are the initial
steps in the risk management process. However, the investor or risk manager
might not be happy with the current risk level. For example, the economic capital
required to cover the potential losses might not be sufficient.

In order to compensate possible downside movements within a given horizon,
the investor has to provide economic capital - usually measured by VaR. And
since economic capital is limited, the risk manager is concerned with reducing the
portfolio’s VaR.

Alternatively, the investor might not be satisfied with the given risk-return
ratio and desires to move the portfolio closer to the efficient frontier.5

In the following there is a brief sketch of the risk management process and
scenario optimization under the VaR criterion. The objective is either (i) to min-
imize the portfolio’s VaR or (ii) to optimize the ratio of mean return and VaR.
An optimization algorithm simultaneously adjusts all the positions of the portfolio
subject to defined restrictions.

13.2.1 The Risk Optimization Process

Risk management targets the identification, measurement, and the reduction of the
sources of risk. The final goal is to obtain the desired risk profile for an investor.
The process of credit risk optimization within a financial firm comprises steps on
three levels:

• On the strategic level, the company has to optimize the weights of different
credit product sectors.

• On the tactical level, the company has to decide about the weights for each
obligor or classes of obligors.

• And third, the company optimizes the weights for each asset in a set of
financial products. This happens on the operational level.

The complete process is illustrated in figure 13.2.
Risk optimization in order to obtain the desired risk profile for a specific in-

vestor is generally based on the portfolio theory developed by Markowitz (1952)
and Sharpe (1964). It was originally applied to market risk with symmetric dis-
tributions of the returns. For credit instruments with possible defaults and rating
migrations, the distributions of credit returns become skewed with fat tails. How-
ever, most of the time neither a default nor a severe change in credit quality can be
observed. Thus, there is only very little observation of extreme downside events.

5See Markowitz (1952) and Sharpe (1964).
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Figure 13.2: The three steps of credit risk optimization.
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13.2.2 VaR Measures For Portfolio Optimization

Contrary to well-known mean-variance approaches, VaR-based portfolio optimiza-
tion has recently experiened considerable development. VaR improves previously
used risk measures for portfolio optimization, such as standard deviation. Stan-
dard deviation requires the Gaussian assumption for the returns; yet, the reality
consists of fat-tailed and skewed distributions. On the other hand, standard de-
viation is relatively comfortable in terms of computational issues. VaR, however,
requires intelligent computational methods in optimization.6 Some approaches
use mean-VaR and mean-variance portfolio optimization methods simultaneously.7

However, VaR has awkward properties for optimization algorithms. Alternative
risk measures to VaR which are applied for portfolio optimization are, for example,
the semi-standard deviation and conditional VaR. Others are expected regret and
maximum regret. It has been discovered that the resulting efficient frontiers are
quite different depending on the chosen risk measure.8

The portfolio VaR is derived from simulated scenarios. Due to the large number
of simulated scenarios, the size of the optimization problem becomes large as well.

Linear programming models have usually been applied to optimize portfolio
risk.9 But actually, there are very few papers dealing with the optimization of
credit risk in portfolios.

However, there are some pitfalls in the choice of the quantile-based measure
VaR as the variable to be minimized: conceptually, VaR could be handled as
the optimizing measure of course, however, in practice it blows up the problem
and makes it uncomfortable. In order to apply elegant linear programming and
avoid the use of integer programming, VaR is not tractable. Arvanitis, Browne,
Gregory and Martin (1998), for example, has applied a brute-force random search
method. More advanced numerical methods can be applied with alternative risk
measures that are more computationally efficient: For example, expected regret10,
maximum regret11, or conditional VaR12.13 Another more tractable measure for
portfolio optimization would be the so-called nVaR14, which is also linear with

6Albanese, Jackson and Wiberg (2001).
7Wang (2000).
8Gaivoronsky and Pflug (2001).
9Mausser and Rosen (1999).

10Regret is defined as the difference between a scenario outcome and a benchmark. Expected
regret is the expectation of losses that exceed a fixed threshold K.

11Maximum regret is the largest loss in excess of a threshold K
12Conditional VaR is the expected loss on a portfolio given the return is less than VaR.
13Mausser and Rosen (1998).
14The nVaR of a position is defined as the loss in a threshold scenario and is linear with the

size of the position. The portfolio is optimized via the derivative of nVaR with respect to the
given positions.
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the number of units of each position in the portfolio and therefore reduces the
computational effort.15

These alternative measures can be employed to reshape the distribution of
credit returns, thus also improving quantile-based measures.

As mentioned, VaR has some undesirable properties: lack of sub-additivity,
non-convexity, and non-smoothness. This was pointed out by Artzner.16 For this
reason, he suggested conditional VaR (CVaR) as an alternative measure.

CVaR has the properties subadditivity and convexity. When the return-loss
distribution is normal, both CVaR or VaR result in the same optimal portfolio.
However, credit returns are not normally distributed.

Stable non-Gaussian approaches. Tokat, Rachev and Schwartz (2001) intro-
duce a solution methodology for the optimization of a portfolio of equity invest-
ments. The investor may choose between equity and cash. The model considers
time variation in the expected returns on equity. The risk factors follow a stable
non-Gaussian law. The solution is a multistage stochastic asset allocation problem
with decision rules.

The authors have generated economic scenarios both with stable and Gaussian
innovations. As reward measure they use the mean compound portfolio return.
As risk measure they apply CVaR as an alternative measure of loss. Due to the
lack of sub-additivity, the VaR of a portfolio with two bonds may be greater than
the sum of individual VaRs. CVaR, however, has the sub-additivity property.

In their analysis they find that stable scenario modeling leads to asset allo-
cations which are different by 20% compared to the normal assumption. This is
due to the fact that the normal scenarios underestimate the risk. However, they
note that the effect of fat-tailed returns on the asset allocation is contingent on
the utility function and risk aversion level of the investor.

Ortobelli, Huber and Höchstötter (2001) also analyze the application of the
stable distribution in portfolio choice theory. They examined empirical differences
among the optimal allocations obtained with Gaussian and stable non-Gaussian
distribution. They apply mean-risk analysis similar to Markowitz-Tobin’s mean.
As the stable distribution is more adherent to reality, stable methods improve per-
formance measures. Ortobelli, Huber, and Schwartz also find significant differences
in asset allocation between the sub-Gaussian and mean-variance model. The same
effect was discovered by the authors when the investor uses VaR as measure for
the risk. The impact of fat-tailed returns is even greater for these risk measures
since they concentrate on the tail of the distribution.

15Mausser and Rosen (1998).
16See Artzner, Delbaen, Eber and Heath (1998) and Artzner, Delbaen, Eber and Heath (1999).
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13.3 Summary

The first part of this chapter has proposed a model to describe the behavior of an
individual corporate bond in relation to the credit return model.

The second part is a brief literature review about portfolio optimization un-
der VaR and alternative risk measures for optimization algorithms. In addition,
it summarizes two publications which perform asset allocation under the stable
assumption.

For smaller tasks with a low number of positions in the portfolio, simulation-
based optimization with VaR as risk measure might be tractable.

For a larger number of positions, however, alternative risk measures have to
be chosen. Such measures have desirable properties for elegant optimization algo-
rithms. Improving these measures generally leads to a corresponding improvement
in VaR. Under the Gaussian assumption, both VaR and Conditional VaR obtain
the same optimization results.

However, credit returns are better captured by stable distributions. The ap-
plication of the stable distribution yields to different results for optimal asset
allocation than obtained under the Gaussian assumption.



Chapter 14

Conclusion

14.1 Brief Summary

In this thesis, several phenomena present in time series of credit returns have
been analyzed. On the basis of the results obtained, an appropriate model for the
description of credit returns and the forecasting of VaR have been built.

Four phenomena of credit returns discussed are:

• Heavy-tailedness and peakedness.

• Time-varying volatility (volatility clustering).

• Long memory.

• Cointegration of different rating grades.

In chapter 3, the properties heavy tailedness, peakedness, and skewness have
been examined for credit returns. It has been demonstrated that the modeling of
the risk-factors with stable distributions outperforms the Gaussian models in terms
of VaR. A modification of the credit model of Rachev, Schwartz and Khindanova
(2001) has been developed in order to make its implementation and usage easier.

Stochastic processes that have the capability to describe financial prices as
stable ARMA and GARCH processes have been introduced in chapter 4. In chapter
5, the theory of long-range dependence has been addressed. In addition, long-
memory effects have been analyzed for returns of marketable credit instruments,
under both the stable and Gaussian assumptions.

In chapter 6, the phenomenon that log prices of different rating grades show a
behavior of cointegration is looked at. Chapter 8 proposes a model that captures
this behavior: the stable cointegrated VAR. It has been applied to construct a
model for credit returns that has the capability to describe the behavior of bond
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returns depending on their rating grade and maturity. To model the price chances
for several rating grades simultaneously, a cointegrated vector-autoregressive ap-
proach was chosen since the price paths show similar trends in the long term.
Three different maturities are selected, and a vector-autoregressive model is fitted
for each maturity. The risk factors and innovations follow a stable law with α < 2.
The innovations of the model exhibit volatility clusters. In order to account for the
clustering volatility in the returns, both stable GARCH(1,1) and stable EWMA
are embedded and compared. The EWMA turned out to be more practical in its
application and equally performant in terms of forecasting accuracy for VaR. As
another result, both stable volatility models, GARCH(1,1) and EWMA outper-
form their Gaussian counterparts in VaR accuracy. The stable models are more
conservative for the 99% VaR in particular.

Chapter 10 examines the innovation of the credit return model for LRD. One
of the major findings of this chapter is that the presence of long memory is by
far stronger and more significant in the absolute values of credit returns and not
in the signed credit returns themselves. Based on this finding, the credit return
model has been modified and a multivariate long-memory component has been
developed. The long-memory model outperforms not only the multivariate stable
EWMA model preferred in chapter 9 but also other competitors in terms of forecast
accuracy for VaR.

The cointegrated vector-autoregressive model may be applied to simulate fu-
ture scenarios of average bond prices subject to rating grade and maturity. The
individual corporate bonds are priced based on the future scenarios generated.
Chapter 13 sketches a proposal for modeling this. For individual bonds, future
price paths can be simulated for the following cases:

• Corporate bonds with a rating grade (e.g. from Standard & Poors) that
lacked a price history in the past.

• Corporate bonds with a price history available up to the present.

Furthermore, chapter 13 gives a brief overview on the current state of the art
of scenario optimization, under both VaR and alternative measures.

14.2 Review Of Results

Chapter 1 explains the nature of credit risk and gives a brief sketch of the general
types of credit risk models. A major handicap of common credit risk models is the
Gaussian assumption. Thus, an alternative distributional assumption could help
to better capture the heavy tails of credit returns. In the following the class of
stable distributions is introduced. Furthermore, the credit risk model by Rachev,
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Khindanova, and Schwartz (2001) based on the stable assumption is reviewed.
In this thesis a modified approach is developed by changing the definition of the
credit returns. The modified model shows excellent results in forecasting VaR of
corporate bond portfolios, and it can be implemented with less effort.

The implementation of the modified model requires solely historical prices of
individual corporate bonds and historical treasury yield curve data but avoids the
generation of historical yield curves for particular corporate bond rating grades.

The predominant performance of the stable model for VaR measures is com-
pared to the application of the Gaussian distribution. The stable VaR performs
excellently for the 99% confidence level while the Gaussian VaR largely underesti-
mates the empirical VaR. The stable 99% VaR slightly overestimates the empirical
99% VaR. This usually leads to better VaR results as the empirical VaR often un-
derestimates the true VaR due to a low number of samples in the tails.

To sum up, the heavy-tailedness and skewness property of credit returns are
captured extremely well by the application of the stable non-Gaussian distribution.

AR(I)MA and GARCH processes have been discussed in chapter 4. These
are commonly known processes that can be applied to describe financial returns.
Furthermore, they are representatives of short-memory processes. Both AR(I)MA
and GARCH processes are discussed under both the Gaussian and stable assump-
tions. GARCH processes explain clustering volatility. The volatility follows an
autoregressive process and reacts to shocks of previous periods. This phenomenon
finds its application in chapter 9.

Aside from heavy-tailedness and skewness, long memory is another phenomenon
that has been observed for financial time series (e.g. stock returns) in the past. The
thesis discusses this property in conjunction with credit instruments. In addition
to the common distinction between I(0) and I(1) processes, fractional processes
allow non-integer orders of integration. Fractional processes can be persistent or
antipersistent. Persistent fractional processes are long-range dependent. A sign
of long memory is the so-called burstiness of the plotted time series. Long-range
dependence (LRD) is characterized by hyperbolically decaying autocorrelations,
and the property that large/small representations are more likely to be followed
by large/small representations. The chapter finishes with an empirical study of
the presence of long memory in the returns of bond indices. Applying the methods
Aggregated Variance and Absolute Values of Aggregated Series, all series exhibit
a Hurst Exponent H greater than 0.5 which means LRD under the Gaussian as-
sumption (α = 2).

While the hypothesis LRD is present can be confirmed for two series at the 95%
confidence level under the Gaussian assumption, under the stable assumption it
can be confirmed for somewhat lower confidence levels. Thus, there is significance
fin the presence of LRD in credit returns, although it is weak in its degree.



240 14 Conclusion

Starting with chapter 6, the thesis develops a framework for simulating future
credit returns on the basis of credit rating and maturity. The framework is real-
ized with a cointegrated vector-autoregressive (VAR) model which assumes that
the variables follow a stable law. For each maturity, such a six-dimensional cointe-
grated vector-autoregressive model is built. Aside from the treasury returns there
is another common risk factor: the residuals of the cointegrated VAR follow the
residuals of the AAA equation. Thus, the residuals of AA, A, BBB, BB, and B
have been regressed over the AAA residuals. As the remaining innovations exhibit
time-varying volatility, they are modeled by a stable exponentially weighted mov-
ing average model, which has been found preferable to the GARCH(1,1) model.

The risk factors are the treasury returns with equal maturity, the common
credit risk factor, and the individual innovations of each rating grade. The risk
factors themselves are dependent over the ratings and the maturities. The treasury
log prices are found as a mean-reverting process over time. For the cointegration
vectors, the traditional relations found with the Johansen procedure proved to
be too weak to prevent the log price paths of neighboring rating grades from
intersecting. Thus, a more restrictive cointegration vector was applied.

The empirical results for one-step-ahead forecasts of VaR demonstrate that the
stable GARCH(1,1) is outperformed by the stable EWMA, although the multivari-
ate GARCH has many more parameters. In addition, the EWMA shows slightly
better performance under MSE and MAE and almost identical performance in log
likelihood. The advantage of EWMA is its simplicity since only one parameter
has to be estimated for the model. Its tractability remains the same even when
faced with an increasing number of equations while the number of parameters
for multivariate GARCH(1,1) explodes, even for the constant correlation version.
Therefore, for high-dimensional multivariate applications, EWMA is preferable.

Long-memory models extend the knife-edge choice of I(0) and I(1) processes to
processes with non-integer order of integration. Unlike traditional volatility models
which have been integrated into the vector-autoregressive model, long-memory
models exhibit better forecasting properties for longer horizons. In addition, the
calibration of traditional volatility models has to be updated frequently Mikosch
and Starica (2000b) while such structural breaks over longer time spans are better
captured by long-memory models. As mentioned, the LRD is found to be strong
in the absolute values of the εi,t. Thus, LRD is much stronger in absolute returns,
which represent the behavior of volatility. This is demonstrated in section 10.3
with the MRS statistic. The multivariate stable FARIMA(0,d,0) proved itself to
be the most suitable specification. Known alternative models for LM volatility
have been found to be too complex for the high-dimensional multivariate case.

Comparing the forecasting accuracy of the long-memory volatility model with
the forecasting accuracy of the traditional stable EWMA volatility model, it can
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clearly be seen that the long-range dependence (LRD) model shows better perfor-
mance.

Tests evidence that the long-memory model forecasts VaR with greater preci-
sion than the competing volatility models, among them the stable EWMA model.

The advantages of the stable long-memory model can be summarized as follows:

• Within the cointegrated VAR, the long-memory model shows better accuracy
in VaR forecasting over all ratings and maturities than its competitors. The
estimates are conservative but do not exhibit too strong overestimation.

• The long-memory credit return model yields balanced performance for all
rating grade / maturity combinations as it allows an individual fractional
differencing parameter for each equation. However, it still remains parsimo-
nious and of good tractability.

• The long-memory credit return model maintains the non-fractional cointegra-
tion relationships for the cointegrated VAR in order to limit the complexity
of the multivariate model. LRD is isolated in the innovations.

• With the FARIMA(0,d,0) model, the extension to longer forecasting horizons
can easily be obtained by scaling. The basis for this is the self-similarity
property of the process. Traditional GARCH-type volatility models do not
show this property.

• LRD models are usually fitted over larger samples and show better resis-
tance against structural breaks. Traditional GARCH models have to be
re-calibrated more frequently.

With the credit return model, future scenarios for three maturities can be
simulated. With the price of the one-month maturity as a fixed point and cubic
spline interpolation, the scenarios can then be applied to any maturity.

The credit return model is driven by three known risk factors:

1. The returns of a treasury bond with equal maturity.

2. A common credit risk factor. This describes the behavior of risky debt that
is common to all corporate bonds from AAA to B in this model. After
stripping off the impact of interest risk (represented by the treasury bond
returns), it becomes visible that the daily movements of credit spreads of
different rating grades are highly positively correlated.

3. An individual credit risk factor for each rating grade. This factor accounts
for the specific risk of a given rating grade.
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Individual corporate bonds, of course, do not necessarily follow the average
price paths of their rating grades. For example, the spread of the bond might move
from being close to the average of one rating grade to the average of another rating
grade, while the rating grade of the bond itself does not change. In chapter 13 a
model has been developed, describing the movement of the individual bond relative
to the averages of the rating grades. This model is based on an autoregressive
approach. It enables an individual bond to change its credit spread relative to
the averages of the rating grades. Theoretically, its spread could be closer to the
average spread of another rating grade than the one assigned to it. This may be
the case when the market has a different assumption of an issuer’s creditworthiness
than its rating grade actually reflects.

Comparing the performance of VaR forecasting for the stable EWMA and the
LRD model, both models turn out to be relatively precise in estimating the 95%
VaR. Both models slightly overestimate the empirical 99% VaR. However, overall,
the LRD model shows better unconditional coverage than the traditional stable
EWMA model or alternative non-LRD models.

An interesting property of the FARIMA(0,d,0) model is its scaling property
that comes from the self-similarity property. Traditional GARCH-type volatility
models do not have this property. In order to obtain the volatility over a longer
forecasting horizon, scaling with traditional GARCH type models would lead to
incorrect results. Due to infinite lag polynomial governed forecasts, long horizon
forecasts over several periods perform better than those performed with short-
memory models.

Along with the LRD model, a new way to model the dependence between the
innovations of the different rating grades / maturities has been introduced. The
approach of a Gaussian copula with stable marginals is directly applicable to stable
random vectors with skewed elements. It does not cause inconveniences that occur
with the application of stable subordination via sub-Gaussian vectors.

It can be concluded that long-range dependence is present in the absolute
returns of credit prices. Long-memory models are a powerful tool in forecasting
as they deviate from the restriction that there can only be two sorts of processes,
I(0) and I(1), and therefore allow more precise forecasting results. In this thesis
a practical LRD model has been proposed in combination with the cointegrated
VAR model to forecast credit returns.

A possible application of the model is suggested in chapter 13. It sets out how
to describe the relation of the credit return model with individual corporate bonds.

Moreover, this chapter also provides a discussion of state of the art VaR-based
portfolio optimization and presents a brief overview of this topic. While for a
low number of positions simulation-based optimization procedures might work for
VaR, larger problems with numerous positions necessitate sophisticated numerical
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tools and alternative risk measures. The improvement of such alternative risk
measures will also improve VaR.

Finally, it can be concluded that the chosen FARIMA model represents an
attractive alternative to the conventional short-memory models for volatility. It
breaks the knife-edge choice restriction of I(0) and I(1) processes while at the same
time remaining flexible and parsimonious for the multivariate case. Furthermore,
a practical estimator to obtain the model’s long-memory parameters under the
stable assumption has been developed: the modified conditional sum of squares
(CSS) estimator. The development of this estimator is another useful result since
most estimators for the fractional differencing parameter are relatively complex
and difficult to implement - especially under the stable assumption.

As they have demonstrated to outperform their competitors, stable long-memory
models for the description of credit returns and the forecast of VaR will certainly
play a greater role in the future.
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Abbreviations

ACF Autocorrelation function
ADF Augmented Dickey-Fuller
APT Arbitrage Pricing Theory
ARCH Autoregressive Conditional Heteroskedastic (Model)
ARMA Autoregressive Moving Average (Model)
BIS Bank for International Settlements
BLUE Best Linear Unbiased Estimator
CAPM Capital Asset Pricing Model
CDF Cumulative density function
CLT Central Limit Theorem
CML Capital Market Line
CSS Conditional sum of squares
CVaR Conditional VaR
DGP Data-generating process
DM Default Mode
ECM Error Correction Model
EMH Efficient Market Hypothesis
FARIMA Fractional ARIMA
FIGARCH Fractional GARCH
GARCH Generalized Autoregressive Conditional

Heteroskedastic (Model)
HMSE Heteroscedasticity-adjusted MSE
H-ss Self-similar with self-similarity parameter H
H-sssi Self-similar with self-similarity parameter H

and has stationary increments
i.i.d. Independent identically distributed
IGARCH Integrated GARCH
LL Logarithmic Loss
LRD Long-range dependence
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246 Abbreviations

MAE Mean Absolute Error
MSE Mean Squared Error
ML Maximum Likelihood
MTM Marked to Market
OECD Organization for Economic Cooperation and Development
OLSE Ordinary Least Squares Estimator
PACF Partial autocorrelation function
RBC Risk-based capital
SACF Sample autocorrelation function
SML Security Market Line
SPACF Sample partial autocorrelation function
VaR Value at Risk
VAR Vector Autoregression
VECM Vector Error Correction Model
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L. Bachelier (1900): Theorie de la Spéculation. Annales de Ecole Normale Su-
perieure Series. 1964 English Translation by Coonter, P.H. (editor). The Ran-
dom Character of Stock Market Prices. MIT Press, Cambridge MA 3, 17: 28–86.

R. Baillie (1996): Long Memory Processes and Fractional Integration in Eco-
nomics. Journal of Econometrics Vol. 73: 5–59.

R. Baillie, T. Bollerslev and H. Mikkelsen (1996): Fractionally Inte-
grated Generalized Autoregressive Conditional Heteroskedasticity. Journal Of
Econometrics 74: 3–30.

Basle-Committee (1988): International Convergence of Capital Measurement
and Capital Standards. Basle Committee on Banking Supervision. Bank for
International Settlements .

Basle-Committee (1999): Credit Risk Modeling: Current Practices and Ap-
plications. Basle Committee on Banking Supervision. Bank for International
Settlements .

Basle-Committee (2001): The New Basle Capital Accord. Basle Committee on
Banking Supervision. Bank for International Settlements .

M. Beck (2001): Untersuchung des Zusammenhangs zwischen Spread und Credit
Ratings bei Corporate Bonds. Seminar Work. Chair of Statistics and Econo-
metrics. University of Karlsruhe .

J. Beran (1994): Statistics for Long-Memory Processes. Monographs on Statistics
and Applied Probability 61 . Chapman and Hall.

J. Berkowitz (1999): Evaluating the Forecasts of Risk Models. FEDS Discussion
Paper No. 11, Federal Reserve Board of Governors .

J. Berkowitz, I. Birgean and L. Kilian (1999): On the Finite-Sample Ac-
curacy of Non-Parametric Resampling Algorithms for Economic Time Series.
Working Paper .

E. Berndt, B. Hall, R. Hall and J. Hausman (1974): Estimation and
Inference in Nonlinear Structural Models. Annals of Economic and Social Mea-
surement Vol. 3, No. 4: 653–665.

T. Bollerslev (1986): Generalized Autoregressive Conditional Heteroscedastic-
ity. Journal of Econometrics 31: 307–327.



References 249

T. Bollerslev (1990): Modelling The Coherence in Short-Run Nominal Ex-
change Rates: A Multivariate Generalized GARCH Approach. Review of Eco-
nomics and Statistics 72: 498–505.

T. Bollerslev (1992): ARCH Modeling in Finance. Journal of Econometrics
52, (1-4).

T. Bollerslev, R. Chou and R. Engle (1992): ARCH Modeling in Finance:
A Review of Theory and Empirical Evidence. Journal of Econometrics 52: 5 –
59.

T. Bollerslev and E. Ghysels (1996): Periodic Autoregressive Conditional
Heteroskedasticity. Journal of Business and Economic Statistics 14.

T. Bollerslev and H. Mikkelsen (1996): Modeling and Pricing Long Memory
in Stock Market Volatility. Journal of Economics 73: 151–184.

T. Bollerslev and J. Wooldridge (1992): Quasi-Maximum Likelihood Es-
timation And Inference In Dynamic Models With Time-Varying Covariances.
Econometric Reviews 11: 143 – 172.

G. Box and G. Jenkins (1976): Time Series Analysis: Forecasting and Control .
Prentice Hall.

Bravo-Group (2001): Mercury 1.5 Software - Technical Document . Bravo Risk
Management Group.

Bravo-Group (2002): Cognity Software - Technical Document . Bravo Risk Man-
agement Group.

P. Brockwell and R. Davis (1991): Time Series: Theory and Methods. 2nd
ed. Springer, New York.

C. Brunetti and C. Gilbert (2000): Bivariate FIGARCH And Fractional
Cointegration. Journal of Empirical Finance Vol. 7: 509–530.

R. Burden and J. Faires (1997): Numerical Analysis. Sixth Edition.
Brooks/Cole Publishing Company.

J. Campbell, A. Lo and A. MacKinlay (1997): The Econometrics of Finan-
cial Markets . Princeton University Press. Princeton, New Jersey.

W. Charemza and D. Deadman (1997): New Directions In Econometric Prac-
tice. 2nd ed.. Edward Elgar Publishing, Inc.



250 References

T.-L. Chong (2000): Estimating The Differencing Parameter Via The Partial
Autocorrelation Function. Journal of Econometrics Vol. 97: 365–381.

T. Chordia, R. Roll and A. Subrahmanyan (2000a): Market Liquidity and
Trading Activity. Journal of Finance 56, 2: 501–530.

T. Chordia, R. Roll and A. Subrahmanyan (2000b): Commonality in Liq-
uidity. Journal of Financial Economics 56, 1: 3–28.

P. Christoffersen, F. Diebold and T. Schürmann (1998): Horizon Prob-
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