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ABSTRACT

For many practical applications of speech recognition sys-
tems, it is desirable to have an estimate of con�dence for
each hypothesized word, i.e. to have an estimate of which
words of the output of the speech recognizer are likely to be
correct and which are not reliable. We describe the develop-
ment of the measure of con�dence tagger JANKA, which is
able to provide con�dence information for the words in the
output of the speech recognizer JANUS-3-SR. On a sponta-
neous german human-to-human database, JANKA achieves
a tagging accuracy of 90% at a baseline word accuracy of
82%.

1. INTRODUCTION

Current speech recognition systems are far from perfect.
Unfortunately, number and location of the errors in their
output is usually unknown. This information, however,
could be used in a number of applications. Examples for
such applications are word selection for unsupervised adap-
tation schemes like MLLR [1], automatic weighting of ad-
ditional, non-speech knowledge sources like lip-reading, or
aiding a NLP system towards generating repair dialogs in
case a semantically important word has a low con�dence.

In this work, we introduce the measure-of-con�dence
(MOC) tagger JANKA, which is aimed at providing a word
level estimate of con�dence to the recognition result of our
speech-to-speech translation system JANUS-3. Di�erent
knowledge sources are evaluated in terms of their ability
to predict whether a particular decoded word is correct or
wrong. The knowledge sources are combined into feature
vectors and classi�ed by a vector classi�er into tags for each
word of the hypothesis.

Consider the sentence "Mary loves her little child" and
the corresponding speech recognizer output "Eight Mary
loves her brittle child". Then, the desired output of a MOC
tagger would be "0.0, 1.0, 1.0, 1.0, 0.0, 1.0" where "0.0"
stands for a recognition error and "1.0" for a correctly rec-
ognized word.

The development of JANKA consisted of two parts: the
selection of appropriate knowledge sources and their extrac-
tion into numerical feature vectors, and the classi�cation of
these feature vectors into the classes 'recognition error' and
'correct'.

The selection of useful features is described in section 3, the
classi�er design is outlined in section 5, and experimental
results on spontaneous speech data are given in section 6.

2. DATABASE

For all described experiments we used the GSST database,
which has been collected simultaneously at four di�erent
sites under the VERBMOBIL2 project. It consists of
human-to-human spontaneous German dialogs in the ap-
pointment scheduling domain, i.e. two persons try to sched-
ule a meeting within the next month. The data is sampled
with 16 kHz at a resolution of 16 bit in a quiet o�ce envi-
ronment using a close-speaking microphone.
The database contains about 33 hours of speech and has a
bigram test set perplexity of around 54.

For the experiments described in this paper, 1251 addi-
tional utterances were collected at all four sites. None of the
speakers of this additional data was included in the main
database. Only the main database was used for the train-
ing of the acoustic models and the language models of the
recognizer. The additional data was divided into a training
set and a test set. Table 1 shows the composition of the
additional database used for training and evaluation of the
measure of con�dence classi�cator.

set speakers utterances words duration
(min)

Training 46 785 14906 101
Crossvalid. 6 134 3063 22
Test 20 332 5940 39

Total 72 1251 23909 162

Table 1. Database composition

3. FEATURE SELECTION FOR MEASURE OF
CONFIDENCE

The selection of features for MOC tagging can be divided
into two steps: 1) the search for a set of knowledge sources,
which should be as large as possible, and 2) the selection of
the relevant features out of this set.

3.1. De�ning a set of candidate features

We have been investigating the following set of nineteen
candidate features.

A-stabil, as proposed by Finke and Zeppenfeld [2] [3]. For
this feature, a number (typically 100) of alternative hy-
potheses with di�erent weighting between acoustic scores

2The VERBMOBIL project aims at the development of a
large speech-to-speech translation system and is funded by the
german ministry for science and technology (BMBF)



and language model scores is computed. Each of these hy-
potheses is aligned against the reference output of the rec-
ognizer, where the reference output is de�ned as the output
with the (assumedly) best weighting between acoustics and
language model. For each word of the reference output, the
number of times the same word occurs in the set of alter-
native hypotheses, normalized by the number of alternative
hypotheses, is taken as feature value. A-stabil-before is
the same feature, computed on the hypothesis before vocal
tract normalization.
LM-NGRAM (similar to [5][4]): the number of times a
backo� in the language model occurs.
LogAWE-end is the logarithm of the number of active �-
nal word states in the search, averaged over a three-frame
window around the last frame of the hypothesized word.
NScoreQ: the log-score of the word divided by the log a-
priori probability of the time segment TW .
N-active-leaf [4]: the average number of active �nal word
states in the search during the time segment TW , into which
the word was aligned by the search.
NScore: a normalized score similar to [4]: the log-score
of the word minus the log a-priori probability of the time
segment TW .
PronVar: 1 if the word is a pronounciation variant of the
main dictionary entry, otherwise 0.
Score-per-frame: the non-normalized acoustic score per
frame as given by the Viterbi decoder.
Duration: reciprocal of SpkRate
LogNPhones [5][4][3]: the log of the number of phones of
the word.
LogAWE-beg is the logarithm of the number of active �-
nal word states in the search, averaged over a three-frame
window around the �rst frame of the hypothesized word.
SNR: maximum SNR value within TW .
NFrames [5][3]: the length of TW in 10-millisecond-frames.
NDisuent: the number of surrounding non-word entities
(like breathing noise, coughing etc) to the left and to the
right of word W .
A-Entropy: the acoustic frame-wise entropy H =P
y2phoneSet

pylog(py) of the acoustic models, averaged over

the time segment TW .
SpkRate: speaking rate computed by the quotient of the
length of TW and the expected word length. The expected
word length is computed on the acoustic training set.
SNR-MinMax: the di�erence of the minimum and max-
imum signal-to-noise ratio (SNR) per frame within the in-
terval TW .
Log-train [5]: the log of the number of times the word was
observed in the training material.

3.2. Feature Selection

For each of the 14906 words of the training set, a 20-
dimensional feature vector is computed. The �rst 19 vector
components are described in section 3. The 20th vector
component is the correct / false tag as computed by align-
ing the hypothesis against the reference. It must be em-
phasized, that the term 'training set' is used with respect
to the MOC tagger and that neither the training nor the
crossvalidation data was included in the material used for
the acoustic or language model training of the actual recog-
nizer. The correlation matrix of this 20-dimensional feature
space was computed. The last row of the correlation matrix
gives the correlation of all features with the correct/false
tag. If the absolute value of this correlation coe�cient is

high, the corresponding feature can be regarded as 'good'.
Table 2 shows the correlation coe�cients with the c/f tag
for each of the 19 features under investigation.

Feature correlation
A-stabil 0.481
A-stabil-before 0.431
LM-NGRAM 0.278
LogAWE-end -0.213
NScoreQ -0.173
N-active-leafs -0.170
NScore -0.161
PronVar -0.113
Score-per-frame -0.106
Duration -0.102
LogNPhones 0.092
LogAWE-beg -0.068
SNR 0.065
NFrames 0.047
NDisuent -0.043
A-Entropy -0.029
SpkRate -0.014
SNR-MinMax 0.006
Log-train 0.005

Table 2. Correlation coe�cients to c/f tag

The correlation coe�cient is only meaningful in the case
of linear dependency between feature value and probability
of error. Therefore, before discarding the features with a
correlation coe�cient below a given threshold, we checked
all these features to test the assumption of linear depen-
dency. The SpkRate and A-Entropy features exhibited
a signi�cant, but non-linear dependency and were there-
fore included into the �nal feature set, whereas all other
features with a correlation coe�cient lower than 0.05 were
discarded. Figure 1 shows the error rate over SpkRate and
over T-active-Leaf.
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Figure 1. Error rate over feature value for feature T-active-
Leaf (right) and feature SpkRate (left)

When normalizing the acoustic scores with the alignment
of a phone recognizer (features NScore and NScoreQ, the
correlation coe�cient decreased by 10% relative, as com-
pared to normalizing with the a-priori frame probability.
This is in agreement with [4], who found that normalizing
with a-priori probabilities outperformed the normalization
with phone recognizer scores.

4. EVALUATING CONFIDENCE TAGGER

Di�erent methods for the evaluation of con�dence measur-
ing systems have been proposed [4] [3] [9]. However, the
best method for scoring depends on the application for the
con�dence tags. In this work, con�dence accuracy CA, de-
�ned as



CA =
Number of correctly assigned tags

total number of tags
(1)

is used.

Another measure, which can only be used for continu-
ously valued con�dence tags, is the plot of precision (PRC)
and recall (RCL) over decision threshold. PRC and RCL
are de�ned as

PRCX =
Number of correctly assigned tags for class X

Number of total tags for class X
(2)

RCLX =
Number of correctly assigned tags for class X

total number of elements in class X
(3)

where X 2 fcorrect; falseg.
A single metric for con�dence scores, which can be viewed

as normalized cross entropy, has been proposed by NIST as

S =

H(C) + p
P

correct

log(Pc) + (1� p)
P

incorrect

log(1� Pc)

H(C)
(4)

where Pc is the output of the MOC tagger for the a-
posteriori probability that word c has been correctly rec-
ognized. H(C) is the base entropy H(C) = �(p log p+(1�
p) log(1�p)) and p the a-priori probability that a hypothesis
word is correct.

5. COMPUTATION OF MEASURE OF
CONFIDENCE

The analysis of the properties of the input features showed
for most of the features a good linear correlation to the
probability of error. Therefore, we designed two classi�ers:
a linear classi�er based on a covariance matrix optimality
criterion, and a multilayer perceptron classi�er.

5.1. Linear classi�er approach

A one-dimensional linear classi�er was built in the follow-
ing way. First, all training patterns were divided into two
sets C and F , the �rst one containing all correctly recog-
nized words and the second one all incorrectly hypothesized
words. The total scatter matrix ST and the average within-
class scatter matrix SW were computed with

SW;c =
1

N

X

i2c

(~xi � ~�c)(~xi � ~�c)
T

(5)

SW;f =
1

N

X

i2f

(~xi � ~�f )(~xi � ~�f )
T

(6)

SW = p(c)SW;c + p(f)SW;f (7)

ST =
X

i

(~xi � ~�all)(~xi � ~�all)
T

(8)

With a linear transformation ~y = A~x the input feature
space X is transformed into a target feature space Y . This
transformation is chosen such that tr(S�1T SW ) in Y -space
is minimized, e.g. that while keeping the total scatter un-
changed, the within class scatter is minimized and hence
the class separability is increased. This technique is well
known as linear discriminant analysis [6].
For the two-class problem, the rank of the resulting trans-
formation matrix A is one, and the feature space Y is
one-dimensional. Therefore, the classi�cation problem in

the target feature space can be easily solved by choosing a
threshold T and deciding "Error" for Y < T and "Correct"
otherwise.

5.2. Neural net classi�er

The transformation based approach described in the previ-
ous section works well for linearly separable classes. How-
ever, on many data sets it does not yield satisfying results.
Therefore, a 3-layer neural network classi�er with sigmoidal
activation function units was trained, using a mean square
error function and standard backpropagation. Experiments
on the held-out data showed rapid convergence after about
100 iterations when using an update step after each train-
ing sample. Several di�erent topologies and layer sizes have
been evaluated. However, an extremely simple classi�er us-
ing shortcut connections and one single unit in the hidden
layer could not be signi�cantly outperformed by more com-
plex topologies. Therefore, we used this simple classi�er in
all our experiments.

6. EXPERIMENTAL

6.1. The JANUS-3 system

The speech-to-speech translation system JANUS-3 [7] is a
joint e�ort of the Interactive Systems Labs at Carnegie Mel-
lon University, Pittsburgh, and at the University of Karl-
sruhe, Germany.
The baseline speech recognition component of JANUS-
3 uses mixture-gaussian densities with a scalable amount
of parameter tying. For the experiments described, we
used 10000 decision-tree clustered context-dependent sub-
quinphones which shared 2500 codebooks. In the prepro-
cessing stage 13 mel-scale cepstral coe�cients were com-
puted with a frame rate of 10 ms. The cepstral coe�cients
along with their �rst and second order derivatives were
merged into a 39-dimensional input feature vector. This
39-dimensional input vector was reduced by linear discrim-
inant analysis (LDA [6]) to the �nal 32-dimensional input
stream. Training was done with Viterbi alignment. To
capture some of the e�ects of spontaneous speech, special-
ized noise nodels were included [10]. The decoder computes
word lattices with a multi-pass strategy. After the �rst
recognition pass, vocal tract normalization parameters [11]
are computed. The second recognition pass is then per-
formed with the vocal tract normalization estimated on the
�rst pass.
The JANUS-3 decoder achieved a word error rate of

13.2% in the 1996 VERBMOBIL evaluation. This was the
lowest error rate of the �ve participating institutions.
In the experiments described, the system that was used for
the required test of the 1996 VERBMOBIL evaluation was
evaluated.
The baseline con�dence accuracy on the MOC test set,
when tagging all words with 'correct', was 85.3%.

6.2. Results

The most useful features, judging by the correlation to the
error rate, appear to beA-stabil andA-stabil-before. To
exploit the performance of this two features and to compare
them against the other features, we built three di�erent
linear classi�ers. The results are summarized in table 3.
We compared the linear classi�er and the neural net clas-

si�er using shortcut connections and one single hidden unit.
To exploit the usefulness of contextual information for the
detection of errors, we added the feature vectors of the
neighbouring words in an additional experiment to the in-
put of the neural net, thereby increasing the dimensionality



Features CA BIN error reduction
baseline 85.3% -

AStabil+AStabil-before 88.3% 20.4%
all others 87.3% 13.6%
combined 89.3% 27.2%

Table 3. Performance of di�erent feature sets

of the feature space to 39. The results are summarized in
table 4.

Classi�er CA BIN error reduction S
baseline 85.3% - 0
linear 89.3% 27.2% -

neural net (NN) 89.7% 29.9% 0.377
NN with context 90.0% 32.0% 0.381

Table 4. Result of di�erent classi�ers

The result in terms of PRC and RCL are shown in �g-
ure 2. For a recall rate of 84%, i.e. 84% of the correctly
recognized words are spotted as such, a remarkable preci-
sion of more than 95% can be achieved. With such a high
precision, unsupervised adaptation can be used in a very
e�cient way.
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Figure 2. 'Correct' precision and recall over threshold

7. CONCLUSIONS

We have introduced the con�dence measure tagger JANKA,
which is based on a vector classi�er approach. With a set of
thirteen input features, use of contextual information and
a neural net classi�cator, JANKA achieves a tagging ac-
curacy of 90% on a di�cult human-to-human spontaneous
database.
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