Combining Static and Dynamic Analyses to Detect
Interaction Patterns

Dirk Heuzeroth
Universitat Karlsruhe
Program Structures Group
Adenauerring 20a
76133 Karlsruhe, Germany

heuzer@ipd.info.uni-
karlsruhe.de

ABSTRACT

We detect interaction patterns in legacy code combining
static and dynamic analyses. The analyses do not depend on
coding or naming conventions. We classified potential pat-
tern instances according to the evidence our analyses pro-
vide. We discuss our approach with the Observer Pattern
as an example. Our Java implementation analyzes Java pro-
grams. We evaluated our approach by self applying the tool
looking for Observers in its code. We do not miss a pattern
instance. The class of pattern instances our analyses pro-
vided a high evidence for, contains 80% of all actual pattern
instances but no false positive.

Categories and Subject Descriptors

D.2 [Software]: Software Engineering

General Terms
Software Architectures, Reusable Software

1. INTRODUCTION

Systems integration is personally, physically, and temporally
separated from component design. Hence, mismatches be-
tween components are the rule, not the exception, making
adaptation an integral part of component-based systems de-
sign. This almost always affects the interaction of compo-
nents and thus the system architecture [8].

In existing legacy systems, we often have to identify com-
ponents, first. To perform the necessary changes, program-
mers further need to understand the system architecture
and behavior. Since the system architecture is almost al-
ways scarcely documented or even not available, discover-
ing or recovering design information from existing systems
is crucial for understanding and refactoring these systems.
Therefore, tools to automatically extract design and archi-
tectural information are required.

IDPT ’ 02 Pasadena, CA

Thomas Holl
Universitat Karlsruhe
Program Structures Group
Adenauerring 20a
76133 Karlsruhe, Germany

holl@ipd.info.uni-
karlsruhe.de

Welf Lowe
Universitat Karlsruhe
Program Structures Group
Adenauerring 20a
76133 Karlsruhe, Germany

loewe@ipd.info.uni-
karlsruhe.de

‘We propose to retrieve static as well as dynamic information.
Both are then combined to obtain the desired information
on the pattern to be detected. There are situations, where
neither static nor dynamic analyses alone are sufficient (or
not with acceptable expenses). E. g., it is not statically
computable, which method or attribute is actually called
or accessed at run time and how often. Even data flow
analyses cannot predict all branches and loops, especially
when the program to be analyzed requires user interactions.
As objects are created at run time, relations over objects
are dynamic by nature.

The idea is to distinguish a static and a dynamic pattern.
The former restricts the code structure the latter the run-
time behavior. Analyzing with the static pattern results in
a set of candidate instances in the code. In practice this set
is large and programmers hardly want to screen all of them
to detect the actual instances. Therefore, we test executions
of the instance candidates found by the static analysis wrt.
the dynamic pattern.

The results of dynamic analyses depend on an execution
of the candidate instances. Methods not executed at run
time cannot be evaluated wrt. the dynamic pattern thus
providing no information. However, testing techniques and
environments guarantee that each reachable program part
is executed while testing (of cause not every program se-
quence). Using these techniques, we may consider dynamic
information available for each candidate instance. More-
over, we argue that parts that are less frequently executed
are also less critical for understanding and for restructuring.

Our approach requires

e the source code to be available, and

e the programs to be executable to observe their dy-
namic interaction aspects.

We explicitly excluded all dependencies to coding and nam-
ing conventions. Hence, our approach also detects interac-
tion patterns occurring by chance.

In the sequel, we consider the Observer Pattern [7] (event
notification) as a special architectural pattern. It is fre-
quently used in frameworks and applications to realize loose
coupling of objects or components. Suppose the following

scenario: we tailor the framework or application for an envi-
ronment requiring efficient communication among statically
known partners. In such a setting, the Observer Pattern
would be inappropriate. Thus, we need to detect it and
replace it by a more efficient solution.

We need static and dynamic analyses to detect the Observer
Pattern. The static analysis computes a set of classes that
fulfill the necessary properties for subject and correspond-
ing listener classes. The dynamic analysis then monitors ob-
jects of these classes during execution and checks whether
the interaction among them satisfies the dynamic Observer
protocol.

We present our approach comprising the static and dynamic
analyses in Section 2. This section also discusses implemen-
tation details. In Section 3 we evaluate the results of apply-
ing our analyses to the code of our tool. Section 4 discusses
related work. Finally, we conclude and show directions of
future work in Section 5.

2. APPROACH

In this section we present our approach to detect interaction
patterns by combining static and dynamic analyses. Sec-
tion 2.1 introduces our component model to show the goal
of the analyses. Section 2.2 discusses the static analysis,
Section 2.3 the dynamic analysis. Section 2.4 sketches the
design of our tool performing static and dynamic analyses.

2.1 Component M odel

For the purpose of this paper, we define components to be
software artifacts with typed input and output ports. This
definition focuses on computational components, but is suf-
ficiently general to cover all other variants. Input ports
are connected to output ports via communication channels
called connectors. The notion of ports and connectors are
known from architecture systems [14, 2].

Sender Receiver

| |
Out Port Connector)| [In Port
e e

Figure 1: Basic Component Model

Some connectors may be as complex as most components,
and thus require the same amount of consideration in design,
but they all base on simple synchronous or asynchronous
point-to-point data paths. Figure 1 sketches this basic com-
ponent model.

In general, ports and connectors are implemented by pat-
terns using basic communication constructs like calls, RPCs,
RMIs, input output routines etc. provided by the implemen-
tation language or the component system. The Observer
Pattern is such a port and connector implementation as
it connects an event generator with some listener objects.
The notification generally involves calling an event handling
method of the listeners, where the subject waits for every
call to return. Although, the pattern can be considered as
asynchronous communication, since the events may occur
arbitrarily, the notification itself constitutes a synchronous
action.

In contrast to such an implementation, the ports and con-
nectors themselves abstract from details. A port defines
points in a component that provide data to its environ-
ment and require data from its environment, respectively.
A connector defines out-port and in-port to be connected
and specifies whether data is transported synchronously or
asynchronously.

In order to extract components from a system and adapt
them to a new environment, we prefer a view on the system
containing abstract ports and connectors. However, legacy
(source) code only contains port and connector implementa-
tions scattered throughout the code. The goal of our anal-
yses is to compute the abstract port and connector view on
these systems. Implementations of ports and connectors fol-
low communication design patterns. In order to retrieve an
abstract view, we search for the patterns. The static analy-
sis computes potential program parts playing a certain role
in a communication pattern. The dynamic analysis further
examines those candidates. We can thus consider static and
dynamic analyses as filters that narrow the set of candidates
in two steps. Figure 2 illustrates our approach.

In the subsequent subsections, we use the Observer Pattern
as a running example. The following naming conventions
refer to roles of certain methods of the Observer Pattern.
Figure 3 sketches an implementation. Note that this naming
convention is only used for explanations in this paper; the
static analysis does not refer to those name.

addListener: a method responsible for adding listener ob-
jects to a subject object.

removeListener: a method responsible for removing listener
objects from a subject object.

notify: a method responsible for notifying the listeners of a
state change in the subject.

update: a method implemented by the listener objects, cal-
led by the notify method.

We assume that addListener, removelListener as well as notify
are contained in a single class and are not distributed among
different hierarchies. This is not an unnatural restriction,
but reflects object-oriented design principles.

2.2 Static Analysis

The program source code is the basis for the static analy-
sis; it is represented by an attributed abstract syntax tree
(AST) as computed by common compilers. A static pat-
tern is a relation over AST node objects. It is defined by
a predicate P using the information in the attributed AST
as axioms. Names of variables, methods and classes nodes
may be compared with each other but not with constants,
thus making the pattern definitions independent on naming
conventions.

The static analysis reads the sources of the program in ques-
tion and constructs an attributed AST. Then, it computes
the pattern P relation on the AST nodes and provides the
result as a set of Candidates, i. e., pattern instances with
the appropriate static structure. This set is a conservative
approximation to the actual patterns in the code. The dy-
namic analysis, cf. Section 2.3, refines this approximation

Source)
code Analysis

Static Candidates

Program
Start End

Dynamic Candidates

Analysis

Program

Figure 2: Process of detecting Communication Patterns.

public class Subject {
private Container ¢ = new Container();
private State s = new State();

public void addListener(Listener I) {
c.add(l);

public void removeListener(Listener I) {
c.remove(l);

public void notify()
if (s.notChanged()) return;
for each | in c: l.update(s);

}
}
interface Listener {
public void update(Object o);

public class MyListener
implements Listener {

public void update(Object o) {
doSomething(o);

}
}
Figure 3: Pseudo code snippets sketching an imple-
mentation of the Observer Pattern

later on.

An Observer Pattern candidate is a tuple of method decla-
rations of the form:

(S.addListener, S.removelListener, S.notify, L.update)

where S is the class declaration of the subject of observation
and L the class or interface declaration of the corresponding
listeners.

In practice, the candidate set is large. Brute force methods,
e. g. Prolog like resolution, are therefore not appropriate for
use in practical tools. The search should be more directed.

To produce the candidate set for our example, the static
analysis iterates over all program classes and their methods.
For each method m of a class c, we first assume it plays the
addListener or removelistener role. Therefore, we consider
each parameter type p of method m a potential listener,
provided p is neither identical to nor a super or a subclass
of class ¢ (p % ¢). Such a relation would contradict the
decoupling of subject and listeners as defined in the Observer
Pattern. We therefore determine all method calls issued
from inside methods of class ¢ to some method u defined
in the potential listener class p. The methods of class c
containing the calls to p.u are considered as potential notify
methods and the method p.u as update method. To test

whether method c.n might be a notify method we use the
predicate

isNotifyListener(c.n, p.u): returns true iff c.n calls p.u and p
is not a parameter of c.n.

The result of the iteration is a set Y of tuples:
(S.addListener | removeListener, S.notify, L.update).

To compute the final set of candidates, we iterate over the
tuples of set Y. We combine corresponding addListener and
removelListener methods into one pattern candidate. If the
add | removelListerner entry of Y satisfies the addListener
predicate defined below, we combine it with all other tuples
of Y that have the same notify and update entries to as-
sociate it with the corresponding removelListener candidates.
‘We also consider the case that a removelistener method need
not be implemented and thus always construct tuples with
the removelistener entry set to null. The addListener role is
defined by the predicate

isAddListener(a): tests, whether the method a potentially
stores the passed argument for future use, i. e., checks
whether the argument

e is used on the right hand of an assignment state-
ment, i. e., storing the argument locally in the
object,

e or is passed as an argument to another method,
i. e., potential call of a store method.

Figure 4 shows the static analysis algorithm we obtain.

Candidates := 0

for each class c¢: {
Y =
for each method m in c:
for each parameter type p in m where (p % ¢):
for each call from c.n to p.u, n and u methods :
if (isNotifyListener(c.n, p.u))
Y := Y U {(cm, cn, pu)}

for each (c.al,c.nl,plul) € Y:
for each (c.a2,c.n2,p2.u2) € Y where
(c.nl = cn2 A plul = p2u2):
if (isAddListener(c.al)) {
if (cal = ca2) {
Candidates := Candidates U (c.al, null, c.nl, pl.ul)
} else {
Candidates := Candidates U (c.al, c.a2, c.nl, pl.ul)
}
}
}

Figure 4: Pseudo code sketching the static search
for Observer Patterns

Although the candidate set is computed quite efficiently by
the directed search algorithm, we still face the problem of be-
ing too conservative with our approximation: the candidate
set is large compared to the set of actual pattern instances
and not appropriate for providing it to the system designer
as it is. There are three possible solutions:

Use Expert Knowledge Many approaches require expert
knowledge to further restrict the candidate set. It
often refers to naming conventions of methods and
classes. Such approaches rely on coding discipline,
which is hardly a realistic assumption in legacy codes.

In our example, we could try to eliminate methods
without prefix add from the addListener candidates.
However, this would also exclude register methods.

Dynamic Analyses execute the program and check if the
sequence of values of variables or contents of contain-
ers is appropriate, i. e., matches the dynamic pattern.
This is the approach we pursue in Section 2.3.

For the Observer Pattern, we check if the addListener
method in a candidate tuple actually registers the ob-
ject the notify method in the same tuple is called on.

Data Flow Analyses try to statically approximate the se-
quence of values that some variables have at runtime.
Actually, we could formalize all rules for the dynamic
matches as data flow problems. Unfortunately, data
flow equations cannot be computed by a straight for-
ward search. Instead, they require a fix point iteration
and are therefore much more expensive than the simple
search. Moreover, they can only make very conserva-
tive and thus mostly worthless assumptions on data
provided by the user at run time. They are also im-
precise in approximating object ids and aliases.

For our example, we need an alias analysis checking
whether the parameter of the addListener method in a
candidate tuple is an alias for the access path to the
object the corresponding notify method calls update
on.

2.3 Dynamic Analysis

The static analysis provided tuples of AST nodes as can-
didates. The dynamic analysis takes this Candidates set as
its input. It monitors the execution of the nodes of every
tuple. It further tracks the effects of the executed nodes to
check whether the candidate satisfies the dynamic pattern.
The dynamic pattern is a protocol (formal language) over
a set of events. Events are state transitions of the system
to analyze, e. g., assignments or method calls. In case of
a protocol violation, the candidate is marked and an error
message is attached to it.

Each node of a candidate tuple is contained in a class defini-
tion or is a class definition itself. At runtime we might have
many instance objects of these classes. Each set of those
object instances should conform to the dynamic pattern. In
our scenario, e. g., we might have more than one instanti-
ation of the Observer Pattern defined by the subject and
listener classes of a candidate tuple.

Moreover, patterns indicate n : m, 1 : n, or 1 : 1 relations
among objects of the classes implementing a pattern. For

each single candidate tuple, it could be required that the
number of instance objects of their classes is restricted. The
Observer Pattern, e. g., requires a 1 : n relation of the sub-
ject instances and their listener instances.

Altogether, we trace a set of instances for each candidate
tuple of a pattern. Each such set may contain several objects
per position in the tuple. Considering our Observer Pattern
scenario, we thus assign to every candidate tuple

(S.addListener, S.removelistener, S.notify, L.update),
cf. Section 2.2, a set of instance tuples

{(s.addListener, s.removeListener, s.notify,
{li.update...l,.update})}

where s is an instance of S and l; ...l, are instances of L.
It is not necessary to store the subject s three times. Fur-
thermore, the addListener, removelListener, notify, and update
methods are already captured by the candidate tuple. So,
to avoid redundancies, we only associate a set

{(s,{ls ... 1. })}

with each candidate tuple.

‘We monitor each node in a tuple of the candidates. When-
ever we dynamically execute such a monitored node, we re-
trieve all the candidate tuples the node is contained in. De-
pending on the node’s unique role in each single tuple, we
execute dynamic test actions on the object sets associated
to the corresponding candidate tuples.

In the Observer Pattern, we use the subject object as a key
to retrieve the affected object set of each candidate tuple.
To determine the proper object set, we distinguish two cases:
If the method complies with the addListener, removeListener
or notify roles, then the key subject object is the object
the method is called on. If the method complies with the
update role, then the key subject object is the object the
corresponding notify method is called on.

The dynamic test actions for the Observer Pattern are:

addListener: We add the passed argument to the subject’s
list of listener objects. No protocol mismatch can be
detected here.

removelistener: We remove the passed argument from the
subject’s list of listener objects. A protocol mismatch
occurs, if the listener to be removed has not been
added before. This can also be caused by a program-
ming error. We therefore allow to turn off this crite-
rion.

notify: We do not change the set of subject or listener ob-
jects. A correct protocol updates all or no listener
objects (atomic update). To check this protocol, we
have to distinguish between the method entry and the
method exit. At the method entry, we mark all at-
tached listener objects as not-updated. At the method
exit we check whether all or no listener objects have
been marked as updated. In this case, the protocol is
satisfied. The other case indicates a protocol violation.

To accept the case of not updating any listener objects
as a protocol match makes sense, because notify may

be called, although the subject’s state did not change.
Then there is no need to notify the attached listeners.

update: We do not change the set of subject or listener ob-
jects. If the update method has been called by the
notify method of the same candidate tuple, we mark
the listener object as updated. To recognize this, we
need to detect the source of the method call, a func-
tionality to be provided by the dynamic framework.

A call of update by the corresponding notify method is
a protocol mismatch if the listener object has not been
attached previously.

The dynamic analysis partitions the candidate tuples into
the following categories:

Full match: Tuples contained in this category completely
confirm to the dynamic pattern (protocol).

Listener objects are added via the addListener method,
optionally removed with the removelistener method
and their update method is called by the notify method
at least one time. We distinguish 1 : n and 1 : 1
matches; the latter conform to the protocol but only
one listener is detected.

May match: At least one of the tuples nodes is executed,
but only a correct prefix of the protocol is detected
(could be completed to a correct protocol).

E. g., listener objects are added via the addListener
method, but no update method is called.

Mismatch: Tuple violated the protocol requirements. The
violation is logged via an error message.

No decision: None of the (monitored) nodes of a tuple is
executed. Note that this category remains empty if we
use a test environment, which guarantees the execution
of each single program part.

2.4 Tool Design

We implemented the static algorithm using our Recoder [1]
library. The library constitutes a Java framework for static
analyses and program transformations. It consists of a com-
piler front-end, a pretty printer as a back-end, and a library
of analysis, program generators and transformations. Cur-
rently, the front-end tool supports Java sources only, but the
architecture in general can be applied to other languages as
well. The front-end performs syntactic and semantic analy-
sis including name and type analysis and provides an API to
access the abstract syntax tree and the results of semantic
analysis, e. g. type and inheritance information. It further
provides functions to determine method calls, uses of defi-
nitions and much more. In our example implementation of
the static analysis, we use this API to scan method decla-
rations for conformance to the static Observer Pattern roles
(cf. Section 2.2).

To obtain run time information there are four alternatives,
as shown by [12]: Code instrumentation, annotation of run-
time environments, post mortem analysis, and on-line de-
bugging or profiling. We took into account two of the above
alternatives for the dynamic analysis: the on-line debugger
approach with the Java Debug Interface JDI and automati-
cally instrumenting the code with Recoder transformations.

JDI is part of the Java Platform Debugger Architecture
(JPDA) [9], the debugging support for the Java 2 Platform.
JPDA provides the infrastructure needed to build end-user
debugger applications. It consists of multiple layered APIs
from which we only use the Java Debug Interface (JDI),
a high-level Java programming language interface with the
possibilities for launching run time environments for a pro-
gram, starting a debugee and controlling the execution of
this debugee by another program. Additionally, the control
program can access the state of the debugee’s execution.

On top of Recoder and JDI, we use the VizzAnalyzer [11, 12],
our framework for the static and dynamic analysis of Java
programs, providing a GUI to control analyses and visual-
izing their results.

The JDI approach allows to leave the source code unchanged.
However, we experienced severe performance problems, since
the debugee launches its own virtual machine. This leads to
inter-process calls for obtaining information. Additionally,
running programs in debug mode already slows down per-
formance significantly. Since we aim at involving user in-
teractions in future applications, the bad performance turns
this approach unsuitable.

Instrumentation on the other hand eliminates the lack of
performance. Moreover, all instrumentations are performed
automatically with Recoder. Although, currently Recoder
investigates Java sources only, the approach and the archi-
tecture can be applied to sources written in any typed lan-
guage. A drawback is the recompilation of the instrumented
program.

3. EVALUATION

To survey our tool, we apply it to the code of the tool itself
(including the Recoder package). Statistics about the tool
are given in Table 1.

classes | methods | observers!
Recoder 590 6300 2
Analyzer 30 200 3
TOTAL 620 6500 5

Table 1: Statistics about the surveyed system

The main task of the static algorithm is to reduce the amount
of candidates. In case of the Observer Pattern detection,
it therefore applies the isAddListener and isNotifyListeners
predicates as main criteria. This reduces the set of 7.5%10'3
possible candidates? to 4800 tuples containing all 5 Observer
Pattern instances. The corresponding analysis phase needs
about 70 seconds on a Pentium III, 550Mhz, 256 MB RAM,
running Windows NT 4 with JDK 1.3.

Table 2 shows the results of the dynamic analysis. The ”De-
tected” row lists the numbers of tuples of the corresponding
category detected by our tool, whereas the "Real” row lists

!No subjects using delegation nor sub-classes of subjects.

2There are 6500 methods in the 4 possible roles plus 6500
methods in 3 roles and empty removeListener role:

CaNED!

Full 1:n | Full 1:1 May No Mismatch
match match match | decision
Detected 4 6 308 2015 2467
Real 4 0 0 1 0

Table 2: Results

the number of tuples of the corresponding category that rep-
resent real Observer occurrences.

The Full 1 : n match category shows that all Observer
Pattern instances used in that program run were classified
correctly. The Full 1 : 1 match column reveals that del-
egation confuses our analyses. The reason is, that delega-
tion shows the same static and dynamic properties as the
Observer Pattern. The only difference is that delegation al-
ways constitutes a 1 : 1 relation. This is one of the reasons
the static algorithm produces a lot of false positives. The
following code illustrates this effect:

class Delegates {
X delegate;
// will be detected as addListener
void set(X x) { delegate = x; }
// will be detected as notify
void internalAction() { delegate.provideFunctionality(); }

}

A 1 :1 relation is suspicious, but need not be a mismatch,
since this may be a valid configuration of the Observer Pat-
tern. In case the set method of Delegates objects is called
multiple times followed by a call of internalAction, our al-
gorithm detects internalAction’s violations of the notify role.
In our case, all 6 tuples in the Full 1: 1 match class were
actually delegations.

The May match class contains no Observer instance. In
over 70% of the tuples, either only the addListener or only the
notify method was called, but these methods cannot provoke
a protocol mismatch.

The Observer Pattern instance in category No decision has
not been executed and, therefore, not classified. If we en-
sured by employing testing technology that every candidate
method gets executed, we could classify all tuples and thus
achieve an empty No decision set.

All detected mismatches were correct, i. e., these tuples did
not represent an implementation of the Observer Pattern.

4. RELATED WORK

Other approaches to detect patterns mostly restrict them-
selves to static analyses using rather strong static signatures.
These approaches fail to detect behavioral patterns as their
static patterns are not distinctive enough, but their static
analyses are nevertheless worth noting. We discuss some of
these below.

The Pat system [13] detects structural design patterns by
extracting design information from C++ header files and
storing them as Prolog facts. Patterns are expressed as
rules and searching is done by executing Prolog queries. The
Goose system [6] gives a graphic visualization of C++ pro-

gram structures using a similar approach for their detection.
Additionally, it detects patterns indicating design problems.

[10] present static analyses to discover design patterns (Tem-
plate Method, Factory Method and Bridge) from C++ sys-
tems. They identify the necessity for human insight into
the problem domain of the software at hand, at least for de-
tecting the Bridge pattern due to the large number of false
positives.

[3] additionally uses dynamic information, analyzing the flow
of messages. His approach is restricted to detecting design
patterns in Smalltalk, since he only regards flows in Visual-
Works for Smalltalk. He therefore annotates the Smalltalk
runtime environment. Another drawback is, that his ap-
proach gathers type information only at periodic events.

[5] also employ code instrumentation to extract dynamic in-
formation to analyze and transform architectures. The pre-
sented approach only identifies communication primitives,
but no complex protocols.

5. CONCLUSIONSAND FUTURE WORK

The present paper shows how to detect communication pat-
terns in legacy systems. Therefore, we filtered static analysis
information using dynamic analysis results. This approach
improves the quality of the results tremendously as proto-
col conformance of a pattern can be checked. Moreover, we
partitioned the candidate pattern instances into the cate-
gories Full match, May match, and Mismatch giving more
differentiated information to the user.

By now, dynamic analyses cannot give any clue if the can-
didate is not executed. We will avoid this using results
from testing theory. Another direction of future work is
the framework extension to support more patterns and anti-
patterns [4], as well. Since implementing static and dynamic
algorithms by hand is a costly concern, we need to develop
a tool generating analysis programs from pattern specifica-
tions. Finally, we strive to improve visualization of detected
patterns to increase user support for understanding large
scale software systems.

6. REFERENCES
[1] Uwe Amann, Dirk Heuzeroth, Andreas Ludwig, and
R. Neumann. Recoder. http://recoder.sourceforge.net,
2001.

[2] Len Bass, Paul Clement, and Rick Kazman. Software
Architecture in Practice. Addison Wesley, 1998.

[3] K. Brown. Design reverse-engineering and automated
design pattern detection in smalltalk, 1997.

[4] William J. Brown, Raphael C. Malveau, Hays
W. “Skip” McCormick III, and Thomas J. Mowbray.
AntiPatterns: Refactoring Software, Architectures,
and Projects in Crisis. John Wiley, New York, NY,
1998.

[5]

[6

—

[7]

[11]

[12]

S. J. Carriere, S. G. Woods, and R. Kazman. Software
Architectural Transformation. In Proceedings of
WCRE 99, October 1999.

Oliver Ciupke. Automatic detection of design problems
in object-oriented reengineering. In Technology of
Object-Oriented Languages and Systems - TOOLS 30,
pages 18-32. IEEE Computer Society, 1999.

Erich Gamma, Richard Helm, Ralph Johnson, and
John Vlissides. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley
Professional Computing Series. Addison-Wesley
Publishing Company, New York, NY, 1995.

Dirk Heuzeroth, Welf Léwe, Andreas Ludwig, and
Uwe Afimann. Aspect-Oriented Configuration and
Adaptation of Component Communication. In Jan
Bosch, editor, Generative and Component-Based
Software-Engineering, Third International Conference,
GCSE 2001, number 2186 in LNCS. Springer,
September 2001.

Java platform debugger architecture,
http://java.sun.com/products/jpda/.

Rudolf K. Keller, Reinhard Schauer, Sebastien
Robitaille, and Patrick Page. Pattern-based
reverse-engineering of design components. In
International Conference on Software Engineering,
pages 226-235, 1999.

Welf Lowe. VizzEditor, VizzScheduler, and
VizzAnalyzer.
http://i44pc29.info.uni-karlsruhe.de/VizzWeb, 2001.

Welf Lowe, Andreas Ludwig, and Andreas Schwind.
Understanding software — static and dynamic aspects.
In 17th International Conference on Advanced Science
and Technology — ICAST 2001, pages 83-88, 2001.

L. Prechelt and Ch. Kramer. Functionality versus
practicality: Employing existing tools for recovering
structural design patterns. J.UCS: Journal of
Universal Computer Science, 4(12):866ff, 1998.

M. Shaw and D. Graham. Software Architecture in
Practice — Perspectives on an Emerging Discipline.
Prentice Hall, 1996.

