Superconducting current in narrow proximity wires
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The critical supercurrent in proximty-wires shows a surprising temperature dependence in the experiment [1].

This

observation has lead to speculation whether there are new effects involved and/or the usual criterion for the dirty
limit is not valid for this type of systems. We propose a simple SNS-model for this system and show analytically,
that this unexpected scaling is already contained in a conventional description of this model by quasiclassical Green’s
functions in the dirty limit. Based n further numerical calculations, excellent agreement with the experimental results

is obtained.

1. Introduction

Recent experiments [1] have shown, that a thin
normal diffusive wire upon which an array of super-
conducting stripes is laid can carry a supercurrent.
This is due to the well-known proximity effect [2].
As the S-N contacts are very good, the penetration
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Figure 1: Experimental setup

depth of the pair amplitude into the normal wire

Ev = «/% is much bigger than the wire thickness
ey at all experimental temperatures. This implies,
that the pair amplitude in the regions covered by the
stripes is identical to the bulk value and can be taken
as constant over the cross section of the wire. There-
fore, this structure is equivalent to a simple chain
of SNS-junctions, so the supercurrent is a Josephson
current [3]. However, comparison to standard results
for such structures [2] failed [1]. The observed critical

current I.(7) resembled to a clean (I.(T) e_TT_D)
rather than a dirty system. This has raised the ques-
tion, whether the usual criterion between clean and
dirty limit is correct for weak superconductivity or
whether this effect has to be attributed to new quan-
tum effects not contained in quasiclassical theory of
superconductivity. However, we will demonstrate
that neither of this is true, that the deviations are
due to the use of Ginzburg/Landau theory in [2],
which is not valid for the experimental range of tem-

peratures and that a full quasiclassical calculation
can explain the experiment quantitavely.

2. Results

Obviously, the critical current is determined by
the longest SNS-cell serving as a “bottleneck”, so it
1s sufficient to study a single cell.

2.1. Analytical approximations

However, in the case d > &n, where d is the
distance of two superconducting banks, the mutual
influence between the superconductors can be ne-
glected and the solution can be decomposed into con-
tributions from both sides, carrying a fixed phase.
From this approximation, we get for the current
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where ¢ 1s the phase difference between the su-

perconductors, Ry the Drude resistance and w, =
(2n 4+ )xT n =0,1,2... are fermion Matsubara

frequencies. Furthermore, £y, = %, A 1s the su-

perconducting order parameter and 2 = vw? + A2,
For T > ¢4 = D/d?, all frequencies higher than the
lowest one can be neglected. In the case T' < A, this
gives the critical current by setting ¢ = 7/2:
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This result agrees with [4] and has the usual dirty
limit form I. x T?exp (—,/%) with T = 2:#
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Figure 2:

(Thouless energy), however, we find ¢ = 3/2 whereas
in the Ginzburg-Landau limit ¢ = 1/2.

Nevertheless, this has interesting properties. The

logarithmical derivative % = Aw — %v

passes a minimum at 367, and varies very slowly
at higher Temperatures, so log /. is almost linear in
T'. This is just a remarkable mathematical artefact
caused by the exponent ¢ = 3/2. However, we have
demonstrated that “quasi-clean” scaling can also oc-
cur in dirty systems. As a good approximation for
the slope of the logplot, we can take the logarithmical
derivative in the minimum and get as a reasonable
approximation I, o< e~ /T where T* = 487d?/D.
At T = 0, we can estimate the critical cur-
rent using a rather crude approximation to be I, =
% = mmwﬁ which again demonstrates the impor-
tance of Tj as relevant energy scale for the Josephson
current in SNS-junctions instead of A like for tun-

neling junctions. This estimate matches with the

experiment.
2.2. Numerics

The solution of the full problem including Mat-
subara summation was obtained numerically. The
resulting critical current matches quantitatively to
the experiment, see fig. 2.

It is well known, that in Josephson junctions at
very low temperatures, I(¢) deviates from sinusodi-
ality. However, these deviations are small here (see
Fig. 3) at all relevant temperatures.

2.3. An equivalent system

A “proximity loop” structure (see Fig. 4), can
be mapped onto the same problem, by introducing a
gauge invariant phase x = ¢ — 2e [, d¥ M@mv to the
anomalous superconducting Green’s function F'. The
Green’s function have to be unique in every point of

3.0 T

20 r

—— T=2mK
P . T=5 mK

pd ---- T=10 mK
——- T=20 mK
—-— T=50 mK 1
—— T=100 mK
........... T=200 mK
---- T=500 mK

1 (LA)

0.0 0.5 1.0 15

N
w2 Gauge transformation
N

Figure 4:

wn
<
N

the ring, so after going round once, the “real” phase
@ can only change by 27n n=...—2,—-1,0,1,2...
Here, d is the circumference of the ring and the phase
difference of the leads is ¢ = mme mod 27, where ® is
the magnetic flux caught in the ring. As this setup
allows to control ¢ by controlling ®, the stability
of the current-phase relation could be probed in a
simple experiment.

3. Conclusions

We have introduced a simple model for a
proximity-wire. We have demonstrated, that the un-
expected experimental observations are all contained
in standard quasiclassical theory and so there is no
evidence for new effects. Finally, the analogy to a
ring structure with a magnetic field was established.

We would like to thank H. Courtois, C. Bruder
and W. Belzig for discussions.

REFERENCES

[1] H. Courtois et al., Phys. Rev. B 52 1162 (1995).

[2] P.G. de Gennes, Rev. Mod. Phys. 36, 225
(1964).

[3] F.Wilhelm, A.D. Zaikin and G. Schén, in prepa-
ration

[4] A.D. Zaikin and G.F. Zharkov, Sov. J. Low.
Temp. Phys. 7, 375 (1981).



