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Abstract

Apparently there is no closed form for the partial sum of a row of Pascal's triangle.

In this paper lower and upper bounds for binomial coe�cients and their sums are

deduced. In the case of single coe�cients these bounds di�er only by a constant

factor which is arbitrarily close to 1 for su�ciently large n. In the case of sums the

gap between lower and upper bound is larger but still small enough to be useful in

some applications. The upper bound obtained for sums is somewhat better than that

resulting from a Cherno� bound.

1 Introduction

We are interested in expressions of the form
Pm

i=0

�n
i

�
or more generally

Sn(k;m) :=
mX
i=k

 
n

i

!
;

where 0 � k � m � n all are natural numbers. Hence we can use the identity 
n

i

!
=

n!

i! (n� i)!
: (1.1)

The only two cases which are immediately clear are

nX
i=0

 
n

i

!
= 2n and

mX
i=0

 
2m+ 1

i

!
=

1

2
22m+1: (1.2)

But according to Graham/Knuth/Patashnik [GKP89, page 165] we have to face the fact

that in general \there is no closed form for the partial sum of a row of Pascal's triangle".

So the only hope is to �nd closed forms for approximations of the Sn(k;m).
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Because of identity 1.1 we �rst take a short look at Stirling's formula1

n! �
p
2�n

nn

en
(1.3)

More precisely

n! =
p
2�n

nn

en
(1 + h(n)) (1.4)

where h(n) =
1

12n
+

1

288n2
� 139

5140n3
+ � � � 2 O

�
1

n

�
(1.5)

In other words we have2

1.1 Lemma. 8" 9n0 > 0 8n > n0 :

1

1 + "

p
2�n

nn

en
< n! < (1 + ")

p
2�n

nn

en
(1.6)

2 Approximations for binomial coe�cients

We now simply put the inequations 1.6 into identity 1.1 for the binomial coe�cients and

using the abbreviations

B(x; y) :=
1p
2�

s
x

y(x� y)

�
x

y

�y � x

x� y

�x�y
(2.1)

we get

2.1 Lemma. 8" 9n0 > 0 8n > 2n0 8i[n0 < i < n� n0]:

1

(1 + ")
B(n; i) <

 
n

i

!
< (1 + ")B(n; i) (2.2)

2.2 Proof: In order to obtain an upper bound for
�n
i

�
we want use the upper bound for

n! and the lower bounds for i! and (n � i)! from 1.6. Thus the condition n > n0 ^ i >

n0 ^ n � i > n0 must be satis�ed which is equivalent to n > 2n0 ^ n0 < i < n � n0 (and

to the symmetrical condition n > 2n0 ^ n0 < n� i < n � n0). One then gets: 
n

i

!
<

(1 + "0)
p
2�nnn

en
(1 + "0)eip

2�i ii
(1 + "0)en�ip

2�(n� i)(n� i)n�i

= (1 + "0)3
1p
2�

s
n

i(n� i)

�
n

i

�i � n

n � i

�n�i

1We write f(n) � g(n) iff limn!1
f(n)

g(n)
= 1.

2We prefer to write 8x[P (x)]Q(x) or even simpler 8P (x)Q(x) instead of 8x (P (x)) Q(x)). Unless

otherwise noticed, the range of quanti�ed variables is always a set of numbers. The domain of variables
denoted by greek symbols or letters from the end of the alphabet (�, ", x, y, z) are the positive real numbers,

and the domain of variables denoted by other letters (like i, k, m, n, n0, : : : ) are the nonnegative integers.
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Choosing "0 such that 3"0 + 3"02 + "0
3 � " gives the desired result.

The lower bound is obtained analogously.

Above all we are interested in the asymptotic behavior of
�n
i

�
(and their sums) for large

n. But what about i? If i is �xed while n is increasing, writing 
n

i

!
=

n(n� 1) � � �(n � i+ 1)

1 � 2 � � � i =
1

i!
ni +O(ni�1) =

1

i!
ni(1 +O(

1

n
))

makes it immediately clear that
�n
i

�
grows polynomially. Let us now consider the case

where i is not necessarily a constant, but a function of n.

As a simple example consider an even n = 2m and i = m. Then we get the following

well known formula from 2.2: 
2m

m

!
� 1p

2�

r
2

m
2m 2m =

r
2

�

1p
n
2n (2.3)

Without loss of generality we will now always write i in the form i(n) = n
a(n)

.3 It obviously

su�ces to consider functions satisfying 2 � a(n). And since the case of constant i | that

is a(n) = n
i | has already been taken care of, in what follows we will always assume that

a(n) 2 o(n) (that is limn!1
a(n)
n = 0) without explicitly mentioning it.

Furthermore, to keep notation a little bit more readable from now on we will always

write only a instead of a(n), even if it is not a constant!

Using lemma 2.1 we may { under certain circumstances { compute as follows: 
n
n
a

!
< (1 + ")

1p
2�

s
n

n
a
(n� n

a
)
A(n;

n

a
)

= (1 + ")
1p
2�

1p
n

s
a2

a� 1
a
n
a

�
a

a � 1

�a�1
a

n

= (1 + ")
1p
2�

1p
n

s
a2

a� 1

 
a

1
a

�
a

a� 1

�a�1
a

!n

(2.4)

Therefore let us �rst of all de�ne

C(x) := x
1
x

�
x

x� 1

�x�1
x

(2.5)

Simple computations show that C(2) = 2, limx!1 C(x) = 1 and d
dxC(x) < 0 for x > 2. A

plot of C(x) is shown in �gure 1. Please note that limx!2+0
d
dxC(x) = 0 (and the point of

inclination lies between 3.23235 and 3.23236).

Furthermore straightforward computations show, that for x > 1 the second factor has

a maximum value of e1=e < 1:45 at x = e
e�1 .

3In what follows we write n

a(n)
even if it is no integer. In this case it is to be understood as b n

a(n)
c.
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2.3 Lemma. If e0 = e1=e then 8x > 2:

x
1
x < C(x) < e0 x

1
x : (2.6)

If x is su�ciently large, the bounds can be improved:

8" > 0 9x0 8x > x0:

1 < C(x) < 1 + " (2.7)

The simple transformation

C(x) = x
1
x

�
x

x� 1

�x�1
x

=

 
x

�
x� 1 + 1

x� 1

�x�1! 1
x

=

 �
1 +

1

x� 1

�x�1
x

! 1
x

shows, that the inner exponential expression converges monotonically towards e (from be-

low) as 2 � x!1. Since for y > 2 the function g(y) = (xy)1=x also grows monotonically,

we get

2.4 Lemma. 8x � 2

(2 x)
1
x � C(x) < (e x)

1
x (2.8)

If x is su�ciently large, the lower bound can be improved:

8�[1 > � > 0] 9x0 > 2 8x > x0:

((e� �) x)
1
x < C(x) < (e x)

1
x (2.9)

Using the notation C(x) we can now write:

2.5 Lemma. 8" 9n0 8n[n > n0a]:

1

(1 + ")

1p
2�

1p
n

s
a2

a� 1
C(a)n <

 
n
n
a

!
< (1 + ")

1p
2�

1p
n

s
a2

a� 1
C(a)n:

(2.10)

2.6 Proof: According to lemma 2.1 the upper bound in equation 2.4 is correct for given

" and the accompanying n0, if n > 2n0 and n0 <
n
a
< n � n0. The latter is equivalent to

n0a < n and n0
a

a�1 < n. Because of a � 2, the strictest conditions of all is n0a < n. The

lower bound is computed analogously.

2.7 Corollary. If a � 2 is a constant, then
�n
n
a

�
grows exponentially4 .

We now turn to the case, where a is not a constant but a monotonically increasing and

unbounded function. Remember that nevertheless we'll continue to write only a instead

of a(n)!

Using the lemmata 2.4 and 2.5 one gets:

4We say that a function f grows exponentially if f(x) can be bounded from above and from below by

functions cx for some constants c > 1. Note that this is not the same as growing more than polynomially.
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1
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1.4

1.6

1.8

2
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exp(((1/x)*log(x)) + ((x-1)/x)*log(x/(x-1)))

Figure 1: A plot of C(x) for 2 � x � 50.

2.8 Lemma. If a is a monotonically increasing and unbounded function, then:

8�[1 > � > 0] 8" 9n0 8n[n > n0a]:

1

(1 + ")

1p
2�

r
a

n
((e� �) a)

n
a <

 
n
n
a

!
< (1 + ")

1p
2�

r
a

n
(e a)

n
a (2.11)

2.9 Proof: For su�ciently large n a good lower bound for
q

a2

a�1 is
p
a and a good upper

bound is
q

a2

a�"a =
q

1
1�"0

p
a in inequation 2.10. The rest follows from lemma 2.4.

2.10 Corollary. If a is a monotonically increasing and unbounded function, then
�n
n
a

�
does not grow exponentially.

2.11 Proof: The interesting part of the upper bound in inequation 2.11 can be written

as

(e a)
n
a = e

n
a 2

n ld(a)

a

Since a grows beyond all bounds, both factors grow slower than cn for every c > 1.
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3 Approximations for sums of binomial coe�cients

We use the trivial observation that for 0 � k � m � n
2
holds:

 
n

m

!
�

mX
i=k

 
n

i

!
� (m� k + 1)

 
n

m

!
(3.1)

Setting k = n
b
and m = n

a
and using lemma 2.5 we immediately get the following result:

3.1 Lemma. Let 2 < a < b 2 o(n). Then 8" 9n0 8n[n > n0a]:

1

(1 + ")

1p
2�

1p
n

s
a2

a� 1
C(a)n � Sn

�
n

b
;
n

a

�

� (1 + ")
1p
2�

�p
n(b� a) +

abp
n

�s
1

b2(a� 1)
C(a)n:

3.2 Proof:

�
n

a
� n

b
+ 1

�
1p
n

s
a2

a� 1
=

�
n(b� a) + ab

ab

�
1p
n

s
a2

a� 1

=

�p
n(b� a) +

abp
n

�s
1

b2(a� 1)

Since estimation 3.1 is a simple one, we are no longer in a situation where the lower and

upper bound are arbitrarily close to each other if n is su�ciently large. Usually there will

be a gap in the order of at least n
a . Because the formulas are looking a little bit simpler,

let us consider the special case of sums starting at 0 from now on. Then we get

3.3 Lemma. 8" 9n0 8n[n > n0a]:

1

(1 + ")

1p
2�

1p
n

s
a2

a� 1
C(a)n � Sn

�
0;
n

a

�
� (1 + ")

1p
2�

p
n

s
1

(a� 1)
C(a)n:

3.4 Proof: Since a 2 o(n) one can approximate
�
n
a
+ 1

�
by (1+"0)n

a
for su�ciently large

n:

�
n

a
+ 1

�
1p
n

s
a2

a� 1
� (1 + "0)

n

a

1p
n

s
a2

a� 1
= (1 + "0)

p
n

s
1

a � 1

Again we have
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3.5 Corollary. If a � 2 is a constant, then Sn(0;
n
a
) grows exponentially.

8�[1 > � > 0] 9c1 9c2 9n0 8n[n > n0a]:

c1(C(a)� �)n � Sn

�
0;
n

a

�
� c2(C(a) + �)n (3.2)

In the case of a monotonically increasing and unbounded a one can use the approximation

for C(a) from 2.4 once again.

3.6 Lemma. If a is a monotonically increasing and unbounded function, then:

8�[1 > � > 0] 8" 9n0 8n[n > n0a]:

1

(1 + ")

1p
2�

r
a

n
(e� �)

n
a 2

ld(a)

a
n � Sn

�
0;
n

a

�
� (1 + ")

1p
2�

r
n

a
e
n
a 2

ld(a)

a
n

1

(1 + ")

1p
2�

r
a

n
((e� �)a)

n
a � Sn

�
0;
n

a

�
� (1 + ")

1p
2�

r
n

a
(ea)

n
a

1

(1 + ")

1p
�n

((e� �)a)
n
a � Sn

�
0;
n

a

�
� (1 + ")

r
n

4�
(ea)

n
a

3.7 Proof: The �rst line results from straightforward substitution of the results from

lemma 2.8 into 3.1 and in each of the following lines we have simply rewritten or relaxed

the bounds from the preceeding line.

3.8 Corollary. If a is a monotonically increasing and unbounded function, then Sn(0;
n
a
)

does not grow exponentially.

4 Comparison with Cherno� bound

Another possibility to obtain bounds on sums of binomial coe�cients is to use approxi-

mations for the binomial distribution function. Speci�cally we'll now compare the results

from the previous section with an often used so called Cherno� bound [Che52].

Let b(k;n; p) =
�n
k

�
piqn�i and

B(k;n; p) =
nX
i=k

b(i;n; p) =
nX
i=k

 
n

i

!
pkqn�k (4.1)

the \tail" of the binomial distribution function. Setting p = q = 1
2
one gets

B(k;n;
1

2
) = 2�n

nX
i=k

 
n

i

!
= 2�n

n�kX
i=0

 
n

i

!
= 2�nSn(0; n� k) (4.2)

Sn(0; m) = 2nB(n�m;n;
1

2
) (4.3)

Hence estimations for B(k;n; 1
2
) are as helpful as estimations for Sn(0; n� k).
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4.1 Lemma. (Cherno� bound) For k > np holds:

B(k;n; p) �
�
np

k

�k
ek�np (4.4)

If we write k = n
b
similar to the n

a
before5, we get for p = 1

2
:

B(
n

b
;n;

1

2
) �

�
b
2
e1�

b
2

�n
b

(4.5)

Together with equation 4.3 we get:

4.2 Corollary. Let b = a
a�1 . Then:

Sn(0;
n

a
) � 2n

�
b

2
e1�

b
2

�n
b

4.3 Proof:

Sn(0;
n

a
) = 2nB(n � n

a
;n;

1

2
) = 2nB(

an � n

a
;n;

1

2
) = 2nB(

n

b
;n;

1

2
)

We will now compare the upper bound U(a; n) from lemma 3.3 with the upper bound

V (a; n) from corollary 4.2:

U(a; n) =
1

(1 + ")

1p
2�

1p
n

s
a2

a� 1
C(a)n where C(a) = a

1
a

�
a

a� 1

�a�1
a

V (a; n) = D(a)n where D(a) = 2

�
a

2(a� 1)
e
1� a

2(a�1)

�a�1
a

Here, D(a) results from the above corollary by substituting a
a�1 for b. First, let us compare

the bases C(a) and D(a) of the exponential functions occuring in the approximations:

C(a)

D(a)
=

a
1
a

�
a

a�1

�a�1
a

2
�

a
2(a�1) e

1� a
2(a�1)

�a�1
a

=
2
a�1
a a

1
a

2 e
a�1
a
� 1

2

=
2�

1
a a

1
a

p
e e�

1
a

=
1p
e

�
e a

2

� 1
a

(4.6)

As a function of a the fraction C(a)
D(a)

monotonically decreases from 1 to 1p
e
as a increases

from 2 to in�nity. Now, the case of a constant a = 2 is trivial (see equation 1.2). Hence in

all interesting cases (i.e. whenever a > 2) the upper bound U from the preceeding section

is strictly better than the Cherno� bound V by a factor of almost
�
D(a)

C(a)

�n
which can come

close to en=2 depending an a. The \almost" comes from the factors in front of C(a)n, but

they can be bounded by a function in o(
p
n) and hence only have secondary relevance.

5Again, b may be a function depending on n.
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