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Abstract. An image processing method is presented that enables an
efficient and robust separation of straight line-like structures from an
isotropic background texture. The algorithm is based on a transform se-
quence mapping both image components onto two nearly disjoint and
parameter invariant areas in the resulting transform domain. Applying a
linear notch filter to the transformed image enables us to ascertain for
each component of the discrete Fourier spectrum of the image, whether
it contributes more to the line-like structures or more to the background.
Based on this decision, the spectrum is split into two complementary and
disjoint spectra, the inverse Fourier transforms of which are taken as
estimates for both image components. In practical applications, the al-
gorithm behaves robustly with respect to its parameters as well as to the
assumptions made about the images. © 1998 Society of Photo-Optical Instru-
mentation Engineers. [S0091-3286(98)01410-X]
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1 Introduction

This paper describes an image processing method to s
rate randomly located straight line-like structures from
isotropic background texture. The lines are assumed to
tend across the entire image, and the isotropy of the b
ground means that the respective Fourier spectrum is
proximately symmetric with respect to rotation, so that
spatial average, the background does not contain pred
nant directional structures. Examples where these assu
tions are typically fulfilled are microscopic images of:

• technical and biological fiber structures

• toolmarks on machined surfaces

• particle traces in cloud or bubble chambers

• forensically relevant marks on firearm bullets and t
like.

The method presented was developed especially for
lyzing the surface texture of cylinders of combustion e
gines. Such surfaces are finished by honing—a machin
process that generates several sets of parallel, straight
chastically placed groove-shaped toolmarks. The entiret
the grooves constitutes a channel system that is respon
for retaining and distributing oil on the cylinder surfac
Longevity, running-in behavior, oil consumption, and no
ious emissions of the engine highly depend on the qua
of the surface texture consisting of the honing grooves
a background texture, which is defined to contain all dev
tions from an ideal groove texture. Since different qual
aspects are associated with the grooves and with the b
ground, for an automatic assessment it is very adva
geous to separate both components in a preprocessing
~see Fig. 8 in Section 4!. For details, see Refs. 1, 2, and

An obvious approach to accomplish the separation t
Opt. Eng. 37(10) 2733–2741 (October 1998) 0091-3286/98/$10.00
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would be, for example, to filter out the spectral compone
typical for line-like structures with heuristically defined lin
ear filters.4 In the simplest case, the transfer functions
such filters are constructed using elementary formed
gions as passbands and stop bands. This procedure y
good results, if the line-like structures are periodical a
therefore well concentrated in the Fourier domain. Ho
ever, if there are many lines at rather different angles, as
honed surfaces, the heuristic approach performs poo
The reason for this is that the union of all the regions to
suppressed in the Fourier domain occupies a large area
therefore many spectral components belonging to the ba
ground signal are also eliminated. In other words, the h
ristic method tends to be too generous in defining the s
band for the line-like structures. Moreover, if the angles
the lines are unknowna priori, it is necessary to measur
them to arrange an adequate transfer function based
heuristically found filter for line structures of one know
direction.5

The method presented in this paper enables a rob
adaptive separation of the two image components by
ploiting the spectral isotropy of the background and t
anisotropy of line-like structures. For each image, an in
vidual binary discrete Fourier transform~DFT! transfer
function is generated. The passbands and stop bands
defined by deciding whether a spectral component cont
utes more to the background or more to the line-like str
tures. The decision is based on filtering the magnitude
the DFT by means of a transform sequence that maps
signal components onto two nearly disjoint regions. T
transform sequence is inspired by a method used in Re
to suppress radial artifacts in positron emission tomog
phy. The geometrical constellation of the resulting regio
is essentially independent of the parameters of the line-
structures and the background. In particular, no meas
2733© 1998 Society of Photo-Optical Instrumentation Engineers
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Beyerer and Puente León: Adaptive separation of random lines and background
ment of line angles is necessary, and the passbands
stop bands of the transfer function are defined point-
point without arbitrariness. The adaptive definition of a
nary transfer function for each individual image can be
garded as an adaptive splitting of the DFT into tw
complementary spectra with disjoint support, where one
assigned to the background and the other to the line-
structures.

The theoretical foundations of our method are explain
in the next section. In Section 3, we discuss in detail h
the basic idea is turned into an image processing algorit
The performance of the separation method is demonstr
in Section 4 with several examples.

2 Signal Modeling

To explain the basic idea, a simple signal model, which
reduced to essential assumptions, is used. The separ
algorithm is designed for imagesg(x) consisting of ran-
domly placed straight line-like structures and an isotro
backgroundb(x). These two components may be com
bined additively or multiplicatively. Like in homomorphi
filtering,7 the multiplicative case can be transformed in
the additive case by taking the logarithm. To simplify t
following considerations, but without restricting the gene
ality, first only one single line embedded in a background
considered, and a continuous image signal of infinite ex
is assumed. The signal model is:

g~x!5l~xTn2d!1b~x!, ~1!

wherel~.! is the cross profile of the line,a is the line angle,
n5(cosa, sina)T is the normal vector of the line,p
5(2sina, cosa)T is a unit vector parallel to the line,x
5(x1 ,x2)TPR2 is the location vector, andd is the distance
between the line and the origin of thex1 ,x2-domain. See
Fig. 1, whereL andB are used to symbolize the correspo
dence of signal components to the line and to the ba
groundb(x), respectively.

The isotropy ofb(x) means that the magnitude of th
corresponding Fourier transform is symmetric with resp
to rotation, i.e.:

Fig. 1 Straight line embedded in an isotropic background.
2734 Optical Engineering, Vol. 37 No. 10, October 1998
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B~ f!5F $b~x!%

5E
2`

` E
2`

`

b~x! exp ~2 j2pfTx!dx

5B~ i fi !, ~2!

where ifi denotes the Euclidean norm of the spatial fr
quency vectorf5( f 1 , f 2)TPR2 andB(.) the radial profile
of B(f).

In the following, a transformation sequence is given th
maps the two components ofg(x) onto two almost disjoint
areas, the shapes and locations of which are approxima
independent ofd, a, l~.!, andB(.). This independence ca
be interpreted as an invariance property with respect to
mentioned quantities. The transformation sequence fo
the basis for the construction of the separation algorit
presented in this paper.

In the first step, the Fourier transform ofg(x) is taken8,9:

F $g~x!%5G~ f!

5L~ fTn!d~ fTp!

3exp ~2 j2pdfTn!1B~ i fi !, ~3!

with

L~h!5E
2`

`

l~j! exp ~2 j2phj!dj, hPR.

Since thed-function dominatesG(f) for fTp50 and is zero
elsewhere, the magnitude of Eq.~3! follows as:

uG~ f!u5uL~ fTn!ud~ fTp!1uB~ i fi !u. ~4!

The removal of the phase, which is the second proces
step, eliminates the dependence on the distanced. The re-
sult is illustrated in Fig. 2. The backgroundb(x) is trans-
formed into a rotationally symmetrical component cente
around the origin, andl(xTn2d) is concentrated on a
straight line with normal vectorp through the origin of the
f 1 , f 2-domain.

Fig. 2 Magnitude of F $g(x)%.
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Beyerer and Puente León: Adaptive separation of random lines and background
In the next step, polar coordinates are introduced:

f5r~cosw, sin w!T, ~5!

wherewP@0,p) is the angle of the spatial frequency vect
and rPR is the signed, radial frequency coordinate. D
to:

d~ fTp!5d@r~sin w cosa2cosw sin a!#

5d$r@sin ~w2a!#%5
d~w2a!

uru
,

rÞ0,

fTnu fTp505r~cosw cosa1sin w sin a!uw5a5r

and

uru5i fi

with respect to ther,w-coordinate system, Eq.~4! becomes

uG~r cosw,r sin w!u

5uL~r!u
d~w2a!

uru
1uB~ uru!u, rÞ0. ~6!

Figure 3 shows thatl(xTn2d) is mapped onto ad-line
parallel to ther-axis and the background gathers round
w-axis.

Now, Eq. ~6! is multiplied by uru and the Fourier trans
form with respect to~r,w! is taken:

F r,w@ urG~r cosw,r sin w!u#

5F r@ uL~r!u#F wF (
k52`

`

d~w2a2kp!G
1F r,w@ urB~ uru!u#

5F r@ uL~r!u#
1

p (
k52`

`

dS f w2
k

p D exp ~2 j2p f wa!

1F r@ urB~ uru!u#d~ f w!. ~7!

Fig. 3 Graph of uG(f)u in a polar coordinate system.
As the integration inF w@ # extends overwP(2`,`),
the periodicity due to the radial symmetry ofuG(f)u must
be considered in Eq.~7!. Figure 4 sketches the magnitud
of the result in thef r , f w-domain. The signal componen
l(xTn2d) mainly concentrates around thef w-axis, since
for a thin line, i.e., for a short profilel~.!, F r@ uL(r)u#
tends also to be of small extent with respect tof r . The
second term of Eq.~7! is equal to zero forf wÞ0, and thus
the background is mapped onto thef r-axis.

The main features of the transform sequence shown h
are that the intersection area of both signal componen
small, and that the constellation of their supports in t
f r , f w-domain does not depend on the distanced nor on the
anglea. Moreover, it is approximately independent of th
line profilel~.! and the profileB(.). It is easy to verify that
these advantages remain preserved, even if several
l i(x1 cosai1x2 sinai2di) with different individual loca-
tion parameters and profiles are present ing(x). Further
lines will be likewise mapped to verticald-lines in ther,w-
domain and therefore will be concentrated around
f w-axis in thef r , f w-domain; see also the examples in Se
tion 4. So far, thef r , f w-domain seems to be predestinat
for the task of separating straight line-like structures fro
an isotropic background without utilizing anya priori
knowledge concerning the line parameters. The invari
and almost disjoint manifestation of both image sign
components should enable us to extract or suppress on
them within thef r , f w-domain, and then to go back to th
x1 ,x2-domain to obtain the separation result. Unfort
nately, however, no inverse transform from th
f r , f w-domain back to thex1 ,x2-domain exists, because th
phase information has been suppressed in Eq.~4! to obtain
translation invariance.

To cope with this problem, the algorithm proposed
the next section suppresses signal components around
f w-axis and inverts the transform sequence only up to

~4!, resulting in a filtered versionuB(f )̂u of the magnitude

uG(f)u. By comparinguB(f )̂u and uG(f)u for each spatial
frequencyf, it can be decided whether the respective sp
tral componentG(f) contributes more to the background
more to the straight line-like structures of the imageg(x).

Fig. 4 Locations of background and straight line-like structures in
the fr ,fw-domain.
2735Optical Engineering, Vol. 37 No. 10, October 1998
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Fig. 5 Processing scheme for the separation of lines and background.
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This is used to split the complex spectrumG(f) into two
disjoint spectra, the inverse Fourier transforms of which
estimates for the background texture and the straight
structures.

3 Algorithm

At this point, a comprehensive explanation of the sig
processing algorithm used to separate lines and backgro
is given. While in the former section image data were
sumed to be continuous and of infinite extent, now the c
sequences of spatial sampling and restriction to a finite
tent have to be taken into account.10 However, although
small differences arise in how the data are treated, the b
considerations remain the same. Especially, the spatia
striction of the texture to a window corresponds to a co
volution of the Fourier transform of the window with th
Fourier transform of the texture. Thus, sharp structures
the frequency domain liked-functions are blurred.

We assume the discrete images to be quadratic wi
size of N3N pixels. The texture images throughout th
paper were digitized withN3N52563256 pixels, and 8
bit gray levels. The following equations describe the re
tionship between continuous and discrete position and
quency vectors:

x5~x,y!T5~ iDx, j Dy!T, ~8!

f5~ f x , f y!T5S k

NDx
,

l

NDyD T

. ~9!

Figures 5 and 6 show the structure of the proposed
nal processing method schematically. The 2-D DFTG(f)
of the discrete imageg(x) is computed by means of the fa
Fourier transform~FFT! algorithm.10 Then, the magnitude
uG(f)u is filtered by the procedure depicted in Fig. 6, whi
provides for a suppression of radial streaks.

3.1 Suppression of Radial Streaks

First, a rectangular to polar coordinate transform is p
formed. The values ofuG(r cosw,r sinw)u on the discrete
polar grid are calculated11 by linear interpolation ofuG(f)u.
This can be interpreted as samplinguG(f)u on a polar grid.

It is essential to consider the choice of a sufficien
dense sampling grid to avoid aliasing effects. According
2736 Optical Engineering, Vol. 37 No. 10, October 1998
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the sampling theorem of computer tomography,8 the inter-
val @0,p# must be sampled with at leastn angular stepsDw:

nª
p

Dw
>

p

&
WN, ~10!

whereW denotes the relative bandwidth ofg(x) with re-
spect to the spatial sampling rate (Dx)215(Dy)21. Since
sampling with the Nyquist rate implies choosingW51, n
>569 is obtained. However, the texture images inve

Fig. 6 Suppression of radial streaks.
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Beyerer and Puente León: Adaptive separation of random lines and background
gated in this work are oversampled withW'0.8 to 0.9. To
obtain an equivalent sampling forr, approximatelyn radial
steps are necessary. Therefore, for the number of angul
well as for the number of radial sampling steps,n5512 is
chosen.

In the discrete case, the weighturu21 of thed-function in
Eq. ~6! turns to a widening of the radial streaks ofuG(f)u
for small values ofr after the polar coordinate transform
and therefore there is no need for compensating it. Si
g(x) is bandlimited,uL~r!u usually decreases with increa
ing r ~see Fig. 3!. If this decay could be compensated, t
following Fourier transformF r,w@ # would concentrateL
optimally onto thef w-axis. However, to keep the algorithm
independent of the knowledge ofuL~r!u, its dynamics are
attenuated by applying a logarithm. Before this, the valu
is added to avoid the singularity of the logarithm at ze
~see Fig. 6!.

The suppression of the streaks is performed by a lin
filter in the f r , f w-domain. The definition of a suitable filte
mask is most crucial in the region around thef r , f w-origin,
because there the mappings of the lines and of the b
ground are heavily superposed~see Fig. 4!. Moreover, the
origin carries the mean value of the signal to be filter
This value is usually by far the highest one in t
f r , f w-domain. Due to the preprocessing by means of
log-function, the suppression of the component lying at
f r , f w-origin causes an attenuation of the whole signal a
inverting the logarithm. Therefore, the filter mask must
pass the component at the origin. The best results w
achieved by using the notch filter maskM ( f r , f w) shown in
Fig. 6. To reduce edge effects in ther,w-domain, the dis-
continuities of the notch filter are smoothed with a binom
low-pass filter.12 Choosing a simpler mask shape in t
neighborhood of thef r , f w-origin ~c52R, b590 deg!, as
proposed in Ref. 6, yielded unsatisfying results, beca
too many components belonging to the background w
also suppressed. Since the subtraction of 1 after the in
sion of the logarithm may lead to negative values, these
set to zero, if this occurs. After the transform back to re
angular coordinates,uB(f )̂u is obtained, which is an esti
mate of the magnitude of the background spectrum.

3.2 Spectral Decomposition

Subsequently, the ratiouG(f)u/uB(f )̂u is compared with a
thresholdgª& for each discrete frequency. If the rat
exceedsg, the corresponding spectral component is
signed to the line pattern, otherwise to the background
ture:

L̂~ f!5H G~ f! if uG~ f!u/uB~ f !̂u.g

0 otherwise
. ~11!

B̂~ f!5H G~ f! if uG~ f!u/uB~ f !̂u<g

0 otherwise
. ~12!

The parameter choice forg is derived from the follow-
ing fact: The Fourier transformG(f)5L(f)1B(f) at the
s

r

-

-

discrete frequencyf contributes more to the line texture,
the spectral power ofl (x) predominates, i.e., if the condi
tion:

uL~ f!u2

uB~ f!u2.1 ~13!

holds. With the arguments leading to Eq.~4!

uGu25uL1Bu25uLu21L* B1LB* 1uBu2'uLu21uBu2

~14!

follows, and withuB(f )̂u as an estimate ofuB(f)u we obtain:

uG~ f!u

uB~ f !̂u
'F uL~ f!1B~ f!u2

uB~ f!u2
G 1/2

'F11
uL~ f!u2

uB~ f!u2
G 1/2

. ~15!

Therefore, Eq.~13! is approximately equivalent to the pos
tulation:

uG~ f!u

uB~ f !̂u
.&. ~16!

These considerations enable to define the thresholdg theo-
retically, avoiding the need of making an empirical choic
Their validity was verified by means of optimization bas
on synthetic textures.2 Moreover, in practice this choice fo
g has proven to be very robust for a wide range of r
textures~see Section 4!.

As a result, the procedure delivers estimatesL̂(f) and

B̂(f) of the Fourier spectra of the line texture—denoted
l (x)—and of the backgroundb(x), respectively. Finally,

the estimatesl̂ (x) and b̂(x) of the line texture and of the
background are obtained by inverse DFT of the spec
L̂(f) and B̂(f).

Since G(f)5L̂(f)1B̂(f), and therefore alsog(x)

5 l̂ (x)1b̂(x) holds, the method implicitly assumes an a
ditive compositiong(x)5 l (x)1b(x) of the line texture

and the background. Thus, it is sufficient to computeL̂(f)
and its inverse DFTl̂ (x), and to estimate the backgroun
by using:

b̂~x!5g~x!2 l̂ ~x!. ~17!

If it is reasonable to assume thatl (x) andb(x) are com-
bined multiplicatively, the algorithm can be applied
log@g(x)#.

3.3 Remark

At this point, the question may arise if it is not possible
apply the suppression of radial streaks directly to the co
plex spectrum instead of applying it to its magnitude. T
answer is that the real and imaginary parts of the Fou
transform of line textures are heavily modulated. The rad
streaks corresponding to the straight line-like structu
look less compact—i.e., more interrupted—than the stre
in the magnitude of the spectrum. Thus, applying the tra
2737Optical Engineering, Vol. 37 No. 10, October 1998



Beyerer and Puente León: Adaptive separation of random lines and background

2738 Optical Engi
Fig. 7 Test picture: (a) original image; (b) uG(f)u; (c) log(uG(f)u11) in polar coordinates, reflected on

the w-axis (horizontal); (d) DFT of (c); (e) DFT21 of (d) 3M(fr ,fw); (f) magnitude L̂(f) of the line

spectrum; (g) magnitude B̂(f) of the background spectrum; (h) line texture l̂ (x); (i) background texture

b̂(x).
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form sequence to the Fourier transform of the text
would lead to a much lower concentration of the line info
mation in thef r , f w-domain.

4 Experimental Results

To obtain a proper choice for the parameter values of
notch filter maskM ( f r , f w), a minimization of the error
arising from the separation of lines and background w
performed. For that purpose, a synthetic test picture
composed by adding a hand-drawn line texture, and a b
ground texture@see Fig. 7~a!#. The minimization procedure
delivered the following optimal mask parameters:R52, c
58 ~both in pixels!, andb'20 deg.2 Of course, these pa
rameters depend on the texture under view, but the m
mum has proven to be fairly flat, and it shows very we
dependence on the parameters for their range of inte
Although R is chosen as small as possible, the compon
at the f r , f w-origin should remain unchanged. Since t
mask is smoothed with a 333 binomial low-pass,12 R52
is chosen.

Figure 7 shows the processing of the test picture with
intermediate results. The parameters used are:R52, c
58, and b520 deg. The comparison of Fig. 7~a! with
Figs. 7~h! and 7~i! demonstrates the high performance
neering, Vol. 37 No. 10, October 1998
-

t.
t

the proposed algorithm. In addition, Figs. 7~b! to 7~g! en-
able a comparison of the analogy between the theore
considerations discussed in Section 2, and the processin
a discrete signal.

To show the relevance of the separation method to p
tical inspection tasks, results obtained with real textures
presented. Note that the proposed algorithm behaves
robustly for a broad range of real textures, even if the
sumptions made in Section 2 are only partly fulfilled: in a
cases, the parameters of the notch filter mask were cho
exactly as in Fig. 7.

Figure 8 shows the result of separating grooves a
background for a honing texture. With Fig. 8~b! it can be
seen that in the background image objects and defect
honing surfaces are enhanced very efficiently. Especia
defects at groove edges, and groove interrupts, which
long to the background, are extracted accurately. In cont
to this, since the grooves contained in the groove ima
Fig. 8~c! are smooth along their course, this image can
used for the exact estimation of the parameters of in
vidual grooves. Based on both separation results, a me
was developed allowing a robust detection of defect
grooves.1

With the bullet area depicted in Fig. 9~a!, a forensic
application of the algorithm is demonstrated. Due to t
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Fig. 8 Honed surface: (a) original image, (b) background image, and (c) groove image.
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kinematics of the firing process, groove-shaped traces
generated by a firearm on the circumferential surface of
bullet. These grooves can be considered as a ‘‘fingerpri
of the gun and, consequently, they can be used for its id
tification. To match the images of two different bullets, t
groove information is used, whereas the background in
mation can be regarded as a disturbing component.
separation results show a clear discrimination between
disturbing component Fig. 9~b! and the signal of interes
Fig. 9~c!, so that by using this algorithm as a preprocess
tool, a higher robustness in a later automatic compari
step can be expected.

The next example is concerned with detection of defe
in fabrics. Figure 10~a! shows the original image of a fabri
containing several warp float defects. By means of
separation algorithm, the image can be decomposed
two different partial textures, namely the background
cluding the defects@Fig. 10~b!# and the ideal texture@Fig.
10~c!#. Since the background is clearly less complex th
the original texture, the detection of defects based on
image is comparatively easier. Note also that the separa
method performs very robustly, although the line-like stru
tures differ considerably from the assumptions made
Section 2.
e

-

n

In many biological applications, microscopic images
translucent objects acquired with back-lighting are to
examined. An example showing a detail of a fowl feathe
depicted in Fig. 11~a!. Since in such cases a multiplicativ
combination ofl (x) andb(x) must be assumed, the sep
ration algorithm is applied to log@g(x)#, and subsequently
an inversion of the logarithm is performed. Although,
before, some of the assumptions made in Section 2 are
fulfilled, the method behaves quite robustly. Especia
note that the subtle structures along the feather fibers h
been assigned to the background texture Fig. 11~b!,
whereas the lines in the complementary image Fig. 11~c!
look much more uniform.

5 Discussion

From a more abstract point of view, the method presen
can be interpreted as an optimal filter with respect to
specific constraint. LetT(f) be the transfer function of a
linear filter used to extractl (x) in an optimal way:

l̂ ~x!5DFT21@ L̂~ f!#5DFT21@T~ f!G~ f!#, ~18!
Fig. 9 Firearm bullet surface: (a) original image, (b) background image, and (c) groove image.
2739Optical Engineering, Vol. 37 No. 10, October 1998
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Fig. 10 Fabric: (a) original image, (b) background image, and (c) line image.

Fig. 11 Fowl feather: (a) original image, (b) background image, and (c) line image.
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if g(x)5 l (x)1b(x) is assumed. As optimization criterion
we choose the mean squared errore:

eª(
x

@ l ~x!2 l̂ ~x!#25(
f

uL~ f!2L̂~ f!u2, ~19!

which can be calculated either in the spatial domain or,
virtue of Parseval’s theorem,10 in the frequency domain
Using the second of these alternatives, we obtain:

e5(
f

uL2TGu25(
f

u~12T!L2TBu2. ~20!

Restricting T(f) to a binary transfer function which ca
take only the values 0 and 1, the error becomes

~21!

Obviously, the minimum of Eq.~21! is achieved for:
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T$0,1%~ f!5H 1 for uL~ f!u2.uB~ f!u2

0 otherwise
. ~22!

Thus, the optimal filter is equivalent to the spectral deco
position in Subsection 3.2.

One might object that the constraintT(f)P$0,1%;f
is too restrictive, and that one could get better results w
weaker or no constraints. For example, if we assu
T(f)PR;f, with the approximation of Eq.~14! and by us-
ing calculus, minimization ofe yields the optimal transfer
function

TR~ f!5
uL~ f!u2

uL~ f!u21uB~ f!u2
'

uL~ f!u2

uG~ f!u2
. ~23!

In practice, however, the first approach performs much b
ter with respect to the visual quality of the separation. O
reason might be that the human visual system applies q
ity criteria different from the mean squared error. A furth
explanation can be found in the dominant role the ph
information plays in image data.13 Because in the secon
approach the filter does not totally eliminate the phase
formation of spectral components which contribute more
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Beyerer and Puente León: Adaptive separation of random lines and background
the background texture, in DFT21@TR(f)G(f)# details of
the background are much stronger visible than
DFT21@T$0,1%(f)G(f)#.

To adapt both filter types to individual images, the su
pression of radial streaks is needed to reliably estim
uB(f)u2 and with Eq.~14! also uL(f)u2'uG(f)u22uB(f )̂u2.

6 Summary

In this paper, a signal processing algorithm enabling
separation of straight line-like structures from an isotro
background texture has been presented. The discrimina
between lines and background is enabled by a transf
sequence that maps both image components onto
nearly disjoint areas in the resulting transform domain.

After having introduced a suitable signal model, the u
derlying theoretical foundations of the method have be
discussed. Subsequently, a comprehensive descriptio
the algorithmic implementation has been given. Despite
differences arising due to the processing of discrete ima
the algorithm leads to fully satisfactory results.

To verify the usefulness of the proposed method, it h
been applied to several practically relevant real textures
all cases, the algorithm has proven to be a powerful prep
cessing tool within the analysis of textures containing lin
like structures. It behaves very robustly with respect to
parameters as well as to the assumptions made abou
images.

Finally, at a more abstract level, we have also sho
that the proposed method can be interpreted as an opt
filter with respect to a specific constraint.
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