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Motivated by experimental evidence for the importance of fermionic degrees of freedom near the super-

conductor-insulator transition, we take into account gapless electronic excitations for the description of the

transition. Integrating them out yields a damping for the phase of the superconducting grains. We derive a

Ginzburg-Landau-Wilson description for the onset of super
uidity which shows a non-ohmic dynamics. This

dynamics depends qualitatively on the strength of the damping. Su�ciently strong damping modi�es both,

the critical behavior and the response near the transition. The critical exponents depend on the damping

strength. The conductivity at the transition is �nite but non-universal.

Films of superconducting material exhibit a su-

perconductor-insulator transition [1]. A description

in terms of boson models, where a well established

gap is assumed also in the insulating phase, yields a

universal value for the conductivity at the transition

[2]. The experimental situation is richer. Especially

in uniform �lms unpaired electrons seem to be im-

portant near the transition [1]. Therefore, as a �rst

step for an extension of the boson models, we in-

clude gapless excitations into our approach. These

yield a damping for the phase of the superconducting

order-parameter. Our description di�ers from the

model of Ref. [3], which takes into account continu-

ous charge transfer between the di�erent grains and

yields a damping for the gradient of the phase. We

take into account the coupling to unpaired electrons

which yields a local damping for the phase. This has

interesting consequences. The dynamics of a coarse-

grained description for the transition depends quali-

tatively on the strength of the damping and modi�es

both, the critical behavior and the response at the

transition. The concept of a universal response at

the transition remains valid only for weak damping.

We use an e�ective action which, after integrating

out the gapless excitations, reads
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The �rst term describes the damping, which we

choose to be ohmic, �j!�j=2�. The on-site charg-

ing energy U and the Josephson coupling J between

neighboring islands are included. We decouple the

Josephson coupling term by introducing the complex

order-parameter �eld  via a Hubbard-Stratonovich

transformation. This yields the Ginzburg-Landau-

Wilson (GLW) free energy functional [4, 5]
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The dynamics of the �eld  is governed by the phase-

phase correlator g(� ) = hexpfi'i(� ) � i'i(0)gi0,

which the presence of local damping decays alge-

braically in time (/ ��2=�). The Fourier transform

for small frequencies reads

g(!�) = g0 � � j!�j
s
� �!2�; with s =

2

�
� 1 : (3)

We notice that the free energy (2) contains a non-

ohmic dissipative term (/ j!�j
s
) (reducing to ohmic

at � = 1).

The transition occurs at the critical coupling

which in the saddle point approximation is given

by Jcr = 1=2g0. Increasing damping shifts the

phase boundary to smaller values of J . A quantum

phase transition is ruled out beyond the critical value

� = 2. The phase boundary for T = 0 is shown in the



inset of Fig. 1. The transition is of the 3D-XY class

along the solid line, along the dotted line the critical

exponents vary as a function of �. Power counting

arguments imply the dynamical critical exponent to

be z = max(1; 2=s).

The conductivity can be expressed in terms of two

and four point Green's functions [2]. In the Gaussian

approximation the four point function factorizes. An

analytic continuation i!� ! ! + i� yields the real-

frequency dependence [5]
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�Q = h=4e2. The advanced and retarded Greens

functions are given by
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with � = 1=2J � g(!� = 0) > 0. For low frequencies

! � !0 =
p
4�=�, the real part of the conductivity

is given by
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Of particular interest is the d.c. (! ! 0) conductivity

at the transition, i.e. for !0 ! 0 (with !0=! ! 0).

The value of the d.c. conductivity at the transition

depends on the strength of the ohmic damping (for

� > 2=3), as shown in Fig. 1.

In conclusion we found that the local damping

of the phase of the superconducting order-parameter

yields a rich dynamics of a GLW description for

the transition. This in
uences the critical behavior

as well as the conductivity at the transition which

we found to be non-universal for su�ciently strong

damping. The non-ohmic dynamics in the GLW for-

mulation leads to a vortex dynamics which re
ects

this dynamics, this will be reported in a forthcom-

ing article. Our approach neglects the dynamics of

the gap itself, which may be important for a vanish-

ing gap. The studies show that new features occur

near the superconductor-insulator transition in the

presence of a local damping mechanism enabled by

unpaired electrons.
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Figure 1: Conductivity at the transition as a func-

tion of the damping strength �. The inset shows

the corresponding phase diagram. The conductivity

at the transition is constant along the solid line, it

varies along the dotted line. Along the dotted line

also the critical exponents of the transition change.
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