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Abstract

One important objective in control theory is the identi�-
cation of nonlinear dynamic processes. Recently, neural
networks, which are well known as special types of ap-
proximators, have been used more and more as models
for nonlinear systems. In order to obtain best �tting
neural networks, in this paper a partitioning of the data
space is proposed which is speci�ed in particular by an
estimation of the lattice density for appropriate data se-
lection. This yields a strategy to diminish the dynamic
error between system and model. It can be accomplished
by adding well-suited process data for some detected sig-
ni�cant di�erences between the behaviour of the model
and the process.

1 Identi�cation of the static part of the

model

By introducing the time delay operator
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(10) can be written as
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The model is split into two components, the static non-
linearity f̂ (�; p) and its dynamic component
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h
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as can be seen from �gure 1. The model dynamics re-
sults from the feedback and the time delays. The tupels

�
xk; yk

�
with
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h
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(ŷk); T0;nu
(uk)

i
yk = yk+1
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and k = 1; : : : ; N , xk 2 <ne , ne = ny + nu + 2, yk 2 <
are built from measured data. N indicates the number
of tupels.

Figure 1: Nonlinear dynamic model which consists of a
nonlinear approximator and a dynamic component.

The model parameters are determined by minimising
the performance criterion

J =

NX
k=1

(yk � f̂ (xk; p))2 (3)

with regard to the vector p using nonlinear optimisation
methods [4]. Some classes of neural networks, e.g. mul-
tilayer perceptrons (MLP) [5], are appropriate types of
nonlinear approximators. The parameter vector contains
the weights and biases. These networks interpolate be-
tween the data points. The interpolation is called "gen-
eralisation" in neural network terms. Neural Networks



can be used to identify a process described by (9). Since
a dynamic model (10) is to be identi�ed, an optimisation
method [2] that considers the dynamics should be used.
However, the e�orts of using a method like this are con-
siderable because of slow convergence and high amount
of calculations needed for this kind of algorithm. Thus,
the static nonlinearity is approximated using process da-
ta (2). The dynamic model results by extending it with
the time delay component.

1.1 Selection of training data

N is any given number and xk 2 <ne is any given loca-
tion in the operating domain. In order to �nd a good
system approximation, proper values for N and proper
locations for xk have to be determined. Since N signi�es
a large number of measured data and one cannot expect
that xk is well distributed in the input domain <ne , the
problem to be solved is to determine a su�cient number
N1 � N of well-suited xk , which are �nally used for
the approximation. The static nonlinear mapping f̂

��; p�
describes a hypersurface in the domain with ne+1 dimen-
sions. In order to achieve good interpolation between the
data points of f (�), it is obviously that one has to avoid
large closed areas of the input domain where no xk are
found. Therefore the input domain is partitioned into hy-
percubes using a grid (see �gure 2 with ne = 2). Exactly
one pattern consisting of xk and the matching yk from
every cube is added to the set of training patterns.

Figure 2: Domain partitioning with two variables of the
input domain and one output variable.

The density of the lattice is derived by estimating the
maximal error which is made within a cube. The ne
axes of the input domain are equidistantly divided with
a lattice constant

�d = �dyk = � � � = �dyk�ny = �duk = � � � = �duk�nu :

(4)
Introducing the vector
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can be calculated at every ~I = I (~yk; ~uk) of the input
domain. It has to be assumed that f (�) is di�erentiable
in the whole operating domain. The tangent plane at
~I 2 <ne is given by

t = m
T�I (5)

with variable

�I =
�
�yk; : : : ;�yk�ny ;�uk; : : : ;�uk�nu

�T
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and the gradient vector
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Its norm

kmk = k [m1; : : : ;mne ]
T k =
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gives information about the slope of the tangent plane.
Assuming that kmk � Mmax holds in the operating do-
main of f (�), the estimation of the maximal error within
a hypercube is given by

k"yk = kmk k�Ik �Mmaxk�Ik
when linear interpolation based on the tangent surface
(5) is used. Let Mmaxk�Ik be less equal than a limit
"y;max > 0 that has to be speci�ed. With (4) we get

�I =
h
�dyk ; : : : ;�dyk�ny ;�duk; : : : ;�duk�nu

iT
;

(7)
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as an estimation for the necessary lattice constant �d.
Taking into account that the number of hypercubes grows
exponentially with decreasing �d , the worst-case- esti-
mation (8) of �d indicates an unnecessarily small lattice
constant. A more practical approach is to consider the
mean of the error in a hypercube. For those parts of the
input domain where the lattice is not su�ciently dense, it
is possible to change locally to a smaller lattice constant.
The mean error is computed by

k"yk = 1

H

HX
k=1

k"ykk =
1

H

HX
k=1

k"y (Ik) k



when the input domain is divided into H hypercubes.
With k"y (Ik) k = km (Ik) k k�Ik it follows k"y (Ik) k =
kmkk�Ik. kmk is the arithmetic mean of the norm of
all H gradient vectors in the operating domain. Since
k�Ik = k�Ik, it follows

�d =
"y;max

Mmax

p
ne

:

To �ll the hypercubes, process data (2) has to be
scanned in such a way that, �nally, there is one pat-
tern in every hypercube of the operating domain. Thus,
the training patterns are distributed evenly without gaps.
After minimising the performance criterion (3) the model
with the resulting parameters must hold the condition

km̂k =

@

@I
f̂ (I)

�����
~I

 �Mmax:

If there is no explicit information about Mmax;Mmax, it
has to be estimated. The tangent plane (5) motivates an
estimation model

t = mT
est�I:

The gradient vector mest is computed at every pattern
I in the operating domain using a least-squares-method.
To obtain a good estimation, only those patterns are used
which lie in the adjacent hypercubes. The calculation has
to be carried out with an appropriately small lattice con-
stant. The smaller it is, the better is the estimation.

Example 1: The process taken from [2] described by
the following di�erence equation

yk+1 =
ykyk�1(yk + 2:5)

1 + y2k + y2k�1
+ uk

is considered. The unforced system is to be identi�ed.
The operating domain for the output variable is chosen
to �1:0 � yk � 1:0 where it holds Mmax = 4:41 and
Mmax = 2:17. With the speci�cation of

"y;max = 0:05jymax � yminj

(8) yields �d � 0:04. The lattice constant is chosen to
�d = 0:04. An MLP with 30 neurons in one hidden layer
and the sigmoid function as activation function is used.
The training is carried out until the relative error sum of
squares

"rel =

P10000

k (yk � ŷk)
2P10000

k y2k

= 9:9 � 10�8

is reached. Starting from 729 evenly distributed initial
states, there is only one signi�cant divergence detected
between the behaviour of the model and the system. It
is the unstable equilibrium point [yk; yk�1] = [0:5; 0:5] of
the process. In contrast to the system, which stays in this

equilibrium point when no disturbances occur, the neu-
ral network leaves this point due to the remaining error
after minimisation. The MLP has the unstable equilib-
rium point [yk; yk�1] = [0:5057; 0:5057]. Further trials
with the same boundary conditions and lattice constants
�d = 0:25 and �d = 0:1 were carried out. In these
cases, considerably more initial states lead to signi�cant
divergences.

2 Introduction

Neural networks are applied more and more in control
theory [1]. They are used to approximate su�ciently well
continuous static nonlinearities [3]. Extending the static
nonlinearity with a dynamic component considering feed-
back and time delays, they can be employed to identify
nonlinear dynamic systems [2], in particular, for which
the mathematical model cannot be derived analytically.
Basically, the problem of selecting appropriate process
data has to be solved. Therefore, the domain which is
introduced by the input/output variables of the model
and their delays needs to be partitioned su�ciently. The
suitable density of the resulting lattice is evaluated and
the model parameters are determined. In case the model
does not satisfy all requirements, a procedure will be pre-
sented to improve the model behaviour. This is achieved
by extending the identi�cation data set with new relevant
process data. The result is an iterative procedure for re-
ducing the di�erences between the dynamic behaviour of
model and process.

3 The nonlinear dynamic process

It is assumed that a nonlinear dynamic SISO process is to
be identi�ed. The process is BIBO-stable in the consid-
ered operating domain. Thus, one can measure process
data where the functionality of the process according to
a di�erence equation of the form

yk+1 = f(yk; : : : ; yk�ny ; uk; : : : ; uk�nu) (9)

is found. The nonlinear mapping f(�) is unknown and as-
sumed to belong to the class of time-invariant, bounded,
continuous and di�erentiable operators. The number of
time delays which inuences the process output yk+1 is
indicated as ny (for the output which is fed back) and nu
(for the input variable uk). A model deduction is compul-
sory if system analysis and control synthesis based on a
model are to be accomplished by simulation. The model
is introduced with the following di�erence equation

ŷk+1 = f̂ (ŷk; : : : ; ŷk�ny; uk; : : : ; uk�nu; p): (10)

The vector p consists of the model parameters. They have
to be determined in such a way that (10) approximates
the input/output behaviour of (9) as well as possible.



4 The dynamic error of the model

After specifying the lattice constant, selecting the data
and minimising the criterion (3) until a remaining er-

ror, the nonlinearity f̂
��; p� is determined. The dynamic

model is set up with the feedback and the time delay el-
ements. When model and system start from the same
initial state h

T 0;ny
(yk); T0;nu

(uk)
i

and an input sequence (uk) is used, a dynamic error se-
quence results as follows:
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The objective is to reduce the absolute value of the
sequence elements "j ; j � k to a speci�ed limit. Since
the nonlinear mapping f (�) is not available, the analy-
sis and the improval of the dynamic model behaviour is
performed by using identi�cation data.

5 Analysis of the dynamic model and

measures of its improval

Concerning the model validation, model and system,
which are initialised with the same states, are fed with an
input sequence (uk). An output sequence of the model
(ŷk) results which is compared with the process sequence
(yk). In case the error between system output and model
output exceeds an unacceptable limit, either the model
has to be rejected or measures have to be taken to im-
prove the model behaviour.

To analyse the origin of the model error, the space
spanned by the ne input variables and the output variable
has to be considered. Applying the time delay operator
(1), the ne-dimensional domain vector

vk+1 =
�
T0;ny (yk); T0;nu(uk)

�

and its output yk+1 (for the system) as well as

v̂k+1 =
�
T0;ny (ŷk); T0;nu(uk)

�

and its output ŷk+1 (for the model) are built.
The approximation error cannot be reduced to zero,

therefore, the output of the system yk+1 and of the mod-
el ŷk+1 are in general di�erent. Due to dynamic error
backprogation as explained in section 4, it is not su�-
cient only to reduce the static approximation error.
A measure for good dynamic behaviour of the model is

derived from the di�erence between the domain vectors
of model and system

k�vk+1k = kvk+1 � v̂k+1k: (11)

A di�erence will be considered as signi�cant if it exceeds
a limit �vmin > 0

k�vk+1k > �vmin: (12)

From (yk) and (ŷk) a sequence (�vk) results. The dura-
tion of a coherent sequence of signi�cant di�erences

�vi; : : : ;�vi+m; k�vjk > �vmin; j = i; : : : ; i+m

and k�vjk � �vmin; j = i � 1; i+m + 1 (13)

is the period m from the appearance of the �rst k�vik >
�vmin until the last k�vi+mk > �vmin. Apart from con-
dition (12), a minimal duration kmin can be introduced,
so that errors with k�vjk > �vmin for a short coherent
sequence of signi�cant errors are not considered. A sig-
ni�cant error k�vk+1k > �vmin at sample k + 1 is the
result of approximation and interpolation errors of its
preceding model outputs for which (12) does not hold.
The approximation and interpolation properties of the
model for kp = kp;min > 0 preceding domain tupels has
to be improved. This is reached by adding new tupels
(vi; yi) ; i = 1; : : : ; Nadd to the training set. These have
to lie inside a hypersphere kvi�vjk � �vmin around the
vectors vj ; j = k � kp + 1; : : : ; k. The number of added
tupels Nadd has to be bounded so that no part of the in-
put domain is overemphasized. With the grid introduced
in section (1.1), only a maximal number of new tupels is
allowed for every hypercube. Using the vector vj, it is
guaranteed that tupels are only added in those parts of
the input domain where it is necessary. Therefore, the
number of learning patterns does not increase too much.
This is advantageous with regard to training time.
Further network training leads to a model with bet-

ter properties of approximation and interpolation. The
training with the extended pattern set does not take
too long, since one starts from an already trained net-
work. The procedure of generating the input vector se-
quences, examining the di�erences and, �nally, extending
the training set with new patterns can be accomplished
iteratively as shown in �gure 3. It is repeated until a
certain model quality is achieved. The following example



Figure 3: Flow chart of the iterative procedure.

illustrates the procedure.

Example 2: A continuous stirred tank reactor is to
be identi�ed. The inaccessible continuous time model [6]

_x =

��0:957 a12(x)
�0:323 a22(x)

�
x+

�
0

1:548

�
u

with

a12(x) =

�
b1(x)

�
eb(x2) � 6:568 � 10�15� : x2 6= 0

21:449 (0:279� x1) : x2 = 0

a22(x) = 0:468 a12(x)� 1:815

b1(x) =
1:05 � 1014 (0:279� x1)

x2
; b(x2) =

�34:289
1:05 + x2

represents the process. The coolant temperature is the
control variable u. Reactor temperature and concentra-
tion of the input ow in the tank are state variables. In
the following example, the model for the concentration is
built.
Intentionally, the initial training patterns are unevenly

distributed on the input domain to emphasise the e�ects
of the measures to improve the behaviour of the model.
The model is formulated with ny = 1 and nu = 1. The
nonlinear model with the neural network is described by

ŷk+1 = f̂
�
ŷk; ŷk�1; uk; uk�1; p

�
:

The operating intervals are [�0:1; 0:1] and [�0:5; 0:5] for
the control variable and the output variable respective-
ly. The axes are divided with �yk = �yk�1 = 0:02
and �uk = �uk�1 = 0:002. The number of neurons
in one hidden layer in the MLP is chosen to 25. The

standard sigmoid function is used as activation function.
Input/output data of the process starting from di�erent
initial states using 4 di�erent input sequences (uk) is mea-
sured. The initial training set consisting of 792 patterns
signi�es that the four-dimensional input domain is not
very dense. Apart from this, a set of about 4000 patterns
is built from process data. During the procedure, pat-
terns are taken from this data pool to extend the training
set. The minimal di�erence �vmin = 0:071 in the follow-
ing examination. A minimal period kmin is not speci�ed.
The error sum of squares SSEabs =

P
k(yk � ŷk)

2 =P
k(yk � f̂ (xk; p))2 and the relative error sum of squares

SSErel =

P
k(yk � ŷk)

2P
k y

2
k

=

P
k(yk � f̂(xk; p))2P

k y
2
k

are minimised by net training to SSEabs = 0:87 � 10�5
and SSErel = 1:3 �10�6 after 300 epochs. The validation
with an input sequence (uk), uk 2 [�0:1; 0:1] gives the
output of model and process as shown in �g. 4.
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Figure 4: Curves of system and model after 300 epochs
of training with 792 patterns. The lower plot shows the
di�erence kvk � v̂kk.

The dynamic error sum of squares

DSSEabs =
X
k

�
yk � f̂

��
T0;ny(ŷk); T0;nu(uk)

�
; p
��2

and the relative dynamic error sum of squares

DSSErel =
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�
; p
��2

P
k y

2
k

for this net are DSSEabs = 3:94 and DSSErel = 0:583.
After examining the sequence of di�erences of domain
vectors (vk); (v̂k) of system and model respectively, 4 sig-
ni�cant errors remain at k = 9; 68; 91; 193 (see �g. 4).
New data is added to the training set. The number

of patterns rises to 826 with kp = 3. For the di�erence



at k = 91 only one tupel ist added. In the data pool
no further tupels are available whose domain vectors lie
close to v88; v89; v90. A new training of 200 epochs is
performed until a similar error SSEabs = 1:03 � 10�5 and
relative error SSErel = 1:52 �10�6 is reached. This leads
to a model the output of which is presented in �gure 5.
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Figure 5: Curves of system and model after further 200
epochs with 826 patterns. The lower plot shows the dif-
ference kvk � v̂kk.

Comparing the output of model and process, the result
is a dynamic error DSSEabs = 1:912 and DSSErel =
0:283. Thus, a reduction of the dynamic error is achieved.
Only one signi�cant di�erence remains at the sample k =
91. No matching data was found in the data pool for the
kp = 3 precedings domain vectors v88; v89; v90. Note that
the extension with data which is located in relevant areas
leads to an improval, so that no di�erences occur anymore
for these tupels where new data is added (k = 9; 68; 193).

It has to be mentioned that this result cannot be
achieved only by continuing the training of the �rst net.
A further training of 300 epochs of this net, �nally,
yields SSEabs = 6:34 � 10�6 and SSErel = 9:3 � 10�7
that shows signi�cant di�erences at similar samples k =
14; 26; 68;91;194 (see �g. 6).

6 Conclusion

For the identi�cation of nonlinear dynamic systems with
neural networks, it is necessary to select appropriate pro-
cess data. Therefore, a method based on domain par-
titioning is proposed in this paper. The derived lattice
constant, which leads to a su�cient data density, may
imply high cost of computation. On the other hand, less
training data may lead to a large dynamic error. With the
proposed measures of extending the pattern set appropri-
ately, the dynamic error could be reduced noticeably. An
iterative procedure to improve the model behaviour was
applied to identify a continuous stirred tank reactor using
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Figure 6: Curves of system and model after 600 epochs
of training with 792 patterns. The lower plot shows the
di�erence kvk � v̂kk.

a multilayer perceptron as model.

References

[1] Hunt, K.J., Sbarboro, D.: "Neural Networks for
Control Systems - A Survey", Automatica, 28(6),
pp.1083-1112, 1992.

[2] Narendra, K. S., Parthasarathy, K.: "Identi�cation
and Control of Dynamical Systems Using Neural
Networks", IEEE Trans. on Neural Networks, 1(1),
pp. 4-27, March 1990.

[3] Hornik, K.: "Approximation capabilities of multi-
layer feedforward networks", Neural Networks, vol.
4, pp. 251-257, 1991.

[4] Press, W. H.: "Numerical Recipes in C", Cambridge
University Press, Second Edition, 1992.

[5] Rumelhart, D. E., McClelland, J. L.: "Parallel dis-
tributed processing", Volume 1&2, MIT Press, Cam-
bridge, 1986.

[6] F�ollinger, O.: "Nichtlineare Regelungssysteme I,II",
R.Oldenbourg, M�unchen , 7. Edition, 1993.


