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Abstract
For the on-line collision detection with a multi-arm ro-

bot a fast method for computing the so-called collision
vector is presented. Manipulators and obstacles are model-
led by sets of convex polytopes. Known distance algo-
rithms serve as a foundation. To speed up the collision de-
tection dynamic obstacles are approximated by geometric
primitives and organized in hierarchies. On-line, the here
introduced Dynamic Hierarchies are adjusted to the current
arm configuration. A comparison with previous methods
shows an increased acceleration of the computations.

1 Introduction

A robot with two independent arms in a hanging confi-
guration gave the impulse for this work. Both manipula-
tors have six rotational degrees of freedom in overlapping
working spaces. Only by the cooperation of two arms,
large classes of difficult manipulation tasks can be carried
out. As a presupposition therefore one must secure, that no
collisions with the two arms mutually as well as with
other objects existing in the environment come about.

A frequent approach to collision detection is the trans-
formation of the objects in the Configuration Space, cho-
sen among the spaces of independent parameters describing
the position of any point bound to the arm. The robot
shrinks to a point by enlarging the obstacles. Problems
arise with moving objects, which must again be transfor-
med to the Configuration Space after every movement. On-
line that is impossible.

Other approaches work in the Cartesian space. Thereby a
collision is detected by intersections between the geometry
of obstacles and robot. Beside of the pure test on collision,
here the so-called collision vector is calculated. The colli-
sion vector states the minimal distance and its orientation
between the robot arm and other possibly moving objects.
By the additional distance and orientation information the
following collision avoidance can be improved.

Here a fast computation of the collision vector for the
on-line collision detection with several robot arms is pre-
sented. It is based on a hierarchical modelling of dynamic
obstacles.

Previous approaches are sketched and classified in Sec.
2. For our own approach in Sec. 3 a formal world model is

introduced. The Sec. 3.1 discusses the approximation by
primitives. The new Dynamic Hierarchies are presented in
Sec. 3.2. The different approaches are compared in Sec. 4.

2 Previous approaches

Most other researchers working on fast computation of
the collision vector use a combination of several approac-
hes. Instead of presenting the full combinations, here the
underlying approaches for speed up are separately described.
For that purpose the straightforward computation of the
collision vector is given:

During the execution of a continuous movement of the
manipulator the collision vector is calculated at discrete
moments. For this the collision vector is computed among
all pairs of objects, each consisting of an arm segment and
an obstacle. The shortest of these vectors is reported as the
result of the collision detection.

This straightforward approach can be accelerated under
four aspects. They differ by the method and the point of
time. The point of time, when the speed up is contrived,
can be off-line or on-line. The method can be on one hand
a reduction of the amount of considered objects and on the
other hand an improvement of a single distance computa-
tion. If the point of time and the method are combined, the
four different aspects of acceleration develop. In Tab. 1 for
every aspect an example is given, which shall be sketched
in the following:

Primitive Approximation: The obstacles or the arm seg-
ments can be approximated off-line by one or more simple
geometric objects (primitives). See for example Adolphs
and Horsch in [1]. By this means the complexity of a
single distance computation is reduced. The collision vec-
tor is an approximation of the real vector. Because of the
coarser representation possibly a feasible path seems un-
feasible

Initialization: During the path planning a single compu-
tation of the collision vector can be improved by using the
result of the last motion step. For bodies modelled by con-
vex polytopes this was done by Gilbert and Johnson in an
iterative distance calculation in [5]. The vector from the
last step serves as an initialization for the new iteration.
The degree of improvement depends on the covered distance
by one motion step.

Distance Update: In this approach  a discrete trajectory is
assumed. The furthest distance covered by the robot arm is



subtracted from the length of the last collision vector. If
the result is smaller then a threshold, then the vector is
newly calculated. See Faverjon in [3]. For example, this
update of the distance can be done for every object pair
(locally) or for only the smallest vector (globally). By this
the amount of computations on a trajectory is diminished.
Nevertheless the direction information of the collision vec-
tor gets lost.

Static Hierarchies: Before path planning, previous
obstacles are successively combined and approximated into
new obstacles. This develops a hierarchical arrangement of
approximations. This so-called assembly-tree was used by
Faverjon in [2]. At each level of the hierarchy all obstacles
are represented completely. The higher the level, the coar-
ser the representation. Thus the amount of obstacles are re-
duced logarithmically. Because of their dynamic behavior
entire manipulators can´t be approximated by Static Hierar-
chies (see Sec. 3.2). Only single arm segments can be re-
presented in this way.

Virtual Manipulator: To reduce the amount of arm seg-
ments a sequence of virtual manipulators with different de-
grees of freedom can be computed off-line. According to
Faverjon in [3] a virtual manipulator with k degrees of
freedom is that manipulator, whose last links have been re-
placed by their swept volumes, when joints k+1 to n are
made free. Here the original manipulator has n degrees of
freedom. A virtual manipulator represents a relative coarse
approximation of its successor.

off-line on-line
quantity of

computations
Static Hierarchies;
Virtual Manipulator

Distance
Update

complexity of
one computation

Primitive Appro-
ximation

Initialization

Tab. 1: Examples for acceleration aspects.

3 Our approach

To describe our approach, first a formal world model is
introduced. Then, in the following subsections the two
main aspects of our approach are discussed: the Primitive
Approximation and the Dynamic Hierarchies.

Definition of the collision classes
In a known environment all geometric objects are col-

lected in a world model. This world model usually is divi-
ded for the purpose of collision detection in dynamic arm
segments of a robot and static obstacles touchable by the
robot. Because collision detection is being done between
more than one arm, we subdivide the world model into col-
lision classes.

The elements of a collision class are characterized by the
fact, that no collision detection is done between them. A
collision class either contains objects where no collisions
can occur between them or their collisions are easier
avoided by other mechanisms. For example one could form
a collision class from the segments of a manipulator. Then
the joint angles must be checked to avoid internal collisi-

ons. Other collision classes could be formed by the
obstacles in the environment. The obstacles are not mo-
veable, so no collision can occur among them.

This classification is constant, that means the member-
ship of an object to its collision class stays unchanged.
Nevertheless the location or the geometry of the objects
can change over time. The word model contains the geome-
tric information of the scene necessary for the collision de-
tection. The real objects are modelled by convex polytopes.
The world model W consists of a set of collision classes

C j:

W := { }C j | j = 1,. . . ,c .
It is defined in a given world frame Fw . In a collision

class C j the real objects are modelled as a set of convex

polytopes P
i
j  :

C j := { }P
i
j | i = 1, . . . ,N j .

Relative to the word frame Fw each collision class C j has

got its own local frame F j. Usually the convex polytopes
P are described by the convex hull of the vertices R of the
real object:

P := co( )R .

Additionally every polytope P
i
j has got a local frame F

i
j ,

relative to F j.

Specification of the collision detection
At a fixed point of time t the collision detection compu-

tes for a given world model W  the collision vector v j,l

between two collision classes

C j := { }P
i
j | i = 1, . . . ,N j ,

C l := { }P
k
l | k = 1, . . . ,N l ,

 with j,l∈{1,...,c}, j≠l   by:

 v j,l := v
i , k
j , l  ,

for | |v
i , k
j , l  = min, with i∈{1,...,N j},  k∈{1,...,N l}. Ge-

nerally, the collision vector v
i , k
j,l between the two convex

polytopes P
i
j∈ C j and P

k
l∈ C l is defined in the fol-

lowing way:

v
i , k
j,l := r - s,

for | |r-s  = min, with r ∈P
i
j and s ∈ P

k
l. The Euclidean

Norm in the 3-dimensional space is denoted by  |.|.
Additionally an index set I is defined for the whole world

model:
I  := { }(j,l) | j ≠ l, j,l ∈ {1,...,c} .



It states for each unordered pair (j,l)∈I  between which cl-

asses C j, C l collisions should be detected.
The usefulness of the index set appears at the following

constellation: Two manipulators are mounted in a hanging
configuration on a vehicle via a gallows. Arm, gallows and

vehicle form each a class:  C 1,...,C 4. In this index set
all of the pairs are entered except of arm/gallows (1,3),(2,3)
and gallows/vehicle (3,4). Otherwise these pairs always
would produce a collision. This index set specifies only the
pairs of classes, where collision detection is reasonable:

I  = { }(1,2), (1,4), (2,4), (3,4) .
With the declaration of collision classes in a world mo-

del and a corresponding index set the task of the collision
detection is completely specified.

Properties of the collision classes
If collision classes are inspected over the planning time,

diverse properties can be captured. The diverse properties
result from the movement of objects in a class. The ob-
jects can perform together a synchronous movement or
change their position relative to each other. A collision

class  C j is called fixed over the time t, if the class frame

F j (t) = const,

otherwise C j is called moved. At a static collision class

C j  over the time t the polytope frames are

F
i
j (t) = const for i = 1,...,N j,

otherwise C j is called dynamic. Examples for classes with
this four properties are listed in Tab. 2.

property static dynamic
fixed table manipulator

moved vehicle mobile robot
Tab. 2: Examples of collision classes

3.1 Primitive approximation

Modelling with primitives
Following the world model objects are modelled by

convex polytopes. To speed up the computation of the col-
lision vector, the convex polytopes can off-line be appro-
ximated by primitives. By a primitive, a simple convex
volume is understood. These approximations are conserva-
tive, i. e. the polytope volume is completely covered by
the primitive. There exists a relation of partial sets bet-
ween convex polytope P and its approximation Ai:

Ai ⊇ P.

Adolphs and Horsch in [1] used as primitives: box, cy-
linder, sphere and bounding-box. Thereby the cylinder is a
spherical extension of a line segment in space (describable
by the two end points and the radius). The bounding-box is
a more simple box with faces parallel to the frame axes. In
Fig. 1 an arm segment with its Primitive Approximation
is shown.

The order of the primitives as approximations essenti-
ally corresponds to the complexity of the primitives, mea-
sured by the minimal amount of scalar parameters needed
to describe the primitive. For example the sphere needs: for
the mid point 3 and for the radius 1 parameter. If it is as-
sumed, that in the most cases objects are better approxima-
ted by more complex primitives than by less complex,
then the original object is represented by the primitive ap-
proximation in different levels of accuracy.

(a)

(c)

(e)

(b)

(d)

(f)

Fig.  1: Primitive Approximation of an arm segment; (a): real
object; (b): convex polytope; (c): box; (d): cylinder; (e):

sphere; (f): bounding-box.

Distance computation between objects
The distance computation of the collision detection can

be sped up by the Primitive Approximation calculated off-
line by the convex polytopes. For this the collision vector
is computed among the primitives, instead of among the
convex polytopes. Because the distance between two primi-
tives is never greater than between the approximated poly-
topes, it represents a reasonable approach to the real dista-
nce.

The distance computation between two  primitives of
the same kind can take place by the algorithms of Gilbert
and Johnson [5], Meyer [9] and Lumelsky [8]. Between dif-
ferent primitives the algorithms are combined.While com-
puting the collision vector between two objects, in the
first step a pair of primitives approximating the objects are
selected by a certain strategy. Then the collision vector is
computed between the selected pair. If the distance is grea-
ter than a given threshold, then the vector can be returned
as the result. If it is smaller and there exists still another
unused pair of primitives, then these steps are repeated.
When computation is not successful with the primitives to
a distance greater than the threshold, then the vector is cal-
culated between the convex polytopes.

For selecting the primitive pairs, for example, the fol-
lowing strategies can be applied:
• sort the pairs by the complexity of the distance compu-

tation;



• by selecting the appropriate pair reducing the approxi-
mation error (for example calculate the volume diffe-
rence between primitive and object);

• choose for every object the next primitive by a fixed
order;

• for both objects select as first primitive the bounding-
box and as the next primitive the convex polytope.
Leave the rest.

Experiments have shown, that the last strategy in select-
ing the primitive pairs is the the fastest method for di-
stance computation. Except for bounding-box and the con-
vex polytope the other primitives slow down the computa-
tion. The bounding-box serves as a quick pretest. For de-
tails see Henrich in [6].

3.2 Dynamic Hierarchies

Hierarchical modelling
To reduce the amount of members in a class for colli-

sion detection their objects can be combined and approxi-
mated by compositions. Compositions are conservative
approximations of several objects by one primitive. Repla-
cing these objects of a collision class successively by their
compositions, so a hierarchy of compositions is build up.
It is similar to the assembly-tree of Faverjon in [3]. The
elements of one level of the hierarchy approximate the ori-
ginal objects of the collision class in a certain granularity.
The higher the level, the coarser the representation of the
objects. At the lowest hierarchy level all the original ob-
jects are settled, at the topmost level there is only one
composition. But yet it contains all the objects of the
class.

Constructing optimal hierarchies
In general a lot of different composition hierarchies

could be build up for one collision class. One hierarchy is
said to be good if it enables a fast computation of the col-
lision vector. The idea of the Dynamic Hierarchies is to
construct  optimal hierarchies which reflect the objects
constellation of a collision class at every moment. Descen-
ding in such an optimal hierarchy the distance computation
can quickly find out the relevant object which contains one
end of the collision vector. At a particular time a hierarchy
of compositions is called optimal  for a collision class if a
criterion function is minimized at each level of this hierar-
chy.

When constructing optimal hierarchies the following
criterion functions can be used to compose elements of a
hierarchy level to elements of the next higher one:

• volume of the composition,
• diameter of the composition and
• surface of the composition.

The diameter of the composition turned out to be the best
of the three criteria. It can be computed quite fast and deve-
lops hierarchy structures corresponding to those constructed
by hand.

For a given collision class and a criterion function an
optimal composition hierarchy can be off-line computed. If

the criterion function satisfies the triangle inequality the
Nearest Neighbour Algorithm [2] can be used:

At first, all class members are inserted into a list. Then
this pair of objects is searched in the list, which minimizes
the criterion function. For this pair a composition is com-
puted and the two original objects are replaced by this
composition. Now, the list is shorter by one element.
These steps are repeated as long as the list has more than
one element. The result is a optimal binary tree with
respect to the criterion function. Fig. 2 shows two examp-
les of such optimal hierarchies.

The linear progression of the algorithm should not de-
ceive one about, that for the most classes it is a matter of a
logarithmical reduction of the objects. Generally, patholog-
ical object constellations of a collision class can give rise
to only a linear reduction. However it is not due to the al-
gorithm, but in the constellation of the objects or in the
criterion function.

For static classes (F
i
j(t )=const for all i) the optimal

hierarchies can off-line be computed by the above-mentio-
ned algorithm and directly applied for on-line collision de-
tection. For dynamic collision classes the possible alterati-
ons of the objects relative to each other are known in ad-
vance. With these classes for each configuration an optimal
composition hierarchy can off-line be computed.

Using a robot arm one would specify the intervals of
joint angles in which one tree structure of the composition
hierarchy remains optimal. For a Puma260 arm with a
sampling rate of 15 degrees for the first three joints 19
composition hierarchies were computed. For two thirds of
the arm configurations one and only one tree structure is
optimal (see Fig. 2a). The 18 remaining tree structures are
adopted only in extreme arm positions (see Fig. 2b).

(b)(a)
Fig. 2: Two different optimal hierarchy structures for a

Puma260 depending on the arm configuration

Thus for the Puma260 just one composition hierarchy
is actually necessary. But for a general manipulator more
than one optimal hierarchies should be used. How to select
the optimal hierarchy for the current arm configuration is
shown in the following.

Selecting the optimal hierarchy structure
During the on-line collision detection for a given dyna-

mic collision class the current optimal hierarchy structure
must be selected among all the possibly optimal structures
constructed off-line.



(a)

(b)

(c)

(d)

(e)

Fig.  3: Modelling of a Puma260
arm as Dynamic Hierarchy; (a):
convex polytopes; (b): boun-

ding-box approximation; (b)-(e):
bounding-box hierarchy.

Given the number of ob-
jects of a collision class N,
the total number of the in
theory possible optimal
hierarchy structures grows
exponentially by N . Be-
cause the optimal structu-
res are constructed basing
on the possible alterations
of the objects relative to
each other within a colli-
sion class, many of the
theoretically possible hier-
archy structures do not oc-
cur. Additionally, if this
set of optimal hierarchy
structures is still too large
for implementing an effi-
cient selection function,
the less often used structu-
res can be cut off. So the
optimal structure can be
searched within a reaso-
nable amount of off-line
constructed optimal hierar-
chy structures.

For a dynamic collision
class the above-mentioned
criterion function is evalua-
ted for the compositions of
the lowest level of all the
possibly optimal hierar-
chies. According to the
properties of the Nearest
Neighbour Algorithm the
hierarchy structure which
minimizes the criterion
function at the lowest level
of the hierarchies is the
current optimal hierarchy.
If the criterion function va-
lue is minimal for more
than one hierarchy the
comparison is repeated at
the next higher level of
these hierarchies.

Because the criterion function can be computed quite fast
and the amount of the off-line constructed optimal hierar-
chy structures remains in reasonable range this selection
method is practicable for the on-line collision detection.

Update of the hierarchy compositions
Having selected the optimal hierarchy structure all the

compositions of this hierarchy must be calculated now.
While specifying the composition hierarchy the choice of
the primitive being used for composing is left open. Buil-
ding up a hierarchy one has got the freedom to use for ex-
ample, convex polytopes or simple primitives as composi-
tions.

From the results of the primitive approximation (in
Sec. 3.1) the bounding-box in combination with the con-
vex polytopes proves as the best primitive for computing
the collision vector. Moreover an approximation through a
bounding-box can be computed very fast on-line. Therefore
the bounding-box is chosen as primitive for a composition
hierarchy. See Figure 3(b)-(e).

After every alteration in a collision class (with manipu-
lators after every motion step) all compositions in the hier-
archy are on-line again computed.

Summary of the modelling
Summarizing, a combination of primitive approxima-

tion and composition hierarchies are suggested for model-
ling (static and dynamic) collision classes. The real objects
of a class are modelled by convex polytopes (Fig. 3a) and
approximated by bounding-boxes (Fig. 3b). Above that a
hierarchical approximation out of bounding-boxes, with
dynamical tree-structure and geometry, is build up (Fig.
3b-e).

 This changing hierarchy with selected optimal tree-str-
ucture and updated geometry for every movement is called
Dynamic Hierarchy. The Dynamic Hierarchies cover all
four aspects of acceleration classified in Sec. 2.

Descending in hierarchies
During collision detection between two collision classes

represented by Dynamic Hierarchies an approximation of
the collision vector shall be computed. Therefore the two
topmost hierarchy levels containing only one composition
will be considered. At each level among all the composi-
tion pairs the collision vector is computed. If the distance
between a pair is smaller than the threshold, then fol-
lowing a given strategy the members of that pair are subs-
tituted by their more precise representation at the level un-
derneath. With these new pairs the computation is conti-
nued. The recursive algorithm terminates, if either the di-
stance among all viewed pairs is greater than the threshold
or one pair at the lowest (most accurate) representation le-
vel of both classes are colliding.

In a pair, where the distance is to small, one partner
must be selected for substitution by different strategies.
For example:
• substitute only one member of the pair: choose the one

with the greater approximation error;
• substitute both members of the pair by their more accu-

rate representation.
Here the latter strategy is used, because it does not require
any computations and it descends most quickly in the hier-
archy.

4 Experimental results

In two simulated examples, previous and the presented
approaches are compared. The first contains a Puma260
consisting of 10 parts and 16 single obstacles (Fig. 4a);
the second  contains two manipulators each with 10 seg-
ments (Fig. 4b). Thus in every scene two collision classes
could be formed. The system was implemented on a



SUN/SPARC 2 under UNIX in the programming language
C.

For one motion step of the manipulator the average run
time of the computations of the collision vector between
the two classes was measured. Thereby the run times were
separated in steps with and without collision(s) (see Fig.
5).

Foundation for all the implemented approaches is the
modelling of objects by convex polytopes and the distance
computation by Gilbert and Johnson (Fig. 5(a)). Compared
are the Dynamic Hierarchies in Fig. 5(e) with: the Initiali-
zation in Fig. 5(g) corresponding to the description in [5];
the global Distance Update in Fig. 5(c) without negative
distances; and with the Primitive Approximation with a
symmetrical descending in the four primitives of [1].

(a) (b)
Fig. 4: Example scenes represented by convex polytopes.

Not recorded is the time for transformation of the con-
vex polytopes in the world model after a dynamical change
(arm movement). With a given modelling the transforma-
tion time is identical for all the approaches is consistently
ca. 25 ms.

The comparison of the approaches shows the greatest
acceleration at the Dynamic Hierarchies. A combination
with the Initialization approach or the Local Distance Up-
date deteriorates the run time, because of the data manage-
ment necessary therefore. By a combination with the glo-
bal Distance Update the information about the direction of
the collision vector gets lost. With the Dynamic Hierar-
chies an on-line adjustment of the composition to the mo-
vements of a robot arm is possible.

The presented approach for the accelerated computation
of the collision vector with multi-arm robots can be app-
lied without any alteration as a fast collision test. This is
needed for example in the off-line path planning. Based on
the properties of the Nearest Neighbour Algorithm, the
precise collision vector can be computed quickly by com-
bining the Dynamic Hierarchies with an A*-search for fur-
ther applications.
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date; (d): Primitive Approximation; (e): Dynamic
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