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Abstract

A stationary subdivision scheme as Catmull and Clark's is described by a

matrix iteration around an extraordinary point. We show how higher order
smoothness of a limiting surface depends on the spectral properties of the
matrix and give necessary and su�cient conditions.

The results are also useful to construct subdivision algorithms for surfaces of
any smoothness order at extraordinary points.
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1 Introduction

Fifteen years after the �rst e�orts to analyze the behaviour of Catmull and

Clark's subdivision algorithm at extraordinary points Ulrich Reif ['93] showed

that all arguments given earlier by Doo & Sabin ['78], Loop ['87], Ball &

Storry ['88], and others to verify tangent plane continuity are incomplete.

One year later in 1994 Reif derived a degree estimate explaining why previous

attempts to �nd subdividable curvature continuous surfaces failed.

However, despite all e�orts since 1978 two questions remained:

(1) Is there a rigorous method to show how smooth a subdividable surface

is at extraordinary points?

(2) And, are there subdivision algorithms for arbitrary control nets gener-
ating Gk-surfaces?

Both questions were answered positively in 1995. Developing and building

on some ideas of Reif ['94] I resolved the �rst, while the second has been
solved simultaneously by Reif ['97] and myself ['97].

The purpose of this paper is to publish the smoothness characterization pre-

sented in 1995 [Prautzsch '95]. In the meantimewe have applied these results
successfully to (1) improve Catmull and Clark's, Qu's, Loop's and the butter-
y algorithm [Prautzsch & Umlauf '97a, '97b], and (2) to extend the degree
estimate by Reif ['94] to subdivision surfaces of arbitrary high smoothness
[Prautzsch & Reif '97].

To introduce the notation and the problem I �rst present a simple class of
subdivision schemes derived from uniform tensor product spline subdivision.
It serves as an example for the following general smoothness analysis, which

applies to all stationary subdivision schemes. In particular, it also applies to

subdivision algorithms on triangular nets.

The concepts used in the analysis are new in that a parametrization is used

under which the subdivision surfaces are self-similar under scaling.
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2 The midpoint scheme

The subdivision algorithm for uniform tensor product splines [Lane & Riesen-

feld '80] has a simple generalization. We describe it by two operators.

The re�nement operator R maps any control net C of arbitrary topology

to the net RC that connects the midpoints of all edges in C with both their

endpoints and the centroids of both abutting meshes.

The averaging operator A maps any net C to the net AC that connects

the centroids of all meshes sharing a common edge.

As an illustration, Figure 1 shows some net C (light edges), the net RC (light

edges and broken edges) and the net ARC (heavy edges).

Figure 1: Re�ning and averaging a net.

The net operator Mn = An�1R, which re�nes a net and averages it (n �
1)-times successively is called the midpoint subdivision operator. We
say that the sequence of nets M i

nC; i 2 IN, is obtained from C under the
midpoint scheme Mn.

In particular, M2 and M3 represent speci�c instances of the Doo-Sabin and
the Catmull-Clark algorithm, respectively. A sequence of nets obtained under
M3 is shown in Figure 2.

Note that if n is odd, then the nets M i
nC have no extraordinary meshes,

that means non-quadrilateral meshes, and if n is even, then the nets have no
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Figure 2: Subdivision under the Catmull-Clark algorithm.

extraordinary vertices, that means interior vertices with valence 6= 4.

Furthermore, each extraordinarity of any netM i
nC is obtained by a�ne com-

binations of vertices around an extraordinarity of the preceding net M i�1
n C

called the corresponding extraordinarity.

3 The limiting surface

On a regular quadrilateral net the midpoint scheme does nothing else than
the subdivision algorithm for uniform tensor product spline surfaces of bide-
gree n. Consequently any net sequence obtained under the midpoint scheme

converges to a piecewise polynomial surface s, where the sequences of corre-

sponding extraordinarities converge to the so-called extraordinary points

of s.

In the sequel we study the limiting surface at an extraordinary point. There-

fore, without loss of generality, we assume from now on, that the nets M iC

have just one m-sided mesh or vertex of valence m surrounded by several
rings of quadrilateral meshes as illustrated in Figure 3.

Each regular subnet of n � n quadrilateral meshes of a net M iC forms the
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Figure 3: Control nets with one extraordinarity.

B-spline control net of some polynomial patch of s. The patches de�ned by
all these subnets of M iC form an (n�1)-times di�erentiable surface si which
is part of the limiting surface s. Moreover the surface si without the surface

si�1 forms a surface ring ri consisting of 3m�2n patches, where

�n =

(
n� 1;
n� 2;

if n is
even
odd :

Together the rings ri form the limiting surface s. We can partition the
surface rings ri into 3m macro patches r1i ; : : : ; r

3m
i , where each patch consists

of �n��n patches. This is illustrated schematically in Figure 4, where m = 5.

The dashed lines show the patches of r51 for �n = 3.

4 The standard parametrization

Every macro patch can be parametrized over [0; 1]2 and an entire ring ri over

3m copies of [0; 1]2. Therefore we can parametrize ri over 
 = f1; : : : ; 3mg�

[0; 1]2, which means

ri : 
! IR3 ; (jju; v) 7! ri(jju; v) = r
j
i (u; v) :
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r3m1 r11
r21

r31r12
r22
r32

r52

Figure 4: The adjacency of the patches rji for m = 5 and � = 1; 3.

Together, all rings form a Cn�1-surface. This property is captured by the
following smoothness conditions:
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(4.1)

for all u; v 2 [0; 1]; i 2 IN; k = 0; 1; : : : ; n�1, and j = 1; 4; 7; : : : ; 3n�2, where
r3n+1i = r1i .

Moreover, if c1; : : : ; cp denote the control points of ri, then ri can also be
written as

ri(jju; v) =
pX

l=1

clBl(jju; v) ;

where Bl(jju; v) for each �xed j is some segment of a tensor product B-spline

in u and v.

Example: Using the numbering given in Figures 3 and 4 we obtain for the
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midpoint schemeM2; j = 2 and u; v 2 [0; 1]2
64
B1 B2 B3

B4 B5 B6

B7 B8 B9

3
75 =

2
664
N0(u)N�2(v) � � � N0(u)N0(v)

...
...

N�2(u)N�2(v) � � � N�2(u)N0(v)

3
775

and for j = 3 and u; v 2 [0; 1]2
64
B4 B5 B6

B7 B8 B9

B10 B11 B12

3
75 =

2
664
N0(u)N�2(v) � � � N0(u)N0(v)

...
...

N�2(u)N�2(v) � � � N�2(u)N0(v)

3
775 ;

where Nl denotes the uniform B-spline of degree 2 over the knots l; l+ 1; l+

2; l + 3.

5 Matrix iteration

Any surface ring ri : 
 ! IR3 has three coordinate functions and all these
coordinate functions form the linear space

R := f
pX

l=1

clBl(jju; v)jcl 2 IRg :

Since the midpoint scheme is given by a�ne combinations, there is a linear
operator � on R such that

�(ri) = ri+1 ;

where � is to be applied to each coordinate of ri separately.

The subdivision matrix representing � with respect to the basis functions Bl

is stochastic (i.e., it has non-negative entries with row sums one.) Therefore
the leading eigenvalue of � is one with the constant functions as associated
eigenvectors.

One can check that some power of the subdivision matrix has a strictly
positive row, which implies that one is a single eigenvalue of �, see [Micchelli
& Prautzsch '89, Thm. 2.1].

Consequently for any r 2 R3 the surface rings �i(r) converge to a constant
map over 
, which represents the extraordinary point of the subdivision
surface formed by all these rings.
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6 Characteristic maps

From now on let R be an arbitrary real linear space of functions r : 
! IR,

and let � be an arbitrary linear map on R such that all surface rings r and

�(r) in R3 satisfy the smoothness conditions (4.1).

We suppose that any sequence �i(r); r 2 R3, converges to a point r1. This

property is equivalent to the fact that the dominant eigenvalue of � equals

one and is simple, see e.g. [Micchelli & Prautzsch '89, p. 844].

Further, let 1; �; �; : : : be the eigenvalues of � listed with all their algebraic

multiples and ordered by their modulus. If there are two real eigenvectors x

and y associated with � and �, respectively, the map x = (x; y) : 
! IR2 is

called a characteristic map of �, see [Reif '95].

The Doo-Sabin, the Catmull-Clark and the midpoint algorithm have a char-
acteristic map, see [Reif '95, Umlauf '96].

7 Triangular nets

The set up described in Section 6 is general enough to cover also subdivision
schemes for triangular nets such as the buttery or Loop's algorithm.

For example, the surfaces obtained by Loop's algorithm consist of triangular
polynomial patches. Around an extraordinary point these triangular patches
are arranged as illustrated in Figure 5 for m = 5. The dotted patches form

a surface ring ri which can be partitioned into 3m quadrilateral patches rji
as in Figure 4. Repartitioning the remaining surface similarly we obtain the
tessellation of Figure 4. The broken lines indicate again that the triangular
patches may be macro patches consisting of smaller patches.

8 Smoothness at extraordinary points

Under the assumptions made in Section 6 we are able to show the following
theorem.

Theorem 8.1 (For k = 1 see also [Reif '95])

For almost all surface rings r0 2 R3 the iterates ri = �i(r0) form a regular
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r3m1 r11

r21 r31r12
r22 r32

r52

Figure 5: The patch con�guration around an extraordinary point in case of
triangular patches.

Gk-surface in a neighborhood of the extraordinary point, where 1 � k < n, if

� � has a regular invertible characteristic map x = (x; y),

� all eigenvalues � of �, with j�j � j�j � j�jk have equal algebraic and

geometric muliplicities, and the associated eigenspace is a subspace of

span fx�y�j���� = �, � and � 2 IN0g.

Remark The condition on the eigenvalues implies that an eigenvalue of � is

either of the form ���� or that its modulus is smaller than j�jk.

Proof

Since we suppose that x is regular and invertible, the scaled versions

xi = �i(x) = (�ix; �iy) are also regular and invertible. Furthermore, xi
lies closer to the origin than xi�1. Hence all planar rings xi; i 2 IN, form
a parametrization of some neighborhood U of the origin o that does not

contain the origin.

We parametrize the subdivision surface s consisting of the rings ri and the
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extraordinary point r1 over U [ fog in the following way

s(�; �) =

(
ri � x

�1
i (�; �) if (�; �) 2 xi(
)

r1 if (�; �) = o
:(8.2)

Now we show that any coordinate s of s : U [ fog ! IR3 is di�erentiable:

Each coordinate r0 of r0 can be written as

r0 =
X


a + b ;

where the a are eigenvectors of � of the form

a =
X

���x
�y� ; ���� = const: ;

with associated eigenvalue � = ����, and where

sup



j�i(b)j = o(j�jik) :

Since the iterates �i(a) = �i��i�a are of the form

�i(a) =
X

���(�
ix)�(�iy)� ;

they form a polynomial component of s under the parametrization (8.2),
namely

(�i(a) � x
�1
i )(�; �) =

X
����

��� :

Further, the contraction rate of the sequence �i(b) is not slowed down under a

�xed reparametrization and a di�erentiation since these are linear operations.
Thus we have for all �; � 2 IN0

sup
x(
)

����� @
�

@��
@�

@��
(�i(b) � x�1)

����� = o(j�jik) :

Reparametrizing by x�1i instead of x�1 means to substitute (��i�; ��i�),

where (�; �) 2 xi(
), for (�; �) 2 x1(
). Thus taking the inner derivatives

into account we obtain

sup
xi(
)

����� @
�

@��
@�

@��
(�i(b) � x�1i )

����� = o(j�j�i�j�ji(k��))

= o(j�ji(k����))

= o(jj(�; �)jjk����) :
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Hence the iterates �i(b) form a component of s whose derivatives up to order

k converge to zero as (�; �)! o.

To prove that s is regular around r1 we write

r0 = a+ bx+ cy + z ;

where a;b; c 2 IR3 and z 2 R3 with sup
 jj�
i(z)jj = o(j�ji). Then it follows

as above that

s(�; �) = a + b� + c� + r(�; �) ;

where jjrjj = o(jj(�; �)jj). This map is regular for small (�; �) provided that

b and c are linearly independent. This completes the proof.

9 Remarks

The linear maps � describing the Catmull-Clark algorithm around extraordi-
nary points have all a regular invertible characteristic map, see [Peters & Reif
'97]. Hence, Theorem 8.1 can be applied. This shows that the Catmull-Clark
algorithm generates tangent plane continuous but in general no curvature
continuous surfaces, see [Umlauf '96]. The same is true for Loop's algorithm,

see [Umlauf '97].

Moreover, one can use Theorem 8.1 to design better subdivision schemes. For
example one can diagonalize the linear maps � of the Catmull-Clark scheme,

change non-suitable eigenvalues and keep the same eigenvectors. This then
results in subdivision schemes generating G2-surfaces with zero curvature
at extraordinary points, see [Prautzsch & Umlauf '97a]. Similarly one can
improve the smoothness order of Qu's algorithm from G1 to G3 [Umlauf
'96], of Loop's algorithm from G1 to G2 and of other algorithms [Umlauf 96,

Prautzsch & Umlauf '97b].

It is also possible to build subdivision schemes for Gk-surfaces with non-zero

curvature at extraordinary points: In [Prautzsch '97, Reif '97] the linear map

� has the eigenvalues 1; �; �; �2; �2; �2; 0; : : : ; 0 which means that � is a pro-
jection onto the space spanfx�y�j�+� = 0; 1; 2g. The surfaces generated are
piecewise bisextic G2-surfaces. The characteristic map x = (x; y), however,

is piecewise bicubic.

Similarly one can build subdivision schemes for piecewise polynomial Gk-
surfaces of bidegree 2k + 1.
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If the characteristic map in Theorem 8.1 exists, is regular and invertible,

then the converse of Theorem 8.1 is also true, i.e., the di�erentiability of

the parametrization (8.2) implies the spectral properties listed in Theo-

rem 8.1. This follows directly from the Taylor expansion of x around o,

see [Prautzsch '95].

The degree estimates for piecewise polynomial subdivision surfaces in

[Prautzsch & Reif '97] are based on the spectral properties given in The-

orem 8.1. There are subdivision schemes that are derived from linear depen-

dent \basis" functions, for example the box splines over the four direction

mesh. Then it can happen that the rings ri around an extraordinary point

are not related under a linear map � although their control nets are.

Nevertheless, it is always possible to group consecutive rings to larger rings

that are related under a linear map [Reif '96].

10 Complex eigenvalues

So far we have assumed that the subdivision map � has real subdominant
eigenvalues � and �. In the sequel we assume that � and � are complex
conjugate eigenvalues of � and that x and x = y are associated complex

conjugate eigen vectors.

The characteristic map of � is then given by the map x = (Re x; Im x) :

! IR2. This extends the de�nition in Section 6.

Theorem 8.1 remains valid also if the subdominant eigenvalues � and � are
complex conjugate, i.e., � = �. We can repeat the theorem, where we only
change the de�nition of the characteristic map x and write � rather than �.

The assumptions are still the same as in Section 6.

Theorem 10.1 (For k = 1 see also [Reif '95])

For almost all surface rings r0 2 R3 the iterates ri = �i(r0) form a regular

Gk-surface in a neighborhood of the extraordinary point, where 1 � k < n, if

� � has a regular invertible characteristic map x = (Re x; Im y),

� all eigenvalues � of �, with j�j � j�j � j�jk have equal algebraic and

geometric muliplicities, and the associated eigenspace is a subspace of

span fx�x�j���
�
= �, � and � 2 IN0g.
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Proof

We can use the proof of Theorem 8.1 with slight modi�cations:

Since we suppose that x is regular and invertible, the scaled and rotated ver-

sions xi = �i(x) = (Re �ix; Im �ix) are also regular and invertible. Further-

more, xi lies closer to the origin than xi�1. Hence all planar rings xi; i 2 IN,

form a parametrization of some neighborhood U of the origin o that does

not contain the origin.

We parametrize the subdivision surface s consisting of the rings ri and the

extraordinary point r1 over U [ fog in the following way

s(�; �) =

(
ri � x

�1
i (�; �) if (�; �) 2 xi(
)

r1 if (�; �) = o
:(10.2)

Now we show that any coordinate s of s : U [ fog ! IR3 is di�erentiable:

Each coordinate r0 of r0 can be written as

r0 =
X


(a + a) + b ;

where the a are eigenvectors of � of the form

a =
X

���x
�x� ; ���

�
= const: ;

with associated eigenvalue � = ���
�
, and where

sup



j�i(b)j = o(j�jik) :

Since the iterates �i(a) = �i��
i�
a are of the form

�i(a) =
X

���(�
ix)�(�

i
x)� ;

they form complex conjugate polynomial components of s under the

parametrization (10.2), namely

(�i(a) � x
�1
i )(�; �) =

X
���(� + i�)�(� + i�)� :

Following the proof of Theorem 8.1 exactly word for word we can show that
the iterates �i(b) form a component of s whose derivatives up to order k

converge to zero as (�; �)! o.
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To prove that s is regular around r1 we write

r0 = a + bx+ bx+ z ;

where a 2 IR3;b 2 C3, and z 2 R3 with sup
 jj�
izjj = o(j�ji). Then it follows

as above that

s(�; �) = a + b� + c� + r(�; �) ;

where jjrjj = o(jj(�; �)jj). This map is regular for small (�; �) provided that

b and b are linearly independent. This completes the proof.

If the parametrization of s given in (10.2) is k-times di�erentiable for all

initial rings r0, then the converse of Theorem 10.1 also holds, i.e., � has the

spectral properties required in the Theorem. See [Prautzsch '95] for a proof.
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