
Proof of the Principal Type Property for System O

Technical Report

Martin Wehr� Martin Odersky�

June 10, 1996

Abstract

We study a minimal extension of the Hindley/Milner system that supports overloading and

polymorphic records. We also show that every typable term in this system has a principal type

and give an algorithm to reconstruct that type. We give the proofs for termination, soundness

and correctness for the constrained uni�cation and the type reconstruction algorithm.

Here you can �nd the full proof for termination, soundness and correctness of the type recon-
struction algorithm of system O. If you are interested in a dynamic semantics and a denotational
semantics for system O and the connection to polymorphic records take a look in [OWW95].

This paper contains the de�nition of system O, the de�nition of its type reconstruction algo-
rithm, all notions to de�ne the properties of type reconstruction and the proofs of all properties.
The proofs are inspired by the techniques used in [Che94] and [Jon92].

The �rst section de�nes the language and the type system which is an extension of the Hind-
ley/Milner system [Mil78]. Furthermore an example gives a motivation for the use of system O.

In section 2 the type reconstruction algorithm is de�ned. The algorithm is an extension of
Milners algorithmW where uni�cation must satisfy constraints on type variables. The presentation
of the uni�cation algorithm is slightly changed compared to the original, to simplify the proofs for
the function unify. The new unify has the property that the computation introduces never a free
type variable.

Section 3 presents the proofs for termination, soundness and correctness of the constrained
uni�cation. The idea is to de�ne the term typing state which represents the state of a uni�cation
computation. Then an ordering on typing states is de�ned so that minimal typing states result in
trivial computations. Therefore every proof is done per induction on the typing state ordering. So
it remains to show that every computation step is decreasing in the typing state ordering.

The last section is the proof of the main result, namely soundness and correctness of type recon-
struction. The properties are known from the Hindley-Milner system. To state these properties the
notions of substitutions and more general type schemes are needed. This is the contribution of this
paper, we identify and motivate the new notions and extend proof techniques in that environment.
In Section 4 we �rst re�ne these notions in a system with constrained type variables.

The idea of the proof is to divide it into two steps. First we prove the soundness and com-
pleteness of a system where every derivation is determined by the expression which should be
typed. Second we prove the soundness and completeness of the inference algorithm relative to
the deterministic system. The properties between system O and the algorithm are then simple
corollaries.

�Institut f�ur Programmstrukturen, Universit�at Karlsruhe, 76128 Karlsruhe, Germany;

e-mail:odersky,wehr@ira.uka.de

1

Unique variables u 2 U

Overloaded variables o 2 O

Constructors k 2 K =
S
fKD j D 2 Dg

Variables x = u j o j k

Terms e = x j �u:e j e e0 j let u = e in e0

Programs p = e j inst o : �T = e in p

Type variables � 2 A

Data type constructors D 2 D

Type constructors T 2 T = D [f!g

Types � = � j � ! � 0 j D �1 ::: �n where n = arity(D)
Type schemes � = � j 8�:��) �

Constraints on � �� = o1 : �! �1; : : : ; on : �! �n (n � 0, with o1; : : : ; on distinct)
Typotheses � = x1 : �1; : : : ; xn : �n (n � 0)

Figure 1: Abstract syntax of System O.

1 Type System

In this section we de�ne System O, a simple functional language with overloaded identi�ers. Fig-
ure 1 gives the syntax of terms and types. We split the variable alphabet into subalphabets U for
unique variables, ranged over by u, O for overloaded variables, ranged over by o, and K for data
constructors, ranged over by k. The letter x ranges over both unique and overloaded variables as
well as constructors. We assume that every non-overloaded variable u is bound at most once in a
program.

The syntax of terms is identical to the language Exp in [Mil78]. A program consists of a
sequence of instance declarations and a term. An instance declaration (inst o : �T = e in p)
overloads the meaning of the identi�er o with the function given by e on all arguments that are
constructed from the type constructor T .

A type � is a type variable, a function type, or a data type. Data types are constructed from
data type constructors D. For simplicity, we assume that all value constructors and selectors of a
data type D �1 ::: �n are prede�ned, with bindings in some �xed initial typothesis �0. With user-
de�ned type declarations, we would simply collect in �0 all selectors and constructors actually
declared in a given program. Let KD be the set of all value constructors that yield a value in
D�1; ::::; �n for some types �1; ::::; �n. We assume that there exists a bottom data type ?? 2 D

with K?? = ;. Note that this type is present in Miranda, where it is written (), but is absent in
Haskell, where () has a value constructor. We let T range over data type constructors as well as
the function type constructor (!), writing (!) � � 0 as a synonym for � ! � 0.

A type scheme � consists of a type � and quanti�ers for some of the type variables in � . Unlike
with Hindley/Milner polymorphism, a quanti�ed variable � comes with a constraint ��, which
is a (possibly empty) set of bindings o : � ! � . An overloaded variable o can appear at most
once in a constraint. Constraints restrict the instance types of a type scheme by requiring that
overloaded identi�ers are de�ned at given types. The Hindley/Milner type scheme 8�:� is regarded
as syntactic sugar for 8�:()) �.

Figure 2 de�nes the typing rules of System O. The type system is identical to the original
Hindley/Milner system, as presented in in [DM82], except for two modi�cations.

� In rule (8I), the constraint �� on the introduced bound variable � is traded between ty-
pothesis and type scheme. Rule (8E) has as a premise an instantiation of the eliminated
constraint. Constraints are derived using rule (SET). Note that this makes rules (8I) and
(8E) symmetric to rules (!I) and (!E).

2

(TAUT) � ` x : � (x : � 2 �)
� ` x1 : �1 : : : � ` xn : �n

� ` x1 : �1; : : : ; xn : �n
(SET)

(8I)
�; �� ` e : � (� 62 tv(�))

� ` e : 8�:��) �

� ` e : 8�:��) � � ` [�=�]��

� ` e : [�=�]�
(8E)

(!I)
�; u : � ` e : � 0

� ` �u:e : � ! � 0
� ` e : � 0 ! � � ` e0 : � 0

� ` e e0 : �
(!E)

(LET)
� ` e : � �; u : � ` e0 : �

� ` let u = e in e0 : �

(o : �T 0 2 �) T 6= T 0)

� ` e : �T �; o : �T ` p : �

� ` inst o : �T = e in p : �

(INST)

Figure 2: Typing rules for System O.

� There is an additional rule (INST) for instance declarations. The rule is similar to (LET),
except that the overloaded variable o has an explicit type scheme �T and it is required that
the type constructor T is di�erent in each instantiation of a variable o.

We let �T range over closed type schemes that have T as outermost argument type constructor:

�T = T �1 ::: �n ! � (tv(�) � f�1; : : : ; �ng)
j 8�:��) �0T (tv(��) � tv(�0T)):

The explicit declaration of �T in rule (INST) is necessary to ensure that principal types always
exist. Without it, one might declare an instance declaration such as

inst o = �x:x in p

where the type constructor on which o is overloaded cannot be determined uniquely.
The syntactic restrictions on type schemes �T enforce three properties: First, overloaded in-

stances must work uniformly for all arguments of a given type constructor. Second the argument
type must determine the result type uniquely. Finally, all constraints must apply to component
types of the argument. The restrictions are necessary to ensure termination of the type reconstruc-
tion algorithm. An example is given in Section 2.

The syntactic restrictions on type schemes �T also explain why the overloaded variables of a
constraint �� must be pairwise di�erent. A monomorphic argument to an overloaded function
completely determines the instance type of that function. Hence, for any argument type � and
overloaded variable o, there can be only one instance type of o on arguments of type � . By
embodying this rule in the form of type variable constraints we enforce it at the earliest possible
time.

Example 1.1 The following program fragment gives instance declarations for the equality function
(==). We adapt our notation to Haskell's conventions, writing :: instead of : in a typing; writing
(o::a->t1)=>t2 instead of 8�:(o : a ! �1)) �2; and writing inst o :: s\; o = e instead of
inst o : � = e.

inst (==) :: Int -> Int -> Bool

(==) = primEqInt

listEq :: ((==)::a->a->Bool) => [a]->[a]->Bool

3

unify : (�; �)! (�; S)! (�; S)
unify (�1; �2) (�; S) = case (S�1; S�2) of

(�; �))
(�; S)

(T �1; T � 2))
foldr unify (�; S) (zip (� 1; � 2))

(�; �); (�; �) where � 62 tv(�))
foldr mkinst (�n��; [�=�] � S) ��

mkinst : (o : �! �)! (�; S)! (�; S)
mkinst (o : �! �) (�; S) = case S� of

�)

if 9o : � ! � 0 2 �
then unify (�; � 0) (�; S)
else (� [fo : � ! [�=�]�g; S)

T �)

if !9o : �T 2 �
then let (p; T�p(1) : : : �p(n) ! � 0; C) = struct(�T ;�; S)

in uninfy (�; � 0)(doinst(1; p; C; �)(�; S))

doinst : (N;�N;C; �)! (�; S)! (�; S)
doinst (i; p; C; �)(�; S) = case C of

C 0:��)

doinst (i+ 1; p; C 0; �) (fold mkinst (�; [S� # p(i)=�] � S)��)
;) (�; S)

Figure 3: Algorithm for constrained uni�cation

listEq [] [] = True

listEq (x:xs) (y:ys) = x == y && listEq xs ys

inst (==) :: ((==):: a->a->Bool) => [a]->[a]->Bool

(==) = listEq

Note that using (==) directly in the second instance declaration would not work, since instance
declarations are not recursive. An extension of System O to recursive instance declaration would
be worthwhile but is omitted here for simplicity.

2 Type Reconstruction

Figures 3 and 4 present type reconstruction and uni�cation algorithm for System O. Compared to
Milner's algorithm W [Mil78] there are two extensions.

� The case of binding a type variable in the uni�cation algorithm is extended. To bind a type
variable � to a type � the constraints of �� have to be satis�ed. The function mkinst ensures
that type � statis�es the constraints ��.

� The function tp is extended with a branch for instance declarations inst o : �T = e in p.
In this case it must be checked that the inferred type �0T for the overloading term e is less

4

tp : (p;�; S)! (�;�; S)

tp (u;�; S) = if u : � 2 �
then newinst (�;�; S)

tp (o;�; S) = newinst (8�8�:(o : �! �)) �! �;�; S)

tp (�u:e;�; S)
= let � a new type variable

(�;�1; S1) = tp (e;� [fu : �g; S)
in (�! �;�1; S1)

tp (e e0;�; S)
= let (�1;�1; S1) = tp (e;�; S)

(�2;�2; S2) = tp (e0;�1; S1)
� a new type variable
(�3; S3) = unify (�1; �2 ! �) (�2; S2)

in (�;�3; S3)

tp (let u = e in e0;�; S)
= let (�;�1; S1) = gen (tp (e;�; S))

in tp (e0;�1 [fu : �g; S1)

tp (inst o : �T = e in p;�; S)
= let (�0T ;�1; S1) = gen (tp (e;�; S))

(�2;�2; S2) = skolemize (�T ;�1; S1)
(�3;�3; S3) = newinst (�0T ;�2; S2)

in if 8o :�T 0 2 �: T 6= T 0 ^

unify(�2; �3)(�3; S3) de�ned then

tp (p;�1 [fo : �T g; S1)

Figure 4: Type reconstruction algorithm for System O

general then the given type �T .

We use the following abbreviations:

�� = fo : �! � j o : �! � 2 �g
�A = [�2A ��

where A is a set of type variables.
The termination of unify andmkinst critically depends on the form of overloaded type schemes

�T :
�T = T �1 ::: �n ! � (tv(�) � f�1; : : : ; �ng)

j 8�:��) �0T (tv(��) � fv(�0T)):

We show with an example why �T needs to be parametric in the arguments of T . Consider the
following program, where k 2 KT .

p = let (;)x y = yin

insto : 8�:o : �! �) T (T�)! �

= �k(k x):o x
in �x:�y:�f: o x ; o y ; f (k y) ; fx

5

newinst : (�;�; S)! (�;�; S)
newinst (8�:��) �;�; S)

= let � a new type variable
in newinst

([�=�]�;� [[�=�]��; S)
newinst (�;�; S)

= (�;�; S)

skolemize : (�;�; S)! (�;�; S)
skolemize (8�:��) �;�; S)

= let T a new 0-ary type constructor
in skolemize

([T=�]�;� [[T=�]��; S)
skolemize (�;�; S)

= (�;�; S)

gen : (�;�; S)! (�;�; S)
gen (�;�; S) = if 9�:� 2 tv(S�) n tv(S(�n��))

then gen (8�:��) �;�n��; S)
else (�;�; S)

Figure 5: Functions needed to de�ne the type reconstruction algorithm

Then computation of tp(p; ;; id) leads to a call tp(f x;�; S) with x : �; y : �; f : T� ! � 2 �. This
leads in turn to a call unify(�; T�)(�; S) where the following assumptions hold:

� �T = 8�:o : �! �) T (T�)! �

� � � fo : �! �; o : � ! �; o : �T g,

� S is a substitution with �; � 62 dom(S).

Unfolding unify gives mkinst(o : �! �)(� n��; S
0) where S0 = [T�=�] �S, which leads in turn to

the following two calls:

1. newinst(�T ;� n ��; S
0) = (T (T
)!
;�0; S0)

where �0 � fo : � ! �; o :
 !
; o : �T g and
 is a fresh type variable, and

2. unify(�! �; T (T
)!
)(�0; S0).

Since S0� = T�, unfolding of 2. results in an attempt to unify T� and T (T
), which leads to
the call unify(�; T
)(�0; S0). This is equivalent to the original call unify(�; T�)(�; S) modulo
renaming of �; � to �;
. Hence, unify would loop in this situation.

The need for the other restrictions on �T are shown by similar constructions. It remains to
be seen whether a more general system is feasible that lifts these restrictions, e.g. by extending
uni�cation to regular trees [Kae92].

6

3 Proofs for the Uni�cation with restricted Type variables

A type variable substitution is an idempotent mapping from type variables to types that maps all
but a �nite number of type variables to themselves. A substitution can be extended homomorphical
on types, type schemes, typotheses and judgments. Note that applying a substitution on a O
derivation delivers a correct new substituted O derivation.

We assume all bound type variables are di�erent to free type variables. This can always be
achieved by renaming the bound type variables.

Let id be the identity mapping and [�=�] the replacement of � by � . Juxtaposition RS of
substitutions R and S denote the composition of mappings. We de�ne S �T R i� TS = R and as
short form S � R i� 9T:S �T R. In [LMM87] it is stated that the set of substitutions with the
relation � is a complete lower semi-lattice.

Give two types �1; �2 a uni�er is a substitution S with S�1 = S�2. A most general uni�er S has
property S � S0 for every other uni�er S0. We denote this as mgu(�1; �2) = S.

De�nition. A con�guration (�; S) is a pair consisting of a typotheses � and a substitution S such
that, for all � 2 dom(S), �� = ;.

De�nition. (typing state, unify and mkinst on typing states, measure on typing states)
Let T be the typing state (�1; �2;�; S; r) over two types �1; �2 a con�guration (�; S) and a variable
restriction r = o : �! � .

we de�ne & to insert a new con�guration in a typing state

(�0; S0)& (�1; �2;�; S; r) := (�1; �2;�
0; S0; r)

we de�ne the following :

dom(S) := f�jS� 6= �g

V ar(T) := tv(S(�1; �2; �! �;�))

Note � 2 dom(S) implies � 62 V ar(T), so every binding decreases the amount of free variables.
We de�ne a typing function as a partial map f from a typing state T1 to a typing state T2 (in

short: fT1 ; T2) i�

f T1 =

�
stop with an error

T2 terminate with result T2

Now we can de�ne unify and mkinst as functions on typing states .
if unify(�1; �2)(�; S) terminates with result (�0; S0) or stops with error then

unify T ; (�0; S0)& T

if mkinst(o : �! �)(�; S) terminates with result (�0; S0) or stops with error then

mkinst T ; (�0; S0)& T

We de�ne a recursive measure j� j on types �

case � = � : j� j := 1
case � = T�1 : : : �n : j� j := 1 +

Pn

i=1
j�ij

case � = �1 ! �2 : j� j := 1 + j�1j+ j�2j

We de�ne a measure on typing state and use it to prove inductive properties of unify and
mkinst.

jT j := (jV ar(T)j; jS�j; jS�1j; jS�2j)

where we assume a lexicographical ordering on integer typing states , and � is the restricted variable
in the restriction r = o : �! � .

7

As mentioned in Section 2 type schemes �T for a type constructor T are de�ned by

�T = T �1 ::: �n ! � (tv(�) � f�1; : : : ; �ng)
j 8�:��) �0T (tv(��) n f�g � fv(�0T)):

�� = o1 : �! �1; : : : ; on : �! �n (n � 0, with o1; : : : ; on distinct)

This gives the following Lemma.

Lemma 3.1 (structure of �T) For every type scheme �T let n = ar(T) be the arity of type
constructor T . Then there is a permutation p : f1; : : : ; ng ! f1; : : : ; ng such that �T has the
following structure :

�T = 8�1:��1) : : :8�n:��n) T�p(1) : : : �p(n) ! �

where tv(��i) � f�1; : : : ; �ig for i 2 f1; : : : ; ng.

De�nition. (Structure of a type scheme) Let (�; S) be a con�guration. De�ne

struc(�T ;�; S) 7! (p; T�p(1) : : : �(n) ! �; C)

where C = ��1 : : : ��n is the sequence of the renamed variable restrictions such that w.l.o.g. the
bound variables in �T and the free variables in (�; S) di�er.

Let further T�1 : : : �n # k 7! �k for k 2 f1; : : : ; ng.

De�nition. (doinst as typing function) Let (�1; �2;�; S; o : �! �) be a typing state with :

� S� = T�

� !9o : �T 2 �

� �T = 8�1:��1) : : :8�n:��n) T�p(1) : : : �p(n) ! �

� f�1; : : : ; �ng \ V ar(T) = ;

then doinst; T ; (�0; S0)& T is a short form for doinst (1; p; ��1 : : : ��n ; �)(�; S); (�0; S0)

3.1 Termination of unify

Figure 3 is a slight variant of the original proposal for the mkinst algorithm. Observe there is
never a introduction of free type variable in the con�guration. The only place where new type
variable are introduced is in the branch of doinst but here the type variable is bound.

Because the de�nition of unify,mkinst and doinst is mutual recursive the termination of them
is proved in one step. By induction on jT j it is shown that this measure decreases. Because every
decreasing sequence of typing states is �nitary this implies the termination of the computation.

The cases considered in this proof are the same as in the proof of soundness and completeness
of unify.

Lemma 3.2 For a typing state T the computation unify T terminates with result (�0; S0) or stops
with error.

(in short: 8T 9(�0; S0): unify T ; (�0; S0)& T)
Proof: Consider the cases for the values of (�1; �2;�; S; r) in the unify algorithm :

S�1 = �; S�2 = � Termination is trivial.

S�1 = T�1; S�2 = T�2 Here a sequence of unify calls is generated. The new arguments �1; �2
are subtrees of the given type trees T�1; T �2. So de�nition of the measure on typing states
gives unify calls with typing state arguments of lower measure. A straightforward inductive
argument on the sequence of types �1; �2 gives termination for that case.

8

S�1 = �; S�1 = � We have to consider two cases for ��

�� = ; Termination is trivial there is only the operation of binding [�=�]S to do.

�� 6= ; Now fold mkinst is called with the new typing state T 0 = (�1; �2;�
0; S0; r) where

S0 = [�=�]S and �0 = � n ��: Because the binding [�=�] we have � 62 V ar(T 0) for the
new typing state T 0. So the �rst component of the measure jT 0j is decreased. Therefore
in the following we can use the induction hypotheses that unify terminates (1) .

Next we have to consider the cases of � and r0 = o : � ! � 0 2 �� as argument of
mkinst :

� = � There are two cases to consider look at the corresponding branches in the
mkinst code :

6 9o : � ! � 00 2 S� Termination is trivial.

9o : � ! � 00 2 S� Now we use (1) to get termination of the
unify(� 0; � 00)(�0; S0) call.

� = T� We have to prove the termination of doinst. Observe that the structure of �T
is �nite. So doinst calls mkinst �nitely often. The nontrivial case in the code of
doinst is the branch for C 0:�� . In this case fold mkinst(�0; S00)�� is called where
S00 = [(S0� # p(i))=�]S0. We have S00� = � # p(i) that is a part of the type tree
S0� = � we had before. So the second component of the typing state measure is
decreased in the raised mkinst calls and we can use the induction hypotheses to
get the termination.

3.2 Properties of unify

A con�guration (�; S) is more general than a con�guration (�0; S0) if S � S0 and S0�0 ` S0�.

De�nition. A unifying problem is given by the tuples (�1; �2)(�; S) where �1; �2 are types and
(�; S) is a con�guration. Then (�0; S0) is a solution for the unifying problem i� S0�1 = S0�2 and
(�0; S0) � (�; S). A solution (�0; S0) which gives (�00; S00) � (�0; S0) for every other solution (�00; S00)
of the same problem is called most general unifying con�guration (short: mgu con�guration).

De�nition. Let (�; S) be a con�guration and r = o : � ! � be a restriction with � 2 dom(S)
then (r)(�; S) is called a restriction problem. A con�guration (�0; S0) with S0�0 ` o : S0(� ! �)
and (�0; S0) � (�; S) is called a solution of the restriction problem.

De�nition. Let T = (�1; �2;�; S; o : � ! �) be a typing state then up = (�1; �2)(�; S) is the
unifying problem and (o : �! �)(�; S) is the restriction problem to the given typing state .

All con�gurations (�; S) used in the computation of the type inference have the following
properties.

Lemma 3.3 (structure of con�gurations) There are three kinds of elements x : � 2 S�

(unique) x is a unique variable u 2 U .

(overload) x = o 2 O and � = �T with fv(�T) = ;. Further for the type constructor T there is
no more o : �0T 2 S�.

(restriction) x = o 2 O and S� = � ! � . This case is called variable restriction (short:
restriction named r). There is no more o : �! � 0 2 S� with � 6= � 0.

So in the following we call a typotheses � which can be partitioned like that a structured typotheses
in short � = A:D:C. Where the set A is the typotheses for unique names and has elements of
form u : �. D is the set of declarations, that is of non con
icting instance declarations o : �T for
overloaded variables. C is the set of non con
icting variable constraints of form o : � ! � . We

9

use letter T to denote the union A:D of the unique or overloaded variable declarations and have
partition � = T:C

Proof: Simple veri�cation by looking on all computation steps of the algorithms.
The case (overload) is a conclusion when we observe overloaded variables are introduced only

in the inst case in function tp. In this case gen is always applied so that all type variables in �T
are quanti�ed.

For the case (restriction) we see the only place to introduce restrictions is the � branch in
function mkinst. In this branch the restriction is included only if the if statement checks the
uniqness of the restriction.

Lemma 3.4 (characterization of satis�ed restriction) Given a con�guration (�; S) and a variable
restriction r = o : � ! � with � 2 dom(S) and judgment S� ` o : S(� ! �) then there are two
cases for the derivation of the judgment :

(var) S� = � =) !9o : � ! S� 2 S�
(constructor) S� = T� =) !9o : �T 2 S�

where �T = 8�1:��1) : : :8�n:��n) T�p(1) : : : �p(n) ! � 0

and � = �1 : : : �n
and S � f�p�1(1)=�1; : : : ; �p�1(n)=�ng

and S� ` S��i for i 2 f1; : : : ; ng
and S� = S� 0

Proof: Simple induction on the derivation of the judgment S� ` o : S(�! �) where we have to
look only at the rules (TAUT); (8I) and (8E).

For the (var) case we can only apply the (TAUT) rule.
For the (constructor) case we must apply the (TAUT) rule on the given �T 2 S�. This is a

consequence of the structure of con�guration (�; S) Lemma 3.3. To derive S� ` Sr the rule (8E)
must be applied for every ��i which gives the technical side conditions.

Lemma 3.5 (characterization of more general con�guration) We have (�; S) � (�0; S0) i� S �R S0

and we consider the cases for x : � 2 S� :

� for non-restriction u : � 2 S� =) u : R� 2 S0�0.

� For a restriction r = o : �! � 2 S� and a type variable set V = dom(S0) n dom(S) there are
three cases :

(unchange � r) � 62 V =) Rr 2 S0�0

(rename� r) � 2 V R� = � =) Rr 2 S0�0

(bind� r) � 2 V R� = T� =) Rr 62 S0�0 and S0�0 ` S0r

Proof: We use Lemma 3.3 the characterization of con�gurations the cases (unique) and (over-
load) explain the non restriction cases.

For the restrictions we use Lemma 3.4 so that case (var) gives (rename-r) and case (con-
structor) gives (bind-r). Case (unchange-r) is a conclusion that S0�0 ` S0r can be deduced
only with the use of rule (TAUT) so we get Rr 2 S0�0.

Lemma 3.6 The \more general" relation on con�gurations is transitive.
Proof: The more general relation on S � S0 substitutions is transitive by use of composition

on substitutions.
For the relation on con�gurations we have to show (�; S) � (�0; S0) ^ (�0; S0) � (�00; S00))

(�; S) � (�00; S00). So we have S0�0 ` S0� (1) and S00�00 ` S00�0 (2) and S0 �R S00. So clearly
RS0�0 ` RS0� = S00�0 ` S00� (3) is a correct derivation by applying R on derivation for (1).
Now we substitute every application of (TAUT) for x : � 2 S00�0 in derivation (3) by a derivation
of S00�00 ` x : � which is given by (2) we get S00�00 ` S00� 2.

10

Lemma 3.7 (soundness and completeness of uni�cation) Let T = (�1; �2;�; S; r) be a typing state
then :

1. (a) if unify T ; (�0; S0) then (�0; S0) is a solution to the unifying problem of T .

(b) if (�00; S00) is a unify solution for up then (�00; S00) � (�0; S0). So (�0; S0) is a mgu
con�guration for up.

2. (a) if mkinst(r)(�; S); (�0; S0) then (�0; S0) is a solution for the restriction problem.

(b) if (�00; S00) is a solution to the restriction problem then (�00; S00) � (�0; S0).

3. (a) if S� = T� and doinst T ; (�0; S0) then (�0; S0) is a solution to the restriction problem
(r)(�; S).

(b) if (�00; S00) is a solution to the restriction problem then (�00; S00) � (�0; S0).

Proof:

We use induction on the measure of the typing state T = (�1; �2;�; S; r). We have to show
stepwise that the algorithm computes the needed solution (�0; S0) which is the most general solu-
tion.

Look �rst on the cases for S�1 and S�2 in the function unify.

S�1 = �; S�2 = � Trivial case we get 1(a) & (b) if we set (�0; S0)
def
= (�; S).

S�1 = T� 1; S�2 = T� 2

1(a) For � 1 = � 0
1
: : : � 0n and � 2 = ~�1 : : : ~�n we get for i 2 f1; : : : ; ng

jS� 0i j < jS�1j andjS~�ij < jS�2j (1)

We have to prove unify Ti�1 ; Ti (2) where 1(a) is valid for i 2 f1; : : : ; ng where
Ti = (� 0i ; ~�1;�i�1; Si�1; r) and (�0; S0) = (�; S) and unify Ti ; (�i; Si). Using
Lemma 3.6 the transitivity of � on con�gurations and the de�nition of solutions
for unifying problems gives Sn�

0
i = Sn~�i for i 2 f1; : : : ; ng so Sn�1 = Sn�2. For

(�0; S0)
def
= (�n; Sn) we have 1 (a).

We prove (2) by using induction hypotheses on unify, so we have to show jTij <

jT j (3) .

i=1 Because S0 = S (1) gives that 3rd and 4th of the measure on typing states are
reduced. That is (3) .

i We have to consider two cases. First if Si = S then we use the same argument as above
and get (3) . If Si 6= S then dom(Si) � dom(S) and therefore V ar(Ti) � V ar(T)
so the 1st component of the measure on typing states decreases 2.

1(b) For 1(b) we have that (�00; S00) is a solution of the unifying problem so we get S00� 0i =
S00~�i for i 2 f1; : : : ; ng the argument above allows to use induction hypotheses and we
get (�i; Si) � (�00; S00) so (�n; Sn) � (�00; S00) so (�0; S0) � (�00; S00) 2.

S�1 = �; S�1 = � We take a con�guration (�1; S1) = (�n��; [�=�]�S) which gives S1�1 = S1�2

and S � S1. Further we de�ne a new typing state for the following computation T 0 def
=

(�1; S1)& T .

For 1(b) remember (�00; S00) is a solution for the unifying problem so S00� = S00� because
S � S00 we get S1 � S00 and with �1 � � we get S00�00 ` S00�) S00�00 ` S00�1 so we have
(�00; S00) � (�1S1) (4) .

We have to consider the cases for ��

�� = ; So �1 = � and for (�0; S0)
def
= (�1; S1) we get 1(a) and (4) validates 1(b).

11

�� 6= ;We have � 62 V ar(T 0) because � 2 dom(S1) = dom([�=�]�S). So we get V ar(T 0) �
var(T)) jT 0j < jT j (5) by decreasing the �rst component of the measure on typing
states .

Next we have to consider the cases of type � bound to � and the restriction r0 = o : �!
� 0 2 �� as argument of mkinst. We have to show that mkinst computes a solution to
the restriction problem (r0)(�1; S1) that is 2(a) :

� = � We have to de�ne a solution (�0; S0) for the restriction problem (r0)(�1; S1) and
apply the case (var) of lemma Lemma 3.4 to show S0�0 ` S0r0. There are two
cases to consider :

6 9o : � ! � 00 2 S1�1

2(a) Let �0
def
= (�1; o : � ! S1�

0) and S0
def
= S1 then we get

o : S0(�! � 0) = S0r0 2 S0�0 =) S0�0 ` S0r0 that's 2(a)

2(b) Because r0 2 � and S00�00 ` S00� further S0 � S00 by using (4) we get
S00�00 ` S00�0 so (�00; S00) � (�0; S0).

9o : � ! � 00 2 S1�1

2(a) Let T 00 = (� 0; � 00; S1;�1; r
0) for the computation unifyT 00

; (�0; S0) be-
cause of (5) we can use the induction hypotheses for the unify call. So we
get o : S0(�! � 0) = o : S0(� ! � 00) 2 S0�0 and naturally S0�0 ` S0r0.

2(b) We get (�00; S00) a solution for (r0)(�1; S1) so we have by de�nition S
00�00 `

S00r0 and (�00; S00) � (�1; S1). Applying lemma Lemma 3.4 with case (var)
gives S00� ! � 0 = S00� ! � 00. We also have (�0; S0) is the most general
unifying con�guration of problem (� ! � 0; � ! � 00)(�1; S1) so 1(b) gives
(�00; S00) � (�0; S0).

� = T�

3(a) We have to prove doinst T 0
; (�0; S0) with S0�0 ` S0r0 and (�0; S0) �

(�1; S1). This is done by observing that computation of doinst ensures the
case (constructor) of lemma Lemma 3.4. For � = � 0

1
: : : � 0n and o : �T 2 �1

with �T = 8�1:��1) : : :8�n:��n) T�p(1) : : : �p(n) ! � 00. By a look at the
code we see that doinst T 0 raises the following calls.
So we have to prove for i 2 f1; : : : ; ng

doinst (i; p; Ci; �)(�
0
i�1

; S0i�1
); (�0i; S

0
i)

where fold mkinst (�0i�1
; S00i)��i ; (�0i; S

0
i) (6)

Ci = ��n�i�1
: : : ��n

S00i = [S0i�1
� # p(i)=�i] � S

0
i�1

(7)
(�0

0
; S0

0
) = (�1; S1)

We take as assumptions the soundness of the mkinst calls (6) so we get that
S0i�

0
i ` S0i��1 : : : ��i . For i = n we get S0n�

0
n ` S0nC0. The condition (7)

gives S0n � f� 0
p�1(1)

=�1; : : : ; �
0
p�1(n)

=�ng. At least to prove S0�0 ` S0(o :

� ! � 0) we need further (�0; S0) to be a solution for the unifying problem
(� 0; � 00)(�0n; S

0
n).

For T 00 = (� 0; � 00;�0n; S
0
n; r

0) we get V ar(T 00) � V ar(T 0) � V ar(T) so
jT

00
j < jT

0
j; (8) and we can use the induction hypotheses to get 3(a) with

unify T 00
; (�0; S0).

For (6) (the only open assumption yet) we have to validate 2(a). We are do-
ing this by de�ning Ti = (�1; �2;�

0
i�1

; S0i; r
00) with r00 2 ��i for i 2 f1; : : : ; ng

and then proving jTij < jT 0j (9) so that induction hypotheses on mkinst is
applicable.

12

Compare jS00i �ij with jS1�j to see that the second component of the measure
on typing states is decreased to get (9) . By a straight inductive argument
we have S00i < S1. So we have to consider two cases:

S00
i
� = S1� Then de�nition of measure j:j on types gives jS00i�1

� # p(i)j =
j�ij < jT� j = jS1�j. By decreasing the second component of measure on
typing states we get (9) .

S00
i
� 6= S1� Then we have dom(S00i�1

) � dom(S1) and by decreasing the �rst
component of measure on typing states we get (9) 2

3(b) We have to prove for another solution (�00; S00) of the restriction problem
(r0)(�1; S1) that (�

00; S00) � (�0; S0). Lemma 3.4 gives S00�00 ` S00��i , by use
of inequality (9) (t.i. jTij < jT 0j) we can apply induction hypotheses 2(b)
on mkinst to get (�00; S00) � (�0i; S

0
i). Lemma 3.4 gives S00� 0 = S00� 00, by use

of inequality (8) (t.i. jT 00j < jT 0j) we can apply induction hypotheses 1(b)
on unify to get (�00; S00) � (�0; S0) 2.

4 Soundness and Completeness of the type inference

This is the section which explains and constructs the main result. First we start with the obser-
vation that we have to focus on transformations of derivations. This leads in 4.1 to the result that
logical derivations can be normalized. In the following a closer look to the entailment ` on ty-
potheses leads to the notion of generic instances. In 4.2 we characterize the notion of more general
typotheses this lead to de�nition of constrained substitution. So in 4.3 we are able to state that
unify computes the most general constrained substitution for a uni�cation problem. The technical
lemmas with proofs can be found in 4.4. The deepest insight in the overloading theory gives the
right extension lemma which is a commutation inequality between constrained substitutions and
the generalization function. After the discussion of the full results in 4.5 the soundness proof can
be found in 4.6 and the completeness proof is detailed in 4.7

4.1 Transformation of Derivations

Let us motivate the classical soundness and completeness results. We construct a algorithmical
type system (see �gure 7) which corresponds to the logical type system. Then we want to give a
good relation between those systems. The best would be the equivalence :

� ` e : � , �`W e : �

The conscious reader will realize a
aw in the formula above. Given a typing problem (�; e) the
algorithm W can only compute a type � not a type scheme � as result. Further in the logical
system there are several possibilities to derive types for a given problem (�; e) opposed to the
deterministic algorithm.

To get a theoretical satisfying connection between the logic and the algorithmic type system
we split the equivalence in its implications.

The simple direction is soundness �`W e : �) � ` e : � which tells us the correctness of
the algorithm. This is because the soundness property means that algorithmic type results can be
derived logical. The soundness proof gives a concrete meaning to this statement in constructing
a derivation for � ` e : � in the logical system from the given computation �`W e : � . So we
are talking about derivations, that is proof trees with rules marking nodes and judgments marking
edges and the root is the resulting judgment. Let's denote a derivation as d : � ` e : � opposed to
the judgment � ` e : �. If we take such a derivation d : � ` e : � and transform it by structural
induction on the proof tree to a new derivation d0 : �0 ` e : �0 we will denote this in short form
as � ` e : � ; �0 ` e : �0.

So here is what the soundness result really gives �`W e : � ; � ` e : � that is a derivation
transformation from the typing computations to a logical typing derivations.

13

The complicated direction of the equivalence is completeness which should look like � ` e :
�) �`W e : �. But this can't work, so we need the notion of the generic instance of a
type scheme. This notion is a relation between type schemes � and �0 and can be stated like
8e:� ` e : � ; � ` e : �0. This means given a type scheme � as result of a typing, then all its
generic instances �0 can also be logically derived for the same problem; that is � is more general
than its generic instances. We need a function gen to formulate the completeness result.

Given a derivation d : � ` e : � we can construct a computation �`W e : � so that �
is a generic instance of �0 = gen(�; �).

Now result � of the algorithm W does depend only on problem �; e not on type scheme � so
the result implies �0 is themost general type for the problem. The point is that we have now a
derivation which can be used to construct all other possible logical solutions for the problem. We
restate this as

Completeness: If there is a logical solution to the problem (�; e) then we construct
a derivation d : � ` e : �0 so for every other solution holds � ` e : �0 ; � ` e : �

At least let us look at some derivation transformations which are used in the following proofs.
Let's assume we are given a derivation d : � ` e : �.

If we can apply rules (that are (8I) or (8E)) of the logical system on the derivation then we
get a transformation � ` e : � ; � ` e : �0

If we have some constraint set C then we get the transformation � ` e : � ; �:C ` e : �
because side condition of (8I) can't be violated. The side conditions are stated for type variables
that are bound or consumed in the judgment � ` e : � so they can't interfere with the type
variables of C.

4.1.1 Normalized derivations

Given the following derivation d for the judgment � ` e : � so that � = [�=�]�0

(8E)
(8I)

... d0

�:�� ` e : �0 � 62 tv(�)

� ` e : 8�:��) �0

� ` [�=�]��

� ` e : [�=�]�0

We want to reduce the derivation to one without the last use of the (8I)(8E) rule pair .
In order to do that, we apply substitution [�=�] on derivation d0. So we get a new derivation
d1 : [�=�]�:�a ` e[�=�]�0 that is d1 : �:[�=�]�� ` e : � because of the side condition � 62 tv(�).
If we substitute every (TAUT) for a o : � 0 2 [�=�]�� in derivation d1 by the derivation � ` o : � 0

given through the right premise � ` [�=�]�� of the (8E) rule application, then we get the new
derivation d2 : � ` e : �. This kind of derivation transformation is called (8I)(8E)-elimination.

Given the compound expression e (that is e 6= x for a term variable x) a type � and a derivation
d : � ` e : � then we can transform the derivation, so that the last applied rule corresponds to
the expression (that is for e = �x:e0 last applied rule should be (! I); or e = e0e00 corresponds
to (! E) etc.). We call the new derivation root normalized derivation for judgment � ` e : � .
If this condition holds for every node �0 ` e0 : � 0 e0compound in the derivation, then we call
this a normalized derivation.

We can normalize derivation d by the use of (8I)(8E)-elimination. Because in every derivation
of judgment � ` e : � there must be a root normalized derivation d0 : �0 ` e : � 0 followed by
applications of (8I) and (8E) rules. By (8I)(8E)-elimination we get a root normalized derivation
for � ` e : � . By structural induction on the derivation we get a normalized derivation.

14

4.2 More general relation on typotheses and type schemes

We want to understand �rst the entailment ` on typotheses. We de�ne � � �0 i� (8x : � 2 �0)
� ` x : �) that is � ` �0. If we have � � �0 then (8e:�0 ` e : � ; � ` e : �) if further
(8o : �T 2 �:9o : �0T 2 �0(invariance of instance declarations)). Because in a given derivation
�0 ` e : � we can substitute every application of (TAUT) for a type variable x : � 2 �0 by a
derivation � ` x : �. The side condition of (INST) is not violated, and the side condition of (8I)
can be satis�ed by renaming of bound type variables.

What is a derivation of � ` x : � like ? The rules (! I)(! E)(LET)(INST) can't be applied
because x has no term structure. (TAUT) must be used for term variable x so that x : �0 2 �.
After using (TAUT) all rules applicable on the structure of type scheme �0 can be used. The
rule (SET) will be only applied if its conclusio is used as right premise S�� of rule (8E). Let
S�� = foi : S� ! �ig and typotheses � have structure � = T:C (where T is the set of all
declarations x : � 2 � and C is the set of all constraints o : � ! � 2 �) then premises of (SET)
can only be derived with use of (TAUT) on C or as conclusio of (8E) rule this is the same result
as lemma Lemma 3.4

This observation is put together by the notion of generic instance on type schemes.

De�nition. (generic instances)

�0 �
g
�
� i� new u �; u : �0 ` u : � i� new u �; u : �0`gu : �

where `g is de�ned by the system of rules (TAUT)(8I)(8E) and

(SET)SC
�`go1 : �1 : : :�`

gon : �n

�`go1 : �1 : : : on : �n

Now we characterize the more general relation on typotheses.

De�nition. We de�ne to be � more general than �0 in short � � �0 i� the following equivalent
properties hold:

� 8x : � 2 �0) � ` x : � that is � ` �0.

� 8x : � 2 �0) x : �0 2 �;^ �0 �
g
�
� that is �`g�0.

if we have property 8o : �T 2 �:9o : �0T 2 �0 then

� 8e:�0 ` e : �) � ` e : �

Let's see in concrete what does the structure of the type schemes �; �0 tell us about the structure
of a derivation for � �

g
�
�0. We assume as structure of type schemes � = 8:�:C) � and

�0 = 8:�:C 0) � 0 from this follow the data; a substitution S with dom(S) � f�g and S� = � 0 and
�; C 0 ` SC. So the derivation �; u : � ` u : �0 has following normal form. First apply (TAUT)
then for every � 2 dom(S) apply (8E) where we use the judgment �; C 0 ` SC for the left premise
so we get �; C 0; u : � ` u : � 0, on this apply (8I) until we reach �; u : � ` u : �0 as natural side
condition we need f�g \ (tv(�) [fv(�)) = ; which is no problem by alpha-renaming of the �.

Here are some special cases for the generic instance relation . � �
g
�
� 0 i� � = � 0 because �

has no bound variables so the only usable substitution to match � 0 is id. We have � �
g
�
� i�

� = 8�:C) � where f�g \ tv(�) = ; with the same argument as above.

4.2.1 Constrained type schemes

De�nition. (weak generic instances of constrained type schemes)
We call a tuple (C; �) a constrained type scheme where C is a constrained set and � is a type

scheme. We de�ne the weak instance relation (C; �) �w
T (C 0; �0) by the re
exive transitive relation

15

on constrained type schemes syntactical induced by the rules :

(8L)
�� � �0� � 62 tv(T:C; �)

(C:��; �) �
w
T (C;8�:�0�) �)

(8R)
T:C ` [�=�]��

(C;8�:��) �) �w
T (C; [�=�]�)

Note that the notion of this relation leads to a transformation of typing derivations

(C; �) �w
T (C 0; �0) =) T:C ` e : � ; T:C 0 ` e : �0

This can easy be seen by taking the derivation of (C; �) �w
T (C 0; �0) and applying (8I) on

the judgment when (8L) was used; and applying (8E) when (8R) was used. This construction is
possible because of the side condition � 62 tv(T:C; �) in rule (8L). So the derivation of the instance
relation is used to construct the proof transformation of typings.

Further we can construct another typing transformation

(C; �) �w
T (C 0; �0) =) T:C 0:u : �0 ` e : �00 ; T:C:u : � ` e : �00

Notice the contravariance in the usage of the constrained type schemes
Proof: The instance relation gives by using the covariant lemma a transformation of proof
(TAUT) T:C:u : � ` u : � to a proof T:C 0:u : � ` u : �0 (1) . Now we substitute ev-
ery use of (TAUT) T:C 0:u : �0 ` u : �0 by (1) and get the proof of T:C 0:u : � ` e : �00 (2)
.

By a simple inductive argument on the use on (8L) rules in the proof of (C; �) �w
T (C 0; �0)

we get C 0 � C and for V
def
= tv(C) n tv(T:C 0) we get C 0 = C n CV . So if we take proof (2) and

substitute constrained set C 0 by C the side condition of rule (8I) stays invariant :

8� 2 tv(T:C 0): � 62 tv(C 0
n C 0

�) =) � 62 tv(C n C�)

So we transform (2) to a proof of T:C:u : � ` e : �00 2
We have type invariance under weak instance relation that is (C; �) �w

T (C 0; � 0)) � = � 0.
The only applicable rule on left constrained type scheme is (8L) but side condition permits binding
a type variable � 2 tv(�). So applying rule (8R) afterwards does not change � so only identity is
possible.

4.2.2 The generalization function

De�nition. (generalization function gen)

gen(T:C; �)
def
= (C n C�;8�:C�) �)

where � is the maximal sequence � = �1 � � ��n such that �i 62 tv(T:C n f�1 � � ��ig) and �i 2 tv(�)
Further g(�; �) is de�ned by applying function gen on the argument and taking only the type
scheme of the result. By this de�nition we get the following properties:

(gen1) If gen(�; �) = (�0; �0) then 8e:� ` e : � ; �0 ` e : �0 by using (8I) rules.

(gen2) If gn(�; �) = �0 then 8e:� ` e : � ; � ` e : �0. This can be seen by using �rst above
transformation � ` e : � ; �0 ` e : �0 so that C = � n �0 are constraints consumed by
(8I) rule but we can extend a proof by C so �0 ` e : �0 ; �0:C = � ` e : �0.

(gen3) If gen(�; �) = (�0; �0) then 8� 62 tv(�):�� = �0� by the side condition �i 2 tv(�).

(gen4) gen(T:C:��; �) = gen(T:C;8�:��) �) for � 62 tv(T:C) and � 2 tv(�).

16

(gen5) By maximality we get for gen(T:C; �) = (T:C 0; �0) then 8� 2 tv(�):� 62 tv(T:C 0 n �))

C 0
� = ;.

(gen6) gen(�; �) = (�0; �0)) gen(�:��; �) = (�0:��; �
0) if � 62 tv(�).

By using property (gen6) we get a typing transformation principle for type systems de�ned
with use of function gen.

T:C `W;d e : � ; T:C:C 0 `W;d e : �

We can assume that the type variables of C 0 can't con
ict with the type variables bound by gen

in the derivation of T:C `W;d e : � . So we can apply property (gen6) that rule applications of
(LET)W;d stay correct if extending the constraint set by C 0. No side conditions of other rules in
the type systems W;d are hurt by extending the constrained set, so we get the result.

4.3 Contradictions and constrained substitutions

Let's see what is the substance of the results on unify. In the HM-system (ours without overloading)
substitutions are applied on type derivations to prove soundness of the inference algorithm. It is
an application of the implication (� `HM e : �) S� `HM e : S�). A look at system O convinces
that this holds also for overloading. But in our system with constraints, a substitution makes
only sense if the substituted constraints can be satis�ed. So the inference mechanism has to check
satis�ability for all instantiations appearing in the program.

Given a typotheses � with restriction o : � ! � 2 � and for a type constructor T there is
no type scheme �T with o : �T 2 �, then given a substitution S with S� = T� typotheses S�
makes no sense because o : T� ! S� can't be satis�ed by a declaration o : �T . So implication
(� `O e : �) S� `O e : S�) is correct but may be senseless.

We de�ne the set of restriction variables for a typotheses � as rv(�)
def
= f�jo : � ! � 2 �g. A

substitution S is called con
ict free for typotheses � i� dom(S)\ rv(�) = ;, so every con�guration
(�; S) is a tuple of a typotheses � with a con
ict free substitution belonging to it. The set of

determined type variables for a substitution is de�ned as dv(S)
def
= f�jS� = T�g.

Next we want to understand how con
icting substitutions operate on typotheses. In the fol-
lowing we will talk about structured typotheses. We de�ne the application of a substitution on
a typotheses � converges if the resulting constraints can be \restructured", that is if they don't
contradict. We want that all determined type variables of a substitution must be satis�ed if they
are constrained. In short for a typotheses � = T:C :

S� # i� 9C 0 ST:C n dv(S):C 0
` SCjdv(S)

the data can be denoted as S� # C 0 or S� # �0 or � �(S;C0

) �0 where �0 = ST:C n dv(S):C 0 is
the right side of the judgment. The idea is that �0 is a conservative extension of S�, so property
�0 ` S� should hold, which is given by the de�nition. So the constraint set C 0 are all the variable
restrictions which are used in (TAUT) rules as premises for applying (SET)SC in derivation of
the judgment. The dual notion of divergence is de�ned as S� " i� a constrained set with property
above does not exist, that is there exists o : T� ! � 0 2 S� and there is no instance declaration
o : �T 2 �.

So we de�ne a tuple (S;C 0) of a substitution S and a constrained set C 0 with SC 0 = C 0 to be
constrained substitution and use letters U; V;W to denote them. Further

(S;C 0)� # i� T:C n dv(S):C 0
` SCjdv(S) for � = T:C

dually the notion of diverging application of a constrained substitution (S;C 0) on a typotheses
� denoted as (S;C 0)� " i� S(�:C 0) ". The characterization of set C 0 gives the existence of a
minimal set if S� #, where minimality means every r 2 C 0 is used in a (TAUT) for deriving the
\restructuring" judgment. We de�ne this as the minimal conservative extension of T:C if applying
S.

C 0 = mce(S; T:C) i� C 0 minimal an ST:C 0
` SC

17

Lemma 4.1 (constrained substitution on derivations) If � ` e : � and (S;C 0)� # �0 then
�0 ` e : S�. If (S;C 0)� " and � = T;C then there is no constrained set C 00 such that ST;C n

dv(S); C 00 ` e : S�.
Proof: Clearly S� ` e : S� is a derivation in System O. Substitute in this derivation every use
of (TAUT) for a r 2 SCjdv(S) by a derivation of �0 ` r, which is possible by de�nition of S� # �0.
So we get a derivation of �0 ` e : S�.

The proof for the dual uses the similar argument as above.

De�nition. (variable sets for constrained substitutions)
Let U = (S;C) be a constrained substitution then we de�ne the following type variable sets

codom(S)
def
=

S
ftv(S�)j� 2 dom(S)g

dom(U)
def
= dom(S)

dv(U)
def
= dv(S)

rv(U)
def

= rv(C)

tv(U)
def
= tv(C)

v(U)
def
= dom(U) [codom(U) [tv(U)

4.3.1 The connection between con�gurations and constrained substitutions

Now here is the connection to con�gurations

Lemma 4.2 Characterization of � on con�gurations with �U on typotheses.

(�; S) � (�0; S0) , S� �(R;C00

) S0�0

where S �R S0and S� = T:Cand S�0 = T:C 0and C 00 = R(C 0 n C)

Proof: De�nition of � on con�gurations gives the existence of R with S �R S0. De�nition of
con�gurations give that S� is structured so we can de�ne S� = T:C. The same argument gives the
structure of S0�0 = RS�0 so S�0 is structured and we can de�ne S�0 = T 0:C 0. The only condition

needed for the equivalence is T = T'

Let's look on the structure of S0�0 we get S0�0 = RS�0 = RT:C 0 = RT:RC 0. So C 0 is a
set of constraints which is C 0

jdv(R) = ;. So we have C 0 n C = C 0 n (C n dv(R)) This leads to

RC 0 = R(C n dv(R):C 0 n C) = R(C n dv(R)):R(C 0 n C) = R(C n dv(R)):C 00 (1) . With this
material we can complete the proof.

S0�0 ` S0�
, S0�0 = RS�0 ` RS�
, S0�0 = RT:C 0 ` RT:C

, S0�0 = RT:C 0 ` RC

, S0�0 = RT:C n dv(R):C 00 ` RC

, S0�0 = RT:C n dv(R):C 00 ` R(Cjdv(R))
, (R;C 00)T:C # S0�0

, (R;C 00)S� # S0�0

, S� �(R;C00

) S0�0

The proof tells us that if declarations of � and �0 coincide then the notion of more general

con�gurations and structured typotheses related by constrained uni�cation coincide. A look on
the uni�cation algorithm in 3 gives that in the computation the declarations stay unchanged.

Now we de�ne U �V
�
W i� U� # �0 ^ V �0 # �00 ^ W� # �00. Transitivity of �� on constrained

substitution for typotheses � is easy to see, further we de�ne composition as V U
def
= W i� U �V

�
W .

We de�ne a constrained uni�er U of an unifying problem (�)(�1; �2) as �1
U
�� �2 i� U is a uni�er

of �1; �2 and U� #. Further the most general constrained uni�er is de�ned as �1
U
�� �2 i� �1

U
�� �2

18

and 8V:�1
V
�� �2) U �� V . The minimality property gives the following characterization;if

(S;C) is the most general constrained uni�er of the problem (�)(�1; �2) then C = mce(S;�) that
means C is the minimal conservative extension of � if applying S on �.

Now theorem Lemma 3.7 tells that unify computes the most general unifying con�guration to
a unifying problem (S�)(�1; �2). Using the characterization of � on con�gurations this gives the
result :

unify(�1; �2)(�; S) = (�0; S0) with S �R S0 and C 00 = R(S� n S�0) , �1
(R;C00

)

� S� �2

So if we take S as id we use unify to de�ne algorithm mgcu and have result :

mgcu(�)(�1; �2) = (R;C 00) , �1
(R;C00

)

� � �2

Recall the syntactic characterization of the general instance relation on type schemes � �g
�
�0.

Let us translate this notion in terms of constrained substitutions. We have a simple substitution
S with dom(S) � bv(�). So we can assume dom(S) \ tv(�) = ; that gives S� # � altogether side
condition �:C 0 ` SC gives a constrained substitution U = (S;C 0) and side condition becomes
U�:C #.

So 8:�:C) � �
g
�
8:�:C 0) � 0 i� 9U and U = (S;C 0) and dom(U) � f�g and U� = � 0 and

U�:C #.

4.4 Relations between judgments

We did de�ne the more general relation and constrained substitutions on typotheses and type
schemes. Now we extend this naturally on derivations, so we get the notion of relating two deriva-
tions by a substitution or the generality relation. We use this to present by diagrams what our
type theoretic questions are about.

First we de�ne (�;�) //

�
(�0;�0) (or (�;�) � (�0;�0)) i� � = T:C and �0 = T:C 0 and

(C; �) �w
T (C 0; �0). As described in section 4.2 this can be extended on derivation, so given

derivation d : � ` e : � we get d0 : �0 ` e : �0 in short � ` e : � //

�
�0 ` e : �0 .

Let's do the analog with substitutions (�;�) //

U
(�0;�0) i� U� # �0 ^ U� = �0, look back

to section 4.3 to trust the extension on derivations so given derivation d : � ` e : � we get

d0 : �0 ` e : �0 in short � ` e : � //

U
�0 ` e : �0 .

Remember the de�nition of function gen in section 4.2.2. We restate one of its property given

(�;�) //

gen
(�0;�0) i� gen(�; �) = (�0; �0) then � ` e : � //

gen

�0 ` e : �0 . Further we are

able to denote the function application of g as an arrow (�;�) //

g

�0

Given (�;�) //

gen
(�;�0) and U�0 # if � has structure � = 8�:C 0) � we assume v(U)\f�g =

; which can be achieved by alpha-renaming. Because of �� = C 0
^ �0 = � n C 0 we get U� #.

Let constrained substitution U have structure U = (S;C) then (U�)� = S(��) = SC 0, further
U� = 8�:SC 0) S� altogether we get a lemma.

Lemma 4.3 (left extension) Given gen(�;�) = (�;�0) and U�0 # with v(U) \ bv(�) = ; then
U � gen(�;�) = gen � U(�;�). If U = (S;C) we get graphically

(�;�) //

gen

��

U

(�;�0)

��

U

(U�; U�) //

gen
(U�;U�0)

19

Lemma 4.4 (substitution on generality relation) Given � �
g
�
�0 and U� # then U� �

g
U� U�0.

Proof: We assume � = 8�:C) � and �0 = 8�C 0) � 0. Because � is more general than �0 we
have substitution S with dom(S) � f�g and S� = � 0 and �; C 0 ` SC.

We can assume U = (S0; C 00) and v(U) \ f�; �g = ; so U�; C 0 # leads to U�; C 0 ` S0SC

clearly
S0S� = S0� 0 altogether we have the result U� �g

U� U�0.

Corollary 4.5 (operation of constrained substitutions on deterministic derivations)
Given �`de : � and U� # then U�`de : U�

Proof: By induction on the structure of the derivation. The cases for rules (! I)d; (! E)d are
trivial if using the induction hypotheses on the premises.

For (LET)d use the \left extension" for the middle premise. If last rule application of derivation
has scheme below

(LET)d
�`de : � 0 g(� 0;�) = � �; u : �`de0 : �

�`dlet u = e in e0 : �

Then application of U on the left and right premises is allowed by induction hypotheses. Ap-

plication of U on the middle premise gives the equations : g(U� 0; U�) = g � U(� 0;�)
Lemma 4:3

=
U � g(� 0;�) = U�

For (TAUT)d see that U operates naturally on the premises.

(TAUT)d
x : � 2 � � �

g
�
�

�`dx : �

We get surely x : U� 2 U�. The lemma above gives U� �g
U� U� . So we can apply again (TAUT)d

to get U�`dx : U� .

Now let's see if we are able to construct the dual to Lemma 4.3; the right extension lemma.
We start with (�;�) and U with U� # and ask if it is possible to commute application of g and U

on tuple (�;�). We start with the simple situation

(�;�) //

g

��

U

�

?

(U�; U�) //

g

�0

For the upper arrow we get the data � = �00:C 00 ; � = 8�:C 00) � ; f�g \ tv(�00) = ;. The lower
arrow gives data U� = U�0:C 0 and �0 = 8�:C 0) U� and f�g \ tv(U�0) = ;. Let � = T:C and
U = (S;C1) we de�ne S1 = S n f�g ; S2 = Sjf�g. So we get

U� �
g
U� �0

, 8�:S1C
00) S1� �

g
U� 8�:C 0) S�

, S1� �
S2 S� ^ U�; C 0 ` S2S1C

00

, true by de�nition ^ U� ` SC 00

, true because U� # implies U� ` S� and SC 00 � S�

This is the following lemma.

Lemma 4.6 (simple right extension) Given a tuple (�;�) and a constrained substitution U with
U� # then

U � g(�;�) � g � U(�;�)

20

or graphical

(�;�) //

g

��

U

�

��

U

U�

��

�
g

U�

(U�; U�) //

g

�0

Now we want to extend this result to include observations how generalization behaves if consuming
constraints in the typotheses. For this closer look we invent some new notions. We de�ne the
dependence relation between type variable for a given typothes � as a relation !� rv(�)� rv(�);
and � ! � i� o : � ! � 2 � and � 2 tv(�). So � ! � tells that � can be 8-quanti�ed with (8I)
only if � will be quanti�ed and consumed before so that restriction o : � ! � doesn't hurt the side
condition � 2 tv(� n �) anymore. We call type variable � based if � 2 rv(�) and � 2 tv(T) where
� = T:C so � can never be quanti�ed. This leads to the notions

� non cyclic i� !-relation has no cycles

� non bindable in � � is based or can reach through a !-path a based type variable.

C 0 non bindable in � i� there is a set V of non bindable type variables in � and C 0 = �V .

(�; �) is fully used i� for every � 2 rv(�) either �! � or � is based or � 2 tv(�)

(�; �) is clean i� � is non cyclic and (�; �) is fully used.

We want to �nd out the connection between the bound type variables if applying generalization
before and after application of a constraint substitution. Through the new characterization of
the non bindable type variables we get the result, that non bind-ability stays invariant under
application of constrained substitution. This results by a look at the behavior of !-paths under
substitution. Technically we do this step by the following two lemmas.

Lemma 4.7 Given typotheses T:C and a terminating substitution on it that is ST:C #. If r� 2 C

and �0 2 tv(Sr�) and � 2 dv(S) and � 2 tv(�) for a x : � 2 T:C then �0 2 tv(S�)
Proof: We have r� = o : � ! � 2 C. Because of � 2 dv(S) we can assume S� = K� . So
termination ST:C # gives existence of o : �K 2 T so we can assume the structure �K = 8�:C 0)

K�! � 0 and S is a uni�er of K�! � 0 and � ! � .
So we have S� 0 = S� and structure of �K gives tv(� 0) � f�g (1) . As result of �0 2 tv(S�)

there is a path p such that S� jp = �0 = S� 0jp. Use of (1) gives a subpath p0 / p with � 0jp0 = �i
so we get �0 2 tv(S�i) (2) .

Now unifying property gives S� = SK�. So from � 2 tv(�) we get

tv(S�) � tv(S�) , tv(SK�) � tv(S�)) tv(S�i) � tv(S�)

together with (2) we get �0 2 tv(S�) 2.

Remark: So if x : � is a restriction o0 : � ! � 00 the sentence above tells that in case of a chain
� ! � !
 in T:C. We get a new dependence �0 !
0 in ST:C if � is determined by S and if S
renames like S� = �0 and S
 =
0. We call this behavior inductively de�ned the collapsing of a
chain under substitution S to a chain of renamed type variables.

In the case that x : � is u : � or o : �K we had � is a based type variable in T:C. Then the
sentence above tells us for the dependence � ! � then �0 is a based type variable in ST:C if S
renames like S� = �0.

21

Lemma 4.8 (invariance of non bind-ability under substitution) Given (T:C; �) and a terminating

substitution S on it. If C is non bindable in T:C then C 0 def= mce(S; T:C) and C 00 def= S(C n dv(S))
is also non bindable in (ST:C 0:C 00; S�)
Proof:

r�0 = o : �0 ! � 2 C0 Then there is by de�nition of C 0 a r� = o : �! � 0 2 C with � 2 dv(S)
and r�0 2 mce(S; T:r�) such that �0 2 tv(S�). Because � is non bindable either � is based
or there is a base chain � ! : : : !
. The remark above implies that �0 is either based or
has a collapsed base chain. So �0 is non bindable.

r�0 = o : �0 ! � 2 C00 Then we get by de�nition of C 0 a constraint r� = o : � ! � 0 2 C

with Sr� = r�0 . The same argument as in above case leads from � non bindable to �0 non
bindable.

Note that the de�nition of the sets C 0 and C 00 are the sets necessary for termination S(T:C) #
ST:C 0:C 00. Further the proof above never used the fact that the full constraint set C is non
bindable. So if we have the situation that the subset C1 � C is non bindable in T:C then the
extension C2 with S(T:C1) # ST:C2 is non bindable in (ST:C; S�).

Now we are able to prove the full right extension lemma

Lemma 4.9 (right extension) Given two typings related by a constrained substitution that is
(T:C1:C

0
1
; � 0) �(S;C2) (ST:C:C 0; �) then we can relate its results if generalization is applied. So if

gen(T:C1:C
0
1
; � 0) = (C1; �1) and gen(ST:C:C 0; �) = (C; �) then the results are related as

T:C1 �
(S;C0

2
) ST:C ^ C 0

2
� C2 ^ S�1 �

g
ST:C �

We represent this graphical as

(T:C1:C
0
1
; � 0) //

gen

��

V=(S;C2)

(T:C1; �1)

��

V 0

=(S;C0

2
) ^ C0

2
�C2

(ST:C; S�1)

��

S�1�
g

ST:C
�

(ST:C:C 0; �) //

gen
(ST:C; �)

Proof: We take the structures of the type schemes as �1 = 8�:C 0
1
) � 0 and � = 8�:C 0) � . First

we separate S into two parts S1
def
= Sjf�g and S2 = Sjdom(S)nf�g which clearly gives S = S1�S2. Now

we get S�1 = 8�:S2C
0
1
) S2�

0. For the proof of S�1 �
g
ST:C � we have to �nd a substitution S0 such

that S2�
0 �S0 � (1) and ST:C:C 0 ` S0S2C

0
1

(2) . If we take S0
def
= S1 then (1) is trivial because

of � = S� 0 = S1S2�
0. Further we had V T:C1:C

0
1
ST:C:C 0 so typotheses ST:C:C 0 is a conservative

extension of typotheses T:C1:C
0
1
under application of S so clearly ST:C:C 0 ` S1S2C

0
1
= SC 0

1
that

is (2) .
Now we use invariance of bind-ability under constrained substitution. So we have a relation

between non bindable constraint sets C1 and C. Lemma 4.8 tells us that the extension C 00
2
of

termination situation S(T:C1) # ST:C
00
2
is non bindable in (ST:C:C 0; �) so we get C 00

2
� C. So for

the constrained substitution (S;C) we get T:C1 �
(S;C) ST:C. Because of ST:C � ST:C:C 0 we can

assume that a subset C 0
2
� C2 is enough to represent the constrained substitution necessary for

the relation T:C1 �
(S;C0

2
) ST:C 2

Lemma 4.10 (non-consumption of constraints) Given a derivation d : T:C:C 0`
de : � such that

gen(T:C:C 0; �) = (C; �) that is constraint set C 0 is consumed in the generalization function. Then
we can transform derivation d so that precedent is result of generalization. Formally

d0 : T:C:C 0:C 00
`
de : � 0 ^ gen(T:C:C 0:C 00; � 0) = (C:C 0; �)

22

Proof: We assume structure � = 8�:C 0) � so we have f�g \ tv(T:C) = ;. We take some
fresh � so that S = [�=�] is a renaming with fresh type variables. Now we get a new derivation
by applying S on d where we use ST:C:C 0 = T:C:SC 0 so d0 : T:C:SC 0`

de : S� but the result of
applying the generalization function is invariant gen(T:C:SC 0; S�) = (C; �) because � is invariant

under renaming of bound type variables. We de�ne C 00 def
= SC 0 ^ � 0

def
= S� . Generalization did

consume only C 00 so if we extend d0 by C 0 we get the result.

d00 : T:C:C 0:C 00
`
de : � 0 ^ gen(T:C:C 0:C 00; � 0) = (C:C 0; �)

4.5 The full results

The completeness and soundness results are achieved in two steps. This is done by de�ning a
intermediate system (system d) between the logical system O and the algorithmical system W .
System d has the property, that for a given typing problem (�; e) there is at most one derivation
possible for judgment �`de : � , opposed to system O where by use of (8I) and (8E) rules derivation
of � ` e : � is not unique if it is derivable. So relating of O judgments and W computation results
is always done via a d judgment.

We illustrate that for the soundness result. In section 4.6 we prove the two lemmas :
Lemma 4.13 (soundness of `d) If �`de : � then � ` e : � .
Lemma 4.14 (soundness of `W) If U�`W e : � then U� # and U�`de : � .
As a easy corollary we get

Corollary 4.11 (full soundness of wjud) If U�`W e : � then U� # and U� ` e : � .

The full completeness result is achieved the same way. In 4.7 we prove the two lemmas :
Lemma 4.15 (completeness of `d) If � ` e : � then 9C with rv(C) \ tv(�; �) = ; :

�:C`de : � ^ g(�:C; �) = �0 ^ �0 �g
�:C �

Lemma 4.16(completeness of `W) If UT:C`de : � then

U 0T:C 0
`
W e : � 0 ^ U 0

�
V U ^ (U 0T:C 0; � 0) �V (UT:C; �)

We get as a corollary the full completeness result.

Corollary 4.12 (full completeness of `W) If U� ` e : � then 9C with rv(C) \ tv(�; �) = ; and

U 0�0`W e : � 0 ^ U 0
�
V U ^ U 0�0 �V U�:C

so for �0
def
= g(U 0�0; � 0) we have V �0 �g

U�:C �.
Proof: We apply Lemma 4.15 on the given derivation U� ` e : �. We get the constrained set C
with the desired property and

U�:C`de : � ^ g(U�:C; �) = �00 (1) ^ �00 �
g
U�:C � (2)

We apply Lemma 4.16 on the derivation U�:C`de : � and get

U 0T:C 0
`
W e : � 0 ^ U 0

�
V U ^ (U 0T:C 0; � 0) �V (UT:C; �) (3)

So use of (1) and (3) leads to g �V (U 0T:C 0; � 0) = �00. We can use simple right extension lemma

to get for �0
def
= g(U 0T:C 0; � 0) the relation V �0 �g

U�:C �00. Together with (2) and use of transitivity
of the generic instance relation we get V �0 �g

U�:C � 2.

23

(TAUT)d
x : � 2 � � �

g
�
�

�`dx : �

(! I)d
�; u : �`de : � 0

�`d�u:e : � ! � 0

(! E)d
�`de : � 0 ! � �`de0 : � 0

�`de e0 : �

(LET)d
�0`de : � 0 gen(� 0;�0) = (�;�) �; u : �`de0 : �

�`dlet u = e in e0 : �

Figure 6: The deterministic system

4.6 The soundness property

Lemma 4.13 (soundness of `d) If �`de : � then � ` e : � .
Proof: The proof uses induction on the derivation structure of `d judgments, and translates such
derivations into a derivation for system O. We analyze the last applied rule of the deterministic
derivation and use induction hypotheses on the premises of the rule. So there is a case to consider
for every rule of the deterministic system.

(TAUT)d last rule was

(TAUT)d
x : � 2 � � �

g
�
�

�`dx : �

De�nition of generic instances applied on � �
g
�
� gives for the case x : � 2 � a proof

d : � ` x : �

(! I)d; (! E)d The rules of system O (! I); (! E) are syntactical equal so using induction
hypotheses on the premises of the d-rules we get the premises of the O-rules. Application of
the corresponding O-rules gives soundness.

(LET)d last application of rule gave

(LET)d
�0`de : � 0 gen(� 0;�0) = (�;�) �; u : �`de0 : �

�`dlet u = e in e0 : �

Induction hypotheses on the left side gives �0 ` e : � 0 applying gen gives � ` e : � (1)
(see section 4.2.2). Induction applied on right side gives �; u : � ` e : � (2) .

So we can apply (LET) rule where we use (1) for left premise and (2) for the right premise
to get � ` let u = e in e0 : � 2.

Lemma 4.14 (soundness of `W) If U�`W e : � then U� # �0 and �0`de : � .
prstrt

(TAUT)W last rule was

(TAUT)W
x : 8�:C 0) � 2 � � new

[�=�]�; C 0`
Wx : [�=�]�

24

(TAUT)W
x : 8�:C) � 2 � � new

[�=�]�; C`Wx : [�=�]�

(! I)W
U�; u : �`W e : � � new

U�`W�u:e : U�! �

(! E)W
U�`W e : � U 0U�`W e0 : � 0 U 0�

V
�U 0U� � 0 ! � � new

V U 0U�`W e e0 : V �

(LET)W
U�0`W e : � 0 gen(� 0; U�0) = (�; U�) U 0U�; u : �`W e0 : �

U 0U�`W let u = e in e0 : �

Figure 7: Type inference algorithm W

We de�ne �0 = [�=�]�:C 0 so clearly x : � 2 �0 and of course � �
g
�0

[�=�]� because of

� ` [�=�]C 0. This are the data needed to apply (TAUT)d to get �0`dx : [�=�]� .

(! I)W Given is a derivation with last rule

(! I)W
U�:u : �`W e : � � new

U�`W�u:e : U�! �

We apply induction hypotheses on the premise to get U(�:u : �) # �0 and �0`de : � . So
section 4.3 gives u : U� 2 �0 that is we can apply (! I)d on �0u; u : U�`de : � to get
�0`d�u:e : U�! � 2

(! E)W

(! E)W
U�`W e : � U 0U�`W e0 : � 0 U 0�

V
�U 0U� � 0 ! � � new

V U 0U�`W e e0 : V �

left premise We get U� # �1 and �1`
de : � (3)

middle premise We get U 0U� # �2 that is U 0�1 # �2 (4) and �2`
de0 : � 0 (5) . We use

(3) and (4) to get �2`
de : U 0� (6) by using Lemma 4.4.

right premise De�nition of the most general constrained uni�er gives V U 0U� # �3 that is
V �2 # �3 so we can extend (5) to �3`

de0 : V � 0 (7) and (6) to �3`
de : V U 0� (8)

. The unifying property gives us V U 0� = V � 0 ! V � so that judgment (8) becomes
�3`

de : V � 0 ! V � (9) .

conclusio Using the derived data we apply (! E)d for �3 = V U 0U�.

(! E)d
(9)�3`

de : V � 0 ! V � �3`
de0 : V � 0 (7)

�3`
de e0 : V �

(LET)W

(LET)W
U�0`W e : � 0 gen(� 0; U�0) = (�; U�) U 0U�:u : �`W e0 : �

U 0U�`W let u = e in e0 : �

25

left premise We apply induction hypotheses to get U�0`de : � 0 (10) .

right premise We apply induction hypotheses to get U 0U�`de0 : � (11) .

middle premise Because of U 0U� # we can apply left extension Lemma 4.3 and get
(U 0�; U 0U�) = gen(U 0� 0; U 0U�0) (12) . Lemma Lemma 4.4 allows for U 0U�0 # ap-
plication of constrained substitution U 0 on derivation (10) so we get U 0U�0`de : U 0�

(13) .

conclusio Now we collect the data to apply rule (LET)d

(LET)d
(13)U 0U�0`de : U 0� 0 (12)g(U 0� 0; U 0U�0) = (U 0�; U 0U�) U 0U�:u : �`de0 : � (11)

U 0U�`dlet u = e in e0 : �

4.7 The completeness property

Here are the proofs for the completeness property of the type inference algorithm for system O. We
state �rst verbal the result, and then second formally the induction hypotheses which is proved.

Completeness of system d means, if there is a O solution for a typing problem, then there is
a d solution where the precedent uses same declarations and a new constraint set, such that the
generalization of the d solution is more general than the given O solution. We can restate this as if
we are given a O derivation then we can derive the needed constraints to construct a d derivation.

Lemma 4.15 (completeness of `d) Given � ` e : � then 9C with rv(C) \ tv(�; �) = ; :

� ` e : � ; �:C`de : � ^ g(�:C; �) = �0 ^ �0 �
g
�:C �

^ � ` e : � ; �:C`de : �

Proof: We assume w.l.o.g. that the given derivation of judgment � ` e : � is normalized,
which is possible because all logical derivations can be normalized. The proof is done by induction
on the structure of the derivation. There is a case to consider for every rule of system O, where
we assume that this was the last applied rule in the derivation.

(TAUT)

(TAUT) � ` x : � (x : � 2 �)

We have x : � 2 �. We assume � = 8�:C) � . So we clearly get � �g
�:C � which allows to

derive �:C`dx : � with use of rule (TAUT)d. Of course we get also the side conditions

g(�:C; �) = �0 ^ �0 �
g
�:C �

(8I) Last applied rule was

(8I)
�:�� ` e : �00 (� 62 tv(�))

� ` e : 8�:��) �00

We use de�nition �
def
= 8�:��) �00. We apply induction hypotheses on the premise and get

the data
�:��:C

0
`
de : � ^ g(�:��:C

0; �) = �0 ^ �0 �
g
�:��:C0

�00

We de�ne C
def

= C 0:��. So condition rv(C 0) \ tv(�:��; �
00) = ; gives with � 62 tv(�) that

� 62 tv(�:C 0). The syntactical characterization of the generic instance relation gives �0 �g
�:C

8�:��) �00 = �.

(8E) Last applied rule

(8E)
� ` e : 8�:��) �00 � ` [�=�]��

� ` e : [�=�]�00

We de�ne �
def
= [�=�]�00. There are two cases to consider for � to see which part of the

induction hypotheses must be shown :

26

� is a type scheme We are given �:C`de : � so that for �0
def
= g(�:C; �) we have �0 �g

�

8�:��) �00. All we we have to prove is �0 �g
�:C [�=�]�00 = � but this is the basic

property of the generic instance relation.

� is a type We de�ne �
def

= �. We have to construct a derivation �:C`de : � . Because our
assumption that the logical derivation is normalized we get that e is not compound, it
is a term variable e = x. So the only possible normalized derivation is to start with
(TAUT) on a x : �1 2 � and applying (8E) rules afterwards. This case is already
handled in the (TAUT) case.

(! I)

(! I)
�:u : � 0 ` e : �

� ` �u:e : � 0 ! �

Induction hypotheses applied on the premise gives �:C:u : � 0`de : � . So we can apply rule
(! I)d and get �:C`d�u:e : � 0 ! � .

(! E)

(! E)
� ` e : � 0 ! � � ` e0 : � 0

� ` ee0 : �

left premise Induction hypotheses gives �:C1`
de : � 0 ! � .

right premise Induction hypotheses gives �:C2`
de0 : � 0.

conclusio We de�ne C = C1 [C2 and extend the given judgments to T:C`de : � 0 ! � and
T:C`de0 : � 0. So we can apply (! E)d and get the result.

(LET) Last applied rule had following form

(LET)
� ` e0 : � �; u : � ` e : �

� ` let u = e0 in e : �

left premise Induction hypotheses gives

�:C1`
de0 : � 0 (1) ^ g(�:C1; �

0) = �0 ^ �0 �
g
�:C1

� (2)

right premise Induction hypotheses gives �:C2:u : �`de : � . We de�ne C = C1 [C2 then
we extend above judgment to �:C:u : �`de : � . We use (2) because of C1 � C to get
�:C:u : �0`de : � (3) .

conclusio Now we extend also judgment (1) to use constraint set C we get �:C`de : � 0.
We use non-consumption Lemma 4.10 to get

�:C:C 0
`
de : � 00 (4) ^ gen(�:C:C 0; � 00) = (�:C; �0) (5)

At least we put all the data together to apply rule (LET)d.

(LET)d
(4) �:C:C 0`

de : � 00 gen(�:C:C 0; � 00) = (�:C; �0) (5) �:C`de0 : � (3)

�:C`dlet u = e in e0 : �

Lemma 4.16 (completeness of `W)

UT:C`de : � ; U 0T:C 0
`
W e : � 0 ^ U 0

�
V U ^ (U 0T:C 0; � 0) �V (UT:C; �)

Proof:

27

(TAUT)d

(TAUT)d
x : � 2 U 00T:C � �

g
U 00T:C �

U 00T:C`dx : �

We assume � = 8�:C 00) � 00. So left premise gives a substitution S with S� 00 = � (1)

and U 00T:C ` SC 00 (2) . If we assume � fresh then we can de�ne � 0
def
= [�=�]� 00and

C 0 def
= C:[�=�]C 00 and U 0 def

= U 00. The application of rule (TAUT)W on this data gives

U 0T:C 0`
W e : � 0. Because of (1) and (2) we get for V

def

= S � [�=�] and U
def

= V �U 0 clearly
U 0 �V U and (U 0T:C 0; � 0) �V (UT:C; �).

(! I)d

(! I)d
U 00�; u : �1`

de : �2

U 00�`d�u:e : �1 ! �2

For a new type variable � we get U
def

= [�1=�]U
00 and clearly U�; u : �`de : �2. Applying

induction hypotheses on this gives U 0�0; u : �`W e : � 0
2
and U 0 �V

�
U and (U 0�0:u : �; � 0

2
) �V

(U�:u : �; �2). Applying rule (! I)W gives U 0�0`W e : U 0� ! � 0
2
and clearly (U 0�0; U 0� !

� 0
2
) �V (U�; �1 ! �2).

(! E)d

(! E)d
U�`de : � 0 ! � U�`de0 : � 0

U�`de e0 : �

left premise Induction hypotheses gives U1T:C1`
W e : �1 and U1 �V1 U and

(U1T:C1; �1) �
V1 (U�; � 0 ! �) (3) .

right premise We restate left premise as V1U1T:C1`
de0 : � 0. Induction hypotheses ap-

plied on this gives us U2U1T:C2`
W e0 : �2 and U2 �V2 V1 and (U2U1T:C2; �2) �

V2

(V1U1T:C1; �
0) = (U�; � 0). Now we use extend-ability of W derivations by constraint

sets. We de�ne C 0 def
= C1:C2 and �0

def
= T:C 0 so we get U1�

0`
W e : �1 (4) and

U2U1�
0`
W e0 : �2 (5) and of course still U2U1�

0 �V2 U�.

conclusio Let � be a new type variable and let U 00 def= [�=�]V2 then we get

U 00�2 ! � = � 0 ! � = V1�1 = U 00U2�1

So U 00 is a uni�er of �3 ! � and U2�1 this implies the existence of the most general

constraint uni�er �2 ! �
U3
�U2U1�0 U2�1 (6) . The most general property of U3 implies

U3 �
V3 V2 and (U3U2U1�

0; U3�) �
V3 (V2U2U1�

0; �) = (U�; �)

All this data allow to apply (! E)W

(! E)W
U1�

0`
W e : �1 (4) U2U1�

0`
W e0 : �2 (5) �2 ! �

U3
�U2U1�0 U2�1 (6) � new

U3U2U1�
0`
W e e0 : U3�

Last applied rule was

(LET)d

(LET)d
U�00`de0 : � 00 gen(U�00; � 00) = (U�; �) U�; u : �`de : �

U�`dlet u = e0 in e : �

left premise Applying induction hypotheses on left premise gives following data;

U1T:C1`
W e0 : �1 (7) ^ U1 �

V1 U ^ (U1T:C1; �1) �
V1 (U�00; � 00)

28

middle premise We can apply the generalization function on the data above and get
gen(U1T:C1; �1) = (U1T:C

0
1
; �1). With the data of middle premise we can apply the

left extension Lemma 4.9to get for V1 = (S;C2)

UT:C 0
1
�
(S;C0

2
) U� (8) ^ C 0

2
� C2 ^ S�1 �

g
U� � (9)

We de�ne V 0
1

def
= (S;C 0

2
).

right premise With use of (8) we can rephrase the right premise as V 0
1
U1T:C

0
1
:u : �`de : � .

We can substitute � because of (9) and get V 0
1
U1T:C

0
1
:u : �1`

de : � . Applying induction
hypotheses on this give us the data

U2U1T:C
00
2
:u : �1`

W e : � 0 (10) ^ U2 �
V2 V 0

1

^ (U2U1T:C
00
2
:u : �1; �

0) �V2 (V 0
1
U1T:C

0
1
:u : �1; �) = (U�:u : S�1:�) (11)

conclusio We de�ne C 0 def
= C 0

1
[C 00

2
and get by extension of (10) a derivation for

U2U1T:C
0:u : �1`

W e : � 0 (12) . The restricted variables of rv(C 00
2
) can't con
ict

with the bound type variables of �1 and application of function gen tells us that �1 is
maximal bound so C 00

2
is non bindable in (U1T:C

0
1
; �1) so

gen(U1T:(C1 [C 00
2
); �1) = (U1T:(C

0
1
[C 00

2
); �1) = (U1T:C

0; �1) (13)

By extension of (7) we can derive U1T:(C1 [C2)`
W e0 : �1 (14) Because of

V 0
1
U1T:C

0
1
= U� = V2U2U1T:C

00
2
we can clearly extend V2 with using V 0

1
to a new

constrained substitution V such that V U2U1T:C
0 = U�. If we de�ne U 0 = U2U1 we get

by use of (11) the needed relations

U 0
�
V U ^ (U 0T:C 0; � 0) �V (U�; �)

At least we have the data to apply rule (LET)W and derive the necessary judgment in
system W .

(LET)W

(14) U1T:(C1 [C 00
2
)`W e0 : �1

(13) gen(U1T:(C1 [C 00
2
); �1) = (U1T:C

0; �1)

(14) U2U1T:C
0; u : �1`

W e : � 0

U 0T:C 0`
W

let u = e0 in e : � 0

5 Conclusion

We have shown in [OWW95] that a rather modest extension to the Hindley/Milner system is
enough to support both overloading and polymorphic records with a limited form of F-bounded
polymorphism. The resulting system stays �rmly in the tradition of ML typing, with type sound-
ness and principal type properties completely analogous to the Hindley/Milner system.

The needed properties of the algorithm are proved here. A look at the termination for the
constrained uni�cation gives the idea, that extending the type formation rules to regular trees
would extend the expressiveness without loss of the nice properties of System O.

The encoding of a polymorphic record calculus in System O indicates that there might be some
deeper relationships between F-bounded polymorphism and overloading. This is also suggested
by the similarities between the dictionary transform for type classes and the Penn translation for
bounded polymorphism [BTCGS91]. A study of these relationships remains a topic for future
work.

29

References

[BTCGS91] Val Breazu-Tannen, Thierry Coquand, Carl A. Gunter, and Andre Scedrov. Inheritance as

implicit coercion. Information and Computation, 93:172{221, 1991.

[Che94] Kung Chen. A Parametric Extension of Haskell's Type Classes. PhD thesis, Yale University,

New Haven, Connecticut, December 1994. YALEU/DCS/RR-1057.

[DM82] Luis Damas and Robin Milner. Principal type schemes for functional programs. In Proc. 9th

ACM Symposium on Principles of Programming Languages, January 1982.

[Jon92] Mark Philip Jones. Quali�ed Types: Theory and Practice. PhD thesis, Oxford University,

July 1992.

[Kae92] Stefan Kaes. Type inference in the presence of overloading, subtyping, and recursive types.

In Proc. ACM Conf. on Lisp and Functional Programming, pages 193{204, June 1992.

[LMM87] J-L. Lassez, M.J. Maher, and K. Marriott. Uni�cation revisited. Foundations of Deductive

Databases and Logic Programming, pages 587 { 625, 1987.

[Mil78] Robin Milner. A theory of type polymorphism in programming. Journal of Computer and

System Sciences, 17:348{375, Dec 1978.

[OWW95] Martin Odersky, Philip Wadler, and Martin Wehr. A second look at overloading. In Proc.

ACM Conf. on Functional Programming and Computer Architecture, pages 135{1469, June

1995.

30

