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We develop a detailed analysis of electron transport in normal di�usive conductors in the presence of proximity induced

superconductivity. A rich structure of temperature and energy dependencies for the system conductance, density of

states and related quantities was found and explained. If the normal conductor forms a loop its conductance changes

h=2e-periodically with the magnetic ux inside the loop. The amplitude of these conductance oscillations shows a

reentrant behavior and decays as 1=T at high T .

Presently the transport properties of nor-

mal/superconducting proximity systems attract

much experimental and theoretical interest. Vari-

ous nontrivial features of such systems have been re-

cently discovered [1, 2] The aim of this paper is to in-

vestigate the coherent electron transport in a normal

di�usive conductor attached to a superconductor.

One can show [3] that complicated geometrical

realizations of the system [1, 2] can be essentially

reduced to the following simple model: a normal dif-

fusive wire is attached to a normal reservoir at x = 0

and a superconducing one at x = d. In order to cal-

culate the conductance of this wire we use the stan-

dard formalism of quasiclassical Green functions in

the Keldysh technique (see e.g. [4]). The �rst step

is to �nd the retarded normal and anomalous Green

functions of the system gR = cosh � and fR = sinh �,

� = �1 + i�2. In the di�usive approximation this has

been done with the aid of the Usadel equation (see

[3] for details). The second step is to solve the kinetic

equation. As a result for a di�erential conductance

of the system (normalized to its Drude value GN )

at low voltages and in the absence of tunnel barriers

one �nds [4] �G = 1
2T

R
1

0
d� sech2(�=2T )D(�) where

D(�) =
�R 1

0
d�x sech2�1(�x)

��1
is the transparency of

the system at the energy �.

The conductance G(T ) shows the reentrant be-

havior (Fig. 1) (see also [5]). At low temperatures

T � �d the correction is �G := �G � 1 / (T=�d)
2,

at T � �d we have �G /
p
�d=T . The square-root-

scaling of �G at high T has an obvious physical in-

terpretation: as the part of the N-wire of the size

� �N =
p
D=2�T close to the NS boundary be-

comes e�ectively superconducting due to the prox-
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imity e�ect, only the rest of the wire contributes to

the resistance. As a result it becomes smaller than

1=GN . As the temperature is lowered the conduc-

tance increases, reaches its maximum at �N � d an

then decreases again.

In order to understand the reentrant behavior

of G at low T < �d we calculated the density of

states (DOS) averaged over the length of the wire.

The normal density of states NN = N (0)
R 1
0
d�x<(g)

shows a soft pseudogap below �d (see Fig. 2). At

the �rst sight at low T this would lead to a de-

crease of �G below 1. This is, however, not the case

because of an additional contribution of correlated

electrons present in the N-wire due to the proxim-

ity e�ect. The DOS for such electrons in the wire

NS = N (0)
R 1
0
d�x=(f) becomes larger for small �

(Fig.2). These two e�ects exactly compensate each

other at T = 0, in which case �G = 1. For T > 0 we

always have (<g)2 + (=f)2 = cosh2 �1 > 1, i.e. the

pseudogap e�ect never dominates the correlation-

induced enhancement and G(T > 0) > 1. On the

other hand, due to the presence of this pseudogap at

� � �d the total transparency D(�) decreases with �
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for � < �d resulting in the corresponding reentrant

behavior of G at low T .

Our theory also allows to calculate the pro�le of

the electric �eld E(x) and the charge �(x) inside the

N-metal (Fig.3). At T = 0 we have (in normalized

units) E(�x) = cos(�x�=2) � �
2
(�x � 1) sin(�x�=2) and

at T � �d: E(�x) / (1 � �x)
p
T=�d near the su-

perconductor (1 � �x � �T ) and E(�x) = 1 near the

normal reservoir (�x � �T ). As we see, the electric

�eld distribution is essentially nonuniform: it mono-

toneously decreases with T close to a superconductor

and overshoots its normal state value further from it.

Let us also point out that the reentrant behaviour of

G(T ) takes place only in the absence of low transpar-

ent tunnel barriers at the boundaries of the N-wire.

In the presence of such barriers the �eld distribution

in the system becomes entirely di�erent and G(T )

monotoneously increases with T for most of the situ-

ations [3]. Depending on the sample both increasing

or decreasing G(T ) has been found in the experi-

ments [1].

In the experiments [2] the conductance of a ring-

shaped proximity wire was investigated in the pre-

sense of the magnetic ux � inside the ring. This

system shows h=2e-periodic in � magnetoresistance-

oscillations. At high temperatures the amplitude of

these decays / 1=T [2].

For simplicity, we have chosen a system where

the ring has circumference 2d and the connections

to the reservoirs are of the length d, so the Thouless

energies �d =
D

d2
and �3d =

D

(3d)2
become important.

We introduced a phase by a gauge transformation

and used a \Kirchho� law" for the Green's functions

at branching points [6, 3]

The transparency of the system D(�) (Fig. 4)

shows an interesting structure. E.g. the oscillations

change their sign at intermediate energies. This ef-

fect could possibly be probed by measurements at

very low temperatures (T � �3d) at �nite voltages.

At high energies (� � �d), however, the amplitude
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of the oscillations of D(�) is exponentially supressed

because for such energies no superconducting corre-

lations (which can only originate h=2e-oscillations)

are present in the ring.

Thus { even at high temperatures { only the

states with low energies � < �d are responsi-

ble for the e�ect of conductance oscillations. At

T � �d the amplitude of these oscillations can

be estimated as � �G = �G�=0 �
�G�=h=4e �

1
2T

R �c
0
d� sech2(�=2T )(D0�Dh=4e) �

�c
2T
�Dav where

�c � �d and �Dav is the average amplitude of the

oscillations of the transparency below �c. This esti-

mate demonstrates that { in a complete agreement

with the experimental results [2] {the 1=T -scaling

persists at all temperatures T > �d. Also the numer-

ical results show that the 1=T -scaling of the oscilla-

tion amplitude is excellently ful�lled at su�ciently

high T . (see Figs. 5 and 6). At lower tempera-

tures the amplitude of the conductance oscillations

shows the reentrant behavior reaching the maximum

at T � �d and vanishing completely at T = 0 (Fig.

5). This reentrant behavior has a similar physical

origin to that of G(T ) discussed above in the absence

of the ring.
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