
Comparing Adaptive and Non-Adaptive
Connection Pruning With Pure Early Stopping

Lutz Prechelt (prechelt@ira.uka.de)
Fakult�at f�ur Informatik
Universit�at Karlsruhe

D-76128 Karlsruhe, Germany

Abstract|Neural network pruning methods on the level of individual network parameters
(e.g. connection weights) can improve generalization, as is shown in this empirical study.
However, an open problem in the pruning methods known today (OBD, OBS, autoprune,
epsiprune) is the selection of the number of parameters to be removed in each pruning step
(pruning strength). This work presents a pruning method lprune that automatically adapts
the pruning strength to the evolution of weights and loss of generalization during training.
The method requires no algorithm parameter adjustment by the user. Results of statistical
signi�cance tests comparing autoprune, lprune, and static networks with early stopping are
given, based on extensive experimentation with 14 di�erent problems. The results indicate
that training with pruning is often signi�cantly better and rarely signi�cantly worse than
training with early stopping without pruning. Furthermore, lprune is often superior to
autoprune (which is superior to OBD) on diagnosis tasks unless severe pruning early in the
training process is required.

1 Pruning and Generalization

The principal idea of pruning is to reduce the number of free parameters in the network by removing
dispensable ones. Pruning methods usually either remove complete input or hidden nodes along with all
their associated parameters or remove individual connections, each of which carries one free parameter
(the weight). This latter approach is very �ne-grained and makes pruning particularly powerful. If
applied properly, pruning often reduces over�tting and improves generalization. At the same time it
produces a smaller network. Interestingly, most papers on pruning algorithms do show empirically that
smaller networks can be obtained without loss of generalization, but do not show that generalization will
often be improved compared to reasonable static-network training methods. The present paper makes
up for that.

1.1 Related Work: Some Known Pruning Methods

The key to pruning is a method to calculate the approximate importance of each parameter. Several such
methods have been suggested. The simplest one |with obvious
aws [3] | is to assume the importance to
be proportional to the magnitude of a weight. More sophisticated approaches are the well-known optimal
brain damage (OBD) and optimal brain surgeon (OBS) methods. OBD [1] uses an approximation to
the second derivative of the error with respect to each weight to determine the saliency of the removal
of that weight. Low saliency means low importance of a weight. OBS [5] avoids the drawbacks of
the approximation by computing the second derivatives (almost) exactly, but is computationally very
expensive.

Both methods have the disadvantage of requiring training to the error minimumbefore pruning may occur.
For many problems, this introduces massive over�tting which often cannot be repaired by subsequent
pruning. The autoprune method [3] avoids this problem. Its weight importance coe�cients are de�ned
by a test statistic T for the assumption that a weight becomes zero during the training process:

T (wi) = log

0
@

���P
p
wi � � (@E=@wi)p

���
�

qP
p
((@E=@wi)p � (@E=@wi))2

1
A

In contrast to OBD and OBS, this measure does not assume an error minimum has been reached; it can
be computed at any time during training. In the above formula, sums are over all examples p of the
training set, � is the learning rate, and the overline means arithmetic mean over the examples. A large
value of T indicates high importance of the connection with weight wi. Connections with small T can be
pruned. [3] have convincingly shown autoprune to be superior to OBD.

Note that many more pruning methods than discussed here have been proposed in the literature. In
particular, Bayesian methods can unify the notions of regularization and pruning [11].

1.2 An Open Problem: How Much To Prune?

Given the importance T of each weight at any time during training, two questions remain to be answered:

1. When should we prune?
2. How many connections should be removed in the next pruning step?

The �rst question is simple to answer: For OBD and OBS, pruning occurs when minimum training set
error has been reached. For autoprune, pruning occurs when over�tting begins (here: when the validation
set error increased twice during training; see below).

The second question, however, has not yet been answered satisfactorily. The authors of OBD suggest
to delete \some" parameters. The authors of autoprune at least suggest a concrete pruning schedule:
remove 35% of all parameters in the �rst pruning step and 10% in each following step. Such rules of
thumb, however, are not satisfying, because obviously they cannot always be optimal. The following
section presents a pruning method, called lprune, based on autoprune that tries to solve the problem.
It computes the pruning schedule dynamically during training, adapting to the evolution of the weights
and to the amount of over�tting observed.

2 Adaptive Pruning Schedules: The lprune Method

2.1 Observations

The lprune method is not based on a theory of weight development, because no such theory is currently
available. Instead, it builds on a number of observations made for the distribution of the T coe�cients
during training:

1. The distribution of the values is roughly normal.
2. During training, both the mean �T and the variance �T of the distribution tend to increase.
3. When pruning occurs, the variance suddenly drops and the mean suddenly rises.
4. Afterwards, the variance increases again and the mean decreases again. After a while, normal

development continues as in (2) above.

0

50

100

150

200

0 5 10 15 20

epoch 2

0

10

20

30

40

50

60

70

80

0 5 10 15 20

epoch 40

0

10

20

30

40

50

60

70

80

0 5 10 15 20

epoch 42

0

10

20

30

40

50

60

70

80

0 5 10 15 20

epoch 100

Figure 1: Four pruning coe�cient histograms from the same training run (glass1 problem with standard
architecture) in epochs 2, 40, 42, and 100. Horizontal axis: coe�cient size, grouped in classes of width
1. Vertical axis: absolute frequency of weights with this coe�cient size. The right vertical line is the
arithmetic mean of the coe�cient sizes, the left vertical line is 0.5 times that. The area under the curve
left of the left line thus indicates what would be pruned at that point for � = 0:5 when a pruning step
would occur. In the run shown, pruning occurred in epoch 41.

See Figure 1 for an example of this behavior. The observations suggest that a certain fraction of the mean
of the coe�cient distribution can be used as a threshold for pruning. Early during training the fraction
of these connections is rather small, because the variance is small. Once the weights have evolved and
di�erentiated, the variance is larger and it is safe to prune a larger fraction of the connections. After a
pruning step, immediate further pruning should remove only a few connections, if any, since the remaining

weights have to di�erentiate again before the important ones can con�dently be distinguished from the
less important ones. This reduction of pruning strength is ensured by the reduced variance after pruning
and is further pronounced immediately after pruning due to the larger mean of the distribution (see epoch
42 vs. 40 in Figure 1).

2.2 Adaptation Approach

From these observations, the following rule seems reasonable for determining how many connections to
prune:

At each pruning step, prune all those connections i whose weights wi satisfy
T (wi) < ��T for some � 2 [0 : : :1]

However, no �xed value of � results in good adaptation of pruning strength; we have to choose � dynam-
ically as well. The higher the over�tting, the more should be pruned, and the higher � must be.

2.3 De�nitions

To formalize this notion we de�ne \over�tting" quantitatively, as well as some other concepts that can
be used to express criteria for stopping or triggering pruning.

Let E be the error function of the training algorithm. Then Etr(t) is the average error per example over
the training set, measured after epoch t. Eva(t) is the error on the validation set and is used to determine
over�tting. Ete(t) is the error on the test set; it is not known to the training algorithm but characterizes
the quality of the network resulting from training.

The value Eopt(t) is de�ned to be the lowest validation set error obtained in epochs up to t:

Eopt(t) := min
t0�t

Eva(t
0)

Now we de�ne the generalization loss at epoch t to be the relative increase of the validation error over
the minimum-so-far (in percent):

GL := GL(t) := 100 �

�
Eva(t)

Eopt(t)
� 1

�
The generalization loss directly characterizes the amount of over�tting.

A high generalization loss is one candidate reason to stop training or to perform a pruning step: stop or
prune as soon as the generalization loss exceeds a certain threshold. We de�ne the class GL� as

GL� : satis�ed after �rst epoch t with GL(t) > �

However, we might want to suppress stopping or pruning if the training is still progressing very rapidly.
When the training error still drops quickly, generalization losses may have a higher chance to be \re-
paired". To formalize this notion we de�ne a training strip of length k to be a sequence of k epochs
numbered n + 1 : : :n + k where n is divisible by k. The training progress (in per thousand) measured
after such a training strip is then

Pk(t) = 1000 �

 P
t

t0=t�k+1
Etr(t

0)

k �mint
t0=t�k+1Etr(t0)

� 1

!

that is, \how much was the average training error during the strip larger than the minimum training error
during the strip?" In the following we will always assume strips of length 5 (i.e., k = 5) and measure the
cross validation error only at the end of each strip.

Another class of triggering criteria relies only on the sign of the changes in the generalization error: stop
or prune when the generalization error increased in s successive strips.

UPs : satis�ed after epoch t i� UPs�1 was satis�ed after epoch t� k and Eva(t) > Eva(t� k)

UP1 : satis�ed after �rst end-of-strip epoch t with Eva(t) > Eva(t� k)

This class of criteria is independent of Eopt, which is required for triggering pruning steps, because in the
short term pruning always makes GL higher.

2.4 Algorithm

Initial experiments showed that an appropriate way to adapt � is to increase it with growing GL, satu-
rating at some maximum value. This leads to the following adaptation rule for �:

� := �(GL) := �max(1�
1

1 + GL

�

)
�max := 2=3

� := 2

The given values of �max and � were found by a small number of experiments with 4 of the 42 example
problems used below. These parameters are only moderately critical and the values given here are
certainly not exactly optimal.

The complete lprune algorithm (`lambda-prune') can now be formulated as

REPEAT

Train network for one epoch;
IF epoch number MOD k = 0 THEN

Compute Eva; Eopt; and GL using the validation set;
END;

UNTIL GL > 5; (* i.e., apply normal early stopping *)
Reset network to the state that exhibited Eopt;
(* Now begin training with pruning: *)
REPEAT

Train network for one epoch and compute T (wi) values;
IF epoch number MOD k = 0 THEN

Compute Eva; Eopt; and GL using the validation set;
IF UP2(t) satis�ed AND no pruning k epochs ago THEN

Prune all connections i whose weights wi satisfy T (wi) < �(GL)�T ;
END;

END;

UNTIL t > 5000 OR P5(t) < 0:1 OR
(At Least 25 Epochs trained since last pruning AND GL > 100 AND P5(t) < 0:4)

The constants 5000, 0.1, 25, 100, and 0.4 are not critical and make a conservative stopping criterion for
the whole process. The result of the training is the network that exhibited the lowest validation error
Eopt.

3 Results And Discussion

3.1 Experiment Setup

Extensive benchmark comparisons were made between autoprune, lprune, and static backpropagation
with early stopping. 14 di�erent problems were used, all from the Proben1 benchmark set [7], a collection
of diagnosis problems1. The problems have between 8 and 120 inputs, between 1 and 19 outputs, and
between 214 and 7200 examples. 9 of the problems are classi�cation tasks (cancer, card, diabetes, gene,
glass, heart, heartc, horse, soybean, and thyroid), 4 are approximation tasks (building,
are, hearta, and
heartac); all problems are real datasets from realistic application domains.

All runs were done using the RPROP weight update rule [9], squared error function, and the RPROP
parameters �+ = 1:2, �� = 0:5, �0 2 [0:05 : : :0:2] randomly per weight, �max = 50, �min = 0, initial
weights from [-0.1: : :0.1] randomly. RPROP is a fast backpropagation variant that is about as fast as
quickprop [2] but more robust in the choice of parameters. Note that RPROP requires a modi�cation in
the way the T (wi) are computed, because the weight change is not proportional to @E=@wi.

In three di�erent random ways, the examples of each problem were partitioned into training set (50%),
validation set (25%), and test set (25% of examples), resulting in 42 datasets (cancer1, cancer2, cancer3,
card1, card2, card3 etc.). Each of these datasets was trained with two di�erent initial topologies. The
�rst is the dataset's standard architecture network topology (see [7]; in that reference, the standard
architectures are called pivot architectures.), which can be considered a \reasonable" topology for the
dataset. These topologies have between 2 and 32 hidden nodes, either one or two hidden layers, and
contain all possible feedforward connections, not only those from one layer to the next. The second is
the noshortcut standard architecture, which is derived from the standard architecture by excluding all
connections that do not go from one layer to the immediately following layer. For each of the 42 datasets
and each of the two network topologies for each dataset, 30 runs were made with autoprune, 30 with
lprune, and 30 with backpropagation with early stopping using the GL5 stopping criterion; more than
7500 runs overall.

After each of these runs, the error Ete of the resulting network was measured.2 For each dataset, the
autoprune sample of 30 such test set errors was compared to the corresponding lprune sample and
the backprop sample using the t-test (with removing 2 percent outlier datapoints, using a log-normal
distribution and applying the Cochran/Cox correction for the unequal variances case). The results of the
tests are shown in Tables 1 to 4.

3.2 Qualitative Behavior

Each signi�cant pruning step leads to a large sudden increase of GL, followed by a rapid decrease.
Whether the decrease leads to a lower or higher GL than before pruning depends on whether the pruning
occurred at the right time and in the right strength. To employ the UP2 triggering criterion means
to accept the view that pruning should occur whenever a substantial deterioration of generalization

1You can fetch the data at http://wwwipd.ira.uka.de/�prechelt/NIPS bench.html
2Caveat: In the experiments, the data of the validation set was never used for actual gradient training. In a real

application, one would not want to waste valuable data points in this manner.

behavior (as measured noisily by the validation set error) begins. It would probably be better in some
cases to wait longer before pruning, because during certain phases in training over�tting occurs but
vanishes automatically later. It is not at all clear, however, how such a situation should be detected at
its beginning. Therefore, UP2 seems to be a reasonable way to determine when to prune. The pruning
strength of autoprune, however, is often not appropriate.

0

5

10

15

20

0 100 200 300 400 500 600

training error
validation error

Figure 2: Development of training and validation
set error over time for the same run of autoprune
from which the �gures above were derived. Hori-
zontal axis: number of epoch; vertical axis: error.
There are 15 pruning steps after which 15% of the
initial connections remain. In this example prun-
ing is not successful: no lower validation set error
occurs than before the �rst pruning step. This is
not a rare case.

Since early stopping is performed as the �rst phase of the pruning algorithm (for both autoprune and
lprune), these training methods take signi�cantly, but not prohibitively longer than training with static
networks and early stopping. In the setup chosen, typically three to �ve times as many epochs are trained.
However, epochs after pruning consume less time, since the network is smaller and the total number of
epochs could be reduced by using a faster stopping criterion than the extremely conservative one chosen
in the given setup.

In the example autoprune run shown in Figure 2, the network tolerates the 35% pruning of the �rst
pruning step, yet is ruined by the second pruning step many epochs later, which removes only 10% of the
weights. Towards the end of the training run, the network is always overpruned, since such a conservative
stopping criterion is used.

For lprune, the situation is a bit di�erent. As long as over�tting is only moderate, the pruning strength is
usually small. The same is true when the weights have not yet su�ciently evolved since the last pruning
step or since the beginning of training. On the other hand, when over�tting is large, pruning can be quite
severe in lprune.

0

5

10

15

20

0 100 200 300 400 500 600

training error
validation error

Figure 3: The corresponding curves for lprune.
There are 21 pruning steps, initially removing on-
ly few connections, later removing more in each
step. Finally, only 0.5% of the initial connections
remain. Pruning is successful: after 7 pruning
steps (in epoch 180) a lower validation set error
is reached than before the �rst pruning step.

In the example lprune run shown in Figure 3, this behavior leads to several small pruning steps (the �rst
four remove 2%, 3%, 3%, and 5% of the connections, respectively) that manage to keep over�tting low
over a longer training period and �nally reduce the validation error. In this example, lprune is superior
to autoprune.

The behavior observed in this example is not prototypical, though. Very di�erent error curves and
pruning sequences occur as well. However, one observation prevails: pruning with a non-adaptive schedule
sometimes destroys the generalization ability of the network unnecessarily. In the case of the schedule
used in autoprune this is usually because of too heavy or too fast pruning. Signi�cantly lower pruning
strengths could avoid this, but would exhibit another problem: namely that over�tting cannot be reduced
as fast as it builds up. Therefore, pruning with very small pruning strength and �xed schedule would
probably be similar to OBD, which has been shown inferior to autoprune by [3]. Adaptive pruning
schedules are clearly necessary.

3.3 Quantitative Results

standard architectures
Problem 1 2 3
building L 0.0 | |
cancer | | |
card | | |
diabetes | A 2.5 L 0.9

are | A 7.3 |
gene A 0.0 A 0.0 A 0.0
glass | L 2.3 L 1.8
heart A 5.5 A 0.4 |
hearta | A 0.1 |
heartac | | |
heartc | | A 2.5
horse | | A 3.4
soybean | | |
thyroid | L 6.2 L 0.3

noshortcut standard architectures
Problem 1 2 3
building L 0.3 | L 3.7
cancer | A 0.9 |
card | | |
diabetes | A 4.3 |

are A 0.8 A 1.0 A 0.0
gene A 5.4 L 6.6 A 1.7
glass A 7.6 | |
heart | A 3.3 |
hearta | | |
heartac | | |
heartc | | |
horse | | A 1.5
soybean L 7.0 | |
thyroid | | L 0.0

Tables 1 and 2: Comparison of autoprune (\A") to lprune (\L") using the standard architectures and noshortcut
standard architectures, respectively. Compares test set errors Ete for variants 1, 2, 3 of each problem. The entries
show di�erences (in samples of 30 runs each) that are statistically signi�cant on a 10% level and the corresponding
p-values (in percent). Low p-values indicate high signi�cance. The letter indicates which algorithm is better; a
dash means that no signi�cant di�erence was found.
Table 1 (standard architectures): 26 times no signi�cant di�erence, 10 times A better, 6 times L better.
Table 2 (noshortcut standard architectures): 27 times no signi�cant di�erence, 10 times A better, 5 times L
better.

As we see in Tables 1 and 2, lprune is better in some cases and autoprune is better in others. For 2
of the 14 problems, there is never a signi�cant di�erence. How often autoprune is better than lprune
and vice versa, depends on the particular selection of datasets and should thus not be overemphasized.
However, there is a pattern in the results: autoprune tends to be better for problems that have overly
large networks, for instance the gene problems that have 120 input units | and the di�erence is larger
with shortcut connections than without. On the other hand, lprune is often better when pruning is
delicate, for instance for the building, glass, and thyroid problems that have only 14, 9, and 21 inputs,
respectively.

An explanation of this e�ect is that lprune is unable to perform heavy pruning very early during training
when over�tting is only small. However, such heavy pruning is what would be needed to perform well on
e.g. the gene problems and it is what autoprune does. On the other hand, the �xed pruning schedule of
autoprune is too rigid. It prunes too much in situations where waiting for further weight di�erentiation
is required despite the fact that over�tting has begun. Such situations are recognized by lprune and its
pruning removes only very few weights, sometimes even none at all. Thus, lprune solves a part of the
pruning schedule problem, namely adapting pruning strength to the stage of development of the weights.
The rest of the problem is still unsolved, namely determining the absolute number of weights that should
be pruned.

In a second series of benchmarks, pruning was compared to training a static network with early stopping
without pruning, using the same setup as before. The results are shown in Tables 3 and 4. We see
that pruning indeed usually does improve generalization signi�cantly; a fact that is often not properly
recognized. Therefore, pruning algorithms are preferable over static networks, at least in applications
where small improvements of generalization do matter. This is particularly true if one uses networks
with very many parameters (as is often recommended for the early stopping method): without shortcut
connections, backprop is signi�cantly better than pruning in eight of the cases (Table 4), whereas with
the shortcut connections this value drops to just two (Table 2).

4 Conclusion

Extensive benchmarking compared adaptive and non-adaptive pruning and backprop without pruning.
For the former, a method for adaptive calculation of pruning strength for connection pruning algorithms
was described. It represents a partial solution to an open problem in network pruning, determining prun-
ing strength. The following conclusions apply to the class of learning tasks covered by the experiments:

1. Training with pruning very often results in better networks than training with early stopping without
pruning, but rarely results in worse networks. Thus, pruning methods should be used more often
than they are used today.

2. The automatic pruning strength adaptation of the lprune method can result in better networks than
pruning with non-adaptive (�xed) pruning schedules. This is true in particular for small networks.

3. However, the lprune solution to the pruning strength problem is only partial, because lprune is
unable to execute severe pruning in early training stages as it is sometimes needed, in particular for
networks with overly many inputs.

standard architectures
Problem 1 2 3
building (A 0.0) | |
cancer | B 3.1 B 9.9
card | A 0.0 A 2.2
diabetes | A 4.0 |

are A 0.0 A 0.0 A 0.0
gene A 0.0 (A 0.0) (A 0.0)
glass A 8.6 A 2.3 A 0.1
heart | | |
hearta | A 2.0 |
heartac | | |
heartc | | A 0.0
horse | A 0.4 A 0.1
soybean | | |
thyroid A 0.4 | |

noshortcut standard architectures
Problem 1 2 3
building (A 0.0) | B 7.9
cancer | | B 0.1
card | A 0.0 A 7.1
diabetes | A 6.1 |

are | A 0.0 A 0.3
gene A 1.1 | (A 0.4)
glass | | |
heart B 0.2 | |
hearta B 2.4 A 3.4 A 0.5
heartac | B 9.2 (A 5.4)
heartc | B 2.4 A 1.3
horse B 4.7 | B 8.6
soybean | (A 1.7) |
thyroid A 0.0 A 0.1 A 2.2

Tables 3 and 4: Comparison of autoprune (\A") to backprop with early stopping (\B"). Analogous to Tables 1
and 2 above.
Table 3 (standard architectures): 22 times no signi�cant di�erence, 18 times A better (3 times slightly dubious
due to non-normal backprop samples), 2 times B better.
Table 4 (noshortcut standard architectures): 18 times no signi�cant di�erence, 16 times A better (4 times slightly
dubious), 8 times B better.

4. As the very di�erent results for the various problems and even for the dataset permutations show,
benchmarking has to be extensive and careful in order to yield signi�cant and correct results | this
is in sharp contrast to the state of the practice as described in [8].

References

[1] Yann Le Cun, John S. Denker, and Sara A. Solla. Optimal brain damage. In [10], pages 598{605,
1990.

[2] Scott E. Fahlman. An empirical study of learning speed in back-propagation networks. Technical
Report CMU-CS-88-162, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA,
September 1988.

[3] William Finno�, Ferdinand Hergert, and Hans Georg Zimmermann. Improving model selection by
nonconvergent methods. Neural Networks, 6:771{783, 1993.

[4] Stephen J. Hanson, Jack D. Cowan, and C. Lee Giles, editors. Advances in Neural Information
Processing Systems 5, San Mateo, CA, 1993. Morgan Kaufman Publishers Inc.

[5] Babak Hassibi and David G. Stork. Second order derivatives for network pruning: Optimal brain
surgeon. In [4], pages 164{171, 1993.

[6] Richard P. Lippmann, John E. Moody, and David S. Touretzky, editors. Advances in Neural Infor-
mation Processing Systems 3, San Mateo, CA, 1991. Morgan Kaufman Publishers Inc.

[7] Lutz Prechelt. PROBEN1 | A set of benchmarks and benchmarking rules for neural network train-
ing algorithms. Technical Report 21/94, Fakult�at f�ur Informatik, Universit�at Karlsruhe, Germany,
September 1994. Anonymous FTP: /pub/papers/techreports/1994/1994-21.ps.gz on ftp.ira.uka.de.

[8] Lutz Prechelt. A study of experimental evaluations of neural network learning algorithms: Current
research practice. Technical Report 19/94, Fakult�at f�ur Informatik, Universit�at Karlsruhe, Germany,
August 1994. Anonymous FTP: /pub/papers/techreports/1994/1994-19.ps.gz on ftp.ira.uka.de.

[9] Martin Riedmiller and Heinrich Braun. A direct adaptive method for faster backpropagation learning:
The RPROP algorithm. In Proc. of the IEEE Intl. Conf. on Neural Networks, pages 586{591, San
Francisco, CA, April 1993.

[10] David S. Touretzky, editor. Advances in Neural Information Processing Systems 2, San Mateo, CA,
1990. Morgan Kaufman Publishers Inc.

[11] Peter M. Williams. Bayesian regularization and pruning using a Laplace prior. Technical Report
CSRP-312, School of Cognitive and Computing Sciences, University of Sussex, Brighton, England,
February 1994. ftp://ftp.cogs.susx.ac.uk/pub/reports/csrp/csrp312.ps.Z.

