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1 Introduction would be, for example, to filter out the spectral components

This paper describes an image processing method to Sepat_ypical for4|ine-|ike structures with heuristically defined lin-
rate randomly located straight line-like structures from an €@ filters. In the simplest case, the transfer functions of
isotropic background texture. The lines are assumed to ex-SUch filters are constructed using elementary formed re-
tend across the entire image, and the isotropy of the back-9i0NS as passbands and stop bands. This procedure yields
ground means that the respective Fourier spectrum is ap-gOOd results, if the line-like structures are penodlcal and
proximately symmetric with respect to rotation, so that on therefore well concentrated in the Fourier domain. How-
spatial average, the background does not contain predomi-ever' if there are many lines at rather different angles, as on

nant directional structures. Examples where these assump;rl‘_?]”ed surfa}ces,h.th.e T}euriﬁtic a}ppro?cn Eerforms poolgly.
tions are typically fulfilled are microscopic images of: e reason for this Is that the union of all the regions to be

suppressed in the Fourier domain occupies a large area, and
« technical and biological fiber structures therefore many spectral components belonging to the back-
ground signal are also eliminated. In other words, the heu-

* toolmarks on machined surfaces ristic method tends to be too generous in defining the stop

* particle traces in cloud or bubble chambers band for the line-like structures. Moreover, if the angles of
« forensically relevant marks on firearm bullets and the the lines are unknowa priori, it is necessary to measure
like. them to arrange an adequate transfer function based on a

heuristically found filter for line structures of one known

The method presented was developed especially for ana-direction®
lyzing the surface texture of cylinders of combustion en-  The method presented in this paper enables a robust,
gines. Such surfaces are finished by honing—a machiningadaptive separation of the two image components by ex-
process that generates several sets of parallel, straight, stoploiting the spectral isotropy of the background and the
chastically placed groove-shaped toolmarks. The entirety of anisotropy of line-like structures. For each image, an indi-
the grooves constitutes a channel system that is responsiblesidual binary discrete Fourier transfordDFT) transfer
for retaining and distributing oil on the cylinder surface. function is generated. The passbands and stop bands are
Longevity, running-in behavior, oil consumption, and nox- defined by deciding whether a spectral component contrib-
ious emissions of the engine highly depend on the quality utes more to the background or more to the line-like struc-
of the surface texture consisting of the honing grooves andtures. The decision is based on filtering the magnitude of
a background texture, which is defined to contain all devia- the DFT by means of a transform sequence that maps both
tions from an ideal groove texture. Since different quality signal components onto two nearly disjoint regions. This
aspects are associated with the grooves and with the backiransform sequence is inspired by a method used in Ref. 6
ground, for an automatic assessment it is very advanta-to suppress radial artifacts in positron emission tomogra-
geous to separate both components in a preprocessing stephy. The geometrical constellation of the resulting regions
(see Fig. 8 in Section)4For details, see Refs. 1, 2, and 3. is essentially independent of the parameters of the line-like

An obvious approach to accomplish the separation task structures and the background. In particular, no measure-
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Fig. 1 Straight line embedded in an isotropic background.

ment of line angles is necessary, and the passbands an
stop bands of the transfer function are defined point-by-
point without arbitrariness. The adaptive definition of a bi-
nary transfer function for each individual image can be re-
garded as an adaptive splitting of the DFT into two
complementary spectra with disjoint support, where one is
assigned to the background and the other to the line-like
structures.

The theoretical foundations of our method are explained
in the next section. In Section 3, we discuss in detail how
the basic idea is turned into an image processing algorithm.

The performance of the separation method is demonstrated

in Section 4 with several examples.

2 Signal Modeling
To explain the basic idea, a simple signal model, which is

reduced to essential assumptions, is used. The separatio

algorithm is designed for imageyx) consisting of ran-
domly placed straight line-like structures and an isotropic
backgroundb(x). These two components may be com-
bined additively or multiplicatively. Like in homomorphic
filtering,” the multiplicative case can be transformed into
the additive case by taking the logarithm. To simplify the
following considerations, but without restricting the gener-
ality, first only one single line embedded in a background is
considered, and a continuous image signal of infinite extent
is assumed. The signal model is:
g(x)=\(x"n—d)+b(x), D
where\(.) is the cross profile of the liney is the line angle,
n=(cosa, sina)" is the normal vector of the linep
=(—sina, cosa)" is a unit vector parallel to the line
=(X41,%,) " € R? is the location vector, and is the distance
between the line and the origin of thg,x,-domain. See
Fig. 1, wherelL andB are used to symbolize the correspon-
dence of signal components to the line and to the back-
groundb(x), respectively.

The isotropy ofb(x) means that the magnitude of the
corresponding Fourier transform is symmetric with respect
to rotation, i.e.:
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Fig. 2 Magnitude of .7{g(x)}.

FAb(X)}

f b(x) exp (—j2fTx)dx

=B([fl). 2
where |If|| denotes the Euclidean norm of the spatial fre-
quency vectoff=(f,,f,)TeR? andB(.) the radial profile
of B(f).
In the following, a transformation sequence is given that
maps the two components gfx) onto two almost disjoint
areas, the shapes and locations of which are approximately
independent ofl, «, \(.), andB(.). This independence can
be interpreted as an invariance property with respect to the
mentioned quantities. The transformation sequence forms
the basis for the construction of the separation algorithm
Rresented in this paper.

In the first step, the Fourier transformgfx) is taker¥"*:

T19(x)}=G(f)
=A(fTn)8(fTp)

X exp (—j2mwdf™n)+B(|f]), 3

with
A(ﬂ)=Jl7\(§) exp(—j2mné)ds, nek.

Since thes-function dominate&(f) for f'p=0 and is zero
elsewhere, the magnitude of E®) follows as:
|G(H)]=[A ()| 8(FTp) +[B(f])]- @)
The removal of the phase, which is the second processing
step, eliminates the dependence on the distancehe re-

sult is illustrated in Fig. 2. The backgroux{x) is trans-
formed into a rotationally symmetrical component centered
around the origin, and\(x'n—d) is concentrated on a
straight line with normal vectop through the origin of the
f1,f,-domain.
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Fig. 3 Graph of |G(f)| in a polar coordinate system.

In the next step, polar coordinates are introduced:

f=p(cose, sing)T,

wheree €[ 0,7) is the angle of the spatial frequency vector
andp e R is the signed, radial frequency coordinate. Due

to:
8(f'p)= 8] p(sin ¢ cosa—cos ¢ sin a)]

No—a
=5{p[sin<¢—a>]}=%,

p#0,
fTn|rp—o=p(COS @ COSa+sin ¢ sin a)|,_,=p

and

ol =IIfl

with respect to the,¢-coordinate system, E¢4) becomes

|G(p cos¢,p sin ¢)|

(¢
=|A(p)| —7— | +|B(|p|)| p#0.

(5

(6)

Figure 3 shows thak(x'n—d) is mapped onto a*line

parallel to thep-axis and the background gathers round the

@-axis.

Now, Eq.(6) is multiplied by|p| and the Fourier trans-

form with respect tdp,¢) is taken:

7 .[1pG(p cOS@,p sin ¢)|]

2 8(o—a—kir)

+7,.6LlpB(lpDI]
1 & k ,
=7 [|A(p)|] ;k;x 5(f¢—;) exp (—j2wf a)

+7,[1pB(lpD[15(f,).

(7)

As,

B

Fig. 4 Locations of background and straight line-like structures in
the f,,f,-domain.

As the integration in7 [ ] extends ovek e (—x,»),
the periodicity due to the radial symmetry [ (f)| must
be considered in E(7). Figure 4 sketches the magnitude
of the result in thef ,,f -domain. The signal component
A(x"n—d) mainly concentrates around thig-axis, since
for a thin line, i.e., for a short profila(.), .7 ,[|A(p)]
tends also to be of small extent with respectffo The
second term of Eq(7) is equal to zero fof ,#0, and thus
the background is mapped onto theaxis.

The main features of the transform sequence shown here
are that the intersection area of both signal components is
small, and that the constellation of their supports in the
f,.f,-domain does not depend on the distada®or on the
angle a. Moreover, it is approximately independent of the
line profile \(.) and the profileB(.). It is easy to verify that
these advantages remain preserved, even if several lines
\i(Xq cOsa;+X, sing;—d;) with different individual loca-
tion parameters and profiles are preseng(x). Further
lines will be likewise mapped to vertica@lines in thep,¢-
domain and therefore will be concentrated around the
f-axis in thef ,,f .-domain; see also the examples in Sec-
tion 4. So far, the‘p, »,~domain seems to be predestinated
for the task of separating straight line-like structures from
an isotropic background without utilizing ang priori
knowledge concerning the line parameters. The invariant
and almost disjoint manifestation of both image signal
components should enable us to extract or suppress one of
them within thef ,,f -domain, and then to go back to the
X1,X>-domain to obtain the separation result. Unfortu-
nately, however, no inverse transform from the

f,.f,-domain back to the; ,x,-domain exists, because the
phase information has been suppressed in(&qo obtain
translation invariance.

To cope with this problem, the algorithm proposed in
the next section suppresses signhal components around the
f,-axis and inverts the transform sequence only up to Eq.
(4), resulting in a filtered versioh?(?)l of the magnitude
|G(f)|. By comparing|B(f)| and |G(f)| for each spatial
frequencyf, it can be decided whether the respective spec-
tral componenG(f) contributes more to the background or
more to the straight line-like structures of the imag(&).
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Fig. 5 Processing scheme for the separation of lines and background.

This is used to split the complex spectru®{f) into two the sampling theorem of computer tomographise inter-
disjoint spectra, the inverse Fourier transforms of which are val [0,77] must be sampled with at leastangular stepa ¢:
estimates for the background texture and the straight line

structures.
=

n:= WN, (10)

SR

a
Ag
3 Algorithm
At this point, a comprehensive explanation of the signal WhereW denotes the relative bandwidth gfx) with re-
processing algorithm used to separate lines and backgroundpect to the spatial sampling ratax) ~'=(Ay)*. Since
is given. While in the former section image data were as- sampling with the Nyquist rate implies choosilg=1, n
sumed to be continuous and of infinite extent, now the con- =569 is obtained. However, the texture images investi-
sequences of spatial sampling and restriction to a finite ex-
tent have to be taken into accodfitHowever, although
small differences arise in how the data are treated, the basic

considerations remain the same. Especially, the spatial re-
striction of the texture to a window corresponds to a con- X .
volution of the Fourier transform of the window with the o
Fourier transform of the texture. Thus, sharp structures in IGUHI IBUOI
the frequency domain liké-functions are blurred. il t
We assume the discrete images to be quadratic with a Coordinate Coordinate
size of NXN pixels. The texture images throughout this Transform Transform
paper were digitized withNxX N=256x 256 pixels, and 8 %—»@ @}—-%
bit gray levels. The following equations describe the rela- . %
tionship between continuous and discrete position and fre-
guency vectors: /
x=(x,y)T=(iAx,jAy)T, tS) ¥
f=(f,,f )T: L I_)T (9) log(1+...) exp(...) —1
Xy NAx'NAy/
v t
Figures 5 and 6 show the structure of the proposed sig-
nal processing method schematically. The 2-D DE(¥) DFT —’?—’ DFT™!
of the discrete imagg(x) is computed by means of the fast
Fourier transform(FFT) algorithm!® Then, the magnitude A
|G(f)| is filtered by the procedure depicted in Fig. 6, which ;
provides for a suppression of radial streaks. 1
L 0
3.1 Suppression of Radial Streaks aN R
First, a rectangular to polar coordinate transform is per- c__7¢
formed. The values dfG(p cose,p sin ¢)| on the discrete |
polar grid are calculatédby linear interpolation ofG(f)|. :
This can be interpreted as samplif@(f)| on a polar grid. M(f,f )
It is essential to consider the choice of a sufficiently
dense sampling grid to avoid aliasing effects. According to Fig. 6 Suppression of radial streaks.
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gated in this work are oversampled witti=0.8 to 0.9. To
obtain an equivalent sampling fpr approximatelyn radial

discrete frequency contributes more to the line texture, if
the spectral power df(x) predominates, i.e., if the condi-

steps are necessary. Therefore, for the number of angular agon:

well as for the number of radial sampling steps; 512 is
chosen.

In the discrete case, the weidpt ! of the &-function in
Eg. (6) turns to a widening of the radial streaks |&(f)|
for small values ofp after the polar coordinate transform,

and therefore there is no need for compensating it. Since

g(x) is bandlimited,/A(p)| usually decreases with increas-
ing p (see Fig. 3. If this decay could be compensated, the
following Fourier transform”, ;[ ] would concentraté.
optimally onto thef ,-axis. However, to keep the algorithm
independent of the knowledge pk(p)|, its dynamics are
attenuated by applying a logarithm. Before this, the value 1
is added to avoid the singularity of the logarithm at zero
(see Fig. 6.

The suppression of the streaks is performed by a linear

filter in thefp ,f,-domain. The definition of a suitable filter

mask is most crucial in the region around thef -origin,

because there the mappings of the lines and of the back-

ground are heavily superposéske Fig. 4. Moreover, the
origin carries the mean value of the signal to be filtered.
This value is usually by far the highest one in the
f,.f,-domain. Due to the preprocessing by means of the
log-function, the suppression of the component lying at the
f,.f -origin causes an attenuation of the whole signal after
inverting the logarithm. Therefore, the filter mask must let

IL(HI?

BH2 !

13

holds. With the arguments leading to Ed)

|G|2=|L+B|2=|L|2+L*B+LB* +|B|>~|L|?+|B|?
(14)

follows, and with|B(f)| as an estimate 4B(f)| we obtain:

IG(H] [IL(H+ B(1‘)|T/z~ , “_(mzr/z s
|§(f\)| |B(f)|2 |B(f)|2 ’

Therefore, Eq(13) is approximately equivalent to the pos-
tulation:

[G(F)]
——>V2. (16)
1B(P)

These considerations enable to define the threshdido-
retically, avoiding the need of making an empirical choice.
Their validity was verified by means of optimization based
on synthetic texturesMoreover, in practice this choice for

pass the component at the origin. The best results werey has proven to be very robust for a wide range of real

achieved by using the notch filter malsk(f ,,f ) shown in
Fig. 6. To reduce edge effects in tlpgp-domain, the dis-
continuities of the notch filter are smoothed with a binomial
low-pass filte't? Choosing a simpler mask shape in the
neighborhood of thé ,,f -origin (c=2R, =90 deg, as

proposed in Ref. 6, yielded unsatisfying results, because

textures(see Section ¥
As a result, the procedure delivers estimait¢$) and

B(f) of the Fourier spectra of the line texture—denoted by
[(x)—and of the backgrountb(x), respectively. Finally,

the estimate$(x) andb(x) of the line texture and of the

too many components belonging to the background were lgackgroupd are obtained by inverse DFT of the spectra
also suppressed. Since the subtraction of 1 after the inver-L(f) andB(f).

sion of the logarithm may lead to negative values, these are

set to zero, if this occurs. After the transform back to rect-

angular coordinatedB(f)| is obtained, which is an esti-
mate of the magnitude of the background spectrum.

3.2 Spectral Decomposition

Subsequently, the rati¢13(f)|/|§(?)| is compared with a
threshold y:=v2 for each discrete frequency. If the ratio
exceedswy, the corresponding spectral component is as-
signed to the line pattern, otherwise to the background tex-
ture:

G(H) i B(H

L(f)=[ (f) if |G(f.)|/|B(f)|>y. an
0 otherwise

. G(f) if |G(H|/|B(H)|<

():’ i el B®I<y 1
0 otherwise

The parameter choice fay is derived from the follow-
ing fact: The Fourier transforn@(f)=L(f) +B(f) at the

Since G(f)=L(f)+B(f), and therefore alsog(x)
=1(x)+b(x) holds, the method implicitly assumes an ad-
ditive compositiong(x)=1(x)+b(x) of the line texture
and the background. Thus, it is sufficient to compﬂ(é)

and its inverse DFT(x), and to estimate the background
by using:

b(x)=g(x)—1(x). (17)

If it is reasonable to assume tH#ék) andb(x) are com-
bined multiplicatively, the algorithm can be applied to

log[g(x) ]

3.3 Remark

At this point, the question may arise if it is not possible to

apply the suppression of radial streaks directly to the com-
plex spectrum instead of applying it to its magnitude. The

answer is that the real and imaginary parts of the Fourier
transform of line textures are heavily modulated. The radial
streaks corresponding to the straight line-like structures
look less compact—i.e., more interrupted—than the streaks
in the magnitude of the spectrum. Thus, applying the trans-

Optical Engineering, Vol. 37 No. 10, October 1998 2737
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(9)

Fig. 7 Test picture: (a) original image; (b) |G(f)|; (c) log(|G(f)|+1) in polar coordinates, reflected on
the g-axis (horizontal); (d) DFT of (c); () DFT* of (d) xXM(f,,f,); (f) magnitude E(f) of the line
spectrum; (g) magnitude B(f) of the background spectrum; (h) line texture 7(x); (i) background texture
b(x).

form sequence to the Fourier transform of the texture the proposed algorithm. In addition, Figgbyto 7(g) en-
would lead to a much lower concentration of the line infor- able a comparison of the analogy between the theoretical

mation in thef ,,f -domain. considerations discussed in Section 2, and the processing of
. a discrete signal.
4 Experimental Results To show the relevance of the separation method to prac-

notch filter maskM(f,,f,), a minimization of the error presented. Note that the proposed algorithm behaves very
arising from the separation of lines and background was obustly for a broad range of real textures, even if the as-
performed. For that purpose, a synthetic test picture was Sumptions made in Section 2 are only partly fulfilled: in all
composed by adding a hand-drawn line texture, and a back-C2S€s the parameters of the notch filter mask were chosen
ground texturdsee Fig. 7a)]. The minimization procedure  €xactly as in Fig. 7. _
delivered the following optimal mask parameteRs= 2, ¢ Figure 8 shows the result of separating grooves and
=8 (both in pixel$, and 8~20 deg? Of course, these pa- backgrr?und fc;1r abhoEmg tegture. W|tth|g(l:3 It g%n fbe i
' ' S . . seen that in the background image objects and defects o
rameters depend on the texture under view, but the mini- : - ;
mum has prgven to be fairly flat, and it shows very weak honing surfaces are enhanced very efﬂmently. Espgmally,
dependence on the parameters for their range of interestdefeCtS at groove edges, and groove interrupts, which be-

Althouah R is ch I ble. th t1ong to the background, are extracted accurately. In contrast
ough v 1S chosen as small as possible, the CoOmponenty, ;s since the grooves contained in the groove image
at the f,,f -origin should remain unchanged. Since the Fig gc) are smooth along their course, this image can be

mask is smoothed with a>83 binomial low-pass? R=2 used for the exact estimation of the parameters of indi-

is chosen. _ ) . vidual grooves. Based on both separation results, a method
Figure 7 shows the processing of the test picture with all was developed allowing a robust detection of defective

intermediate results. The parameters used &e2, c grooves'

=8, and B=20 deg. The comparison of Fig.(&J with With the bullet area depicted in Fig.(d, a forensic

Figs. 7h) and 7i) demonstrates the high performance of application of the algorithm is demonstrated. Due to the

2738 Optical Engineering, Vol. 37 No. 10, October 1998
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Fig. 8 Honed surface: (a) original image, (b) background image, and (c) groove image.

kinematics of the firing process, groove-shaped traces are In many biological applications, microscopic images of
generated by a firearm on the circumferential surface of the translucent objects acquired with back-lighting are to be
bullet. These grooves can be considered as a “fingerprint” examined. An example showing a detail of a fowl feather is
of the gun and, consequently, they can be used for its iden-depicted in Fig. 1(a). Since in such cases a multiplicative
tification. To match the images of two different bullets, the combination ofl (x) andb(x) must be assumed, the sepa-
groqve information is used, Whereas the background infor- ration algorithm is applied to |om(x)], and subsequently
mation can be regarded as a disturbing component. Thean inversion of the logarithm is performed. Although, as
separation results show a clear discrimination between thepefore, some of the assumptions made in Section 2 are not
disturbing component Fig.(B) and the signal of interest  fulfilled, the method behaves quite robustly. Especially,
Fig. 9(c), so that by using this algorithm as a preprocessing note that the subtle structures along the feather fibers have
tool, a higher robustness in a later automatic comparisonpeen assigned to the background texture Fig(bjll

step can be expected_. ) ) whereas the lines in the complementary image Fidc)11
The next example is concerned with detection of defects |ook much more uniform.

in fabrics. Figure 1) shows the original image of a fabric

containing several warp float defects. By means of the

separation algorithm, the image can be decomposed into

two different partial textures, namely the background in- 5 Discussion

cluding the defect$Fig. 10b)] and the ideal texturgFig. . .
10(c)]. Since the background is clearly less complex than From a more abstract point of_wew,_the m_ethod presented
can be interpreted as an optimal filter with respect to a

the original texture, the detection of defects based on this o . .

image is comparatively easier. Note also that the separationSPECific constraint. LeT(f) be the transfer function of a
method performs very robustly, although the line-like struc- linear filter used to extrad{(x) in an optimal way:

tures differ considerably from the assumptions made in _ R

Section 2. [(x)=DFT YL(f)]=DFT YT(HG(H], (18

Fig. 9 Firearm bullet surface: (a) original image, (b) background image, and (c) groove image.

Optical Engineering, Vol. 37 No. 10, October 1998 2739
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Fig. 11 Fowl feather: (a) original image, (b)

if g(x)=1(x)+b(x) is assumed. As optimization criterion,
we choose the mean squared emor

2
3

e==§ [I(x)—l‘(x>12=2f IL(H)—L(f) (19

which can be calculated either in the spatial domain or, by
virtue of Parseval's theoref,in the frequency domain.
Using the second of these alternatives, we obtain:

e=§f‘, |L—TG|2:§f‘, (1-T)L-TB|% (20)

Restricting T(f) to a binary transfer function which can
take only the values 0 and 1, the error becomes

e=2, [((1=T)}L|>*~(1-T)T(L*B+LB*)+T?B|?]
f N —’
=0
=2 [A=DILP+7%3]]
(21
Obviously, the minimum of Eq(21) is achieved for:

2740 Optical Engineering, Vol. 37 No. 10, October 1998

background image, and (c) line image.

1 for [L(F)|?>>|B(f)|2

T f)= .
oy 0 otherwise

(22

Thus, the optimal filter is equivalent to the spectral decom-
position in Subsection 3.2.

One might object that the constraifi(f) e {0, Vf
is too restrictive, and that one could get better results with
weaker or no constraints. For example, if we assume
T(f) e RVf, with the approximation of Eq14) and by us-
ing calculus, minimization oé yields the optimal transfer
function

L L
= TP+ BHR ™ j6mP:

(23

In practice, however, the first approach performs much bet-
ter with respect to the visual quality of the separation. One
reason might be that the human visual system applies qual-
ity criteria different from the mean squared error. A further
explanation can be found in the dominant role the phase
information plays in image datd.Because in the second
approach the filter does not totally eliminate the phase in-
formation of spectral components which contribute more to
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the background texture, in DFT[T(f)G(f)] details of 4.
the background are much stronger visible than in
DFT [ T(0.4(f)G(f)].

To adapt both filter types to individual images, the sup-
pression of radial streaks is needed to reliably estimate 6.

|B(f)|2 and with Eq.(14) also|L(f)|2~|G(f)|2— |B(H)|2. 7

5

6 Summary 8.

In this paper, a signal processing algorithm enabling the 9.
separation of straight line-like structures from an isotropic
background texture has been presented. The discrimination
between lines and background is enabled by a transform11.
sequence that maps both image components onto two,,
nearly disjoint areas in the resulting transform domain.

After having introduced a suitable signal model, the un- 13.
derlying theoretical foundations of the method have been
discussed. Subsequently, a comprehensive description of
the algorithmic implementation has been given. Despite the
differences arising due to the processing of discrete images,
the algorithm leads to fully satisfactory results.

To verify the usefulness of the proposed method, it has
been applied to several practically relevant real textures. In
all cases, the algorithm has proven to be a powerful prepro-
cessing tool within the analysis of textures containing line-
like structures. It behaves very robustly with respect to its
parameters as well as to the assumptions made about th
images.

Finally, at a more abstract level, we have also shown
that the proposed method can be interpreted as an optima
filter with respect to a specific constraint.
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