
Model Generation Style
Completeness Proofs

for Constraint Tableaux with
Superposition

Martin Giese

giese@ira.uka.de

Institut für Logik, Komplexität und Deduktionssysteme,
Universität Karlsruhe, Germany

Technical Report Nr. 2001–20

December 2001

Abstract

We present several calculi that integrate equality handling by superposi-
tion and ordered paramodulation into a free variable tableau calculus. We
prove completeness of this calculus by an adaptation of the model generation
[1, 13] technique commonly used for completeness proofs of resolution cal-
culi. The calculi and the completeness proof are compared to earlier results
of Degtyarev and Voronkov [8].

1 Introduction

Efficient equality handling for first order tableaux or related calculi, like
matings or the connection method, has been problematic for a long time.
It is generally believed that only techniques based on ordered rewriting
can sufficiently reduce the search space of equality reasoning to make it
tractable. It was also believed, that the best approach to the integration of
free variable tableaux and equality handling would be to search for simul-
taneous rigid E-unifiers [9] of disequations on the tableau and use these to
close branches instead of usual unifiers. So the overall idea was to solve
the rigid E-unification problems using ordered rewriting techniques.

Unfortunately, simultaneous rigid E-unification was later shown to be
undecidable [6].1 The outlined plan could thus only be implemented us-
ing incomplete procedures for E-unification. Experimenting with such a
setting however, it turned out, that the combination of a first order theorem
prover and an incomplete solver for rigid E-unification problems seemed
to be complete despite the incompleteness of the unification machinery,
though nobody knew exactly why. In 1997, Degtyarev and Voronkov fi-
nally showed completeness for such a combination [7, 8], and thus for a
tableau calculus with integrated superposition-based equality handling.

One might have expected that all problems would be solved after this
discovery. A number of publications would follow, providing variations on
the theme, like what is known as ‘basic ordered paramodulation’ in the res-
olution community, or a version with universal variables (see e.g. [11]), or
hyper tableaux [4] with equality. Curiously enough, this has not happened!
We surmise that the reason for this is the complexity of Degtyarev and Vo-
ronkov’s completeness proof: It is over ten pages long, and very technical,
although the proof of one of the used theorems is not even included in those
papers.

In this paper we present calculi similar to (a clausal version of) the one
presented in [8], though we prefer to integrate the superposition process
into the tableau calculus instead of defining a separate calculus for rigid
E-unification. We then show the completeness of this calculus using an
adaptation of the technique called model generation, well known for resolu-
tion calculi, see [1, 13]. In particular, we can use many ideas of Nieuwen-
huis and Rubio that worked for them in the setting of resolution with con-
straint propagation. Apart from being significantly shorter than the proof
of Degtyarev and Voronkov, our proof has the advantage of requiring only
few additional ingredients not known from resolution. This makes it easy
to produce tableau versions of variants known for resolution, like basic or-
dered paramodulation or hyperresolution resp. hyper tableaux.

1This was only shown in 1996, invalidating a number of attempts at a completeness
proof that were based on the opposite assumption.

2

In Sect. 2 we review a couple of common notions and notations. Sect. 3
contains the simplest version of our calculus and the completeness proof.
Sect. 4 discusses issues connected to a certain termination property. An
alternative approach to the simulation of destructiveness in a non-back-
tracking calculus with constraints is briefly reviewed in Sect. 5. We try to
demonstrate the versatility of the model generation technique for tableau
completeness proofs in Sect. 6 by applying it to rigid basic ordered para-
modulation. Finally, some possible fields for further research are identified
in Sect. 7.

2 Preliminaries

We shall assume a fixed signature consisting of function symbols with fixed
arity, constant symbols being considered as functions of arity zero, and a
single binary predicate symbol ‘ .=’ denoting equality. The equality symbol
is handled in a symmetric way, i.e. two formulae s .= t and t .= s are con-
sidered identical. A literal is either an equation s .= t or a negated equation
¬s .= t. A clause is a finite set of literals.

An interpretation is a congruence relation on ground terms. Validity of
equations, literals and clauses in a interpretation is defined as usual.2

Interpretations will be described by sets of rewrite rules l ⇒ r. The in-
terpretation induced by a given set R of rewrite rules is the minimal con-
gruence R∗ on ground terms, such that lR∗r for all l ⇒ r ∈ R.

Furthermore a fixed total reduction ordering � on ground terms will
be assumed. This ordering is extended to a total well-founded ordering
�l on ground literals as follows: A ground literal is assigned a multiset by
m(s .= t) := {s, t} and m(¬s .= t) := {s, s, t, t}. Then l �l l′ iff m(l) �� m(l′),
where �� is the multiset extension of �. It is useful to keep the following
properties in mind, which follow immediately from this definition:

If s � t and s′ � t′, then

s .= t �l s′ .= t′ iff s � s′ or (s = s′ and t � t′)
s .= t �l ¬s′ .= t′ iff s � s′
¬s .= t �l s′ .= t′ iff s 	 s′

¬s .= t �l ¬s′ .= t′ iff s � s′ or (s = s′ and t � t′)

A position is a sequence of numbers designating subterms. s|p is the
subterm of s at position p and s[r]p is the result of replacing the subterm at
position p in s by r.

A constraint is a first order formula that uses a certain fixed signa-
ture and is interpreted over the set of ground terms. There are two predi-
cate symbols with fixed interpretation, namely ‘≡’ representing (syntactic)

2This approach is also taken in [13]. Herbrand’s Theorem guarantees that for our pur-
poses this is equivalent to defining interpretations with arbitrary carrier sets.

3

equality and and � for the reduction ordering. We denote conjunction as
‘&’ in constraints. A substitution satisfies a constraint, if the constraint is
true under the fixed interpretation when its free variables are assigned val-
ues according to the substitution. A constraint is satisfiable, if there is a
substitution that satisfies it.

We shall occasionally refer to rigid versus universal variables. Rigid
variables are the free variables introduced by the γ-rule of a free variable
tableau calculus. They are called rigid because all occurrences of such vari-
ables in a tableau have to be instantiated by the same terms. This is very
different from the situation in a resolution calculus, where each new clause
is implicitly universally quantified and variables in a clause may be instan-
tiated by a different m.g.u. in each resolution step.

There are cases where this restriction can be lifted in tableau calculi,
i.e. where it is sound to pick different instantiations for multiple occur-
rences of a free variable. If that is the cases, one calls the free variable ‘uni-
versal’ for the formula in which it occurs, see [11]. As has been recognized
in [5], using universal variables is crucial for efficient equality handling in
tableaux. The calculi presented in this paper do not use universal variables,
but we expect our results to be easily adaptable to calculi that use them.

3 A Simple Calculus

We first introduce a simple calculus and show its completeness. Variations
of this calculus will be introduced in the following sections.

3.1 The Calculus

We describe a clausal free variable tableau calculus to refute sets of clauses.
Let a set C of clauses be given. The calculus consists of three rules:

ext
θL1 | · · · | θLk

where C = {L1, . . . , Lk} ∈ C ,
and θ renames each variable in C into a new (free) variable.

sup-p

s .= t A
l .= r B

s[r]p
.= t s|p ≡ l & s � t & l � r & A & B

where p is a position in s and s|p is not a variable.

4

sup-n

¬s .= t A
l .= r B

¬s[r]p
.= t s|p ≡ l & s � t & l � r & A & B

where p is a position in s and s|p is not a variable.

The superposition rules sup-p and sup-n are only applied if the con-
straint of the new literal is satisfiable. The two literals involved as premises
in the sup-p-rule are required to be distinct,3 although one might be a re-
naming of the other.

Note that constraints are attached to the formulae on a branch, and that
these constraints are propagated by the rules. When we don’t write a con-
straint (as in the ext-rule) we mean the empty constraint that is satisfied by
any substitution.

A ground substitution σ closes a branch B of a tableau, if there is a
constrained negated equation ¬s .= t A ∈ B such that σs = σt (that is
syntactic identity) and σ satisfies A. The whole tableau is closed, if there is
a single substitution σ that closes all branches simultaneously.

The sup-rules implement what is known as rigid basic superposition. The
term ‘rigid’ refers to the rigidity of the free variables of our tableau calcu-
lus. One talks of superposition when only ordered application of equations
is allowed, and only on the maximal side of an equation, which in our case is
enforced by the constraint s � t. Finally the basicness restriction forbids ap-
plication of equations on subterms created by unifiers introduced by pre-
vious superposition steps. In our case, this is achieved by deriving a literal
s[r]p

.= t s|p ≡ l . . . instead of determining a most general unifier µ of s|p
and l and generating a literal µ(s[r]p

.= t), as would be done in a calculus
without constraints.

In an implementation, closure of a tableau could be determined in dif-
ferent ways:

• One gets a calculus similar to that of Degtyarev and Voronkov, if one
does not keep the constraints together with the literals, but instead
gathers them all in one global constraint G that is required to be satis-
fiable. This introduces a backtracking choice point for each rule appli-
cation that adds to the global constraint. In addition branch closure
requires backtracking, as usual in free variable tableaux: whenever a
negated equation ¬s .= t appears on a branch, a backtracking point is
introduced and the constraint s ≡ t is added to G. The procedure tries
to close the other branches, always keeping G satisfiable, and keeping
below a certain instantiation depth limit. If this fails, extension of the

3We can require this because we have rigid variables. With rigid variables, a term can’t
be unified with one of its proper subterms, so superposition would only be possible at the
top position, leading to a trivial equation.

5

branch is continued. If no proof is found up to a given depth limit, the
whole procedure is restarted with an increased limit (iterative deep-
ening). In contrast to the classic formulation of tableaux, the unifiers
generated in superposition applications and branch closures should
not be applied to the tableau, as this would yield possibilities for new,
spurious rule applications on the other branches, weakening the ‘ba-
sicness’ property. Of course, rule applications on other branches that
generate constraints incompatible with the global constraint G need
not be considered in this scheme.

• One can avoid the backtracking points introduced by the sup-rules
by keeping the constraints of literals. These are only added to the
global closure constraint G when a branch is closed, and accordingly
backtracking is only needed over branch closures.

• One can use the Incremental Closure technique to avoid backtracking
completely, see [10].

3.2 Completeness

The completeness proof follows the usual lines: Assuming that there is no
closed tableau for a set of clauses, one constructs an infinite tableau by
applying rules exhaustively—in particular, the ext-rule has to be applied
infinitely often for each clause on each branch. Then one chooses a ground
substitution σ for the free variables, such that after applying the substi-
tution to the tableau, every branch contains at least one literal from every
ground instance of each of the clauses. From the assumption, it follows that
at least one branch B of the tableau is not closed by σ. From the literals on
σB , an interpretation is constructed, which is then shown to be a model for
the clause set.

Our proof differs from this standard approach only in the construction
of the interpretation and in the proof that the clause set is indeed satisfied
by it.

First, we need the following notion:

Definition 1 Given a set B of constrained literals, a ground substitution σ for
all free variables occurring in B , and a set R of ground rewrite rules, the set of
variable-irreducible ground instances of B under σ with respect to R, writ-
ten irred R(σ,B), is the set of all ground literals (¬)σl .= σr, where ((¬)l .= r
A) ∈ B , A is satisfied by σ, and σx is irreducible by R for all variables x occurring
in l or r.

Note that irreducibility is not required for the whole terms σl and σr,
but only for the instantiations of variables occurring in them. Also, the
instantiation of variables occurring only in the constraint A is allowed to

6

be reducible. We are going to work only on variable-irreducible ground
instances of the constrained literals on a branch. The reason for this will
become clear later.

We can now define the ‘model generation’ process, which constructs
a ground rewrite system by induction with � l over variable-irreducible
ground instances of literals on a branch. The tricky part here is that the
rewrite relation that variable-irreducibility refers to is only just being built
during the induction.

Definition 2 Let B be a set of constrained literals and σ a ground substitution
on all variables in B . For any ground literal L, we define Gen(L) = {l ⇒ r} and
say L generates the rule l ⇒ r, iff

1. L ∈ irred RL (σ,B),

2. L = (l .= r),

3. R∗
L �|= L,

4. l � r, and

5. l is irreducible w.r.t. RL,

where RL :=
S

L�l K Gen(K) is the set of all previously generated rules. Otherwise,
we define Gen(L) := ∅. The set of all rules generated by any ground literal is
denoted RB ,σ :=

S
K Gen(K).

Note that only positive equations generate rules. When no confusion is
possible about the set B and the substitution σ, we will just write R instead
of RB ,σ.

We have the following two useful lemmas, stolen outright from Nieu-
wenhuis and Rubio:

Lemma 1 For any set of constrained literals B and ground substitution σ, the
generated set of rules R = RB ,σ is convergent, i.e. confluent and terminating. The
subset RL is also convergent for any ground literal L.

Proof. R terminates because l � r for all rules l ⇒ r ∈ R (condition 4). To
show confluence, by Newman’s Lemma, one thus only needs to show local
confluence, which follows from the fact that there can be no critical pairs in
R. For assume l ⇒ r ∈ R and l ′ ⇒ r′ ∈ R with l|p = l′. Let l ⇒ r be generated
by a literal K. l′ ⇒ r′ cannot be in RK, for otherwise condition 5 would have
prevented the generation of l ⇒ r. So l ′ ⇒ r′ is generated by a literal K′ with
K′ �l K. But then either l ′ � l, which is impossible because l′ is a subterm
of l. Or l′ = l and r � r′, but then l ′ would be reducible by l ⇒ r, violating
condition 5 for Gen(K′) = {l′ ⇒ r′}.

For arbitrary ground literals L, RL ⊆ R, so RL is also terminating, and
RL cannot contain critical pairs either. Hence, RL is also convergent. ��

7

Lemma 2 For all ground literals L, if R∗
L |= L, then R∗ |= L.

Proof. Let R∗
L |= L.

Case 1: L = (s .= t). R contains at least all the rewrite rules of RL, i.e. R ⊇ RL.
Thus, the equation must also hold in R∗.

Case 2: L = (¬s .= t). According to Lemma 1, RL is convergent, so s and t
have distinct normal forms s′ � s and t′ � t w.r.t. RL. Now consider rules
l ⇒ r ∈ R \ RL. By definition of RL, their generating literals l .= r must
be larger than L in the literal ordering (they can’t be equal because L is
a negated equation). By the definition of � l, this implies that l � s 	 s′
and l � t 	 t′. So rules in R \ RL can not further rewrite s′ or t′, hence
these are the normal forms of s and t also w.r.t. R. And as they are distinct,
R∗ |= ¬s .= t. ��

We can now show the central property of the model R∗ constructed in
Def. 2, namely that it satisfies all the irreducible instances (w.r.t R) of literals
in B under certain conditions.

Lemma 3 (Model Generation) Let B be a set of constrained literals and σ a
ground substitution for the free variables in B , such that

• B is closed under the application of the sup-p and sup-n rules, and

• there is no literal ¬s .= t A ∈ B such that σs = σt (syntactically) and σ
satisfies A.

Then R∗ |= L for all L ∈ irred R(σ,B).

Proof. Assume that this were not the case. Then there must be a minimal
(w.r.t. �l) L in irred R(σ,B) with R∗ �|= L. We distinguish two cases, accord-
ing to whether L is an equation or a negated equation:

Case 1: L = (s .= t). If s = t syntactically, then clearly R∗ |= L, so we may
assume that s � t. As RL ⊆ R, we certainly have L ∈ irred RL (σ,B). Also,
due to Lemma 2, we already have R∗

L �|= L. But Gen(L) = ∅, because oth-
erwise the rule s ⇒ t would be in R, implying R∗ |= L. As conditions 1
through 4 for L generating a rule are fulfilled, condition 5 must be violated.
This means that there is a rule l ⇒ r ∈ RL that reduces s, so s|p = l for some
position p in s. Now let L be the variable-irreducible (w.r.t. R) instance of
a constrained literal L0 = (s0

.= t0 A) ∈ B . Similarly, let l ⇒ r be gener-
ated by a literal K = (l .= r) ≺l L that is the variable-irreducible (w.r.t. RK)
instance of a constrained literal K0 = (l0

.= r0 B) ∈ B . It turns out that
p must be a non-variable position in s0, because otherwise, since s = σs0,

8

we would have p = p′p′′ with s0|p′ = x and σx|p′′ = l, thus σx would be re-
ducible by l ⇒ r ∈ R, contradicting the variable-irreducibility of L.4 From
all this, it follows that an application of the sup-p-rule between the literals
L0, K0 ∈ B is possible:

sup-p

s0
.= t0 A

l0
.= r0 B

s0[r0]p
.= t0 s0|p ≡ l0 & s0 � t0 & l0 � r0 & A & B

As B is required to be closed under rule applications, the resulting literal,
call it L′

0, must be in B . Now L′ := (s[r]p
.= t) = σL′

0 is a variable-irreducible
(w.r.t. R) instance of L′

0: indeed, σ obviously satisfies the new constraint.
Furthermore, σx is irreducible by R for any variable x occurring in s0 or
t0. For an x occurring in r0, σx is known to be irreducible by rules in RK.
But for rules g ⇒ d ∈ R \ RK, we have g 	 l � r 	 σx, so g cannot be a
subterm of σx. This shows that σx is irreducible by R for all variables x
in L′

0, so L′ ∈ irred R(σ,B). Moreover, since l and r are in the same R∗-
equivalence class, replacing l by r in s does not change the (non-)validity
of s .= t, i.e. R∗ �|= L′. And finally, by monotonicity of the rewrite ordering
�, L � L′. This contradicts the assumption that L is the minimal element of
irred R(σ,B) which is not valid in R∗.
Case 2: L = (¬s .= t). If s = t syntactically, then the second precondition of
this lemma is violated, so we may assume s � t. Due to Lemma 2, R∗

L �|= L,
i.e. R∗

L |= s .= t. According to Lemma 1, RL is convergent. Validity of s .= t
in R∗

L then means that s and t have the same normal form w.r.t. RL. This
normal form must be � t, and thus ≺ s. Therefore, s must be reducible
by some rule l ⇒ r ∈ RL with s|p = l for some position p. As in case 1,
let L be the variable-irreducible (w.r.t. R) instance of a constrained literal
L0 = (¬s0

.= t0 A) ∈ B and let l ⇒ r be generated by a literal K = (l .=
r) ≺l L that is the variable-irreducible (w.r.t. RK) instance of a constrained
literal K0 = (l0

.= r0 B) ∈ B . Again as in case 1, p must be a non-variable
position in s0. It follows that an application of the sup-n rule is possible
between L0 and K0:

sup-n

¬s0
.= t0 A

l0
.= r0 B

¬s0[r0]p
.= t0 s0|p ≡ l0 & s0 � t0 & l0 � r0 & A & B

We can now show, in complete analogy with case 1, that L′ := (¬s[r]p
.=

t) ∈ irred R(σ,B), R∗ �|= L′ and L � L′, contradicting the assumption that L
is minimal in irredR(σ,B) with R∗ �|= L. ��

4This is the place where the use of variable-irreducible instances is necessary. Otherwise,
the combination of constraint inheritance and the non-variable-position condition would
give problems. Of course, this idea is also stolen from Nieuwenhuis and Rubio.

9

We now have all the necessary tools to show that our calculus is com-
plete in the sense that there exists a finite closed tableau for any unsatis-
fiable set of clauses. We are going to show a little more, namely that a
closed proof will be found if we simply expand the tableau in a fair way
without requiring backtracking. Of course, this property is partly due to
the fact that we postpone the instantiation of free variables to a global clo-
sure test. If we closed branches one at a time, we would have to backtrack
over branch closures, but not – contrary to what is the case in the calculus
of Degtyarev and Voronkov – over every application of the superposition
rules. In order to state the completeness theorem, we need the following
definition of a fair proof procedure.

Definition 3 A proof procedure is a procedure that takes a set of clauses C and
builds a sequence of tableaux T0,T1,T2, . . . for C where T0 is the empty tableau,
and each Ti+1 results from the application of an ext or sup rule on one of the
branches of Ti. A proof procedure finds a proof for C , if one of the Ti is closed. A
proof procedure is fair, if for any sequence of tableaux it constructs that does not
contain a closed tableau, the following holds: If T is the limit of the sequence of
constructed tableaux,5 then

• The ext-rule is applied infinitely often for every clause on every branch of T .

• Every possible application of the sup-rules between two literals on a branch
of T is eventually performed on that branch.

Theorem 1 Let C be an unsatisfiable set of clauses. Then a fair proof procedure
finds a proof for C .

Proof. Assume that the procedure does not find a proof. Then it constructs
a sequence of tableaux T0,T1,T2, . . . with a limit T . T has at least one open
branch under any ground substitution for the free variables in T . For as-
sume that under a certain σ all branches are closed. Then there is a literal
¬s .= t on every branch with σs = σt. Make a new tableau T ′ by cutting off
every branch below some occurrence of such a literal. Then σ still closes T ′
and T ′ has only branches of finite length and is finitely branching. Thus,
by König’s Lemma, T ′ must be a finite closed tableau for C . One of the
tableaux Ti must contain T ′ as initial subtableau, and thus Ti is closed un-
der σ, contradicting the assumption that the procedure finds no proof.

We now fix the ground substitution σ. Namely, σ should instantiate the
free variables introduced by the ext-rule in such a way, that every branch
of σT contains at least one literal of each ground instance of every clause
in C . This is possible because by fairness of the procedure, the ext-rule is
applied infinitely often for each clause on every branch.

5The limit of a sequence of tableau is defined as the supremum under the initial subtree
ordering.

10

We have seen that there must now be a branch B of T , such that B is
not closed by σ. We apply the model generation of Def. 2 on B and σ to
obtain a set of rewrite rules R = RB ,σ. As B and σ obviously satisfy the
preconditions of Lemma 3, every variable-irreducible instance of B is valid
in R∗.

It now remains to show that every clause in C is valid in R∗ to contra-
dict the assumption that C is unsatisfiable. We do this by showing that all
ground instances of clauses in C are valid. Let τC be a ground instance of
C ∈ C , where τ is a ground substitution for the variables occurring in C. We
now define a new substitution τ ′ such that τ ′x is the normal form w.r.t. R
of τ x. This makes τ ′x irreducible by R for all variables x of C. Now τ ′C is
obtained from τC by replacement of a number of subterms by other sub-
terms equivalent under R∗. Thus R∗ |= τC iff R∗ |= τ ′C. By construction of
σ and B , there must be a literal L ∈ C such that θL ∈ B for some renaming
of variables θ, and such that τ ′L = σθL. As θL carries no constraint, this
makes τ ′L a variable-irreducible instance of θL, so R∗ |= τ ′L and accord-
ingly R∗ |= τ ′C. ��

4 A Calculus with Histories

The calculus proposed by Degtyarev and Voronkov has an interesting prop-
erty that the one described in the previous sections lacks: In their calculus,
only a finite number of applications of the superposition rules is possible
without intervening applications of the γ-rule, that corresponds to our ext-
rule. That this is not the case for the calculus considered so far, as can be
seen from the following example:

1 : f gx .= gx
2 : gx .= a

3(sup-p of 2 on 1) : gx .= f a gx � a
4(sup-p of 3 on 1) : gx .= f f a gx � f a

5(sup-p of 4 on 1) : gx .= f f f a gx � f f a
...

where the generated constraints have been suitably simplified. Indeed, all
the generated constraints can be seen to be satisfiable, regardless of the re-
duction ordering chosen. Such a derivation is not possible in the calculus
of Degtyarev and Voronkov, because they discard the formula that super-
position takes place on. The cost of this is that backtracking over the order
of applied superposition steps becomes necessary.

Our calculus can be ‘fixed’ to make superposition steps terminating. We
shall see that backtracking is not required in our case.

The idea is as follows: instead of actually discarding rewritten literals,
we label each literal L with a history hL, which is a list of (references to oc-

11

currences of) literals that would have been discarded during the derivation
of L in a destructive calculus. We constrain the superposition rules in a way
that excludes rule applications between L and a literal in hL.

A calculus that discards the rewritten literal would then have a positive
superposition rule like this:

L = (s .= t A · hL)
K = (l .= r B · hK)

s[r]p
.= t s|p ≡ l & s � t & l � r & A & B · {L} ∪ hL ∪ hK

where p is a position in s, s|p is not a variable and L �∈ hK and K �∈ hL.

This would closely correspond to the calculus of Degtyarev and Voron-
kov, though one can show that it still allows certain derivations not possible
in the destructive version. However, we are going to use a more restrictive
calculus for the following reasons:

• As we show completeness of a more restrictive calculus, our com-
pleteness result is strictly stronger. It works in exactly the same way
for a weaker restriction.

• The proof is not further complicated by the stronger restriction.

• The termination property is much easier to show in our calculus.

• In a way, the ‘deeper reasons’ behind our completeness proof become
clearer with the more restrictive calculus.

We shall call the literals introduced by the ext-rule (as opposed to those
introduced by applications of the superposition rules) ext-literals. Our cal-
culus will record in the history of each literal which ext-literals were in-
volved in its derivation. We allow each ext-literal to be used at most once
in the derivation of a literal, which is easily formalized by requiring the
histories of literals used in the superposition rules to be disjoint. In a de-
structive, backtracking formulation analogous to the one of Degtyarev and
Voronkov, this would mean that both literals used in a superposition step
are discarded.

Here are the three rules of our calculus with histories:

ext L1 · {L1} | · · · | Lk · {Lk}
where {L1, . . . , Lk} = θC, with C ∈ C

and θ renames each variable in C into a new (free) variable.

sup-p

s .= t A · h1
l .= r B · h2

s[r]p
.= t s|p ≡ l & s � t & l � r & A & B · h1 ∪ h2

where p is a position in s, s|p is not a variable and h1 ∩ h2 = ∅.

12

sup-n

¬s .= t A · h1
l .= r B · h2

¬s[r]p
.= t s|p ≡ l & s � t & l � r & A & B · h1 ∪ h2

where p is a position in s, s|p is not a variable and h1 ∩ h2 = ∅.

Again, the superposition rules sup-p and sup-n are only applied if the
constraint of the new literal is satisfiable. The two literals involved as
premises in the sup-p-rule are required to be distinct.

As in the simple calculus of the previous section, a ground substitution
σ closes a branch B of a tableau, if there is a constrained negated equation
¬s .= t A · h ∈ B such that σs = σt (that is syntactic identity) and σ sat-
isfies A. The whole tableau is closed, if there is a single substitution σ that
closes all branches simultaneously.

4.1 Completeness of the Calculus with Histories

For our completeness proof, we have to modify the proof given in the pre-
vious section slightly, to cope with the disjoint history restriction in the
sup-rules. We require the following notions.

Definition 4 Let S be a set of constrained literals with history and σ a ground
substitution for the free variables in S. Two literals L, K ∈ S are called variants, if
they are equal up to renaming of free variables, if histories are not regarded.6 They
are called copies (under σ) if moreover the free variables are assigned the same
ground terms under σ. S is called rich (under σ), if every literal L ∈ S has an
infinite number of copies with pairwise disjoint histories in S.

For instance, f (X) .= Y X ≡ a · {L1, L2} and f (U) .= V U ≡ a ·
{L1, L3} are variants. They are also copies under σ if σX = σU and σY =
σV.

As will become apparent in the proof of Theorem 2, we will do the
model construction with only a subset of the literals on an open branch. To
avoid confusion, we are going to denote the concerned sets of constrained
literals with history S instead of B .

The construction of a model from a set S works exactly as in Def. 2. The
only new aspect is that the literals in S have histories: we simply forget
those when applying a ground substitution. So irred R(σ,S) shall simply be
a set of ground literals without history as before. Thus, for the generated
set of ground rewrite rules R = RS,σ, Lemmas 1 and 2 hold as before.

The differences are in the Model Generation Lemma (Lemma 3 for the
simple calculus) and the actual completeness proof. Most of the Model

6The variable renaming also applies to the constraints.

13

Generation Lemma and its proof are actually identical to the simple ver-
sion, but we shall repeat the proof here to make it more readable and also
to make sure that we do not accidentally skip an important difference. The
new parts are marked by a gray bar in the margin.

Lemma 4 (Model Generation) Let S be a set of constrained literals with history
and σ a ground substitution for the free variables in S, such that

• S is closed under the application of the sup-p and sup-n rules, and

• there is no literal ¬s .= t A · h ∈ S such that σs = σt (syntactically) and
σ satisfies A.

• S is rich under σ.

Then R∗ |= L for all L ∈ irred R(σ,S).

Proof. Assume that this were not the case. Then there must be a minimal
(w.r.t. �l) L in irred R(σ,S) with R∗ �|= L. We distinguish two cases, accord-
ing to whether L is an equation or a negated equation:

Case 1: L = (s .= t). If s = t syntactically, then clearly R∗ |= L, so we may as-
sume that s � t. As RL ⊆ R, we certainly have L ∈ irred RL

(σ,S). Also, due to
Lemma 2, we already have R∗

L �|= L. But Gen(L) = ∅, because otherwise the
rule s ⇒ t would be in R, implying R∗ |= L. As conditions 1 through 4 for
L generating a rule are fulfilled, condition 5 must be violated. This means
that there is a rule l ⇒ r ∈ RL that reduces s, so s|p = l for some position p in
s. Now let L be the variable-irreducible (w.r.t. R) instance of a constrained
literal L0 = (s0

.= t0 A · hL) ∈ S. Similarly, let l ⇒ r be generated by a
literal K = (l .= r) ≺l L that is the variable-irreducible (w.r.t. RK) instance of
a constrained literal K0 = (l0

.= r0 B · hK) ∈ S. As S is rich, there are in-
finitely many copies under σ of L0 with pairwise disjoint histories. Each of
the finitely many elements of hK can be contained in the history of at most
one of these copies, and all the remaining ones have a history disjoint to
hK. So we may assume that L0 and K0 are chosen in a way that hK and hL
are disjoint. Further, it turns out that p must be a non-variable position in
s0, because otherwise, since s = σs0, we would have p = p′p′′ with s0|p′ = x
and σx|p′′ = l, thus σx would be reducible by l ⇒ r ∈ R, contradicting the
variable-irreducibility of L. From all this, it follows that an application of
the sup-p-rule between the literals L0, K0 ∈ S is possible:

sup-p

s0
.= t0 A · hL

l0
.= r0 B · hK

s0[r0]p
.= t0 s0|p ≡ l0 & s0 � t0 & l0 � r0 & A & B · hL ∪ hK

As S is required to be closed under rule applications, the resulting literal,
call it L′

0, must be in S. Now L′ := (s[r]p
.= t) = σL′

0 is a variable-irreducible

14

(w.r.t. R) instance of L′
0: indeed, σ obviously satisfies the new constraint.

Furthermore, σx is irreducible by R for any variable x occurring in s0 or
t0. For an x occurring in r0, σx is known to be irreducible by rules in RK.
But for rules g ⇒ d ∈ R \ RK, we have g 	 l � r 	 σx, so g cannot be a
subterm of σx. This shows that σx is irreducible by R for all variables
x in L′

0, so L′ ∈ irred R(σ,S). Moreover, since l and r are in the same R∗-
equivalence class, replacing l by r in s does not change the (non-)validity
of s .= t, i.e. R∗ �|= L′. And finally, by monotonicity of the rewrite ordering
�, L � L′. This contradicts the assumption that L is the minimal element of
irred R(σ,S) which is not valid in R∗.

Case 2: L = (¬s .= t). If s = t syntactically, then the second precondition of
this lemma is violated, so we may assume s � t. Due to Lemma 2, R∗

L �|= L,
i.e. R∗

L |= s .= t. According to Lemma 1, RL is convergent. Validity of s .= t
in R∗

L then means that s and t have the same normal form w.r.t. RL. This
normal form must be � t, and thus ≺ s. Therefore, s must be reducible
by some rule l ⇒ r ∈ RL with s|p = l for some position p. As in case 1,
let L be the variable-irreducible (w.r.t. R) instance of a constrained literal
L0 = (¬s0

.= t0 A · hL) ∈ S and let l ⇒ r be generated by a literal K = (l .=
r) ≺l L that is the variable-irreducible (w.r.t. RK) instance of a constrained
literal K0 = (l0

.= r0 B · hK) ∈ S. Again as in case 1, p must be a non-
variable position in s0, and we can choose L0 and K0 with disjoint histories.
It follows that an application of the sup-n rule is possible between L0 and
K0:

sup-n

¬s0
.= t0 A · hL

l0
.= r0 B · hK

¬s0[r0]p
.= t0 s0|p ≡ l0 & s0 � t0 & l0 � r0 & A & B · hL ∪ hK

We can now show, in complete analogy with case 1, that L′ := (¬s[r]p
.=

t) ∈ irred R(σ,S), R∗ �|= L′ and L � L′, contradicting the assumption that L is
minimal in irredR(σ,S) with R∗ �|= L. ��

The main point is that if S is rich, we can find enough copies of the re-
quired literals that some of them have disjoint histories. Now in the actual
completeness proof, we have to extract a rich set of literals from an open
branch in such a way that the validity of the irreducible instances of that
set will imply the validity of each of the clauses in our clause set.

Using the definitions of a fair proof procedure from Def. 3, we can now
show the following completeness theorem.

Theorem 2 Let C be an unsatisfiable set of clauses. Then a fair proof procedure
for the calculus with histories finds a proof for C .

15

Proof. Assume that the procedure does not find a proof. As in the proof of
Theorem 1, we can conclude that it constructs in the limit an infinite tableau
T which has at least one open branch under any ground substitution for the
free variables in T .

We now fix the ground substitution σ. Namely, σ should instantiate the
free variables introduced by the ext-rule in such a way, that every branch
of σT contains infinitely many occurrences of literals of each ground in-
stance of every clause in C . This is possible because the ext-rule is applied
infinitely often for each clause on every branch, and using a dovetailing
process that lets each of the ground instantiations be used infinitely often.

There must now be a branch B of T , such that B is not closed by σ. As
there are infinitely many occurrences of literals of each ground instance of
every clause on B , and every clause is finite, for every ground instance τC
of every clause, there must be at least one literal LτC ∈ τC, such that there
are infinitely many ext-literals L′ ∈ B with σL′ = LτC.

Collect all these ext-literals LτC on B in a set I . As we are dealing with
ext-literals, the histories of literals in I are disjoint, so I is rich under σ.
Now define B∞ to contain all literals of I as well as all literals on B derived
from literals in I alone.

As B is closed under sup-rule applications by fairness of the proof pro-
cedure, so is B∞. Furthermore, B∞ is rich, as can be seen by induction on
the number n of literals in the history of a given literal L: For n = 1, L is an
ext-literal, so L ∈ I . Hence there are infinitely many copies of L with pair-
wise disjoint histories. For n > 1, L must be derived by an application of a
sup-rule from literals with a history smaller than n. The induction hypothe-
sis guarantees an infinite number of copies with pairwise disjoint histories
of these literals in B∞. The same rule application is obviously possible be-
tween these copies, and as B∞ is closed under sup applications, one easily
sees that there must be infinitely many copies of L.

We apply the model generation of Def. 2 on B∞ and σ to obtain a
set of rewrite rules R = RB∞,σ. As B∞ and σ satisfy the preconditions of
Lemma 4, every variable-irreducible instance of B∞ is valid in R∗.

It now remains to show that every clause in C is valid in R∗ to contra-
dict the assumption that C is unsatisfiable. We do this by showing that all
ground instances of clauses in C are valid. Let τC be a ground instance
of C ∈ C , where τ is a ground substitution for the variables occurring in
C. We now define a new substitution τ ′ such that τ ′x is the normal form
w.r.t. R of τ x. This makes τ ′x irreducible by R for all variables x of C. Now
τ ′C is obtained from τC by replacement of a number of subterms by other
subterms equivalent under R∗. Thus R∗ |= τC iff R∗ |= τ ′C. By construc-
tion of σ and B∞, there must be a literal L ∈ C such that θL ∈ I ⊂ B∞ for
some renaming of variables θ, and such that τ ′L = σθL. As θL carries no
constraint, this makes τ ′L a variable-irreducible instance of θL, so R∗ |= τ ′L
and accordingly R∗ |= τ ′C. ��

16

4.2 Termination

Our termination proof is simpler than the one of Voronkov and Degtyarev
because the calculus is more restrictive. Indeed, we can prove termination
with the histories alone, without needing arguments about the ordering
restrictions expressed in the constraints.

Theorem 3 Starting from a finite tableau T , only a finite number of sup-rule
applications is possible without intervening applications of the ext-rule.

Proof. As the sup-rules do not introduce new branches, it suffices to show
this property for each of the finitely many branches of T . The sup-rules
combine the disjoint history sets of used literals, so the size of the history
of the resulting literal is the sum of the sizes of the used literals’ histories.
In particular, only ext-literals have a history of size one.

We show by induction on n, that only finitely many literals with a his-
tory of at most n literals can be derived. For n = 1, this is the case, since we
start out with only finitely many ext-literals, and we do not get any new
ones. For n > 1, a literal must be the result of a sup-application between
literals of history size less than n. By induction hypothesis, there can be
only finitely many of those. Also, there are only finitely many ways to ap-
ply a sup-rule between two given literals, because the rule applications are
determined by the position p at which the terms are overlapped.

No history can get larger than the initial number of ext-literals on the
branch, so one can only derive a finite number of new literals altogether.

��

Our restriction to disjoint histories is so strong, that it prompts the ques-
tion whether it is useful in practice. But, of course that question has to be
asked of any restriction. Only experimentation can show which restric-
tion is useful to ensure termination in practice. In fact, it is not even clear
whether the termination property is of any practical value at all:

• At first sight, the termination property makes it easier to implement a
fair proof procedure: One can apply the sup-rules exhaustively before
resorting to further ext-expansions. However, one still needs a fair
strategy to choose the next extension clause on a branch. If one can
implement an intelligent procedure to do this, one should also be able
to choose between extension and superposition. Or, vice versa, if it
is sufficient to just put pending ext-expansions in a FIFO queue, why
should it not be good enough to use the same queue for superposition
steps?

• With the termination property, one can take a tableau prover without
equality handling and add a ‘background prover’ that tries to close

17

branches using superposition. The termination property guarantees
that the background prover terminates. However, this approach is
unpractical as it stands. There is a communication overhead between
foreground and background provers. The background prover needs
to be incremental, to avoid redoing all the superposition steps after
each extension, which is hard to implement.

• In an efficient tableau prover, particularly in the presence of equality,
one needs to take universal variables into account, see [5]. The su-
perposition rules with universal variables correspond essentially to
unfailing Knuth-Bendix completion [2], which does not terminate in
general. UKBA behaves very well in practice, so it is probably not
sensible to artificially introduce additional conditions to enforce ter-
mination.

• The regularity restriction (see e.g. [11]) requires literals introduced by
rule applications to be new to their branches under the closing substi-
tution. This is a very common and successful restriction to eliminate
redundancy in proof search. The calculus with histories is not com-
plete if we require regularity, see Sect. 4.3. It is not clear whether the
calculus of Degtyarev and Voronkov is compatible with regularity.
On the other hand, the simple calculus of Sect. 3 obviously is, since
only one copy of each ground instance is needed.

To summarize, it seems that in an efficient implementation of a tableau
calculus with superposition, the termination property is not really impor-
tant, and maybe cannot even be sensibly maintained at all.

Of course, the termination property can be bestowed on any calculus
by a simple trick: One takes an arbitrary fair strategy and codes it into
the calculus. As every possible rule application gets scheduled at some
point by a fair procedure, and extension with a clause is always possible, it
follows, that only finitely many sup-applications are performed in between.

Admittedly, it is nonsense to code the whole proof procedure into the
calculus. But only experimentation can show how far one should go.

4.3 Regularity

In this section, we are going to consider the problems with the regularity
restriction mentioned in the previous section in a little more detail. The
regularity restriction is a common restriction to reduce redundancy in the
construction of tableau proofs. In a ground tableau calculus, it requires that
no rule application introduces a literal on a branch that is already present
on that branch. A version of this condition suitable for our calculi would
be that first, closing instantiations σ which lead to two equal literals on a
branch under instantiation are not considered, and second, rule applica-

18

tions that lead to a repetition of literals under every instantiation are forbid-
den.

The most important effect of the regularity restriction in a first order
calculus is that it prevents expanding the same clause twice with the same
instantiation on one branch. We shall call this the ‘economic instantiation’
property.

One can easily check that the simple calculus of Sect. 3 is compatible
with the regularity restriction. Indeed, the completeness proof only re-
quires one literal of every ground instance of each clause to be on a branch.

The situation is different for the calculus with histories. Regularity can
still be required, if instances of literals with different histories are regarded
as different in the regularity condition. But the condition would then be
very weak, because the ext-rule introduces new literals with new histories
each time, so we would not have the economic instantiation property. On
the other hand, if we disregard histories in the regularity condition, one
can easily see that the calculus is no longer complete. This is reflected by
the requirement of having infinitely many copies of literals on a branch in
the completeness proof.

So is there a restriction of our calculus which has the termination prop-
erty and is compatible with a reasonable regularity restriction? The answer
is yes, because the simple calculus is compatible with regularity and the
trick mentioned at the end of the last section allows us to endow it with the
termination property. We thus reformulate our question:

Is there a natural restriction of our calculus which has the termi-
nation property and is compatible with a reasonable regularity
restriction?

A natural restriction would be one, for instance, that somehow reflects dis-
carding rewritten or otherwise redundant literals. A reasonable regularity
restriction should at least entail the economic instantiation property.

It is not stated in [8] whether the calculus of Degtyarev and Voronkov
is compatible with regularity. One should remember that their calculus is
destructive, so a suitable regularity condition should demand not only that
instances of literals present on a branch are not duplicated by rule appli-
cations, but also that instances of literals that were present but have been
discarded are not duplicated. Otherwise we would not get the economic
instantiation property.

Regard again the initial attempt at a calculus with histories mentioned
at the beginning of Sect. 4 on page 12. We tried to find a completeness proof
for that calculus (which corresponds closely to the one of [8]) that would
be compatible with regularity. In particular, we considered a ground ver-
sion of that calculus, that does not need constraints and works only on
ground literals with histories. We were able to show completeness of that
ground calculus by the model generation technique without requiring in-

19

finitely many copies of literals. The variable irreducibility restriction is not
needed for the ground case, instead we restrict model generation to literals
with maximal histories. From the validity of these in the generated model,
we can then inductively infer the validity of all other literals. The restriction
to literals with maximal history conflicts with the restriction to variable-
irreducible instances which we need to cope with the non-variable-position
restriction, leading to very tangled interdependencies which we were not
able to resolve.

We thus currently have no answer to the question formulated above.

5 Using Negative Constraints

In Sect. 4, we used history lists to emulate the deletion of literals from
a branch in a non-destructive way that eliminates the need to backtrack
over sup-rule applications. Another possibility to model deletion of literals
comes to mind, which we shall briefly discuss.

Assume that the following rule application is possible between two lit-
erals:

sup-p

s .= t A
l .= r B

s[r]p
.= t A & B & C

Where C = (s|p ≡ l & s � t & l � r) is the new constraint introduced by the
rule application. One could now model the deletion of the rewritten literal
s .= t A by modifying the constraint of that literal to A & !(B & C):7 this
implies that for instantiations σ under which the superposition is possible,
namely if σ satisfies A & B & C, the constraint of the deleted literal is no
longer valid.

This method leads to a destructive calculus, since the constraints of lit-
erals are changed as the proof is expanded. Accordingly, more complicated
techniques are required for a completeness proof, one needs to consider the
persistent literals on a branch, etc.

Also, one needs a rather complicated fairness condition: It is not suffi-
cient to require (as in resolution saturation procedures) that all superposi-
tions between persistent literals of a branch are eventually executed: As-
sume for instance that a superposition with K is applicable on some literal
L, and that this superposition is needed to close the proof. There are situ-
ations where it is possible to successively apply superposition steps on L
with other literals leading to a sequence of constrained literals L ′, L′′, . . .
with constraints getting more and more restrictive, but without becoming
unsatisfiable. Neither the literal L or any of its descendants is then persis-
tent on the branch, so superposition with K might never take place.

7We use ‘!’ to designate negation in constraints.

20

We have tried to fix the fairness condition (or rather the notion of per-
sistency) to take account of this difficulty. But we still did not succeed in
showing completeness of the resulting procedure. To give an intuition for
the problem, let us mention that one has to restrict model generation to
variable-irreducible literals in order to cope with the non-variable-position
restriction, while literals on the branch might be rewritten by superposition
with literals which later turn out not to be variable irreducible.

This state of affairs is rather unsatisfying. One can construct a ground
calculus in which the ext rule introduces (guessed) ground instances of
clauses instead of free variables, no constraints are needed, and the first
premise of the superposition rules is actually deleted. We have been able
to show completeness (without backtracking over superposition applica-
tions) of this destructive ground calculus. The proof even shows compati-
bility with regularity. But we have not been able to lift this proof due to the
afore-mentioned problems with the non-variable-position restriction. The
situation is thus rather similar to the one described in Sect. 4.3.

6 Tableaux with Basic Ordered Paramodulation

In this section, we shall try to demonstrate how variations of calculi and
completeness proofs can be carried over from known results for resolution-
based calculi.

There is a more restrictive form of equality handling known in the reso-
lution community as basic ordered paramodulation [3]. In comparison to basic
superposition, the basicness restriction is strengthened: One forbids para-
modulation below a position where a previous paramodulation step has
taken place. The price to pay is that equations have to be applied on both
sides of literals and not only the maximal side as for basic superposition.
Still, basic ordered paramodulation seems to be very effective in practice
[12].

Using constrained literals, one can easily enforce this stronger basicness
restriction by introducing a new free variable in the equality handling rules.
The sup-p rule becomes:8

par-p

s .= t A
l .= r B

s[X]p
.= t X ≡ r & s|p ≡ l & l � r & A & B

where p is a position in s, s|p is not a variable,
and X is a new (free) variable.

8We do not use the disjoint history restriction here in order to make things simpler to
read. It should however be no problem to use that restriction with basic ordered para-
modulation.

21

Note how the constraint forces X to be instantiated with r, and that the
restriction s � t is gone.9 The par-n-rule is exactly analogous. This modifi-
cation is a straightforward adaptation of the formulation of basic ordered
paramodulation using constraint inheritance given by Nieuwenhuis and
Rubio in [13].

How do we show completeness of our modified calculus? We cite [13]:

The completeness proof is an easy extension of the previous re-
sults by the model generation method. It suffices to modify the
rule generation by requiring, when a rule l ⇒ r is generated,
that both l and r are irreducible by RC, instead of only l as be-
fore, and to adapt the proof of Theorem 5.6 accordingly, which
is straightforward.

Their Theorem 5.6 corresponds closely to our Lemma 3. They have RC
instead of our RL because they have to work with ground clauses, where
we can use literals. Otherwise, this statement applies exactly to our case.

Let us replace condition 5 by

5. l and r are irreducible w.r.t. RL.

A close scrutiny of the proofs of Lemmas 1 and 2 satisfies us that they
are still valid after this modification. And it is indeed quite straightfor-
ward to adapt the proof of Lemma 3: For case 1, one drops the assumption
that s � t, and infers that condition 5 must be violated as before. As we
take a symmetric view of equations, we can now assume that it is s that is
reducible by some rule in RL. One then shows as before that a sup-p ap-
plication is possible. Showing that L′ is a variable-irreducible instance of
some L′

0 is even simpler than before, because we do not need to account
for variables in r0. To show that σX is irreducible, note that σX = r, and as
l .= r generates a rule, condition 5 guarantees that r is irreducible. Similar
modifications apply for case 2. All this corresponds exactly to what needs
to be done for resolution.

The only new and tableau-specific part is that σ has to provide an in-
stantiation for the free variables X introduced in the paramodulation steps
in such a way that the new constraints are satisfied. But fortunately, this
is also easily done: in an induction over the superposition steps leading to
the deduction of a literal, let σX := σr0 for a free variable X introduced by
a superposition with l0

.= r0 B.
We think that this example constitutes strong evidence for our claim

that our completeness proofs are a good basis for adapting known results
from resolution with superposition or paramodulation to a tableau setting.

9It might seem that introducing a new free variable is not a good idea. But these ones
are harmless, as there is no need to search for their instantiation. It is determined by the in-
stantiations of the free variables in r. In a sense, they can be regarded as universal variables
restricted by the constraint X ≡ r.

22

7 Conclusion and Future Research

We presented a number of free variable tableau calculi with integrated
equality handling using ordered superposition/paramodulation rules with
constraint propagation. We demonstrated how the completeness of such
calculi can be shown using model generation techniques known from res-
olution calculi with only few additional tableau-specific ingredients.

We have shown how a termination property can be enforced for such
calculi using a disjoint history restriction, and how completeness may be
proved in presence of such a restriction. We have also briefly discussed the
practical usefulness of the termination property in such calculi.

One area for future research is experimentation with an implementa-
tion. In particular, it would be interesting to see what impact various re-
strictions ensuring the termination property have both on performance of
the prover and on implementation complexity.

An obvious extension of our results would be a version that permits
predicates other than equality and that does not require problems to be in
clausal form. We expect this to be quite straight-forward.

Universal variables are known to be important for efficiency. It is ex-
pected that the given calculi and proofs can easily be adapted to incorpo-
rate universal variables, but of course this has to be checked in detail. We
also plan to investigate how superposition-based equality handling can be
incorporated into hyper tableaux [4].

Another important field for research is building in associativity and
commutativity or other common equational theories. We expect that this
can be done in the same way as for resolution, see e.g. [14].

Finally, it would be (at least theoretically) interesting to find an answer
to the question of Sect. 4.3, namely whether there is a natural restriction
that ensures the termination property but is compatible with regularity.

Acknowledgments

I thank Bernhard Beckert, Reiner Hähnle and Peter Schmitt for many fruit-
ful discussions which led to the results presented in this paper.

References

[1] L. Bachmair and H. Ganzinger. Resolution theorem proving. In
A. Robinson and A. Voronkov, editors, Handbook of Automated Reason-
ing, volume I, chapter 2, pages 19–99. Elsevier Science, 2001.

[2] Leo Bachmair, Nachum Dershowitz, and David A. Plaisted. Comple-
tion without failure. In H. Aı̈t-Kaci and M. Nivat, editors, Resolution

23

of Equations in Algebraic Structures, volume 2: Rewriting Techniques,
pages 1–30. Academic Press, New York, 1989.

[3] Leo Bachmair, Harald Ganzinger, Christopher Lynch, and Wayne Sny-
der. Basic paramodulation. Information and Computation, 121(2):172–
192, 1995.

[4] Peter Baumgartner. Hyper Tableaux — The Next Generation. In Har-
rie de Swart, editor, Proc. International Conference on Automated Reason-
ing with Analytic Tableaux and Related Methods, Oosterwijk, The Nether-
lands, number 1397 in LNCS, pages 60–76. Springer-Verlag, 1998.

[5] Bernhard Beckert. A completion-based method for mixed universal
and rigid E-unification. In Alan Bundy, editor, Proc. 12th Conference on
Automated Deduction CADE, Nancy/France, LNAI 814, pages 678–692.
Springer-Verlag, 1994.

[6] A. Degtyarev and A. Voronkov. The undecidability of simultaneous
rigid E-unification. Theoretical Computer Science, 166(1-2):291–300, Oc-
tober 1996.

[7] A. Degtyarev and A. Voronkov. What you always wanted to know
about rigid E-unification. Technical Report 143, Comp. Science Dept.,
Uppsala University, 1997.

[8] A. Degtyarev and A. Voronkov. What you always wanted to know
about rigid E-unification. Journal of Automated Reasoning, 20(1):47–80,
1998.

[9] J. Gallier, S. Raatz, and W. Snyder. Theorem proving using rigid E-
unification: Equational matings. In Proc. IEEE Symp. on Logic in Com-
puter Science, pages 338–346. IEEE Computer Society Press, 1987.

[10] Martin Giese. Incremental Closure of Free Variable Tableaux. In Ra-
jeev Goré, Alexander Leitsch, and Tobias Nipkow, editors, Proc. Intl.
Joint Conf. on Automated Reasoning, Siena, Italy, LNCS. Springer-Verlag,
2001.

[11] R. Hähnle. Tableaux and related methods. In A. Robinson and A. Vo-
ronkov, editors, Handbook of Automated Reasoning, volume I, chapter 3,
pages 100–178. Elsevier Science, 2001.

[12] William McCune. Solution of the robbins problem. Journal of Auto-
mated Reasoning, 19(3):263–276, December 1997.

[13] R. Nieuwenhuis and A. Rubio. Paramodulation-based theorem prov-
ing. In A. Robinson and A. Voronkov, editors, Handbook of Automated
Reasoning, volume I, chapter 7, pages 371–443. Elsevier Science, 2001.

24

[14] Robert Nieuwenhuis and Albert Rubio. Paramodulation with built-in
AC-theories and symbolic constraints. Journal of Symbolic Computation,
23(1):1–21, January 1997.

25

