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We study resonant tunneling through a quantum dot with

one degenerate level in the presence of a strong Coulomb re-
pulsion and a bosonic environment. Using a real-time ap-

proach we calculate the spectral density and the nonlinear

current within a conserving approximation. The spectral den-
sity shows a multiplet of Kondo peaks split by the transport

voltage and boson frequencies. As a consequence we �nd a

zero-bias anomaly in the di�erential conductance which can
show a local maximum or minimum depending on the level

position. The results are compared with recent experiments.
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Transport phenomena through discrete energy levels

in quantum dots have been studied by perturbation the-

ory [1,2] and beyond [3{5]. In general, resonant tunnel-

ing phenomena and Kondo e�ects in nonequilibrium be-

come important, which have been measured recently by

Ralph & Buhrman [6]. In metallic islands, the Coulomb

blockade is strongly in
uenced by inelastic interactions

with bosonic degrees of freedom, such as 
uctuations

of the electrodynamic environment [7] or applied time-

dependent �elds [8]. The study of inelastic interactions

in quantum dots with few levels has started only recently,

either for the nondegenerate case [9,10] or more general,

in the presence of time-dependent �elds and Coulomb

blockade [2,5]. In earlier work we have studied the in-


uence of bosonic �elds in the nonequilibrium Anderson

model in the perturbative regime [11] and found resonant

side peaks in the Coulomb oscillations.

The purpose of the present letter is to investigate the

in
uence of external quantum-mechanical �elds on trans-

port phenomena through ultrasmall quantum dots at low

temperatures and frequencies (compared to the intrin-

sic broadening of the resonant state in the dot). This

requires a description of the Kondo e�ect, generalized

to nonequilibrium situations and including coupling to

bosonic �elds. For the nonperturbative treatment of the

tunneling we apply a real-time, nonequilibrium many-

body approach developed recently [12,13] to a quantum

dot with one level and spin degeneracy M . For M � 2

and low lying dot level �we obtain the usual Kondo peaks

at the Fermi levels �� of the reservoirs [4]. However, the

emission of bosons causes additional Kondo singularities,

for a one mode �eld at �� + n!B (n = �1;�2; : : :).

Furthermore, we will analyze the e�ect of the singu-

larities in the spectral density on the di�erential conduc-

tance as function of the bias voltage. For a low lying

level we obtain the well-known zero bias maximum [4{6],

whereas for a level close to the chemical potentials of the

reservoirs we �nd a zero bias minimum. The coupling

to bosons gives rise to satellite anomalies, which can be

traced back to the corresponding satellite peaks in the

spectral density. In a certain range of gate voltages, for

M = 2 and in the absence of bosons, we �nd that the

temperature and bias voltage dependence of the conduc-

tance coincides with recent measurements of zero-bias

minima in point-contacts [14]. Therefore, in addition to

Refs. [15{17], we propose here another possible interpre-

tation of this experiment.

We consider a dot containing only one energy level

with degeneracy M connected via high tunnel barri-

ers to reservoirs of noninteracting electrons. We, fur-

thermore, include a coupling to bosonic modes repre-

senting phonons, photons or 
uctuations of the electro-

dynamic environment. Our model Hamiltonian reads

H = H0 + HT , where H0 describes the decoupled sys-

tem and HT the tunneling between leads and dot. We

write H0 = HR + HD where HR =
P

k�� �k�a
y
k��ak��

refers to the reservoirs (� and � are spin and reservoir

indices). Furthermore, (�h = kB = 1)

HD = �0N̂ + U0

P
�<�0 n�n�0

+
P

q !qd
y
qdq + N̂

P
q gq(dq + d

y
q) (1)

describes the isolated dot with M spin degenerate levels

at position �0, Coulomb repulsion U0, bosonic modes !q
and electron-boson coupling gq. The number of particles

on the dot with spin � is denoted by n� = c
y
�c�, and

N̂ =
P

� n�. Finally, the tunneling term is given by

HT =
P

k��(T
�
k a

y
k��c� + h:c:).

This Hamiltonian can be rewritten after a unitary

transformation [18] de�ned by V = exp(�iN̂') and ' =

i
P

q(gq=!q)(d
y
q � dq). We get �H = V HV

�1 = �H0+ �HT ,

where �H0 = HR + �HD, �HD = �N̂ + U
P

�<�0 n�n�0 +P
q !qd

y
qdq and

�HT =
P

k��(T
�
k a

y
k��c�e

i'+h:c:). Due to

the electron-boson interaction the level position and the

Coulomb repulsion are renormalized, � = �0 �
P

q g
2
q=!q

and U = U0 � 2
P

q g
2
q=!q, and the tunneling part con-

tains now phase factors e�i'.

In lowest order perturbation theory the rates for tun-

neling in and out of the dot to reservoir � are



�
� (E) =

Z
dE

0�
�� (E
0)P�(E �E

0) ; (2)
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where �
�� (E) = 1=(2�)��(E)f
�
� (E) is the classical rate

without bosons, ��(E) = 2�
P

k jT
�
k j

2
�(E � �k�), and

f
+
� (E) is the Fermi distribution of reservoir � with chem-

ical potential �� while f
�
� (E) = 1�f+� (E). Furthermore,

P
�(E) describes the probability for an electron to absorb

(for P+) or emit (for P�) the boson energy E. It is [7]

P
�(E) =

1

2�

Z
dte

iEt
< e

i'(0)
e
�i'(�t)

>0 (3)

where < ::: >0 denotes the expectation value with re-

spect to the free boson Hamiltonian. The classical rates

together with a master equation are su�cient in the per-

turbative regime � =
P

� �� � T [11]. In this letter

we are interested in temperatures and frequencies which

are of the order or smaller than the intrinsic level broad-

ening �, which requires a nonperturbative treatment in

�. To achieve this we use a real-time technique devel-

oped in [12,13] which provides a natural generalization

of the classical and cotunneling theory to the physics of

resonant tunneling. For details we refer to these papers.

Here we only sketch the derivation and quote the results.

We develop a diagrammatic approach by expanding in

the tunneling Hamiltonian �HT . Since �H0 contains in-

teraction terms, this can not be done by usual Green's

function techniques since Wick's theorem does not apply.

However, we can use it with respect to the �eld operators

of the reservoirs, since �H0 is bilinear in these operators.

As an example let us consider the reduced density op-

erator of the dot. We assume that the reservoirs and

the boson bath remain in thermal equilibrium. On the

other hand, we want to study the nonequilibrium time

evolution of the dot. An e�ective description in terms of

the dot degrees of freedom can be derived by expanding

all propagators in �HT and tracing out the reservoirs by

applying Wick's theorem for them. A matrix element of

the reduced density operator can then be visualized as

shown in Fig.(1).
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FIG. 1. A diagram showing various tunneling processes:

sequential tunneling in the left and right junctions, a term
preserving the norm, a cotunneling process, and resonant tun-

neling.

The forward and the backward propagator (Keldysh

contour) are coupled by \tunneling lines" associated with

the junctions to each reservoir �. Each tunneling line

with energy E represents the rate �
+� (E) if the line is

directed backward with respect to the closed time path

and �
�� (E) if it is directed forward. Because of Fermi-

Dirac statistics, we get a factor �1 if two tunneling lines

cross each other. The tunneling lines are associated with

changes of the state of the dot, as indicated on the closed

time path. For large Coulomb repulsion U we can restrict

ourselves to states with N = 0; 1. The coupling to the

bosons is introduced by connecting all vertices in all pos-

sible ways by boson lines with a certain energy E (the

direction can be chosen in an arbitrary way). The rule

for the contribution of the boson lines is exactly the same

as for the reservoir lines except that we have to replace

�
�� by P�. Finally, as in the case for metallic islands [12],

we have to associate to each tunneling vertex at time t

on the contour a factor exp i�E t where �E is the dif-

ference of the out- and incoming energies. If the vertex

lies on the backward propagator it acquires a factor �1.

Analogous graphical rules hold for the Green's functions

of the dot as well, the only di�erence is the occurrence of

external vertices.

In leading order, we include only boson lines between

vertices which are already connected by tunneling lines.

This simply amounts to a dressing of the tunneling lines

�
 ! 
, and the diagrams look identical to those without

bosons. The approximation, while neglecting many dia-

grams, describes well the spectral density of the dot at

resonance points. The reason is that position and value

of the peaks of the spectral density are determined by a

self-energy � (see Eq. (4)) which is calculated here in low-

est order perturbation theory in � including the bosons.

Higher orders are small for high tunnel barriers.

Similar to the case of metallic islands [12,13] we pro-

ceed in a conserving approximation, which takes into ac-

count non-diagonal matrix elements of the total density

matrix up to the di�erence of one electron-hole pair ex-

citation in the reservoirs. The di�erence in the case of

a single level quantum dot is that we have now M pos-

sibilities for the occupied state. The analytic resumma-

tion of the corresponding diagrams yields for the tran-

sitions between N = 0(1) and 1(0) the rates �� =

�
R
dE 


�(E)jR(E)j2. Here R(E) = [E � � � �(E)]�1

de�nes a resolvent with broadening and energy renor-

malization given by the self-energy

�(E) =

Z
dE

0M

+(E0) + 


�(E0)

E �E0 + i0+
(4)

where 
� =
P

� 

�
� and �

�1 =
R
dEjR(E)j2.

In the classical limit � << T we recover for �� the

classical rates 
�. The stationary probabilities P0 and

P1 for an unoccupied or occupied dot state follow from

the kinetic equation which uses the rates as input P1�
��

P0M�+ = 0. Together with P0+P1 = 1 we obtain P0 =R
dE


�(E)jR(E)j2 and P1 = M
R
dE


+(E)jR(E)j2.

Summing equivalent diagrams for the real-timeGreen's

functions of the dot we obtain the spectral density � �

(G< �G
>)=(2�i)

�(E) =

Z
dE

0
X
r=�



r(E0)P�r(E0 �E)jR(E0)j2 (5)
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and for the current I� 
owing into reservoir �

I� = e2�M
X
�0

Z
dE

0
X
r=�

r

�r
� (E0)
r�0(E0)jR(E0)j2: (6)

For the special case of two reservoirs � = L=R and

constant level broadening � = �L = �R the current

I = IL = �IR can be written as

I = e
M

2
�

Z
dE�(E)[f+R (E)� f

+

L (E)] : (7)

Our results satisfy all sum rules together with current

conservation, and one can prove particle-hole symmetry

in the case M = 1.

The di�erence to other approaches in the M = 1 case

[9,10] is clearly displayed by the e�ect of the self-energy

�(E) which determines via the resolvent R(E) the posi-

tion of the maxima of the spectral density (5). In all pre-

vious works, �(E) has been approximated by a constant.

We �nd that the energy dependence of �(E) cannot been

neglected if the temperature T and the typical frequency

!B of the bosons are smaller than �. To derive this an-

alytically we consider from now on a one-mode environ-

ment (Einstein model) with boson frequency !q = !B .

De�ning g =
P

q g
2

q=!
2

B we obtain P�(E) =
P

n pn�(E�

n!B), where pn = e
�g(1+2N0)e

n!B=2TBIn(2gN0e
!B=2TB)

is the probability for the emission of n bosons with fre-

quency !B. Here, N0 is the Bose function, In denotes the

modi�ed Bessel function. The temperature of the boson

bath is TB . In real experiments it can be di�erent from

the electron temperature T . Using (2) and (4) we obtain

Re�(E) =
X
n;�

(Mpn � p�n)
�

2�

h
ln

�
EC

2�T

�

�Re	

�
1

2
� i

E + n!B � ��

2�T

�i
(8)

and Im�(E) = ��
P

n pn[M�
+(E + n!B) + �
�(E �

n!B)]. Here 	 denotes the digamma function, and we

have chosen in the energy integrals a Lorentzian cut-o�

at EC . The real part of � depends logarithmically on

energy, temperature, voltage and frequency. These log-

arithmic terms are typical for the occurrence of Kondo

peaks and do not cancel for M � 2 or pn 6= p�n. Hence

we anticipate logarithmic singularities not only for the

degenerate case but also for a single dot level without

spin since the probabilities for absorption and emission

of bosons are di�erent. This is an important di�erence to

the case of classical time-dependent �elds [5] where both

probabilities are equal.

Fig. (2) shows a typical series of pictures for the spec-

tral density at di�erent voltages for a low lying level �.

Without bias and M = 2, we obtain the usual Kondo

peak near the Fermi level (which we choose as zero en-

ergy). Due to emission of bosons, there are now addi-

tional resonances at multiples of !B. For �nite bias volt-

age, all peaks split and decrease in magnitude.
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FIG. 2. The spectral density for T = TB = 0:01�, � = �4�,

g = 0:2, !B = 0:5� and EC = 100� at di�erent voltages. For
V = 0 there are resonances at multiples of !B, which split for

�nite bias voltage.

The resonances in the spectral density can be seen most

pronounced in the nonlinear di�erential conductance as

function of the bias voltage V . Fig. (3) shows the di�er-

ential conductance for a low lying level �.
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FIG. 3. The di�erential conductance vs. bias voltage for

T = TB = 0:01�, � = �4�, !B = 0:5� and EC = 100�. The

curves show a maximum at zero bias and satellite maxima

at multiples of !B for a �nite electron-boson coupling. Inset

(g = 0): increasing voltage leads to an overall decrease of the

spectral density in the range jEj < eV , which explains the

zero-bias maximum.

As usual we �nd a zero-bias maximum [4{6] since the

splitting of the Kondo peak leads to an overall decrease

of the spectral density in the energy range jEj < eV (see
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inset of Fig. (3)). Due to emission of bosons we observe

also a set of symmetric satellite maxima. They can be

traced back to the fact that pairs of Kondo peaks can

merge if the bias voltage is given by multiples of the boson

frequency (see Fig. (2)). This gives rise to pronounced

Kondo peaks at E = �eV=2 and thus to an increase of

the spectral density with bias voltage near these points.

The di�erential conductance for � near zero energy is

shown in Fig. (4) with and without bosons. Surprisingly

we �nd that the whole structure is inverted compared to

the � < 0 case and we �nd a zero-bias anomaly although

the Kondo peak at zero energy is absent. The contribu-

tions of sequential and cotunneling lead only to an overall

shift of the di�erential conductance without any interest-

ing structure. This shows clearly that the in
uence of the

logarithmic terms in �(E) is still important. They lead

to an overall increase of the spectral density near zero

energy with bias voltage. In the presence of bosons we

obtain satellite steps at jeV j = m!B .
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FIG. 4. The di�erential conductance vs. bias voltage for

T = TB = 0:01�, � = 0, !B = 0:5� and EC = 100�. The

curves show a minimum at zero bias and steps at multiples
of !B for a �nite electron-boson coupling. Left inset: the

rescaled curves for g = 0 at di�erent temperatures collapse

onto one curve. Right inset: The temperature dependence of

the linear conductance (solid line) coincides with experimen-

tal data from [14] (triangles).

The occurrence of zero-bias minima is well known for

Kondo scattering from magnetic impurities [19]. Here we

have shown that zero-bias minima can also occur by res-

onant tunneling via local impurities if the level position

is high enough to enter the mixed valence regime. We

have also compared the scaling behavior of the conduc-

tance as function of temperature and bias voltage with

recent experiments of Ralph & Buhrman [14] (see insets

of Fig. (4)). The coincidence is quite remarkable. The

explanation of this experiment, either interpreting it as 2-

channel Kondo scattering from atomic tunneling systems

[15,16] or by tunneling into a disordered metal [17], is still

controversial. The mechanism described in this work of-

fers another possibility although the magnetic �eld de-

pendence of the experiments remains unexplained.

Finally, we also investigate the di�erential conductance

at �xed bias voltage as function of the position of the dot

level, which experimentally can be varied by changing

the gate voltage coupled capacitively to the dot. Fig. (5)

shows the classically expected pair of peaks at j�j = eV=2

together with satellites between the main peaks (due to

emission and absorption) and peaks for j�j > eV=2 (only

due to absorption of bosons).
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FIG. 5. The di�erential conductance as a function of � for

T = 0:25�, eV = 30�, g = 0:3, !B = 5� and EC = 500�.

The imaginary part of �(E) gives rise to a classi-

cally unexpected asymmetry of the peak heights. The

peak at � = eV=2 is larger than the one at � = �eV=2

since jIm�(E)j = �jM

+(E)+ 


�(E)j is always smaller

for higher energies (except for the M = 1 case where

particle-hole symmetry holds). This demonstrates a sig-

ni�cant e�ect due to the broadening of the spectral den-

sity by quantum 
uctuations.

In conclusion, we have studied for the �rst time low-

temperature transport in the nonequilibrium Anderson

model with bosonic interactions. A one-mode environ-

ment yields new Kondo resonances in the spectral density

which can be probed by the measurement of the nonlinear

di�erential conductance. We have shown that both the

gate and bias voltage dependence is important. Quan-

tum 
uctuations due to resonant tunneling yield zero-

bias anomalies as function of the bias voltage, which can

be changed from maxima to minima by varying the gate

voltage. We found similarities to recent experiments.
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