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Abstract

We study the frequency and space dependence of the local tunneling density

of states of a Luttinger liquid (LL) which is connected to a superconduc-

tor. This coupling strongly modi�es the single-particle properties of the LL.

It signi�cantly enhances the density of states near the Fermi level, whereas

this quantity vanishes as a power law for an isolated LL. The enhancement

is due to the interplay between electron-electron interactions and multiple

back-scattering processes of low-energy electrons at the interface between the

LL and the superconductor. This anomalous behavior extends over large dis-

tances from the interface and may be detected by coupling normal probes to

the system.
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Transport in low-dimensional structures is strongly inuenced by electron-electron in-

teractions. A paradigm model to describe interactions in one-dimensional systems is the

Luttinger liquid (LL). The low-lying excitations of the electron system consist of charge and

spin waves, rather than quasiparticles [1,2]. As a consequence, the presence of a barrier

in the liquid leads to perfectly reecting (for repulsive interactions) or transmitting (for

attractive interactions) behavior at low energies [3].

One of the most striking characteristic properties of Luttinger liquids is the behavior of

the density of states (DOS) close to the Fermi energy. Contrary to Fermi liquids, whose

quasiparticle residue is �nite, LLs have a DOS which vanishes near the Fermi energy as a

power law,

N(!) � !(g�+4=g��4)=8: (1)

The exponent g� depends on the strength of the electron-electron interaction: it is smaller

(larger) than two for repulsive (attractive) interactions. In the non-interacting case g� = 2,

and the DOS is constant as in Fermi liquids [4].

Recently it became possible to fabricate interfaces between a superconductor (S) and a

two-dimensional electron gas (2DEG) [5]. An excess low-voltage conductance due to Andreev

scattering has been observed in Nb-InGaAs junctions [6], as well as a supercurrent through a

2DEG in an InGaAs/InAlGaAs heterostructure with Nb contacts [7,8]. If the 2DEG is gated

to form a quantum wire, it should be possible to study transport through Superconductor

- Luttinger Liquid (S-LL) interfaces. The Josephson current through a S-LL-S system has

been calculated [9,10], as well as the I-V characteristics of a tunnel junction between a

superconductor and a chiral LL [11]. The latter can be realized, e.g., in the fractional

quantum Hall regime.

The proximity e�ect [12] modi�es the properties of a normal metal (N) in contact with

a superconductor. The leakage of Cooper pairs induces a non-vanishing pair amplitude in

N, de�ned as F (~r) = h "(~r) #(~r)i, where  s(~r) is the annihilation operator for an electron

with spin s. The pair amplitude is a two-particle property, related to the probability to �nd

two time-reversed electrons at a position ~r. In a clean normal metal at zero temperature,

F (~r) decays as 1=r away from the N-S interface. In a LL with repulsive interaction in con-

tact with a superconductor, F (~r) decays as 1=r , where  > 1 depends on the strength of

interaction [10]. These results hold as long as ~r lies within the temperature-dependent coher-

ence length �N = �hvF=kBT from the interface to the superconductor. At larger distances,

F (~r) decays exponentially on the length scale �N . The reason for the decay of the pair

amplitude is that the two electrons loose their relative phase coherence over this distance.

Single electrons, however, loose phase coherence only at a much larger distance, namely the

phase-breaking length L�. Indeed, recent experiments [8,13] have shown that interference

e�ects due to single quasiparticles in N-S systems persist over distances much larger than

�N . We, therefore, expect quite generally a considerable inuence of superconductivity on

single particle properties over distances where the pair amplitude has already decayed.

In order to investigate these properties in a strongly interacting system we study the local

single-particle density of states (DOS) of a LL in contact with a superconductor. We �nd

that the local DOS is substantially enhanced near the Fermi energy as compared to the power

law decay of an isolated LL (cf. Eq.(1)). This result should be contrasted with the behavior

of the pair amplitude (a two-particle property) which is suppressed in the interacting system.
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The anomalous enhancement is a result of the interplay between the scattering of low-energy

electrons at the S-LL interface and the electron-electron interactions in the LL [14]. As for

the space dependence, the DOS does not decay in the same fashion as the pair amplitude

away from the S-LL interface. It remains enhanced up to distances of the order of the mean

free path, which may be much larger than �N for a clean quantum wire. Hence, the e�ect

cannot simply be explained in terms of a �nite density of Cooper pairs in the LL. Both the

frequency and the space dependence of the DOS can be detected experimentally by coupling

normal metal tunneling probes to the LL at some distance from the superconductor.

In the inset of Fig. 1 we schematically draw a 'clean' S-LL interface, consisting of a

LL in good contact with S. The shaded area indicates a tunnel junction between the LL

and a normal metal probe. We will also study a LL of �nite length connected to two

superconductors (S-LL-S system). In such a system Andreev bound states exist below the

gap [15]. Finally, we will comment on the case of a LL connected to S by means of a tunnel

barrier. The anomalous enhancement of the DOS is found in this case as well.

The Hamiltonian of a LL can be written in bosonized form as (�h = 1)

ĤL =
1

2

X
j

vj

Z
dx

"
gj

2
(r�j)2 +

2

gj
(r�j)2

#
; (2)

where j = �; �, and vj = (2=gj)vF are the renormalized interaction-dependent Fermi veloc-

ities. We restrict ourselves to repulsive, spin-independent interactions; hence g� < 2 and

g� = 2. The Fermi �eld operators are decomposed in terms of right- and left-moving Fermion

operators  +;s and  �;s, respectively,  s = eikFx +;s + e�ikF x �;s, where kF is the Fermi

wave vector. The �elds  �;s in turn can be expressed through Boson operators

 
y
�;s =

p
�0e

i
p
�[��s(x)+�s(x)]; (3)

where �s =
1p
2
(��+ s��) and �s =

1p
2
(��+ s��). The density of electrons per spin in the LL

is �0 = kF=2�. Maslov et al. [10] recently developed a bosonization scheme to treat clean

S-LL interfaces. For a LL coupled to two superconductors at a distance L, they obtained

the following normal mode expansion for the the �elds

��(x) =

r
�

2
(J + �)

x

2L
+
i

2

r
g�

2

X
q>0

q sin(qx)(b̂
y
�;q � b̂�;q); (4)

��(x) =
1p
�
�(0)� +

i

2

r
g�

2

X
q>0

q sin(qx)(b̂
y
�;q + b̂�;q); (5)

��(x) =

r
�

2
M

x

2L
+
i

2

s
2

g�

X
q>0

q sin(qx)(b̂
y
�;q � b̂�;q); (6)

��(x) =
1p
�
�(0)� +

i

2

s
2

g�

X
q>0

q sin(qx)(b̂
y
�;q + b̂�;q) : (7)

Here, b̂
(y)
j;q are Bose operators and q = expf�q�=2�g where � is a short range cut-o�. The

phase di�erence between the two superconductors is �; J and M describe the topological

excitations satisfying the constraint J +M = odd. Finally, �(0)� and �(0)� are canonically

conjugate to J;M respectively. The local density of states (per spin) of the LL measured at
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a distance x from the superconducting contact is obtained from the retarded one-electron

Green's function of the LL, GR(x; x
0; t) � �ihf s(x; t);  ys(x0; 0)gi�(t),

N(x; !) = � 1

�
Im

Z 1

�1
dtei!tGR(x; x; t) : (8)

We �rst discuss the space and frequency dependence of the DOS of a LL contacted at

x = 0 with a superconductor, which corresponds to the limit L!1 in the mode expansion

given by Eqs. (4) { (7). In this case only the non-zero modes (q > 0) contribute to the

local DOS. The correlation function h ys(x; t) s(x; 0)i can be evaluated using the boson

representation Eq. (3) with the result

h ys(x; 0) s(x; t)i = 2�0
Y

j=�;�

�
�2+(2x)2

�2

�j � �2

(��ivjt)2
��j

�
h

�2

(��i(2x+vjt))(�+i(2x�vjt))

ij
; (9)

at a distance x from the LL-S interface, where j = (gj=16 � 1=(4gj )) and �j = (gj=16 +

1=(4gj )). At small energies the DOS behaves as

NS�LL(!) � !g�=4�1=2: (10)

The exponent of the DOS is negative (g� < 2), which implies a strong enhancement at

low energies whereas in the absence of S the DOS of the LL vanishes at the Fermi energy.

The presence of the superconductor thus changes the properties of the Luttinger liquid in

a qualitative way. Recently, Oreg and Finkel'stein [14] have found a similar enhancement

of the local DOS of a LL in the presence of an impurity. They interpret their result as

a consequence of the interplay between the back-scattering induced by the impurity and

the repulsive interactions in the LL. A similar interplay exists in our system. Although

we consider a clean S-LL interface, backscattering is induced by the superconducting gap,

which reects low-energy electrons either directly or via (multiple) Andreev processes. The

enhanced DOS as a function of frequency, Eq. (10), is schematically drawn in Fig. 1; for

comparison we also show the vanishing DOS in absence of the superconductor, Eq. (1).

At low energies ! the enhancement of the DOS persists over large distances x(!) � v�=!

from the interface. On the other hand, the induced pair amplitude in the LL, which is

characteristic of the presence of the superconductor, decays as a power [10] of the distance

x. This profound di�erence in the space dependence demonstrates that the DOS provides

di�erent information compared to the proximity e�ect. The reason why the DOS does not

approach the well-known behaviour of an Luttinger liquid far from the superconducting

contact is in part related to the fact that we are considering a clean wire. In this case the

states in the LL are extended and the DOS enhancement does not depend on x.

We now turn to the properties of the DOS for a S-LL-S system. The two superconductors

are separated by the distance L and are kept at a phase di�erence �. The latter can be

achieved, e.g., by embedding this junction in a SQUID. As we consider a LL of �nite length,

the topological excitations should be taken into account; moreover the contribution from the

non-zero modes consists of a discrete sum rather than a continuous integral over q�states.
The correlator reads
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h y�;s(x; 0) �;s(x; t)i = ei�vF (1��=�)t=2L Y
j=�;�

Dj(x; t): (11)

The exponential prefactor originates from the topological part; we used the fact that J = 1

and M = 0 in the ground state for �� < � < �. The �-dependence is related to the phase-

dependent shift of the Andreev levels (see below). The contribution from the non-zero modes

is given by

Dj(x; t) = �0

 
(1� e��(�+2ix)=L)(1 � e��(��2ix)=L)

(1� e���=L)2

!j  
1 � e��(��ivj t)=L

1� e���=L

!�2�j

�
 

(1 � e���=L)2

(1� e�[��i(2x+vjt)])(1� e�[�+i(2x�vjt)])

!j

: (12)

As in the previous case of a single S-LL interface, the anomalous behavior of the DOS

at low ! extends over large distances, (measured now relative to the position of one of the

interfaces), hence the phase-dependent contribution to the DOS persists over distances much

larger than the Josephson coupling. If the interaction constant can be written as a ratio of

two integers (g� = m0=n0), we can express the DOS, using Eq. (11), as

N(x; !) = �0
X
s;�

X
n

an(x)[�(! � E�;n) + �(! + E�;n)] : (13)

Here an(x) are the Fourier coe�cients of the function D(x; t) corresponding to the energies

E�;n = EF (2
n

n0
+ 1)

�

2LkF
� vF

�

2L
;

where EF is the Fermi energy. The E�;n are the energies of the Andreev levels [15] in the

interacting quantum wire. The phase-di�erence � lifts the degeneracy for right- and left

moving electrons, giving rise to the Josephson e�ect. In the noninteracting case (g� = 2),

all the �-functions have the same weight and the local DOS shows a peak whenever the

frequency ! coincides with an Andreev level E�;n. When the electron-electron interaction is

switched on, the charge and spin part in Eq. (12) obtain di�erent periodicities due to spin-

charge separation. As a consequence the coe�cients an show a more structured behaviour.

In Fig. 2 the DOS is plotted for g� = 1 as a function of the frequency and of the distance from

one of the two superconductors. For clarity we use a realistic, broadened version of the �-

functions in Eq. (13). We, further, �xed the phase di�erence � between the superconductors

to zero. One clearly sees a strong enhancement of the DOS close to the interface. Away from

the superconductor the DOS remains enhanced, but the energy scale of the enhancement is

reduced to lower frequencies. The oscillatory contribution to the DOS is reminiscent of the

Friedel-oscillations, characterized by a period 2kF . In the general case � 6= 0, the DOS for

the right moving electrons di�ers from that of the left moving electrons due to the phase

factor in Eq. (11). Although this leads to a more complicated dependence of DOS on x and

!, the anomalous enhancement is still present.

So far we discussed the case in which the S-LL interface has a high transparency. Let

us shortly comment on the opposite limit, in which the Luttinger liquid is connected to the

superconductor by a tunnel junction. In this case at low energies, we �nd for the DOS close

to the junction NS�LL � !(g�=2�1)+(1=2g��g�=8). Although the exponent is di�erent from the
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one appearing in Eq. (10), the DOS is clearly enhanced. Moreover, also in this case the

enhancement is found regardless of the distance from the junction.

In summary we considered the DOS of a Luttinger liquid in contact with a supercon-

ductor. We studied speci�cally the cases of a single S-LL interface and a S-LL-S system.

Contrary to the well-known behavior in Luttinger liquids, the presence of the superconduct-

ing contact strongly enhances the local DOS close to the Fermi energy, and this behavior

extends to large (energy-dependent) distances from the interface. Our results can be veri�ed

experimentally [16], e.g., by means of the setup drawn in the inset of Fig. 1. We imagine

connecting the LL by means of a tunnel junction to a normal metal (at a distance x from

the interface) and measuring the I � V characteristic of this junction. If there were no

superconductor the conductance of the normal metal-LL junction would go to zero as the

temperature (voltage, frequency) is lowered. The presence of the superconductor leads to

an excess conductance at the junction.
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FIGURES

FIG. 1. Schematic dependence of DOS on frequency for a pure LL (dashed line) and for a LL

connected to S (solid line). Inset: Luttinger liquid, connected adiabatically to a superconductor.

The shaded area indicates a tunnel junction with a normal metal used to measure the DOS in the

LL at a distance x from the interface.

FIG. 2. The local DOS for a S-LL-S system for particles of species p = �, plotted as a function

of the frequency ! and the distance x from one of the S-LL interfaces. We took g� = 1 (repulsive

interactions); the �-functions of Eq. (13) have been smeared, using peaked Lorentzians with a width

of the order the level spacing. Furthermore, LkF = 106; NL = �0=EF ; � = 0.
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