Coherent transport in a normal wire between reservoirs
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We develop a detailed analysis of electron transport in normal diffusive conductors in the presence of proximity induced
superconductivity. A rich structure of temperature and energy dependencies for the system conductance, density of
states and related quantities was found and explained. If the normal conductor forms a loop its conductance changes
h/2e-periodically with the magnetic flux inside the loop. The amplitude of these conductance oscillations shows a

reentrant behavior and decays as 1/7" at high 7.

of nor-
attract
Vari-
ous nontrivial features of such systems have been re-
cently discovered [1, 2] The aim of this paper is to in-
vestigate the coherent electron transport in a normal
diffusive conductor attached to a superconductor.
One can show [3] that complicated geometrical
realizations of the system [1, 2] can be essentially
reduced to the following simple model: a normal dif-

Presently the transport properties
mal/superconducting proximity systems
much experimental and theoretical interest.

fusive wire is attached to a normal reservoir at @ = 0
and a superconducing one at x = d. In order to cal-
culate the conductance of this wire we use the stan-
dard formalism of quasiclassical Green functions in
the Keldysh technique (see e.g. [4]). The first step
is to find the retarded normal and anomalous Green
functions of the system ¢ = cosh 8 and f® = sinh 4,
6 = 0, + i0,. In the diffusive approximation this has
been done with the aid of the Usadel equation (see
[3] for details). The second step is to solve the kinetic
equation. As a result for a differential conductance
of the system (normalized to its Drude value Gy)
at low voltages and in the absence of tunnel barriers

one finds [4] G = 5 [~ de sech?(¢/2T)D(¢) where

-1
D(e) = (fol dz sechzﬁl(i‘)) is the transparency of
the system at the energy e.

The conductance G(T') shows the reentrant be-
havior (Fig. 1) (see also [5]). At low temperatures
T <« ¢4 the correction is G = G — 1 x (T/eq)?,
at T > ¢4 we have §G o« /¢q/T. The square-root-
scaling of G at high T has an obvious physical in-
terpretation: as the part of the N-wire of the size
~ én = +/D/27T close to the NS boundary be-

comes effectively superconducting due to the prox-
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imity effect, only the rest of the wire contributes to
the resistance. As a result it becomes smaller than
1/Gn. As the temperature is lowered the conduc-
tance increases, reaches its maximum at &y ~ d an
then decreases again.

In order to understand the reentrant behavior
of G at low T < €4 we calculated the density of
states (DOS) averaged over the length of the wire.
The normal density of states Ny = N(0) fol dzR(g)
shows a soft pseudogap below ¢4 (see Fig. 2). At
the first sight at low 7T this would lead to a de-
crease of G below 1. This is, however, not the case
because of an additional contribution of correlated
electrons present in the N-wire due to the proxim-
ity effect. The DOS for such electrons in the wire
Ng = N(0) fol dz 3(f) becomes larger for small ¢
(Fig.2). These two effects exactly compensate each
other at 7' = 0, in which case G = 1. For T > 0 we
always have (Rg)? + (Sf)? = cosh?6; > 1, i.e. the
pseudogap effect never dominates the correlation-
induced enhancement and G(T > 0) > 1. On the
other hand, due to the presence of this pseudogap at
€ ~ ¢4 the total transparency D(e) decreases with €
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for € < €4 resulting in the corresponding reentrant
behavior of G at low T

Our theory also allows to calculate the profile of
the electric field E(x) and the charge p(x) inside the
N-metal (Fig.3). At T = 0 we have (in normalized
units) E(z) = cos(xm/2) — 5(& — 1)sin(27/2) and
at T > e50 FE(Z) x (1 — Z)\/T/eq near the su-
perconductor (1 — # < ér) and F(Z) = 1 near the
normal reservoir (Z < &r). As we see, the electric
field distribution is essentially nonuniform: it mono-
toneously decreases with 1" close to a superconductor
and overshoots its normal state value further from it.
Let us also point out that the reentrant behaviour of
G(T) takes place only in the absence of low transpar-
ent tunnel barriers at the boundaries of the N-wire.
In the presence of such barriers the field distribution
in the system becomes entirely different and G(7T)
monotoneously increases with 7' for most of the situ-
ations [3]. Depending on the sample both increasing
or decreasing G(T') has been found in the experi-
ments [1].

In the experiments [2] the conductance of a ring-
shaped proximity wire was investigated in the pre-
sense of the magnetic flux @ inside the ring. This
system shows h/2e-periodic in & magnetoresistance-
oscillations. At high temperatures the amplitude of
these decays o< 1/T [2].

For simplicity, we have chosen a system where
the ring has circumference 2d and the connections
to the reservoirs are of the length d, so the Thouless
energies €4 = d% and €34 = # become important.
We introduced a phase by a gauge transformation
and used a “Kirchhoff law” for the Green’s functions
at branching points [6, 3]

The transparency of the system D(e) (Fig. 4)
shows an interesting structure. E.g. the oscillations
change their sign at intermediate energies. This ef-
fect could possibly be probed by measurements at
very low temperatures (7" < €34) at finite voltages.
At high energies (¢ > ¢4), however, the amplitude
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of the oscillations of D(¢) is exponentially supressed
because for such energies no superconducting corre-
lations (which can only originate h/2e-oscillations)
are present in the ring.

Thus — even at high temperatures — only the
states with low energies ¢ < ¢4 are responsi-
ble for the effect of conductance oscillations. At
T > ¢4 the amplitude of these oscillations can
be estimated as AG = Gg=o — G¢:h/4e &
% OEC de sechz(e/QT)(Do—Dh/4e) A 554 AD,, where
€. & €g and AD,, is the average amplitude of the
oscillations of the transparency below €.. This esti-
mate demonstrates that — in a complete agreement
with the experimental results [2] —the 1/T-scaling
persists at all temperatures 7' > €4. Also the numer-
ical results show that the 1/T-scaling of the oscilla-
tion amplitude is excellently fulfilled at sufficiently
high T. (see Figs. 5 and 6). At lower tempera-
tures the amplitude of the conductance oscillations

o~

shows the reentrant behavior reaching the maximum
at T' ~ ¢4 and vanishing completely at 7' = 0 (Fig.
5). This reentrant behavior has a similar physical
origin to that of G(T') discussed above in the absence
of the ring.
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