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Abstract

We study a 1D array of Josephson coupled superconducting grains with kinetic

inductance which dominates over the Josephson inductance. In this limit the dy-

namics of excess Cooper pairs in the array is described in terms of charge solitons,

created by polarization of the grains. We analyze the dynamics of these topologi-

cal excitations, which are dual to the 
uxons in a long Josephson junction, using

the continuum sine-Gordon model. We �nd that their classical relativistic motion

leads to saturation branches in the I-V characteristic of a ring-shaped array. We

then discuss the semiclassical quantization of the charge soliton, and show that it

is consistent with the large kinetic inductance of the array. We study the dynam-

ics of a quantum charge soliton in a ring-shaped array biased by an external 
ux

through its center. If the dephasing length of the quantum charge soliton is larger

than the circumference of the array, quantum phenomena like persistent current

and coherent current oscillations are expected. As the characteristic width of the

charge soliton is of the order of 100�m, it is a macroscopic quantum object. We

discuss the dephasing mechanisms which can suppress the quantum behaviour of

the charge soliton.

1 Introduction

Arrays of Josephson junctions in 1D (one dimension), 2D or 3D have been
studied extensively in recent years, both theoretically and experimentally

[1]. When the capacitance of the junctions is small, the arrays are usually

characterised by the Josephson energy,
P

iEJ [1� cos(�i��i+1)], and by the

charging energy, 1
2

P
ij QiC

�1
ij Qj. Here �i and Qi denote the phase and the
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Figure 1: An equivalent electric circuit of a 1D array of serially coupled

Josephson junctions.

charge on the ith grain of the array, respectively, C�1
ij is the inverse capac-

itance matrix, and EJ is the Josephson coupling energy. This description

in terms of variables de�ned on the grains and not on the junctions is con-

sistent with the fact that the kinetic and the geometric inductances of the

grains are typically smaller than the Josephson inductance. As a result, the
charge redistribution time in the grains is shorter than the tunneling time. In
this paper we study the opposite limit, namely a 1D array where the kinetic
inductance of the grains

Lkin =
m�

elx

e�2nsS
; (1)

dominates over the Josephson inductance

LJ =
1

(2�)2
�2
0

EJ

: (2)

Here m�

e and e
� are the mass and the charge of a Cooper pair, respectively,

ns the Cooper pair density, lx the length of a grain, and S the cross sec-
tion of a grain. As we show below this limit is experimentally accessible.
However, to the best of our knowledge, this kind of array has not been con-
structed yet. The large kinetic inductance means that in this case the charge

redistribution time in the grains is longer than the tunneling time, thus the

dynamic variables should be de�ned on the junctions of the array and not
on the grains. This array can be represented by the electric circuit shown in
Fig. 1. C0 denotes the self-capacitance of the superconducting grains, while

the combined e�ect of the Josephson and charging energies of the junctions

results in a nonlinear capacitance, C, as we explain in the next section. We
show that in this kind of array the concept of 'charge soliton' [2]-[8] arises,

i.e., an excess Cooper pair in the array gives rise to a compact topological
solitonic excitation. This appears to be in contrast to the usual model which

does not incorporate the inductive e�ects. That model suggests that an ex-

cess Cooper pair delocalises as a consequence of the Josephson tunneling.
We show, however, that a su�ciently large kinetic inductance decouples the

individual junctions quantum mechanically. We study the dynamics of the
charge soliton both classically and quantum mechanically.
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The paper is organised as follows: In section (2) we develop a continuum

approximation of a serially coupled array of Josephson junctions with a dom-

inant kinetic inductance. In section (3) we show that this array has compact

solitonic excitations ('charge solitons'), and discuss some of their classical

properties and dynamics. In this section we discuss the small amplitude

oscillations of the array ('plasmons') as well. In section (4) we study the

classical dynamics of the charge soliton further, using collective coordinates.

The quantization of the charge soliton is done in section (5). We discuss

the meaning of the semi-classical quantization of the soliton, and study its

quantum dynamics in a ring-shaped array. We demonstrate that quantum

charge solitons can, in principle, exhibit quantum phenomena without clas-

sical analogues, like persistent motion in response to an external 
ux and

coherent current oscillations. We then discuss possible dephasing mecha-

nisms of charge solitons, and address the e�ects caused by the discreteness

of the array. We summarize our results in the concluding section (6).

2 Kinetic Inductance Dominated 1D Array

of Serially Coupled Josephson Junctions

2.1 The Lagrangian

We consider a chain of N identical superconducting grains (thus forming
N�1 Josephson junctions). The junctions are characterised by the Josephson
coupling energy and by the charging energy scale

EC �
(2e)2

2C
: (3)

We assume that C � 10�15 F, and that EJ is of the same order as EC . The

grains are capacitively coupled to a conducting substrate with a capacitance
C0 � C, which we assume to be C0 � 10�17 F. The energy scale of this
coupling energy,

EC0
� (2e)2

2C0
; (4)

is thus much larger than the junction charging energy

EC0
� EC : (5)

The grains are characterised by the inductive energy scale associated with

Lkin

EL �
�2
0

2Lkin
; (6)

where �0 � h=2e. As we have said in the introduction, we assume that the

kinetic inductance of the grain dominates over the Josephson inductance.
In fact, due to the numerical coe�cient (2�)2=2 di�erence in the relations
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(2) and (6), Lkin should be larger than 2�2LJ for the inductive e�ects to

be important. For a typical EJ of the order of 100�eV it means that Lkin
dominates if it is 10�7H or larger. This situation can be achieved, for in-

stance, when lx � 10�m and S � 103 nm2. Nevertheless we assume that the

width of the grains is of the order of the London penetration depth to avoid

tunneling of 
ux quanta through the grains. The width of the junctions, d,

is much smaller than lx (typically d � 2 nm), and the distance between ad-

jacent grains (the unit cell) is denoted by a (a � lx+ d � lx). L � Na is the

total length of the chain. We assume that the chain is very long (N � 1).

Using the values given above, we �nd that the impedance of the array,

considered as a transmission line,

ZLC =
q
Lkin=C0 ; (7)

is of the order of 100K
, i.e. it is much larger than the quantum resistance,

RQ � h=(2e)2:

ZLC � RQ : (8)

Note that this impedance inequality can be expressed alternatively as an
inequality of the coupling energy and the inductive energy scales

EC0
� EL : (9)

A similar condition to (8) has been studied before in the context of single
electron tunneling in a normal junction [9], and it has been shown that it leads
to a quantum mechanical decoupling of the junction from its environment.
Using the same reasoning here, we are led to the conclusion that condition
(8) means that each junction is quantum mechanically decoupled from its
environment, i.e., from the other junctions of the array. We can thus solve

the Schr�odinger equation for each junction separately, and obtain a local
potential energy of the array. This situation has been named the 'local rule'
in the context of single electron tunneling [10].

The eigenstates of the junction i depend on ~qi, the dimensionless charge
(in units of 2e) induced on this junction. As a function of ~qi, the energy levels

are made of a set of charging energy parabolas, with gaps at the intersection
regions due to the Josephson energy [11]-[14] (see Fig. 2). The energy levels

are, thus, periodic functions of ~qi with a period 1. Under appropriate condi-

tions (not too small gaps, adiabatic changes) Zener transitions between the
levels can be avoided [15], [16]. We also ignore, for the time being, quasi-

particle tunneling, which is a dissipative process. We discuss this issue in
section (5). We thus may consider only the �rst level, which we denote by

E~qi. This level represents coherent superposition of charge states in the bulk
superconductors, which di�er by one Cooper pair. E~qi is formally given as
an eigenvalue of Mathieu's equation. As it does not have a simple analytical

form when EC is of the same order of EJ , and our results do not depend

qualitatively on the exact form of E~qi, we adopt the following form

E~qi =
2

(2�)2
EC [1� cos(2�~qi)] : (10)
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Figure 2: Energy levels of a Josephson junction as a function of ~qi for the
case EJ � EC .

The form (10) preserves the correct parabolic dependence for small qi, and

reduces the amplitude of the energy level from its maximal height (in the
limiting case where EJ = 0) by a factor of �2=4. We emphasize that the
important feature of E~qi is its periodicity, which allows us to represent the
Josephson junction as a nonlinear capacitor (see Fig. 1). In the next section
we show that the periodicity gives rise to the soliton description.

Due to the tunneling of Cooper pairs the variable ~qi is compact, i.e.
~qi + 1 = ~qi. It is convenient to introduce an extended variable qi, which is
the dimensionless charge (in units of 2e) brought to the ith junction. qi is
related to ~qi through

qi � ~qi +
NX

i0=i+1

Qi0 ; (11)

where Qi is the net charge on the ith grain. Qi has, of course, only discrete

values, while qi and ~qi are continuous. This change of variables corresponds
to changing from a 'reduced zone' scheme to an 'extended zone' scheme in

the junction's energy bands (see Fig. 2). This variable was used in the study
of 1D arrays of serially coupled normal junction as well [2], [4]. In the next

section we show the importance of qi for the solitonic description. The form
of the energy of the junction (the potential energy) does not change when

expressed as a function of qi

Epot = Eqi =
2

(2�)2
EC[1� cos(2�qi)] : (12)

The voltage across the junction, Vqi , is given by the derivative of the energy
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levels with respect to the charge

Vqi =
1

2e

@Eqi

@qi
: (13)

Using (12) we express the voltage as

Vqi =
1

2�
VC sin(2�qi) ; (14)

where VC � 2e
C
.

Since qi is de�ned on the junction it is already contains an averaging over

the fast tunneling process. A time dependent qi is therefore related to the

slow process of charge redistribution in the grains by means of a supercurrent.

This gives rise to an inductive energy in the grains, which serves as the kinetic

energy of the array:

Ekin =
1

2
(2e)2Lkin _q

2
i : (15)

In the parameters range we consider, the kinetic energy scale is smaller than
the potential energy one:

EC > EL : (16)

The three inequalities, (5), (9) and (16) can be combined into a single con-
dition for the energy scales of the system:

EC0
> EC > EL : (17)

The relation between the dynamic variable qi and the voltage Vi between
the ith grain and the substrate can be found by consecutive applications of
Gauss' law:

qi = q1 � 1

2e
C0

iX
i0=1

Vi0 ; (18)

where q1 is the charge that was brought to the �rst junction of the array.
From now on we assume that the continuum limit can be taken. (We will

show the necessary condition for this soon.) Discreteness e�ects are discussed
in section (5). In the continuum limit Eqs. (11) and (18) have the form

q(x) � ~q(x) +
Z L

x
Q(�) d�=a ; (19)

q(x) = q(0)� 1

2e
C0

Z x

0
V (�) d�=a : (20)

The array is thus described by the charge �eld q(x). Relation (20) between

q(x) and V (x) can be expressed in a local form

V (x) = �a 2e
C0
qx(x) : (21)
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We see that the qx(x) is the dimensionless charge between the grains and the

substrate. The charging energy which couples the unit cells of the array can

be expressed, therefore, as

Ecoupling = a2
(2e)2

2C0
q2x : (22)

As we have mentioned above, its energy scale is EC0
(4). Since C0 � C

we have EC0
� EC . In this case even small amounts of charge induce high

voltages on the capacitors between the grains and the substrate, and these

voltages strongly couple the Josephson junctions. In the opposite case, when

C0 is large, there is almost no voltage on the capacitors and the junctions are

practically decoupled. A small C0 is thus needed for the picture of serially

coupled Josephson junctions.

From the above discussion we conclude that the array we consider is char-

acterised by the three energies: the potential energy (12), the kinetic (or in-

ductive) energy (15) and the coupling (or charging) energy (22). When these

three energies are combined, we get the following sine-Gordon Lagrangian

L =
1

2a
(2e)2Lkin _q

2 � a
(2e)2

2C0
q2x �

1

a

2

(2�)2
(2e)2

2C
[1� cos(2�q)] : (23)

This is a novel description of a 1D Josephson junctions array, which is valid
when condition (17) holds. The three e�ects of the large kinetic inductance
are re
ected in the Lagrangian (23): 1. an additional inductive energy, which
is an inertial term; 2. a representation of each junction by a periodic charging
energy, as a result of the quantum mechanical decoupling of the junctions;

3. a description of the array by degrees of freedom which are de�ned on the
junctions and not on the grains. The Lagrangian (23) is electromagnetically
dual to the Lagrangian representing a long Josephson junction. The latter
system can be understood as the continuum version of an array of parallely
coupled Josephson junctions. Interchanging parallel coupling with series cou-

pling and inductors with capacitors one gets the Lagrangian of the serially
coupled Josephson junctions. Note, especially that the periodic inductive en-
ergy in the long Josephson junction (i.e., the Josephson energy) is replaced

here by the periodic charging energy.

2.2 The Equation of Motion and the Hamiltonian

Following the standard sine-Gordon treatment [17], [18], we rede�ne the
charge �eld: q(x)! q0(x) � q(x)=2�, and express the Lagrangian (23) as

L =
�hvC

2��2

"
1

2v2C
_q2 � 1

2
qx

2 � 1

�2
C

(1� cos q)

#
: (24)

The three bulk parameters: C, Lkin and C0 are replaced in (24) by �C, vC
and �2. Here

�C � a

s
C

C0
; (25)
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is the characteristic length of the system. The condition needed for the

validity of the continuum limit is therefore

�C � a ; (26)

or

C � C0 ; (27)

which is consistent with the limit (5). This is another manifestation of what

we have discussed above: a small C0 implies a large coupling, hence a large

�C. Using the values given above we get �C � 100�m. The second param-

eter in the Lagrangian (24),

vC �
ap

LkinC0
; (28)

is the wave velocity of the system. It is of the order of 10�1�10�2 c, where c is
the vacuum light velocity. It is related to �C via the characteristic frequency

!C =
vC

�C

=

s
1

LkinC
; (29)

which is of the order of 1011 sec�1. The third parameter in the Lagrangian
(24),

�2 � 2��hvCC0

(2e)2a
; (30)

sets the energy scale of the system. It does not a�ect the classical equation of
motion, but its value is important in determining whether the system behaves
classically or quantum mechanically. We return to this point in section (5),

where we discuss the quantum dynamics of the system.
The equation of motion derived from the Lagrangian (24) is

1

v2C
�q � qxx +

1

�2
C

sin q = 0 : (31)

It is a voltage equation for the junction, as can be shown more clearly by
multiplying it by 2ev2CLkin=2� and using Eq. (21) to obtain

1

2�
2eLkin�q �

1

2�
a2
2e

C0
qxx +

1

2�
VC sin q = 0 : (32)

The �rst term is an inductive voltage induced along the grains when the
current is time dependent. From Eq. (21) we see that the second term

is the continuum form of Vi+1 � Vi, i.e., it is the di�erence of the voltages

between two adjacent cells and the substrate. The third term is the voltage
across the junctions, resulting from the superposition of charge states (Eq.

(14)). The voltage equation (32) is thus a Kircho�'s law for a closed loop
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of the equivalent electrical circuit of the array (see Fig. 1). The conjugate

momentum of the �eld q

�q �
@L
@ _q

=
1

a

�
2e

2�

�2
Lkin _q � �h~n�0

; (33)

is the number of 
ux quanta per unit length that have tunneled through the

junctions of the array. Using ~n�0
we get the Hamiltonian of the system

H = �hvC

Z (
2��2

1

2
~n2�0

+
1

2��2

"
1

2
q2x +

1

�2
C

(1 � cos q)

#)
dx : (34)

When the array is coupled to an external voltage, Vext, the equation of

motion (31) changes to

1

v2C
�q � qxx +

1

�2
C

sin q = 2�
1

a2
C0

2e
Vcell ; (35)

where
Vcell �

a

L
Vext (36)

is the part of the external voltage that is distributed on one unit cell. Equa-
tion (35) represents, alternatively, the case where the array has a shape
of a ring and an external 
ux is applied through its center. In this case

Vext � � _�ext is the electromotiv force acting on the array. The 
ux source
has, of course, the advantage that the e�ects of the leads are eliminated. In
any case, Eq. (35) can be derived from the following Hamiltonian

H = �hvC

Z (
2��2

1

2
(~n�0

� ~n�ext)
2 +

1

2��2

"
1

2
q2x +

1

�2
C

(1� cos q)

#)
dx :

(37)

In the case of a voltage source ~n�ext is de�ned as the integral of the external
voltage per unit length and unit 
ux

~n�ext � �
1

L�0

Z
Vext dt ; (38)

while in the case of a 
ux source it is simply the dimensionless 
ux density.

The external source thus appears in the Hamiltonian as a time dependent

gauge potential, in analogy to the external current in the long Josephson
junction Hamiltonian [19]. The gauge nature of the external voltage gives
rise to the following shift of the conjugate momentum

�h~n�0
=

1

a

�
2e

2�

�2
Lkin _q + �h~n�ext : (39)

Dissipation processes in the system produce additional q-dependent volt-

age drops. Ohmic dissipation can be represented phenomenologically by
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adding to each unit cell a resistor connected to the other elements in this cell

in series. In this case the voltage equation (35) becomes

1

v2C
�q +

1

a2
C0R _q � qxx + 1

�2
C

sin q = 2�
1

a2
C0

2e
Vcell : (40)

This representation, which was named the `serially resistive junction' (SRJ)

in Ref. [2], is the analogue of the RSJ model [20], [21].

3 Charge Solitons and Plasmons

3.1 A Static Charge Soliton

Since the 1D array of serially coupled Josephson junctions can be described

by a sine-Gordon Lagrangian (24), we expect that it has solitonic excitations,

i.e., compact, stable topological con�gurations. Using the de�nition of q as
an extended variable (19), we observe that q(x) and q(x+2�) can be distin-

guished if there is an excess or a de�ciency of Cooper pairs in intermediate
grains. The one-soliton excitation represents the charging of the junctions
(or the polarization of the grains) due to an excess Cooper pair in the array,
and is called a `charge soliton'. This term was coined in Ref. [2] in the con-
text of a 1D array of normal tunnel junctions. Recently, charge solitons in a

1D array of SQUID's (Superconducting QUantum Interference Device) have
been studied experimentally [8], and a zero current state below a threshold
voltage was found. This voltage was interpreted as an injection voltage for
a charge soliton.

The charge soliton solution of Eq. (31) with the appropriate boundary
conditions is (see Fig. 3 (a))

qsol(x) = 4 tan�1
�
exp

�
x�X0

�C

��
� 2� : (41)

Its center is at X0, which we take in this section to be zero. The excess
charge of the Cooper pair is the topological charge of this soliton

Q =
2e

2�

Z
@xqsol dx = �2e : (42)

We would like to emphasize once more that under the conditions we consider

here, the existence of a topological solitonic excitation and its stability do
not depend on the exact form of the potential energy of the junctions, but

only on its having degenerate minima. Thus our qualitative results are valid
for other forms of the potential as well.

As was mentioned above, charge solitons in 1D arrays of normal tunnel

junctions have been studied previously [2]-[7]. In this context a question was
raised whether a charge soliton can be regarded as a coherent dynamic object

whose equation of motion contains an inertial term, as was proposed in Refs.
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Figure 3: (a) The charge soliton con�guration representing an excess Cooper
pair in the array. The center of the soliton is taken to be X0 = 0. (b) The

pro�le of the voltage between the array and the substrate induced by the
charge soliton. V is measured in mV. (c) The distribution of voltages on the
junctions of the array corresponding to a charge soliton con�guration. Vq is
measured in mV.

[2], [3] and [4], or that it merely represents a static charge distribution pro�le,
as was argued in Refs. [5] and [6]. Here we have shown that this question
should not rise in the Josephson junction array context. The coherence of the
charge soliton ensues from the coherent superconducting ground state, and
the inertia term comes from the kinetic inductance of the grains. Moreover,

we have shown that the impedance condition (8) should be met in order that
the concept of a charge soliton will be di�erent from that of a point charge
(be it a Cooper pair or an electron).

From Eq. (41) we see that the characteristic length scale of the array,
�C, is the characteristic width of the soliton as well. In order to interpret

the charge soliton as a particle its width should be much smaller than the
total length of the array, i.e.,

L� �C : (43)

This assumption is met when L � 103 �m. Here we assume that L � 103 �m.
The number of grains the soliton is spread over is

NC � �C=a =
q
C=C0 : (44)

NC is larger than one due to the continuum limit condition (26). For the

parameters given above NC = 10. When condition (26) fails, one should take
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into account corrections to the continuum sine-Gordon model. We address

this point in section (5). The �nite width of the charge soliton is clearly seen

from its density, which according to Eq. (21), is proportional to the pro�le

of the voltage between the array and the substrate (see Fig. 3 (b))

V (x) = � a

2�

2e

C0
@xqsol(x) = �

2

2�

1

NC

2e

C0
sech

�
x

�C

�
: (45)

�C sets the scale for the static distribution of voltages on the junctions of

the array as well. Using Eqs. (14) and (31) we �nd that this distribution is

proportional to the second derivative of the soliton con�guration (see Fig. 3

(c))

Vq(x) =
1

2�
VC�

2
C @xxqsol(x) = �

2

2�
VC sech

�
x

�C

�
tanh

�
x

�C

�
: (46)

The energy needed to create a charge soliton is the value of the Hamilto-

nian calculated for a static solution (Eq. (41))

E0 =
8

�C

�hvC

2��2
=

8

(2�)2
(2e)2p
CC0

=
16

(2�)2
ECNC : (47)

This rest energy depends on C and C0 but not on Lkin, since it is determined
by the potential and coupling energies. It can be written as the potential

energy density (�C � EC=S), times the e�ective area of the soliton (Se� �
SNC)

E0 =
16

(2�)2
�CSe� : (48)

Dividing Eq. (47) by v2C we get the soliton rest mass

M0 � E0=v
2
C =

8

(2�)2
(2e)2

Lkin

a

1

�C

: (49)

In analogy to the rest mass of a 
uxon in a long Josephson junction [19], the
charge soliton's rest mass is proportional to the inductance per unit length
and inversely proportional to the characteristic length, �C . Using the typical
parameters we �nd that the charge soliton mass is of the order of 10�36Kg,

i.e. six orders of magnitude less than the electron rest mass. This result

indicates that the charge soliton should not be understood as a Cooper pair
dressed with a polarization cloud, but as the polarization cloud itself. We

return to this point when we discuss the dynamics of the charge soliton in

the next section.

3.2 A Dynamic Soliton

In order to describe a charge soliton moving with a velocity v, we make
use of the Lorentz invariance of the Lagrangian (24) to perform a Lorentz

transformation of the static con�guration (41) and obtain

qsol(x; t) = qsol[
(x� vt)] = 4 tan�1
�
exp

�



�
x� x0 � vt

�C

���
� 2� ; (50)
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where 
 � 1=
q
1� (v2=v2C). We thus expect that a relativistic charge soliton

su�ers a Lorentz contraction. Since the light velocity in the array, vC, is

smaller than the vacuum light velocity, relativistic e�ects of the charge soliton

can be observed more easily than relativistic e�ects of electrons or Cooper

pairs.

A moving charge soliton induces, of course, a current along the array.

The spatial distribution of the current is given by

I(x; t) =
2e

2�
_qsol(x; t) : (51)

This is a current pulse with a width �C, concentrated around the moving

center of the charge soliton. It has the same pro�le as the voltage between

the array and the substrate (see Fig. 3 (b)). The average current produced

by the moving soliton is

�I =
1

L

Z
I(x) dx = � 1

L
2ev : (52)

For a soliton moving with a velocity 106 m/sec, it is of the order of 0:1 nA.

3.3 Plasmons

Besides topological solitons, the sine-Gordon Lagrangian (24) admits small
amplitude excitations. Their dynamics is governed by the linearized equation

of motion
1

v2C
�q � qxx +

1

�2
C

q = 0 : (53)

As this equation describes electromagnetic �eld oscillations with a con�ning
potential, its solutions are longitudinal plasma oscillations (`plasmons') prop-
agating along the array. The propagation of the plasmons does not involve
any tunneling process. The plasmons have the dispersion relation

!2 = !2C + v2Ck
2 ; (54)

i.e., there is an energy gap �h!C in their spectrum with the corresponding

temperature Tg � 1K. The plasmons have, therefore, a mass

MP =
�h!C

v2C
=

�h

�Cvc
; (55)

which is of the order of 10�37Kg. The ratio between the mass of a plasmon

to the mass of the soliton (49) is 2��2=8, i.e., it is of the order of �2.
Plasmons can also be excited when there is a soliton in the array. In that

case they can be considered as vibrations of the soliton. Their analytical

form is

 k(x) �
�
tanh

�
x

�C

�
� ik�C

�
exp(ikx) : (56)

13



The dispersion relation is the same as above (Eq. (54)), but there exists

now an additional zero mode (whose ! = 0). It re
ects the translational

invariance of the system, i.e., the homogeneity of the array (at distances

larger than a).

4 Collective Coordinates for the Charge Soli-

ton

4.1 Equations of motion and the Dynamic Mass

The topological stability of the charge soliton and its �nite width allow for

its interpretation as a particle. Thus we would like to describe the charge

soliton by a pair of conjugate coordinates which correspond to its center of

mass, X, and to its momentum, P . This can be done by using the `collective

coordinates' method. This method was studied extensively in the context
of general soliton theory [22]-[25], as well as for long Josephson junctions in

particular [2], [4], [19], [26], [27]. We assume that the form of the charge
soliton is

q(x; t) = qsol(x�X(t)) ; (57)

i.e., that it is a rigid object moving with a velocity _X. This assumption
means that we neglect the e�ects of the plasmons. It is justi�ed when the
temperature is much lower than the plasmons' energy gap.

The collective coordinates can be expressed in an explicit form [27]:

X � � 1

2�

Z
x@xqsol dx ; (58)

P �
Z
�q@xqsol dx : (59)

Inserting the soliton con�guration (50) into de�nitions (58) and (59) we get
the equations of motion of a free relativistic particle

X = X0 + vt ; (60)

_X = v ; (61)

P = 
M0
_X ; (62)

_P = 0 : (63)

The mass that appears in (62) is actually the dynamic mass of the charge
soliton

Md � �
1

a

�
2e

2�

�2
Lkin

Z
@xq

2
sol dx : (64)

Its value is identical to the rest mass (49) in the limit L � �C , and di�ers

from it by a factor of 2 in the opposite limit L � �C . As we consider here
the �rst limit, we denote it by M0 as well. We can understand the origin
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of the dynamic mass by observing the way the charge soliton propagates.

Starting from the static distribution of voltages on the junctions (see Fig. 3

(c)), the center of the charge soliton moves from its position in the middle

of a grain towards one of the neighbouring junctions, say the right one, by a

charge redistribution in the grains. A superposition of charge states in the

two adjacent grains is built, and the (negative) voltage on this junction is

reduced. When the superposition is of states of equal weight, the voltage is

zero. As the motion continues, the charge redistribution increases the weight

of the charge state on the right grain and the voltage on the junction is

increased. When the absolute value of this voltage reaches the initial one,

the center of the charge soliton has been shifted by one unit cell, i.e., it is in

the middle of the right grain. One sees that the propagation of the charge

soliton is determined by the kinetic inductance and not by the Josephson

one. The dynamic mass leads us, therefore, to the same conclusion that

we got from the rest mass: the charge soliton is the polarization cloud that

accompanies the excess Cooper pair that exists in the array.
Transforming now the Hamiltonian (34) into collective coordinates form,

we get

H =
q
M2

0v
4
C + P 2v2C ; (65)

so the energy of the moving soliton is

E = 
M0v
2
C = 
E0 : (66)

If we assume the nonrelativistic limit, i.e., v� vc, the Hamiltonian describing
the soliton as a particle reads

H =M0v
2
C +

P 2

2M0
; (67)

where now
P =M0

_X : (68)

The rest energy term in the Hamiltonian (67) is made out of the two charging

energies (the last two terms in (34)), while the contribution to the kinetic
term in (67), comes only from the inductive energy (the �rst term in (34)).

We thus see that the inductive energy, although being the smallest energy in

the system, is the one that governs the dynamics of the charge soliton. The
independence of the Hamiltonian (67) on X is another manifestation of the

translation invariance of the system.

4.2 A Voltage Biased Array

The collective coordinates can be used to describe a voltage (or a time varying


ux) biased array as well. Introducing the external voltage in the form

_�ext � �Vext ; (69)
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we �nd that the collective momentum is shifted to

P =M0
_X +

2��h

L

�ext

�0
; (70)

and the nonrelativistic particle Hamiltonian is

H =M0v
2
C +

1

2M0

 
P � 2��h

L

�ext

�0

!2

: (71)

The equations of motion derived from (71) are

_X =
1

M0

 
P � 2��h

L

�ext

�0

!
; (72)

and
_P = 0 : (73)

Combining the two equations we get

M0
�X = �2��h

L

_�ext

�0
; (74)

i.e., the external voltage accelerates the charge soliton without changing its

momentum. The origin of this acceleration is simply the electrostatic force
exerted on the excess Cooper pair by the external voltage. In order that
the rigid soliton assumption will be valid in this case as well, the external

ux must be changed adiabatically, or the external voltage should be small
enough, �����

_�ext

�0

����� =
����Vext�0

����� !C ; (75)

which means that Vext should be of the order of 10�V or less.
When there are Ohmic dissipation processes in the array an application

of an external voltage results in a steady state velocity (or current) of the

soliton. Using the Hamiltonian (34), the equation of motion (40), and the

average current (52), we �nd that the steady state condition is

Vext = Re�
�Isteady ; (76)

where the e�ective resistance of the array is constant in the nonrelativistic

case

Re� �
8

(2�)2
L2

a�C

R (77)

and is �Ieasteady dependent in the relativistic case

Re�, rel(
�Isteady) �

8

(2�)2
L2

a�C


(�Isteady)R (78)
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Figure 4: I-V characteristic of a ring-shaped dissipative array biased by a
time varying 
ux (Vext � � _�ext is the electromotiv force produced by the


ux). Each branch corresponds to a certain number of charge solitons in
the system. Vext is measured in �V and �Isteady is measured in nA. The
parameters are R = 10
 and vC = 10�2c.

The e�ective nonrelativistic resistance of the array is thus increased by about
two orders of magnitude, while relativity increases it further by the 
 factor.

Relation (76) between the external voltage and the steady state current is
dual to the relation between the external current biasing a long Josephson
junction and the steady state voltage a moving 
uxon creates [26], [28]. The
I-V characteristic of the array is expected to show saturation branches, where
each branch corresponds to a certain number of solitons reaching the limit
velocity, vC (see Fig. 4). These branches are expected to be observed in a

ring-shaped array, since charge solitons can enter and leave an open array in

a continuous manner.

5 Quantum Dynamics of the Charge Soliton

5.1 The Semi-Classical Expansion

In this section we study the quantum dynamics of the charge soliton as a par-

ticle. For this we utilise the semi-classical quantization of the sine-Gordon

theory [17], [18], [22], [29]. The expansion parameter is the coupling constant
�2, which was de�ned in (30). In this method the total Fock space is taken
to be composed of disconnected sectors, each one corresponds to di�erent

topological boundary conditions, i.e., to a di�erent number of solitons in

the system. The ground state of each sector is the corresponding solitonic
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con�guration. Here we concentrate on the one-soliton sector. Due to the

translational invariance of the system there is, in fact, a degenerate family of

eigenstates of the position operator, connected by space translations. Higher

states are found by a semi-classical expansion around the ground state. The

excitations of the �rst order correspond to the plasmons, and their quantum

interpretation is as light particles scattering from the static massive soliton.

These plasmons are, thus, the fundamental quanta of the theory. The degen-

eracy of the states is completely removed in the second order, as the position

eigenstates are replaced by momentum eigenstates, and the translation in-

variance of the theory is recovered on the quantum level. The semi-classical

expansion breaks down when �2 � 2, where the soliton becomes lighter than

the plasmons. The soliton then takes the role of the fundamental quantum,

and loses its correspondence to the classical particle con�guration (in a sense

it becomes `too' quantum). Since the typical value of �2 is 10�1, we can use

the expansion for the array. The parameter �2 can be expressed in the form

[30]

�2 =

s
EL

EC0

=
RQ

ZLC

: (79)

Comparing Eq. (79) with (8) and (9), we see that the condition for using the
semi-classical expansion, �2 � 1, is identical to the impedance condition.

This is not a surprise, as the impedance condition is the one that enables us
to decouple the junctions quantum mechanically. Our model of the charge
soliton as a classical con�guration is thus self-consistent.

However there are several di�erences between the system we study and
the �eld theoretical model. First of all, the array is very long (compare to

�C), but �nite. Apart from a slight distortion to the soliton's shape that we
neglect, the �niteness means that solitons can enter and leave the array, and
also get re
ected from the edges. To avoid this situation, we consider a ring-
shaped array. Second, since the gap in the plasmons' spectrum is of the order
of one Kelvin, their population can be made negligible if the temperature is

kept below the gap. Thus we can discard all the plasmons' contribution to the
dynamics. This assumption is equivalent to the rigid soliton assumption (57).
A �nite population of plasmons can be considered as an internal environment
which produces a phase breaking mechanism [31]. We comment on this

dephasing process at the end of this section. Another di�erent feature is

that we couple the array to an external (classical) 
ux source as a gauge
coupling, and study the quantum dynamics of the soliton in response to this

source. Finally, the array we study deviates from the ideal sine-Gordon model
by its discreteness, by the exact form of the potential energy, by structural

inhomogeneities and disorder, and by quasiparticle tunneling. The e�ects of
these deviations from the ideal model are discussed below.
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5.2 Persistent Motion of the Charge Soliton

In the presence of an external 
ux, �ext, the assumption of rigidity leads to

the following nonrelativistic quantum Hamiltonian for a ring-shaped array of

serially coupled Josephson junctions:

Ĥ =M0v
2
C +

1

2M0

 
P̂ � 2��h

L

�ext

�0

!2

: (80)

Higher order contributions to the energy give rise to quantum corrections to

the soliton's rest mass [32]. The renormalized mass in the array language

(up to the order of �0) is

M0 ren =
8

�C

�h

2��2vC

 
1 � �2

4

!
=M0

 
1 � �2

4

!
: (81)

However since �2 is small we can use M0 instead of M0 ren. As we have dis-

cussed in the previous section, the Hamiltonian is X̂ independent due to the
homogeneity of the array. Thus it commutes with the collective momentum
operator, P̂ , and the eigenstates are collective momentum eigenstates with a
discrete set of eigenvalues, pN = �hkN determined by the periodic boundary

conditions

kN =
2��h

L
N ; N = 0;�1;�2; ::: : (82)

The energy spectrum is discrete, too, and is given by (neglecting the constant
term M0v

2
C)

EN =
1

2M0

 
2��h

�0L

!2

(�0N � �ext)
2 : (83)

De�ning an e�ective inductance by

Le� �
�
�0L

2��h

�2
M0 (84)

(Le� � 10�5 H), the energy levels can be expressed in the form of inductive

levels

EN =
1

2Le�
(�0N � �ext)

2 : (85)

The inductive form of the energy levels suggests the interpretation ofN as the

number of 
ux quanta that have tunneled outside or inside the ring through

one of the junctions. The quantization of P̂ is, therefore, the statement that
only an integral number of 
ux quanta can tunnel in or out of the ring.
However, the conservation of the momentum means that there can be no


ux tunneling in an homogeneous array, i.e., the external 
ux is completely

screened.
The spectrum of the charge soliton's Hamiltonian (83) is periodic with

respect to the external 
ux with a period �0. It is composed of a set of

parabolas centered at �ext = N�0. Each parabola intersects its two adjacent
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parabolas at (N + 1=2)�0 (see Fig. 5). The current along the array is given

by

hÎi = � @EN

@�ext
=

1

Le�
(�0N � �ext) : (86)

It is proportional to the expectation value of the velocity of the charge soliton

h _̂Xi = L

2��h

@EN

@N
=
L

2e
hÎi : (87)

This is the quantum version of relation (52). We see that the external 
ux

induces a persistent motion of the charge soliton, which is manifested in a

persistent current along the array. As was shown above, no net number of


ux quanta can tunnel in or out of the junction. However, during the motion

of the soliton one can think of 
ux quanta 
owing in and out of the array

through the junctions, thus forming a 
ux loop around the moving center

of the soliton. (A similar idea for 2D superconducting �lms was given in

Ref. [33].) This interpretation is dual to the interpretation of the 
uxon in
a long Josephson junction as a (charge) current loop. The charge soliton's
persistent current has the same origin as the persistent current of electron
in a metal ring [34]. It is a manifestation of the Aharonov-Bohm e�ect [35]

of a charged particle encircling a 
ux tube, and its persistency is due to the
particle being in an exact eigenstate of the system. However, in contrast
to the electron, the charge soliton is a macroscopic particle (�C � 100�m),
so the possibility that it exhibits quantum e�ects is very intriguing. The
quantum behaviour of the charge soliton is dual to the quantum behaviour of
the 
uxon in a long Josephson junction [19]. The latter exhibits a persistent

motion in response to an external bias charge, which is the manifestation
of the Aharonov-Casher e�ect [36]. Being a magnetic particle, this motion
results in a persistent voltage across the junction.

A weak spatial inhomogeneity in the array, e.g., nonidentical grains or
junctions or disordered grains, gives an additional X̂ -dependent term in the

Hamiltonian (80). The momentumis not conserved anymore, and 
ux quanta
can tunnel across the array, re
ecting in the spectrum by gaps which are
opened at the intersection points of the parabolas (see Fig. 5). If the ar-
ray is now adiabatically biased by a time varied 
ux source, the persistent

current oscillates as a function of �ext with a period �0. In each period a


ux quantum tunnels across the array. This tunneling creates a current in
the inverse direction to the existing current, thus eliminating the net current

and reducing the energy. Since the energy bands are exact eigenstates, the
tunneling process is a coherent one. When the external 
ux is not equal to

an integral number of 
ux quanta, the quantum state of the array is a super-

position of two 
ux quantum states. The amplitude of a persistent current of
one charge soliton decreases as the amount of inhomogeneity increases. The

maximal amplitude, corresponding to a vanishing amount of inhomogeneity,
is of the order of 0:1 nA.
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Figure 5: The spectrum of a quantum charge soliton in a 1D ring-shaped
array of serially coupled Josephson junctions as a function of an external 
ux,

�ext. In an ideal ring the spectrum consists of inductive energy parabolas
without a possibility of crossing at the intersection points. When there is
some inhomogeneity in the ring (e.g., due to disorder), gaps are open at the
intersection points, and the spectrum develops into energy bands.

5.3 Other Quantum E�ects

The quantum nature of the charge soliton can be revealed in transport phe-
nomena as well. For instance, if solitons are sent through a ring-shaped array
connected to two leads (all consist of serially coupled Josephson junction),
and the dephasing mechanisms are suppressed, we expect that they will split
into partial waves propagating along the two arms of the ring. The partial

waves will then interfere at the outgoing leads, with the interference pattern
being dependent on the length of the arms and on an external 
ux applied
through the center of the ring. The transmission of quantum charge solitons
through the ring is thus expected to show oscillations as a function of the

external 
ux and of the optical path similar to the h=e oscillations in the

transmission of electrons through a metal ring [37], and in analogy to the
transmission of 
uxons through a Josephson junction ring [38].

5.4 Dephasing Mechanisms

The quantum phenomena described above were a consequence of the fact
that in our approximation the Hamiltonian (80) was a one-particle Hamil-

tonian. Thus, even in the presence of a weak inhomogeneity, the degree of

freedom associated with the charge soliton's center of mass (X0) can main-
tain its quantum coherence. In order to make the model more realistic, one
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should take into account interactions between the soliton and other degrees of

freedom. These interactions can produce, in principle, phase breaking mech-

anisms. Whenever the phase breaking length, de�ned as the length over

which the soliton's phase has an uncertainty of 2�, is smaller than the length

of the array, the quantum phenomena exhibited by the charge soliton will be

suppressed. As in the case of the 
uxon in a long Josephson junction [31], we

can distinguish between internal and external dephasing mechanisms. The

internal mechanism is due to the interaction between the charge soliton and

the other degrees of freedom of the junction, i.e., the plasmons. When the

sine-Gordon model is exact and continuous, the system is completely inte-

grable and the soliton is decoupled from the plasmons. Nevertheless, it has

been shown in the context of the 
uxon in a long Josephson junction [31]

that there is a possibility of dephasing in this case as well. In order to avoid

this dephasing, the temperature should be below the plasmons' energy gap.

In the context of the charge soliton, where the sine-Gordon model is only

an approximation and the system is discrete, we expect that the plasmons
give rise to a stronger dephasing due to their inelastic interaction with the
soliton. From the study of the discrete sine-Gordon model it is known that

the rest energy of a soliton whose center resides in a junction is higher than
the rest energy for a soliton whose center resides in the middle of a grain [39],
[40]. Thus the soliton propagates in a periodic potential and not in a 
at
one. This deviation from the continuum model produces a coupling between
the plasmons and the soliton. The soliton can emit or absorb plasmons [39],
[40], and the circulating soliton can become phase locked with this plasmons

[41]. This e�ect has been recently observed for the 
uxon in the discrete
long Josephson junction [42]. We expect that similar phenomena occur in
the system we study here when the continuum condition (26) does not hold.
Apart from producing a phase breaking length, these phenomena will a�ect
the classical dynamics as well, for instance by creating resonances in the I-V

characteristic. The in
uence of both the discreteness of the array and the
deviation from the exact sine-Gordon model on the classical and quantum
mechanical dynamics of the charge soliton should be studied further.

The most important external dephasing mechanisms are due to interac-
tion with quasiparticles, which was neglected in our model. Since the bulk

superconductors energy gap, �, is typically of the same order or higher than
the plasmons' energy gap, the condition needed to suppress the thermal acti-

vation of the plasmons is su�cient to suppress the thermal activation of the
quasiparticles. The e�ects of thermal quasiparticles will be studied elsewhere.

The quasiparticles can destroy the quantum coherence of the array in another

way, which is temperature independent. The complete spectrum of a single

junction includes charging energy parabolas associated with quasiparticles as

well, which are separated in the charge axis by e. Excitation of quasiparticles
leads to transitions between these parabolas, thus destroying the quantum

coherence of q. This e�ect can be neglected if the charging energy of the

quasiparticles plus the superconducting energy gap is larger than the Cooper
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pairs charging energy, i.e., 2� + e2=8C > e2=2C or (32=3)� > EC. Since

EC should be smaller than � for the existence of the Josephson e�ect, this

condition is met automatically.

6 Summary

We have studied a 1D array of serially coupled Josephson junctions in the

limit when the kinetic inductance of the superconducting grains dominates

over the Josephson inductance. In this case the array is described by vari-

ables which are de�ned on the junctions and not on the grains. We have

shown that the large kinetic inductance decouples the junctions quantum

mechanically. As a result each junction is characterised by a periodic charg-

ing energy. This periodic energy, when combined with the inductive energy

of the grains and the charging energy between the grains and the substrate,

gives rise to a model with topological solitons excitations. Thus we have

found that an excess Cooper pair in the array creates a charge soliton via
polarization of the superconducting grains. The charge soliton is a dual topo-
logical excitation to the 
uxon in a long Josephson junction. We have studied

the classical dynamics of the charge soliton, and shown that in the presence
of dissipation and an external time varying 
ux the I-V characteristic of a
ring-shaped array should consist of saturation branches corresponding to the
number of charge solitons in the array. We have quantized the charge soliton
semiclassically, showing that this quantization is consistent with the large

kinetic inductance. We have found that a quantum soliton in a 
ux-biased
ring-shaped array is expected to show persistent motion, manifested in a per-
sistent current. A weak inhomogeneity in the array gives rise to a coherent
current oscillations. These phenomena, which are usually associated with
electrons (or Cooper pairs) suggests that the quantum charge soliton can be

considered as a macroscopical quantum object. Finally, we have discussed
possible internal and external dephasing mechanisms of the charge soliton.
These mechanisms deserve future study.
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