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Abstract

We study the response of two-dimensional Josephson-junction arrays and granu-

lar �lms of superconducting material near the superconductor-insulator transition.

Close to the transition the system is described by a Ginzburg-Landau-Wilson free

energy functional for the global superconducting order-parameter. We consider dif-

ferent situations:

First we study the e�ect of local ohmic shunts. They yield nonohmic dynamics

for the order parameter. The conductivity at the transition is nonuniversal within

this model.

Then we discuss a boson-fermion model which yields ohmic dynamics for the

order parameter. A possible realization for this scenario is the Andreev scattering

process at the surface of the superconducting grains. This model leads to a universal

conductivity at the transition.

Finally, in the absence of damping we evaluate the universal conductivity in an

�-expansion. The result is in good agreement with existing Monte-Carlo data.

1 Introduction

Granular superconductors and Josephson junction arrays behave similar in

many respects. A superconductor to insulator quantum phase transition is

observed in both systems [1{4]. It is a direct consequence of the uncertainty

relation between phase and number degrees of freedom in a superconductor
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[5{10]. In two dimensions the conductance per square, or equivalently the

conductivity, is argued to be universal at the transition (i.e. not dependent on

microscopic details) [6,1{4,7{9]. The experimental evidence is less clear since

observed values are sample dependent [3]. This motivated us to reconsider the

situation.

In the �rst part of this article we discuss the inuence of dissipation. We use

local damping mechanisms which inuence the low frequency dispersion of the

vortex response in classical arrays [11,12]. Dissipation due to ohmic shunts or

quasi-particle tunneling between the islands has been studied in Refs. [13{15].

We describe an array with ohmic shunts to the ground plane, as is realized in

proximity-coupled arrays. In this case the Ginzburg-Landau-Wilson (GLW)

free energy for the superconducting order-parameter exhibits nonohmic dy-

namics, which in turn yields a power-law behavior for the conductivity at low

frequencies. In this case we �nd a nonuniversal conductivity at the transition.

The inuence of a magnetic �eld is discussed.

Pair breaking processes are another mechanism for damping. These processes

are present in inhomogeneous �lms if the order parameter is locally suppressed,

or realized by Andreev scattering at the boundaries of the grains. We use a

boson-fermion model [16] to derive an e�ective GLW description, which in this

case exhibits ohmic dynamics.

Finally, in the absence of dissipation we go beyond the Gaussian approxima-

tion. We determine the universal conductivity in the �-expansion. The result

for the 2-dimensional array is �? = 0:315 (4e2)=h, which is very close to avail-

able Monte Carlo data.

2 Model with Local Ohmic Damping

The relevant dynamic variables in a Josephson junction array are the phases of

the superconducting order parameter on each island. In the presence of ohmic

shunts we consider the e�ective Euclidean action for the array, which reads

Se�['] =

�Z
0

d�
h
�J

X
hiji

cos['i(� )� 'j(� )�Aij] +
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The �rst term describes the Josephson coupling between nearest neighbors. A

vector potential is introduced via Aij = (2e=�h)
R j
i
~Ad~l. The capacitance matrix
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Cij contains diagonal elements C0 and o�-diagonal elements C1, resulting in

an interaction of charges which is screened beyond
q
C1=C0, in units of the

lattice spacing. For ohmic baths the Fourier transform of �ij(� � � 0) is given

by j!�j(�0 +�1k
2)=2�. We include shunts to the ground (�0 = RQ=R0) and

shunts between the islands (�1 = RQ=R1), where RQ = h=(2e)2. The shunts

break the 2�-periodicity in the phase variables since they allow for continuous

charge uctuations.

In the coarse-graining approximation [5] we introduce a complex order-para-

meter �eld  via a Hubbard-Stratonovich transformation. We decouple the

Josephson coupling term and introduce the �eld  such that its expectation

value is proportional to that of exp(i'). This yields the GLW free energy

functional
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Thermodynamic properties are derived from the partition function

Z = Z0

Z
D2 expf�F [ ; � ]g : (3)

The dynamics of the �eld  is governed by the phase-phase correlator g(� ) =

hexpfi'i(� )�i'i(0)gi0. It is given as an expectation value in a Gaussian action

including the capacitive and the dissipative contribution of Eq. (1), which is

diagonalized by a Fourier transformation

g(� ) = exp

8<
:� 1

�N

X
k;� 6=0

1� cos(!�� )

!2
�C(k)=(2e)

2 + j!�j�(k)=(2�)

9=
; ; (4)

with C(k) = C0 + C1k
2; �(k) = �0 + �1k

2. To evaluate the frequency sum

we introduce a cuto� 1=�c � e2�0=C0, with �nite �0 and C0. The correlator

decays algebraically in time

g(� ) =

����� ���c sin
 
��

�

!�����
� 2

�

for � > �c; � =
4��1

log(1 + 4��1=�0)
: (5)

The Fourier transform for small frequencies reads

g(!�) = g(0)� � j!�js � �!2
� with s =

2

�
� 1 : (6)
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Using this expression for g(!�), the free energy (2) contains a nonohmic dis-

sipative term (/ j!�js) (reducing to ohmic, or 'velocity proportional' damp-

ing only in the special case s = 1). This means that an ohmic damping in

the quantum phase model yields a nonohmic dynamics for the coarse-grained

order-parameter.

We determine the phase boundary in the saddle point approximation with

the results shown in Fig. 1. The critical coupling is given by Jcr = 1=2g(0).

Increasing damping shifts the phase boundary to smaller values of J . At T = 0

a quantum phase transition is ruled out beyond the critical value � = 2.

3 Conductivity

A directly measurable quantity in these systems is the conductivity, on which

we focus in the remainder of this paper. The GLW formulation allows us to

determine it in the linear response regime from the functional derivatives of

the partition function (3)

�ab(!�) =
�h

!�

Z
d2r d�

�2 lnZ

�Aa(r; � )�Ab(0)

�����
~A=0

ei!�� : (7)

This allows us to express the conductivity in terms of two and four point

Green's functions. In the absence of a magnetic �eld we have [7]
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where the ~q are vectors in the 3-dimensional space-time and ~k = (0; 0; !�). In

the Gaussian approximation the four point function factorizes, and we obtain

for the diagonal part of the conductivity

�(!�) =
1

RQ!�

1

�

X
�

Z
dkk3G(k; !�) [G(k; !�)�G(k; !� + !�)] ;

where G(k; !�) = [�+ k2 + �!2
� + �j!�js]�1.
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The Matsubara sum is conveniently expressed as a contour integral, and the

analytic continuation i!� ! ! + i� yields the real-frequency dependence

�(!) =
1

2�RQ!

1Z
�1

dx

1� e��x

1Z
0

dkk3
h
GR(k; x)�GA(k; x)

i
�

�
h
GR(k; x) +GA(k; x)�GR(k; x+ !)�GA(k; x� !)

i
: (9)

The advanced and retarded Greens functions are given by

GA=R(k; !) =
1

�+ k2 � �!2 + �j!js cos(�s=2)� i�j!jssign(!) sin(�s=2)

with � = 1=2J � g(!� = 0) > 0, and k has been rescaled.

For low frequencies ! � !0 =
q
4�=� , the real part of the conductivity is given

by

Re�(!) =
�2 sin2(�

2
s)

6��2RQ

[�(1 + s)]2

�(2 + 2s)
j!j2s : (10)

For arbitrary frequencies the x-integral in Eq. (9) can be performed numeri-

cally. The results for zero temperature are shown in Fig. 2 and Fig. 3. They

show a smeared excitation gap of size !0 for the real part, while the imaginary

part behaves capacitively.

Of particular interest is the d.c. (! ! 0) conductivity at the transition, i.e. for

!0 ! 0 (with !0=! ! 0). The value of the d.c. conductivity at the transition

depends on the strength of the ohmic damping as shown in Fig. 4. The inclu-

sion of ohmic shunts to the ground makes the conductivity at the transition

a nonuniversal function of � for � > 2=3.

3.1 Magnetic Field

Our formulation also allows us to study the inuence of a magnetic �eld.

For weak frustration f � 1 we can use the free energy functional (2) which

amounts to neglecting the lattice structure, and therefore also commensura-

bility e�ects. The magnetic �eld introduces Landau levels. As a result the

transition is shifted, and the response is modi�ed due to the presence of the

discrete Landau levels spectrum. The longitudinal conductivity is given by

[10]
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�(!�) =
!2
c

2RQ!��

1X
n=0

X
!�

(n+ 1)
h
2G!� ;nG!� ;n+1

�G!�+!�;nG!� ;n+1 �G!� ;nG!�+!�;n+1

i
; (11)

where G!�;n = [�+!c(n+1=2)+�j!�js+�!2
�]
�1. In the mean �eld approxima-

tion the phase boundary is given by �+!c=2 = 0, it is shifted to larger values

of the Josephson coupling J . The analytic continuation follows the same lines

as in the �eld free case. We explicitly evaluate the real part of the conduc-

tivity as shown in Fig. 5. The frequency dependence reects the underlying

Landau-level structure. It is smeared due to the inuence of the damping.

4 Boson-Fermion Model

In this section we study a model in which the bosonic degrees of freedom are

coupled locally to gapless fermions. In arrays on a metallic substrate Andreev

tunneling process through tunnel barriers separating the array and the ground

plane provides such a mechanism. In inhomogeneous �lms gapless excitations

may be present due to disorder which locally suppresses the gap. We describe

each of the grains by the boson-fermion model [16]

H = HF +HB +HI : (12)

The fermionic part HF describes free fermions with a �nite density of states

at the Fermi surface. The form of the bosonic part HB is of interest later. For

the interaction we use a local scattering of bosons bq into pairs of fermions ck

HI =
Z

d3k

(2�)3
d3q

(2�)3

�
byqcq=2+k;"cq=2�k;# + h:c:

�
: (13)

If we integrate out the fermions an e�ective action for the bosons is obtained.

Since we assume weak pair breaking, we expand the action up to second order

in , which yields

Se�[�; �
�] =

Z
d�
n
HB[�(� ); �

�(� )]� ��(� )(@� � �)�(� )
o

�
2N(0)2

2

Z
d�d� 0�(� � � 0) (��(� )�(� 0) + h:c:) : (14)

The partition function is represented as a coherent state path integral, � is

the complex bosonic �eld. The nonlocal kernel �(� ) = [�=(� sin (��=�))]
2

describes the damping of the boson �eld.
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These considerations are readily generalized to an array of grains. We include

tunneling of bosons between the grains and interactions. The action for the

array then reads

Se�[�; �
�] =

Z
d�
h
� t

X
hi;ji

�
��i (� )�j(� ) + ��j (� )�i(� )

�

+
X
i;j

ni(� )Uijnj(� )�
X
i

��i (� )(@� � �)�i(� )
i

�
Z
d�d� 0

X
i

2N(0)2

2
�(� � � 0) (��i (� )�i(�

0) + h:c:) ; (15)

where n = ���.

Insight in the properties of this model near the superconductor-insulator tran-

sition is gained by an order-parameter description. A coarse-graining approx-

imation for this model can be performed by decoupling the hopping and the

dissipative part by a Hubbard-Stratonovich transformation [17]. This yields

the GLW free energy

F [ ; � ] =
1

�N

X
k;!�

� 
n
�+ k2 + �j!�j+ �!2

�

o
 +O(j j4) ; (16)

where � = [N(0)]2=t. In this model the GLW free energy functional exhibits

ohmic dynamics (proportional to j!�j). The conductivity in this model has

been discussed in Ref. [10]. The result for the conductivity is contained in

those derived in the previous section as the limit s = 1. At the transition we

�nd the universal value �? = 1
8
(�
2
� 2

�
) (4e2)=h = 0:117 (4e2)=h.

Further contact to the model (1) can be made in the limit of a large number of

bosons on each grain. Then we can decompose the boson �eld b =
p
�ei' and

neglect uctuations in the boson density �. The e�ective action (15) translates

into that of a JJA with a local damping given by

Sdiss['] = ��2N(0)2
�Z
0

d�d� 0
X
i

�(� � � 0) cos('i(� )� 'i(�
0)) : (17)

This action is equivalent to the e�ective action of the Andreev scattering pro-

cess at a normal-metal to superconductor interface [18]. The tunneling matrix

element T in this process is identi�ed by jT j2 = . The important di�erence

to the model with ohmic damping (1) is the trigonometric dependence on the

phase di�erence. In the present case the action (17) is 2�-periodic in the phase,

which implies that the charge is quantized in units of 2e.
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5 �-expansion

Another powerful method for evaluating critical quantities is the �-expansion.

In this section we briey present our results for the conductivity in the ab-

sence of dissipation. In order to set up the �-expansion we should move away

from two-dimensions. We consider a system with d � 1 spatial dimensions,

and Eq. (8) should be rewritten accordingly (the three dimensional vectors

should be replaced by d-dimensional ones). The calculation presented here is

performed at O(�2) (with � = 4 � d). In dimensions di�erent from two we

calculate the conductivity.

It useful to introduce the self-energy �(~q) and the irreducible four-point vertex

�(4)(~q; ~p; 0) (which is needed to evaluate the four point correlation function in

Eq. (8)). The vertex function �(4)(~q; ~p; 0) and the self energy are related by

the Ward identity

@

@qi
�(~q) = 2

Z
ddq

(2�)d
piG

2(~p)�(4)(~q; ~p; 0) : (18)

By using this identity, which is related to the underlying gauge symmetry of

the model, we can prove that �(!� = 0) = 0 in the insulating phase. In the

superuid phase this cancelation does not occur due to the presence of the

three-point vertex in the theory. In order to get a more suitable expression of

�(!�) for a perturbative analysis, we split the four-point irreducible vertex into

�ve parts, �(4)(~q; ~p;~k) = �(4)
o +�(4)

s (~q+ ~p) + �
(4)
t (~q� ~p) + �(4)

u (~k) + �(4)
res(~q; ~p;

~k)

according to the external momenta dependence. Here �(4)
o has no momentum

dependence and �(4)
res(~q; ~p;

~k) is the residual part with momentum dependence

di�erent from ~q+~p or ~q�~p or ~k. The terms �(4)
o and �(4)

u (~k) do not contribute

to the conductivity due to the presence of the factor qxpx, while �(4)
res(~q; ~p;

~k)

gives a contribution in the �-expansion which is only of order O(�3).

Eq. (18) and the decomposition of the �(4) allow us to express �(!�) in the

form

�(!�)

4
=

2�

RQ!�

Z
ddq

(2�)d

"
q2x + qx

@

@qx
�(~q)

#
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h
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�
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ddq
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i
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i

�G(~p)
h
2 G(~q + ~k)�G(~q)

i
�(4)
res(~q; ~p; 0)
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+G(~p + ~k)G(~q + ~k)�(4)
res(~q +

~k

2
; ~p +

~k

2
; ~k)

)
(19)

where we have introduced (4)(~q�~p) = �
(4)
t (~q�~p)��(4)

s (~q�~p). So far no approx-
imations have been used to obtain Eq. (19). The next step is the computation

of the self-energy and four-point vertex in the framework of the �-expansion.

At the phase transition the propagator behaves like G�1(~q) = q2�� and the

value of the critical exponent � in �-expansion for the theory considered is

known to be � = �2

50
(1 + 19�

20
) +O(�4). allowing us to expand the propagator

G(~q) in powers of �.

Let us now consider the four-point vertex �(4)(~q; ~p;~k). Using the minimal sub-

traction renormalization prescription [19], we get

(4)(~q � ~p) = �32�2�

50
j~q � ~pj� (20)

Finally, inserting Eq. (20) into Eq. (19) and discarding terms containing

�(4)
res(~q; ~p;

~k) we obtain to order �2

�(!�) =
4e2

�h

�  
�2

25
� 2

!
�2(d=2)�(1 � d=2)

�d=2 2d �(d)

�2z(d)
Z
dd y

y4
f~k(~y)f

�
~k
(~y)

�
!1��
� ; (21)

where

f~k(~y) =

1Z
0

d�

1Z
0

d�

(4�)d=2
yx

2 �d=2
e�

y2

4�

"
1 � e(��(1��)��i�yz)

#
; (22)

and z(d) =
h
�d=2=(�(d=2))

R1
0 dx xd�5

�
1 � (x=2)

1�d=2
� (d=2) J(d=2�1)(x)

�i�1
.

Here �(x) and J�(x) are the Gamma and Bessel functions, respectively, and

the !�-independent factor in Eq. (21) has been expressed in integral form for

the sake of simplicity [20]. The result (21) corresponds to the form predicted

by the scaling analysis of Ref. [6]; here it has been computed in an �-expansion.

In dimensions lower than 4 all the integrals are convergent in the ultraviolet

regime. In d � 4 a short-range cuto� should be introduced to regularize the

results, but this is not important for our purposes. In two dimension this leads

to a value of the universal conductance of

�? = 0:315
4e2

h
; (23)
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which is close to the results of the Monte Carlo simulations in Ref. [7]. An-

other analytic calculation of �? was done using the 1=N expansion [7]. To

O(1=N) the value of the universal conductance is 0:251 (4e2)=h. The 1=N

and �-expansion results approach the Monte Carlo value from di�erent sides,

but at this stage it is impossible to decide whether they provide an upper

(�-expansion) and lower (1=N -expansion) bound to the exact value.

6 Conclusions

We discussed various aspects of the response near the superconductor-insulator

transition in Josephson-junction arrays and granular superconductors. In the

presence of ohmic shunts to the ground we found an e�ective order parameter

description which exhibits nonohmic dynamics. The conductivity at the tran-

sition was found to be nonuniversal in this model. We discussed the inuence

of a magnetic �eld. Furthermore we studied a microscopic model which takes

into account pair breaking mechanisms. Within this model we �nd ohmic dy-

namics of the order parameter and a universal conductivity at the transition,

independent of the strength of the pair breaking. In the absence of any dis-

sipative processes we evaluated the universal conductivity in an �-expansion,

and �nd good agreement with Monte Carlo data.
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Fig. 1. Phase boundaries as a function of the dissipation �0 for di�erent tempera-

tures. a: T = U0=5, b: T = U0=10, c: T = U0=100, d: T = U0=10000, e: T = 0, where

U0 = 4e2=C0. With C1 = �1 = 0. The superconducting phase lies above the phase

boundary.
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Fig. 2. Real and imaginary part of the conductivity as a function of the frequency

without damping, �Q = 4e2=h.
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Fig. 3. Real and imaginary part of the conductivity as a function of the frequency

with damping, s=1/2,�!s
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Fig. 4. Conductivity at the transition as a function of � at T = 0. The inset shows

the corresponding phase diagram. Along the solid line the conductivity remains

constant, whereas it varies along the dotted line.

13



�

�Q

!=!0
0

0.2

0.4

0.6

0 1 2 3

Fig. 5. Real part of the longitudinal conductivity in a magnetic �eld (oscillating

curve), and in zero �eld (smooth curve). The value of the cyclotron frequency is

given by !c=!0 = 1 and zero, respectively. Damping with s = 1; �!0=� = 1=4.
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