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Abstract

A system of two parallel Josephson junction arrays coupled by interlayer

capacitances is considered in the situation where one layer is in the vortex-

dominated and the other in the charge-dominated regime. This system shows

a symmetry (duality) of the relevant degrees of freedom, i.e. the vortices

in one layer and the charges in the other. In contrast to single-layer arrays

both contribute to the kinetic energy. The charges feel the magnetic �eld

created by vortices, and, vice versa, the vortices feel a gauge �eld created by

charges. For long-range interaction of the charges the system exhibits two

Berezinskii-Kosterlitz-Thouless transitions, one for vortices and another one

for charges. The interlayer capacitance suppresses both transition temper-

atures. The charge-unbinding transition is suppressed already for relatively

weak coupling, while the vortex-unbinding transition is more robust. The shift

of the transition temperature for vortices is calculated in the quasi-classical

approximation for arbitrary relations between the capacitances (both weak

and strong coupling).

Two-dimensional (2D) Josephson junction arrays have attracted much attention because

of the experimental and technological progress and the rich underlying physics (see Ref. [1]
for review). Classical 2D Josephson junction arrays, where the Josephson coupling energy EJ

between the superconducting islands dominates, is a standard example of a system exhibiting
the Berezinskii-Kosterlitz-Thouless (BKT) transition { the unbinding of vortex-antivortex

pairs at a certain temperature TJ [2,3]. The transition separates a superconducting phase
at T < TJ / EJ , where vortices are bound, from a resistive phase. It was realized later (see

e.g. Refs. [4{7]) that charging e�ects, associated with the capacitances of the islands to the

ground C0 and of the junctions C, lead to quantum uctuations of the phase and suppress
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the BKT transition temperature. Beyond a critical value of the charging energy EC =

minfe2=2C; e2=2C0g the transition temperature vanishes, and the superconducting phase

ceases to exist. The next step [8{11] was to understand that in the \extreme" quantum limit

EC � EJ , where the quantum uctuations of the phases are very strong, the vortices are

ill-de�ned objects. In this regime the charges on the islands become the relevant variables.

If, furthermore, C0 � C, the interaction between the charges is (nearly) the same as that

of the vortices in the quasi-classical array. In particular, the charges can be considered as a

2D Coulomb gas [13], and they undergo a BKT transition at temperature TC / EC . The

phase below the transition is insulating. A �nite value of the Josephson coupling between

the islands suppresses this transition. As another example we mention the inuence of

dissipation (e.g. Ohmic dissipation) on the phase transition in the array, which was �rst

noted in Ref. [12]. We are not going to review these theoretical results, however it is necessary

to stress that the theory of 2D Josephson junction arrays is far from being settled.

Below we describe another, more complicated system - two parallel 2D Josephson junc-

tion arrays with capacitive coupling between them (no Josephson coupling1). Probably the

most interesting situation arises when one array is in the quasi-classical (vortex) regime

while another one is in the quantum (charge) regime. Then the vortices in one layer and the

charges in the other one are well-de�ned dynamical variables. Another important feature
of the present system is that the strength of interaction between charges and vortices is
controlled by the interlayer coupling Cx and consequently this interaction may be weak or
strong, whereas in usual 2D Josephson junction arrays the strength of charge-vortex inter-

action is of the same order as either the charge-charge or the vortex-vortex interaction. We
also show that the physical realization of this interaction is rather di�erent from that in one
array. Hence, at least for weak interlayer coupling, one should expect two BKT transitions,
the �rst for charges in one layer, and the second for vortices in the other one. In this article
we provide the theoretical description of the coupled system and calculate the shifts of the
transition temperatures due to the interlayer interaction.

We consider two parallel Josephson junction arrays, i.e. (square) lattices of supercon-
ducting islands connected by Josephson links. As usual, we suppose that the magnitude
of the order parameter in the islands is constant while its phase uctuates from island to
island. The partition function of the systemmay be expressed conveniently in terms of these
phases �i� (the indices i label the islands in each array and � = 1; 2 refers to the number of

array)

Z =
Y
i

Z 2�

0
d�

(0)
i1 d�

(0)
i2

X
fmi1g;fmi2g

Z
D�i1(� )D�i2(� ) exp(�Sf�g) : (1)

Here the path integration over phases is carried out with the boundary conditions

�i�(0) = �
(0)
i� ; �i�(�) = �

(0)
i� + 2�mi�;

1Multi-layered systems with Josephson coupling between layers have been discussed in the liter-

ature (see e.g. [14,15]). The analog of the BKT transition is in this case the disruption of vortex

rings. In the limit of weak Josephson couplings this system is reduced to the 2D XY-model, while

in the opposite case of strong coupling it is essentially the 3D XY-model. This situation, however,

is absolutely di�erent from the one we describe below.
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where � is the inverse temperature, and �h = 1. The Euclidean e�ective action Sf�g is

Sf�g =
Z �

0
d�

8<
:C01

8e2

X
i

( _�i1)
2 +

C1

8e2

X
hiji

( _�i1 � _�j1)
2 +

C02

8e2

X
i

( _�i2)
2 +

C2

8e2

X
hiji

( _�i2 � _�j2)
2+

+
Cx

8e2

X
i

( _�i1 � _�i2)
2 + EJ1

X
hiji

[1� cos(�i1 � �j1)] + EJ2

X
hiji

[1� cos(�i2 � �j2)]

9=
; : (2)

Here C0� are the capacitances of the islands in the array � relative to the ground, C� are

the capacitances of the junctions in the array �, and Cx are the interlayer capacitances.

Furthermore, EJ� are the Josephson coupling constants in the layers. Here and below we

use the symbol
P

hiji to denote the summation over nearest neighbors only, and each pair is

counted once; the symbol
P

ij stands for the summation for all values i and j (in particular,

each pair except hiii is counted twice).

From now on we choose parameters such that the array 1 is in the charge (quantum)

regime while the array 2 is in the quasi-classical (vortex) regime. In terms of the phase

variables this means that in the array 1 the phases on each grain are strongly uctuating

in time, while in array 2 they are nearly time-independent. This regime is described by the
conditions

EJ1 � e2= ~C1; EJ2 � e2= ~C2;

with ~C� = maxfC0�; C�; Cxg. Below we �rst calculate the shift of the BKT transition
temperature for vortices in the array 2. This does not require the introduction of charges
and vortices and may be done in the phase representation. Then, we turn to the BKT
transition for charges in the array 1. For this purpose we move from a description in terms
of phases to one in terms of charges and vortices, and use the duality of the resulting action

to investigate the transition. At the same time, we will show that charges and vortices in
this system can be considered as two-dimensional dynamical particles with masses. The
charge-charge and vortex-vortex interaction are essentially those of 2D Coulomb particles,
while the charge-vortex interaction is more peculiar.

BKT transition for vortices

The shift of the BKT transition temperature for vortices in the array 2 due to the
coupling to the array 1 can be calculated easily if we set the small parameter EJ1 to zero2.

Then the action for the phases �i1 becomes Gaussian and the latter may be integrated out.
After that the shift of the BKT temperature for vortices may be obtained by means of the

quasi-classical expansion [7,16].

The �rst step requires a comment. The path integration over the phases of the islands
�i1(� ) in the array 1 is, as usual, performed by a linear shift of variables in order to eliminate

2This means, in particular, that the results obtained below are valid also in the case when the

array 1 is in the normal state. Because of the e-periodicity in this case the boundary conditions in

the array 1 should read �
i1(�)� �

i1(0) = 4�m
i1. As we will show, this does not change the �nal

result.
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terms linear in �i1. However, the new (shifted) variables do not generally satisfy the bound-

ary conditions, and consequently the integration is not possible. If, nevertheless, the array 2

is in the quasi-classical regime, the contributions of all non-zero winding numbersmi2 to the

partition function are exponentially small in comparison with the contribution of mi2 = 0

(see, e.g. [16]). If we neglect these small contributions, the phases �i2 become periodic, and

the boundary conditions in the array 1 are met automatically. After integration over the

phases �i1 we �nd

Z =
Y
i

Z 2�

0
d�

(0)
i2

Z
D�i2(� ) exp(� ~Sf�i2g) (3)

with the e�ective action

~Sf�g =
Z �

0
d�

8<
: 1

8e2

X
ij

_�i2[�2]ij _�j2 + EJ2

X
hiji

[1� cos(�i2 � �j2)]

9=
; : (4)

Here [�2]ij is the e�ective capacitance matrix for the layer 2 (see also below)

[�2]ij = �
C2
x

C1

[Q̂�1
1 ]ij + C2[Q̂2]ij (5)

and the matrices Q̂� (� = 1; 2) have a form

[Q̂�]ij =

2
664
4 + C0�+Cx

C�
i = j

�1 i and j are nearest neighbors

0 otherwise

:

Since the array 2 is supposed to be in the quasi-classical regime, only weakly time-
dependent periodic paths �i2(� ) are important. Hence we may write the phases in the form

�i2(� ) = �
(0)
i2 + fi(� ), where

fi(� ) = ��1
1X
n=1

[fi(!n) exp(�i!n� ) + f�i (!n) exp(i!n� )]:

is expressed as a sum over Matsubara frequencies !n = 2�n��1. Now the action may be
expanded to quadratic terms in fi(� ), yielding

~Sf�
(0)
i2 ; fi(� )g = �EJ2

X
hiji

[1� cos(�
(0)
i2 � �

(0)
j2 )] +

+
Z �

0
d�

8<
: 1

8e2

X
ij

_fi[�2]ij _fj +
EJ2

2

X
hiji

[fi(� )� fj(� )]
2 cos(�

(0)
i2 � �

(0)
j2 )

9=
; : (6)

Note that the �rst term is the classical action of 2D Coulomb gas [3]. Finally, one performs

the cumulant expansion [7,16] in the last term in brackets in Eq. (6). As a result the action
has exactly the same form as the classical one, but with the renormalized temperature

� ! ��1 �
1

2

Z �

0
d�
D
(fi(� )� fj(� ))

2
E
: (7)
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Here the angular brackets denote the averaging with the e�ective action

Seff = (8e2)�1
Z �

0
d�
X
ij

_fi(� )[�2]ij _fj(� ):

From this we obtain the shift of the transition temperature due to the interlayer coupling

TJ = TJ0 � e2A=3; (8)

where

A = Re([��1
2 ]ii � [��1

2 ]hiji);

and the second term is the matrix element taken for neighboring islands. (We have assumed

that the matrix �2 depends on the distance between the islands only). Here TJ0 is the tran-

sition temperature for a classical 2D Josephson junction array [3] (to be of order EJ2). Eq.

(8) is the result we were aiming at, however in order to obtain some analytical expressions

we evaluate the quantity A in some approximations. In Fourier representation the matrices

Q�(k) have the form

Q�(k) = (ka)2 + (C�)
�1(Cx + C0�); ka � 1;

with a being the lattice parameter. Consequently the matrix ��1
2 is

��1
2 (k) =

C1(ka)
2 + Cx + C01

(C1(ka)2 + Cx + C01)(C2(ka)2 + Cx + C02)� C2
x

: (9)

If we replace the �rst Brillouin zone by a circle cut-o� at k < a�1, the integration over the
angular variable can be performed easily, and we obtain

A =
a2

2�

Z 1=a

0
kdk��1

2 (k)[1� J0(ka)]:

In the range of integration the Bessel function J0 can be approximated by its expansion

J0(x) � 1 � x2=4:

Finally, in the case C0� � Cx (this situation is the most interesting) we obtain

TJ0 � TJ =
e2

48�Ceff

;
1

Ceff

=
1

C2

�
Cx

C2
2

ln
CxC1 + CxC2

CxC1 + CxC2 + C1C2

: (10)

It is seen that the e�ect of layer 1 is merely the renormalization of the e�ective capaci-

tance. As a result, the BKT transition for vortices in the layer 2 is suppressed. We should
emphasize that the result (10) is valid for arbitrary capacitances Cx, C1 and C2. The only

restriction is the validity of the quasi-classical approximation. The shift of the transition
temperature should be small, or, in other words, e2=Ceff � EJ2. In particular, for Cx � C2

(weak coupling between the layers) one obtains Ceff � C2 irrespectively of C1 | vortices

in layer 2 do not feel the presence of the layer 1. In the case C1 = C2 � Cx the e�ective
capacitance is Ceff = 2C2, while for C1 = Cx � C2 one has Ceff = 2Cx=3. It is seen that

in the latter case the temperature begins to feel the presence of the �rst layer, however the
absolute value of the shift becomes now small.
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Charge { vortex duality and BKT transition for charges

Before we turn to the description of the BKT transition for charges, it is necessary to

stress the following. As shown by the e�ective action (2), the interlayer capacitance Cx not

only couples the layers, but also renormalizes the capacitances C01 and C02 of the islands

to the ground. Hence the logarithmic interaction between the charges in each layer has a

�nite range for any non-zero Cx due to the screening, and the BKT transition, is, strictly

speaking, absent. One should realize, however, that in the situation C01 � Cx � C1 the

screening length �1 � a(C1=Cx)
1=2 can be very large. Below we assume that these inequalities

are satis�ed and the range of interaction �1 is large enough to make it meaningful to speak

about the charge-unbinding transition. (Note that like any phase transition in a �nite system

this transition is smeared; in other words, the resistance grows exponentially, and, strictly

speaking, for �nite � it is impossible to distinguish between insulating and resistive phases).

On the other hand, already for relatively weak coupling Cx � Ccr � C1 this description

becomes meaningless and the insulating phase is absent. As we show below, in the small

range Cx � Ccr the transition temperature for charges in layer 1 does not feel the presence

of the layer 2 and hence is essentially the charge-unbinding temperature for one Josephson

junction array [10]. Nevertheless, the charge-vortex description required to obtain this result
gives rise to an interesting physical model to be described below.

Now we move from the phase description (1),(2) to a charge-vortex description. First we

introduce the large capacitance matrix

Ĉ =

 
Ĉ1 �Ĉx

�Ĉx Ĉ2

!
: (11)

Here Ĉ� is the capacitance matrix in the array � while Ĉx = Cx�ij. The inverse matrix in
the Fourier representation reads as

C�1(k) =
1

(C1(ka)2 + Cx + C01)(C2(ka)2 + Cx + C02)� C2
x

� (12)

�

 
C2(ka)

2 + Cx + C02 Cx

Cx C1(ka)
2 + Cx + C01

!
�

 
�̂�1
1 (k) �̂�1

x (k)

�̂�1
x (k) �̂�1

2 (k)

!
� [Ĉ�1]��(k):

Indices �; � = 1; 2 again label the array. The matrix Ĉ�1 describes the interaction of charges.
We have also introduced for later convenience the matrices ��1

� , describing the interaction
of charges within layer �, as well as ��1

x referring to charges in di�erent layers (cf. Eq. (9).

Then the e�ective action (2) can be rewritten in terms of integer charges qi� of each island

and phases �i�

Sfq; �g =
Z �

0
d�

8<
:2e2

X
ij

X
�;�

qi�(� )[Ĉ
�1]��ij qj�(� ) +

X
i

h
qi1(� ) _�i1(� ) + qi2(� ) _�i2(� )

i
+

+EJ1

X
hiji

[1� cos(�i1 � �j1)] + EJ2

X
hiji

[1� cos(�i2 � �j2)]

9=
; : (13)

Now it is possible to introduce vortex degrees of freedom by means of the Villain transfor-
mation [17] (see also [18]). It is important that this procedure deals only with the phase

6



variables and does not a�ect the charge interaction (the �rst term in Eq. (13)). The phase

terms (the second and the third one in Eq. (13)), however, have exactly the same form

in the problem of two arrays as for a single Josephson junction layer. The procedure for

a single-layer array array is discussed in details in Refs. [10,11], the generalization to the

double-layer system is straightforward. The partition function becomes

Z =
Y
i

X
fqi1;qi2g

X
fvi1;vi2g

exp(�Sfq; vg); (14)

where the e�ective action for integer charges qi� and vorticities vi� is

Sfq; vg =
Z �

0
d�

8<
:2e2

X
ij

X
�;�

qi�(� )[Ĉ
�1]��ij qj�(� ) +

1

4�EJ1F (�1EJ1)

X
ij

_qi1(� )G
(1)
ij _qj1(� )+

+
1

4�EJ2

X
ij

_qi2(� )G
(2)
ij _qj2(� ) + �EJ1F (�1EJ1)

X
ij

vi1G
(1)
ij vj1 + �EJ2

X
ij

vi2G
(2)
ij vj2+ (15)

+i
X
ij

_qi1(� )�ijvj1(� ) + i
X
ij

_qi2(� )�ijvj2(� )

9=
; :

Here we introduced the discrete time variable; the time lattice spacing in the array � is
of order �� � (8EJ�EC�)

�1=2, EC� � e2=2C�. The time integration and derivatives are
continuous notations for a summation over time lattice and for a discrete derivative

_f(� ) = ��1� [f(� + ��)� f(� )];

respectively. The function

F (x) =
1

2x ln(J0(x)=J1(x))
!

1

2x ln(4=x)
; x� 1;

is introduced to \correct" the Villain transformation for small EJ [17]. As we see, its entire
e�ect is to renormalize (to increase) the Josephson coupling in the layer 1; the renormalized
coupling ~EJ1 reads as

~EJ1 � (8EJ1EC1)
1=2 (ln(EC1=EJ1))

�1
: (16)

Note that for EJ1 � EC1 (charge regime) one obtains ~EJ1 � EC1.

The kernel

�ij = arctan(
yi � yj

xi � xj
)

describes the phase con�guration at site i around a vortex at site j. Finally, the kernel G
(�)
ij

is the lattice Green's function, i.e. the Fourier transform of k�2. At large distances between

the sites i and j it depends only on the distance r between the sites and has a form (see e.g.

[13])

G
(�)
ij = ln(��=r); a� r� ��; �� = a(C�=Cx)

1=2: (17)

Later on, we assume that the linear size of each array is much less that the range of interaction
��. This means, in particular, that we assume Cx � C2.
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The action (15) depends on the charges and vorticities in both layers. However, in our

situation, when the layers 1 and 2 are in the charge and vortex regimes, respectively, the

vortices in the layer 1 and the charges in the layer 2 may be integrated out [10]. To do this we

suppose the latter variables to be continuous (strongly uctuating), and neglect the kinetic

term for charges in the layer 2 ( _q2G
(2) _q2). Then after performing the Gaussian integration

we obtain the e�ective action for charges qi1 in the layer 1 and vorticities vi2 in the layer 2

(to be referred below as qi and vi)

Sfq; vg =
Z �

0
d�

8<
:2EC1

�

X
ij

qi(� )G
(1)
ij qj(� ) +

1

4� ~EJ1

X
ij

_qi(� )G
(1)
ij _qj(� ) + �EJ2

X
ij

viG
(2)
ij vj+

+
�

8EC2

X
ij

_vi(� )

"
G
(2)
ij �

C2
x

4�2C1C2

X
kl

�ikG
(1)

kl �lj

#
_vj(� ) +

iCx

2�C1

X
ijk

_vi(� )�ikG
(1)

kj qj(� )

9=
; : (18)

To derive Eq. (18) we have taken into account the explicit expression for the large capaci-

tance matrix (12).

The action (18) is the central result of this section. It looks rather similar to the e�ective

charge-vortex action in one Josephson junction, but the most important di�erence is that

while in one layer either charges or vortices are well-de�ned, Eq. (18) describes the system
of well-de�ned dynamic variables on each site | charges in the layer 1 and vortices in the
layer 2. We postpone the discussion of physics in this system until the next section, however
it is clear that the action shows a duality between charges and vortices. The second term
in the square brackets is small if Cx � C1; C2. Both kinetic terms for charges and vortices

violate the duality due to the numerical coe�cients. However close enough to the transitions
these terms produce only small renormalization of the transition temperature, and are not
important. Another interesting feature of this action is that the last term, describing the
interaction between charges and vortices, is also small, while in a single-layer array the
interaction is always of the same order of magnitude as another terms.

It is obvious that for long-range interaction of the charges in the layer 1 they also ex-
hibit the BKT transition, and under the conditions where the action (18) was obtained the
transition temperature does not feel the presence of the layer 2:

TC0 � TC =
~EJ1

24�
:

Charge and vortex motion

To understand the physics described by the action (18) it is instructive to map this

model onto the 2D Coulomb gas. For this purpose we move from the space-time lattice to

the continuous medium and introduce the coordinates of the vortex centers and charges

qi(� )!
X
m

qm�(r� rm(� ))

vi(� )!
X
n

vn�(r�Rn(� )): (19)
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Here qm = �1 and vn = �1 represent charges and vortices respectively; rm(� ) and Rn(� ) are

the corresponding coordinates of the charges and of the vortex centers. Now the partition

function reads

Z =
1X

M=0

1X
N=0

Z
Dr1(� ) : : :Dr2M(� )DR1(� ) : : :DR2N(� ) exp(�Sfr;Rg); (20)

and we are going to deal with the e�ective action Sfr;Rg, describing the behavior of the

system of 2M charges (of which M are positive, q = 1, and the other M are negative,

q = �1), and of N positive (v = 1) and N negative (v = �1) vortices.

The �rst and third terms of the action (18) can be easily transformed by means of

decomposition (19). The �rst one produces the potential energy of charge interaction,

S
(q)
int =

2EC1

�

Z �

0
d�

2MX
m;n=1

qmqnG
(1)(rm(� )� rn(� )): (21)

In principle, the summation includes the terms withm = n; these, however, may be excluded

from this sum, giving rise to the chemical potential for charges. The third term in Eq. (18)
yields the interaction of vortices

S
(v)
int = �EJ2

Z �

0
d�

2NX
m;n=1

vmvnG
(1)(Rm(� )�Rn(� )): (22)

Here again the term with m = n gives rise to the chemical potential for vortices. The terms

(21) and (22) are essentially the action for (classical) Coulomb gases of charges and vortices,
respectively [3].

If we neglect the small correction proportional to the C2
x=C1C2 in the fourth term in

Eq.(18) then the second and fourth terms can be transformed to the kinetic energy of
charges and vortices respectively [10]. The second term gives

S
(q)
kin =

1

2� ~EJ1

Z �

0
d�

2MX
m;n=1

qmqn _r

mM�(rm � rn) _r

�
n: (23)

We have introduced the mass tensor [19]

M�(r) = �rr�G
(�)(r): (24)

It decreases proportional to r�2 for r � a, and consequently may be approximated by a
local function

M�(r) =M���(r); M =
�

a2
:

Then the kinetic term for charges takes a simple form

S
(q)
kin =

1

2a2 ~EJ1

Z �

0
d�

2MX
m=1

_r2m(� ): (25)

Similarly, the fourth term in Eq.(18) produces the kinetic term for vortices
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S
(v)
kin =

�2

8a2EC2

Z �

0
d�

2NX
m=1

_R2
m(� ): (26)

Finally, the last term in Eq.(18)) is responsible for the interaction between charges and

vortices. The corresponding term in Sfr,Rg is

Sqv =
iCx

2�C1a2

Z �

0
d�
X
mn

vmqn

Z
dr0r

Rm

�(Rm � r
0)G(1)(r0 � rn) _Rm(� ): (27)

The integral over r can be calculated explicitly, yielding

Sqv = �
Z �

0
d�
X
m

ivm _Rm(� )Am(Rm) (28)

with

Am(Rm) =
X
n

qna(Rm(� )� rn(� ));

a(r) = �
1

4a2
Cx

C1

(1 + 2 ln(�1=r))[ẑ � r]:

The resulting action is

Sfr;Rg = S
(q)
int + S

(v)
int + S

(q)
kin + S

(v)
kin + Sqv: (29)

The action (29) is essentially that of two 2D Coulomb systems. The charges and the
vortices can be viewed as particles with masses

Mq =
1

a2 ~EJ1

and Mv =
�2

4a2EC2

(30)

respectively. Charges interact via the e�ective capacitance, vortices via the usual logarithmic
interaction with strength EJ2. Furthermore, the vortices produce the vector potential a for
the charges3; the magnetic �eld associated with this vector potential is

B = �
1

ea2
Cx

C1

ln
�1

r
; a� r� �1: (31)

Its sign depends of the signs of the corresponding vortex and charge. Apart from its quite

peculiar functional form, another important feature of this �eld is the small factor Cx=C1.

3This seeming asymmetry is rather arti�cial. In Eq.(18) one can rewrite after a partial integration

the charge-vortex interaction term in order to obtain the vector potential for vortices, created by

charges, as well. However, this vector potential contains always the small factor C
x
=C1.

10



Summary

We have investigated the system of two 2D Josephson junction arrays coupled by capac-

itances Cx, in the situation when the arrays 1 and 2 are in the charge and vortex regime,

respectively. In the case of weak coupling Cx � C1; C2 the system shows an (approximate)

duality between dynamical charges in one layer and dynamical vortices in the other one. In

contrast to a single layer array, both variables are well-de�ned. The system is equivalent to

two 2D Coulomb gases of massful particles. The charges feel the magnetic �eld created by

vortices, and, vice versa, the vortices feel the gauge �eld created by charges. In this respect

the system resembles the composite fermion model of the fractional quantum Hall e�ect,

however the magnetic �eld is now small and has another functional form, so one may expect

di�erent physics. In this regime the system shows two BKT transitions, one for charges

and another for vortices, and the coupling between the layers suppresses both transitions.

Although one could expect the suppression of one transition and the enhancement of an-

other one, the suppression of both transitions is rather natural, since the capacitance Cx also

renormalizes the capacitances of the islands to the ground. The BKT transition for charges

vanishes even for very small values of Cx, however, the BKT transition for vortices survives

under condition e2=Ceff � EJ2 irrespective of the relations between the capacitances C1,
C2 and Cx. The shift of this temperature due to the capacitance e�ects is calculated within
the phase representation for both cases of weak and strong coupling. The e�ect of the layer
1 is to renormalize the capacitance matrix in the layer 2. For weak coupling Cx � C2 (irre-
spective of C1) the vortices do not feel the presence of another layer, and the temperature

remains the same as for one layer. However, for Cx � C2 di�erent situations are possible.
In summary, we would like to emphasize that the system of two coupled Josephson

junction arrays may exhibit quite rich and interesting physics. We have investigated some
limiting cases, however, the further rich behavior of this system can be expected in other
cases. In particular, the magnetic �eld created by vortices seems to be rather unusual and

interesting. We hope that experimental studies of this system will be performed in the near
future.
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