
�
� �

�

�
� �

�
�
�

�
��

�

�
�

Institut f�ur

Angewandte

Mathematik

Universit�at Karlsruhe �TH�

D����	
 Karlsruhe

A Survey of PASCAL�XSC

and a Language Reference Supplement

on Dynamic and Flexible Arrays

Peter Januschke� Dietmar Ratz

F orschungsschwerpunkt

C omputerarithmetik�

I ntervallrechnung und

N umerische Algorithmen mit

E rgebnisveri�kation

x�

�x��k�

�x��k���

Bericht ������



Impressum

Herausgeber� Institut f�ur Angewandte Mathematik
Lehrstuhl Prof� Dr� Ulrich Kulisch
Universit�at Karlsruhe �TH�
D��	
�� Karlsruhe

Redaktion� Dr� Dietmar Ratz

Internet�Zugri�

Die Berichte sind in elektronischer Form erh�altlich �uber

ftp���iamk�����mathematik�uni�karlsruhe�de

im Verzeichnis� �pub�documents�reports

oder �uber die World Wide Web Seiten des Instituts

http���www�uni�karlsruhe�de�	iam

Autoren�Kontaktadresse

R�uckfragen zum Inhalt dieses Berichts bitte an

Dietmar Ratz
Institut f�ur Angewandte Mathematik
Universit�at Karlsruhe �TH�
D��	
�� Karlsruhe

E�Mail� Dietmar�Ratz
math�uni�karlsruhe�de



A Survey of PASCAL�XSC

and a Language Reference Supplement

on Dynamic and Flexible Arrays

Peter Januschke� Dietmar Ratz

Contents

� Introduction �

� The Language PASCAL�XSC �
��
 Standard Data Types� Prede�ned Operators� and Functions � � � � � � 	
��� The General Operator Concept � � � � � � � � � � � � � � � � � � � � � � �
��� Overloading of Subroutines � � � � � � � � � � � � � � � � � � � � � � � � � 


��� The Module Concept � � � � � � � � � � � � � � � � � � � � � � � � � � � � 
�
��� Dynamic Arrays � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 
�
��	 Flexible Arrays � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 
�
��� Accurate Expressions � � � � � � � � � � � � � � � � � � � � � � � � � � � � 
�
��� The String Concept � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 
�
��� Standard Modules � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
��
� Problem�Solving Routines � � � � � � � � � � � � � � � � � � � � � � � � � �


� The Implementation of PASCAL�XSC ��
��
 Di�erent Real Arithmetics � � � � � � � � � � � � � � � � � � � � � � � � � ��
��� The PASCAL�XSC Development System � � � � � � � � � � � � � � � � � ��
��� The Current State of Implementation � � � � � � � � � � � � � � � � � � � ��

� PASCAL�XSC Sample Programs ��
��
 Interval Newton Method � � � � � � � � � � � � � � � � � � � � � � � � � � ��
��� Runge�Kutta Method � � � � � � � � � � � � � � � � � � � � � � � � � � � � �	
��� Trace of a Product Matrix � � � � � � � � � � � � � � � � � � � � � � � � � ��
��� Veri�ed Solution of a Linear System of Equations � � � � � � � � � � � � ��

A Review of �	Expressions ��
A�
 Real and Complex ��Expressions � � � � � � � � � � � � � � � � � � � � � ��
A�� Real and Complex Interval ��Expressions � � � � � � � � � � � � � � � � ��

B Dynamic and Flexible Arrays � A Language Reference Supplement ��
B�
 Dynamic Arrays � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
B�� Flexible Arrays � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

References �




� Peter Januschke� Dietmar Ratz

Zusammenfassung

Ein PASCAL�XSC��Uberblick und eine Sprachbeschreibungs�Erg�anzung� PASCAL�XSC
ist eine universelle Programmiersprache� die au�erdem speziell die Implementierung von hochentwick�
elten numerischen Algorithmen unterst�utzt� Das PASCAL�XSC System hat den Vorteil der Porta�
bilit�at auf verschiedenen Plattformen �Personal Computer� Workstations� Gro�rechner und Super�
computer	 durch einen portablen Compiler� der nach ANSI�C �ubersetzt�

Mittels der mathematischen Module von PASCAL�XSC k�onnen numerische Algorithmen� die
hochgenaue und automatisch veri
zierte Ergebnisse liefern� sehr leicht programmiert werden�
PASCAL�XSC vereinfacht das Design von Programmmen in den Ingenieurwissenschaften und
im wissenschaftlichen Rechnen durch modulare Programmstruktur� benutzerde
nierte Operatoren�
�Uberladen von Funktionen� Prozeduren und Operatoren� Funktionen und Operatoren mit allgemeinem
Ergebnistyp und dynamische Felder� Arithmetische Standard Module f�ur zus�atzliche numerische Da�
tentypen �inclusive Operatoren und Standardfunktions von hoher Genauigkeit	 und die exakte Aus�
drucksauswertungn stellen die wichtigsten numerischen Tools dar�

In PASCAL�XSC geschriebene Programme sind leicht lesbar� da alle Operationen� auch die in
h�oheren mathematischen R�aumen� als Operatoren realisiert sind und in der �ublichen mathematischen
Notation verwendet werden k�onnen�

In aktuellen Compiler�Versionen von PASCAL�XSC wurde das Konzept der dynamischen Felder
betr�achtlich erweitert� Ein Benutzer kann nun dynamische Felder mehrfach und mit unterschiedlicher
Gr�o�e zur Laufzeit seines Programmes allokieren� Dar�uberhinaus k�onnen dynamische Felder auch als
Komponenten anderer PASCAL Strukturen wie Records und statische Felder vereinbart werden�

Abstract

A Survey of PASCAL�XSC and a Language Reference Supplement� PASCAL�XSC is
a general purpose programming language which provides special support for the implementation of
sophisticated numerical algorithms� The new PASCAL�XSC system has the advantage of being
portable across many platforms and is available for personal computers� workstations� mainframes
and supercomputers by means of a portable compiler which translates to ANSI�C language�

By using the mathematical modules of PASCAL�XSC� numerical algorithms which deliver highly
accurate and automatically veri
ed results can be programmed easily� PASCAL�XSC simpli
es the
design of programs in engineering and scienti
c computation by modular program structure� user�
de
ned operators� overloading of functions� procedures� and operators� functions and operators with
arbitrary result type and dynamic arrays� Arithmetic standard modules for additional numerical
data types including operators and standard functions of high accuracy and the exact evaluation of
expressions provide the main numerical tools�

Programs written in PASCAL�XSC are easily readable since all operations� even those in the
higher mathematical spaces� have been realized as operators and can be used in conventional mathe�
matical notation�

In current compiler versions of PASCAL�XSC� the concept of dynamic arrays has been signif�
icantly extended� A user is now able to allocate a dynamic array variable several times and with
di�erent size during the execution of his or her program� Moreover� dynamic arrays may now be
declared as components of other PASCAL structures such as records or static arrays�

� Introduction

In the last decades continuous e�orts have been made to enhance the power of program�
ming languages� New powerful languages have been designed� and the enhancement
of existing languages such as Fortran is in constant progress� However� since many



A Survey of PASCAL�XSC and a Language Reference Supplement �

of these languages still lack a precise de�nition of their arithmetic� the same program
may produce di�erent results on di�erent processors�

These days� the elementary arithmetic operations of electronic computers are usu�
ally �oating�point operations of highest accuracy� In particular� this means that for
any choice of operands� the computed result is the rounded exact result of the opera�
tion with just one �nal rounding applied� See the IEEE Arithmetic Standard ��� as an
example� This arithmetic standard also requires the four basic arithmetic operations
���� �� and � with directed roundings� A large number of processors already provide
these operations� but only few programming languages allows easy access to them�

On the other hand� there has been a noticeable shift in scienti�c computation
from general purpose computers to vector and parallel computers� These so�called
supercomputers provide additional arithmetic operations such as �multiply and add��
�accumulate� or �multiply and accumulate� �see �

��� These hardware operations
should always deliver a result of highest accuracy� but as of yet� no processor which
ful�lls this requirement is available� In some cases� the results of numerical algorithms
computed on vector computers are totally di�erent from the results computed on the
same processor in scalar mode �see �
���������

PASCAL�XSC is the result of a long�term venture by a team of scientists to pro�
duce a powerful tool for solving scienti�c problems� The mathematical de�nition of the
arithmetic is an intrinsic part of the language� including optimal arithmetic operations
with directed roundings which are directly accessible in the language� Further arith�
metic operations for intervals and complex numbers and even vector�matrix operations
provided by precompiled arithmetic modules are de�ned with maximum accuracy ac�
cording to the rules of semimorphism �see ������

The development of PASCAL�XSC programs is supported by the PASCAL�XSC
development system ��� consisting of the PASCAL�XSC compiler ��� and the
PASCAL�XSC runtime system �
�� which are both written in ANSI C ���� Instead
of implementing a large variety of �native code generators� for di�erent processor and
operating systems� the PASCAL�XSC system compiles a given PASCAL�XSC source
code into C code which is passed to a C compiler� Finally� the resulting object code
and the routines of the PASCAL�XSC runtime system are linked together� Because of
the wide distribution of C compilers� the PASCAL�XSC system is available on many
computers �see section ����� Both the PASCAL�XSC source code and the generated
C code are portable�

From the point of view of mathematics� it is of fundamental importance that results
of implemented algorithms are reproducible in spite of di�erent computing facilities�
Unfortunately� the arithmetical capabilities of computer systems are quite di�erent con�
cerning the representation of �oating�point numbers and the way arithmetic operations
are processed� Therefore� a common accurate arithmetical basis must be supported by
a programming language� The PASCAL�XSC runtime system comprises a complete
set of routines which is based on the IEEE ��� binary �oating�point arithmetic stan�
dard ���� All arithmetic operations are implemented in software and do not depend on
the actual operations of the processor in use nor on the C runtime system� To achieve
better performance� the runtime system can be con�gured in such a way that it adapts
to the arithmetic hardware unit of the processor in use�



	 Peter Januschke� Dietmar Ratz

� The Language PASCAL�XSC

PASCAL�XSC is an eXtension of the programming language PASCAL for Scienti�c
Computation� containing the following features�

� Standard PASCAL

� Universal operator concept �user�de�ned operators�

� Functions and Operators with arbitrary result type

� Overloading of procedures� functions and operators

� Overloading of assignment operator

� Overloading of the I�O �routines read and write

� Module concept

� Dynamic arrays

� Access to subarrays

� String concept

� Controlled rounding

� Optimal �exact� scalar product

� Standard type dotprecision �a �xed�point format covering the whole range of
�oating�point products�

� Additional arithmetic standard types such as complex� interval� etc�

� Highly accurate arithmetic for all standard types

� Highly accurate standard functions

� Exact evaluation of expressions ���expressions�

A complete description of the language PASCAL�XSC and the arithmetic modules as
well as a collection of sample programs is given in ��
� and ����� A short survey of the
language features is given in the following sections� Moreover� the extended concept of
dynamic and �exible arrays contained in current versions �Version ��� and higher� of
PASCAL�XSC is described in detail in Appendix B�

�	� Standard Data Types� Prede�ned Operators� and Func

tions

In addition to the integer and real data types of standard PASCAL� the following
numerical data types are available in PASCAL�XSC�

complex interval cinterval
rvector cvector ivector civector
rmatrix cmatrix imatrix cimatrix



A Survey of PASCAL�XSC and a Language Reference Supplement �

where the pre�x letters r� i� and c are abbreviations for real� interval� and complex� So
cinterval means complex interval and� for example� cimatrix denotes complex interval
matrices� whereas rvector speci�es real vectors� The vector and matrix types are
de�ned as dynamic arrays and can be used with arbitrary index ranges�

A large number of operators are prede�ned for these types in the arithmetic modules
of PASCAL�XSC �see section ����� All of these operators deliver results with maximum
accuracy�

Compared to standard PASCAL� there are 

 new operator symbols� These are the
operators �� and ��� � � f���� �� �g for operations with downwardly and upwardly
directed rounding and the operators ������ �� needed in interval computations for
the intersection� the convex hull� and the disconnectivity test�

Q
Q
Q
Q
QQ

left

operand

right

operand
integer
real

complex

interval
cinterval

rvector
cvector

ivector
civector

rmatrix
cmatrix

imatrix
cimatrix

monadic
�� ��� ��� ��� ��� ��� ���

integer
real

complex

��������

��������
�� ��� ���

�� ��� ���
��

���� �� ��
��

�� ��� �� � �� ��� �� �

interval
cinterval

���� �� ��
��

���� �� ��
��� ��

� � � �

rvector
cvector

�� ��� ���
�� ��� ��

�� �

��
��������
��������

�� ��� ���
��

��
���� ��

��

ivector
civector

�� � �� �

��
���� ��

��

��
���� ��
��� ��

rmatrix
cmatrix

�� ��� ���
�� ��� ��

�� � �� ��� �� �

��
��������

��������
�� ��� ���

��

��
���� ��

��

imatrix
cimatrix

�� � �� � � �

��
���� ��

��

��
���� ��
��� ��

�� The operators of this row are monadic �i�e� there is no left operand��
�� � denotes the scalar or matrix product�

�� 
 Interval hull

�� 
 Interval intersection

Table 
� Prede�ned Arithmetic Operators



� Peter Januschke� Dietmar Ratz

Tables 
 and � show all prede�ned arithmetic and relational operators in connection
with the possible combinations of operand types�

Q
Q
Q
Q
QQ

left

operand

right

operand
integer
real

complex

interval
cinterval

rvector
cvector

ivector
civector

rmatrix
cmatrix

imatrix
cimatrix

integer
real

complex

�� ���
��� ��
��� �

in

�� ��

interval
cinterval

�� ��

��
in� ���
�� ���
��� ��
��� �

rvector
cvector

�� ���
��� ��
��� �

in

�� ��

ivector
civector

�� ��

��
in� ���

�� ���
��� ��
��� �

rmatrix
cmatrix

�� ���
��� ��
��� �

in

�� ��

imatrix
cimatrix

�� ��

��
in� ���

�� ���
��� ��
��� �

�� The operators �� and � denote the �subset� relations�
�� and � denote the �superset� relations�

�� 
 Test of disconnectivity for intervals

in 

Test of membership of a point in an interval or test on
strict enclosure of an interval in the interior of an interval

Table �� Prede�ned Relational Operators

Compared with standard PASCAL� PASCAL�XSC provides an extended set of math�
ematical standard functions �see table ��� These functions are available for the types
real� complex� interval� and cinterval with a generic name and deliver a result of max�
imum accuracy� The functions for the types complex� interval� and cinterval are pro�
vided in the arithmetic modules of PASCAL�XSC�



A Survey of PASCAL�XSC and a Language Reference Supplement �

Function Generic Name

� Absolute Value abs

	 Arc Cosine arccos

� Arc Cotangent arccot

� Inverse Hyperbolic Cosine arcosh

� Inverse Hyperbolic Cotangent arcoth

� Arc Sine arcsin

� Arc Tangent arctan


 Inverse Hyperbolic Sine arsinh

� Inverse Hyperbolic Tangent artanh

�� Cosine cos

�� Cotangent cot

�	 Hyperbolic Cosine cosh

�� Hyperbolic Cotangent coth

�� Exponential Function exp

�� Power Function �Base 	� exp	

�� Power Function �Base ��� exp��

�� Natural Logarithm �Base e� ln

�
 Logarithm �Base 	� log	

�� Logarithm �Base ��� log��

	� Sine sin

	� Hyperbolic Sine sinh

		 Square sqr

	� Square Root sqrt

	� Tangent tan

	� Hyperbolic Tangent tanh

Table �� Prede�ned Mathematical Functions for the types
integer� real� complex� interval� and cinterval

Besides the mathematical standard functions� PASCAL�XSC provides the necessary
type transfer functions intval� inf� sup� compl� re� and im for conversion between the
numerical data types �for scalar and array types��

�	� The General Operator Concept

By a simple example of interval addition� the advantages of a general operator concept
are demonstrated� In the absence of user�de�ned operators� there are two ways to




� Peter Januschke� Dietmar Ratz

implement the addition of two variables of type interval declared by

type interval � record inf� sup� real� end�

One can use a procedure declaration �operators with directed rounding such as � �
and � � are not available in standard PASCAL�

procedure intadd �a� b� interval� var c� interval��
begin
c�inf �� a�inf 	
 b�inf�
c�sup �� a�sup 	� b�sup
end�

mathematical notation corresponding program statements

z �� a� b � c � d
intadd�a�b�z� 
intadd�z�c�z� 
intadd�z�d�z� 

or a function declaration �only possible in PASCAL�XSC� not in standard PASCAL�

function intadd �a� b� interval�� interval�
begin
intadd�inf �� a�inf 	
 b�inf�
intadd�sup �� a�sup 	� b�sup

end�

mathematical notation corresponding program statement

z �� a� b � c � d z �� intadd�intadd�intadd�a�b��c��d� 

In both cases the transcription of the mathematical formula looks rather complicated�
By comparison� if one implements an operator in PASCAL�XSC �

operator 	 �a� b� interval� intadd� interval�
begin
intadd�inf �� a�inf 	
 b�inf�
intadd�sup �� a�sup 	� b�sup
end�

mathematical notation corresponding program statement

z �� a� b � c � d z �� a � b � c � d 

then multiple addition of intervals is described in the traditional mathematical nota�
tion� Besides the possibility of overloading operator symbols� one is allowed to use
named operators� The declaration of such operators must be preceded by a priority
declaration� There exist four di�erent levels of priority� each represented by its own
symbol�

� monadic � � level � �highest priority�
� multiplicative � � level �
� additive � � level 

� relational � � level �



A Survey of PASCAL�XSC and a Language Reference Supplement 



For example� an operator for the calculation of the binomial coe!cient
�
n
k

�
may be

de�ned in the following manner�

priority choose � �� � priority declaration �

operator choose �n� k� integer� binomial� integer�
var i� r � integer�
begin
if k � n div 
 then k �� n � k�
r �� ��
for i �� � to k do
r �� r � �n � i 	 �� div i�

binomial �� r�
end�

mathematical notation corresponding program statement

c ��
�
n
k

�
c �� n choose k

The operator concept realized in PASCAL�XSC o�ers the possibilities of

� de�ning an arbitrary number of operators

� overloading operator symbols or operator names arbitrarily many times

� implementing recursively de�ned operators

Also� PASCAL�XSC o�ers the possibility of overloading the assignment operator ��
to allow a natural notation for assignments�

Example�

var
c � complex�
r � real�

���

operator �� �var c� complex� r� real��
begin
c�re �� r�
c�im �� ��

end�

���

r �� ����
c �� r� � complex number with real part ��� and imaginary part � �

�	� Overloading of Subroutines

Standard PASCAL provides the mathematical standard functions

sin� cos� arctan� exp� ln� sqr� and sqrt




� Peter Januschke� Dietmar Ratz

for numbers of type real only� In order to implement the sine function for interval
arguments� a new function name like isin�� � �� must be used because overloading of the
standard function name sin is not allowed in standard PASCAL�

In contrast� PASCAL�XSC allows overloading of function and procedure names�
whereby a generic symbol concept is introduced into the language� So the symbols

sin� cos� arctan� exp� ln� sqr� and sqrt

can be used not only for arguments of type real� but also for intervals� complex numbers�
and other types� To distinguish between overloaded functions or procedures with the
same name� the number and type of their arguments is used� similar to the method for
operators� The type of the result� however� is not used�

Example�

procedure rotate �var a� b� real��
procedure rotate �var a� b� c� complex��
procedure rotate �var a� b� c� interval��

The overloading concept also applies to the standard procedures read and write in a
slightly modi�ed way� The �rst parameter of a newly declared input�output procedure
must be a var�parameter of a �le type and the second parameter represents the quan�
tity that is to be input or output� All further parameters are interpreted as format
speci�cations�

Example�

procedure write �var f� text� c� complex� w� integer��
begin

write �f� ���� c�re � w� ���� c�im � w� �����
end�

When calling an overloaded input�output procedure� the �le parameter may be omitted
which corresponds to a call with one of the standard �les input or output� The format
parameters must be introduced and separated by colons� Moreover� several input
or output statements can be combined into a single statement just as in standard
PASCAL�

Example�

var

r � real�
c � complex�

���

write �r � ��� c � �� r����



A Survey of PASCAL�XSC and a Language Reference Supplement 
�

�	� The Module Concept

Standard PASCAL basically assumes that a program consists of a single program text
which must be prepared completely before it can be compiled and executed� In many
cases� it is more convenient to prepare a program in several parts� called modules�
which can then be developed and compiled independently of each other� Moreover�
various other programs may use the components of a module without their having to
be copied into the source code and recompiled�

For this purpose� a module concept has been introduced into PASCAL�XSC� This
new concept o�ers the possibilities of

� modular programming

� syntax check and semantic analysis beyond the bounds of modules

� implementation of arithmetic packages as standard modules

A module is introduced by the keyword module followed by a name and a semicolon�
Its body is quite similar in structure to that of a normal program with the exception
that the word symbol global can be used directly in front of the keywords const�
type� var� procedure� function� and operator and directly after use and the equal
sign in type declarations�

Thus it is possible to declare private types as well as non�private types� The internal
structure of a private type is not known outside the declaring module� Objects of such
a private type can only be used and manipulated via the procedures� functions and
operators supplied by the declaring module�

For importing modules with use or use global the following transitivity rules hold

M
 use M� and M� use global M� � M
 use M��

but

M
 use M� and M� use M� �� M
 use M��

Example� Let a module hierarchy be built up by

X Y STANDARDS

A B C

main program

�
�
��

�
�
��

Q
Q
Q
QQ

�
�
�
��

��
��
��
�

HH
HH

HH
H

All global objects of the modules A� B� and C are visible in the main program unit�
but there is no access to the global objects of X� Y and STANDARDS from the main
program�




� Peter Januschke� Dietmar Ratz

�	
 Dynamic Arrays

In standard PASCAL there is no way to declare dynamic types or variables� The only
way to manage memory dynamically in standard PASCAL is through the allocation
and deallocation of �xed�size objects which are referred by pointers�

For instance� program packages with vector and matrix operations are typically
implemented with �xed �maximum� dimensions� For this reason� only part of the
allocated memory is used if the user wants to solve problems with lower dimensions�
The concept of dynamic arrays removes this limitation� In particular� the new concept
can be described by the following characteristics�

� Dynamics within procedures and functions

� Automatic allocation and deallocation of local dynamic variables

� Economical employment of storage space

� Row access and column access to dynamic arrays

� Compatibility of static and dynamic arrays

Dynamic arrays must be marked with the word symbol dynamic� The great disadvan�
tage of the conformant array schemes available in standard PASCAL is that they can
only be used for parameters and not for variables or function results� So� this standard
feature is not fully dynamic�

In PASCAL�XSC� dynamic and static arrays can be used in a very similar manner�
For example� a two�dimensional dynamic array type can be declared in the following
form�

type matrix � dynamic array ����� of real�

It is also possible to de�ne di�erent dynamic types with corresponding syntactical
structures� For example� it might be useful in some situations to identify the coe!�
cients of a polynomial with the components of a vector or vice versa� Since PASCAL
is a strictly type�oriented language� such structurally equivalent arrays may only be
combined if their types have been previously adapted� The following example shows
the de�nition of a polynomial and of a vector type �note that the type converting func�
tions polynomial�� � �� and vector�� � �� are de�ned implicitly�� Access to the lower and
upper index bounds of each dimension is made possible by the new standard functions
lbound�� � �� and ubound�� � �� or their abbreviations lb�� � �� and ub�� � ���

type vector � dynamic array ��� of real�

type polynomial � dynamic array ��� of real�

operator 	 �a� b� vector� res� vector�lb�a���ub�a���
var i � integer�
begin
for i �� lb�a� to ub�a�
res�i� �� a�i� 	 b�lb�b� 	 i � lb�a��

end�

var
v � vector����n��



A Survey of PASCAL�XSC and a Language Reference Supplement 
�

p � polynomial����n����

���

v �� vector�p��
p �� polynomial�v��
v �� v 	 v�
v �� vector�p� 	 v� � but not v �� p 	 v
 �

In addition to accessing each component variable� PASCAL�XSC o�ers the possibility
of accessing subarrays� If a component variable contains an � or a range instead of an
index expression� it refers to the subarray with the entire or speci�ed index range in
the corresponding dimension� For example� M
�����j
 is the array consisting of the

st and �nd elements of the j�th column of a two�dimensional array M�

This example demonstrates access to rows or columns of dynamic arrays�

type vector � dynamic array ��� of real�

type matrix � dynamic array ��� of vector�

���

var
v � vector����n��
m � matrix����n����n��

���

v �� m�i��
m�i� �� vector�m���j���

In the �rst assignment it is not necessary to use a type converting function since both
the left and the right side are of known dynamic type� A di�erent case is demonstrated
in the second assignment� The left�hand side is of known dynamic type� but the
right�hand side is of anonymous dynamic type� so it is necessary to use the intrinsic
converting function vector�� � ���

�	� Flexible Arrays

Current releases �Version ��� and higher� of PASCAL�XSC include the concept of
�exible arrays� A dynamic array is called �exible if it can be reallocated with new
index bounds and new size at any time during its lifetime�

There are two possibilities of declaring �exible array types� The �rst possibility is
the usual declaration of a dynamic array type� i�e� every dynamic array is also a �exible
array�

type vector � dynamic array ��� of real�

The second possibility is to provide default index ranges for �exible array variables
�for example in a program using many array variables with identical index bounds and
only a few variables of the same type with other index bounds�� The extended rules
for array declaration allow

type vec � dynamic array ������� of real�




	 Peter Januschke� Dietmar Ratz

or

type vec � vector ��������

alternatively�
Now� there are several possibilities to declare �exible array variables�

� We can specify index ranges by

var v � vector ��������

or by

var v � dynamic array ������� of real�

and the variables declared in this way are automatically allocated and deallocated
on entry and exit of the subroutine they belong to� But those variables may also
be reallocated during the execution of the subroutine they belong to�

� We can omit index ranges by

var v � vector�

or by

var v � dynamic array ��� of real�

and we must explicitely allocate v by ourselves� Nevertheless� it will be automat�
ically deallocated on exit of the subroutine it belongs to�

� We can use a �exible array with default index ranges by

var v � vec�

or by

var v � vec ����
���

where in both cases automatic memory allocation and deallocation will be carried
out� but the allocation process is di�erent� In the �rst case the index bounds for
v are the the default index bounds of vec� in the second case the speci�ed index
bounds replace the default bounds�

Of course� PASCAL�XSC supplies routines for the memory management of dynamic
��exible� arrays� Procedure allocate allows the explicit allocation of a dynamic array
with speci�ed index bounds� Procedure free allows the deallocation of a variable� i�e�
the freeing of the memory occupied by a dynamic array variable� Moreover� since
access to an array might result in a runtime error� PASCAL�XSC provides the boolean
function allocated for testing the accessibility of dynamic arrays�

In the following example� we use a real vector in di�erent lengths to perform com�
putations until a desired accuracy is achieved�



A Survey of PASCAL�XSC and a Language Reference Supplement 
�

type
vector � dynamic array ��� of real�

procedure high�accuracy �basic�length� integer� result� real��
var
accurate � boolean�
rvec � vector�
k � integer�

begin
accurate �� false� k �� ��

repeat
k�� k	��
allocate �rvec� ���k�basic�length��

��� � computations �

accurate �� ���

free �rvec�� � might be ommitted �
until accurate�

result �� ���
end�

In our second example� we give a routine for reading integer vectors from a text �le�
where each vector is preceded by the number of its components� Without the possibility
of reallocation of dynamic arrays the solution of this problem is very laborious�

type
vector � dynamic array ��� of integer�

procedure read �var f� text� var v� vector��
var
i� length � integer�

begin
if allocated�v� then
free �v��

read�f� length��
allocate�v� ���length��
for i��lb�v� to ub�v� do
read�f� v�i���

end�

A detailed description of syntax and semantic for the concept of dynamic and �exible
arrays is given in Appendix B�

�	� Accurate Expressions

The theory of computer arithmetic �see ����� requires the implementation of the dot
product with only one rounding according to the following de�nition �see �	���

Given two vectors x and y with n �oating�point components each� and a
prescribed rounding mode �� the �oating�point result s of the dot product
operation �applied to x and y� is de�ned by

s �� ��s� �� ��x 	 y� � ��
nX

i��

xi � yi�� n 
 





� Peter Januschke� Dietmar Ratz

where all arithmetic operations are mathematically exact� Thus s shall be
computed as if an intermediate result s correct to in�nite precision and with
unbounded exponent range were �rst produced and then rounded to the
desired �oating�point destination format according to the selected rounding
mode ��

Thus the result of the operation must be the exact result of the dot product with just
one �nal rounding applied�

The implementation of enclosure algorithms with automatic result veri�cation or
validation �see �
����
����
������������� makes extensive use of the accurate evaluation
of dot products� To evaluate this kind of expression the new datatype dotprecision
was introduced� Variables of type dotprecision can hold any possible value which
results from the evaluation of dot product expressions without loss of accuracy �see
������
���� Based upon this type� so�called accurate expressions ���expressions�� can
be formulated by an accurate symbol ��� ��� ��� ��� or ��� followed by an exact

expression enclosed in parentheses� The exact expression must have the form of a dot
product expression in scalar� vector or matrix structure and is evaluated without any
rounding error� Because of this� the result of an accurate expression has an error of at
most 
 ulp� i�e� at most one unit in the last mantissa place� Tables in the appendix
give an overview of possible exact expressions within the accurate expressions �see �
	�
for the detailed overview��

To obtain the unrounded or correctly rounded result of a dot product expression�
the user needs to parenthesize the expression and precede it by the symbol � which
may optionally be followed by a symbol for the rounding mode� Table � shows the
possible rounding modes with respect to the dot product expression form�

Symbol Expression Form Rounding Mode Math� Symbol

�� scalar� vector or matrix nearest �

�� scalar� vector or matrix downwards �

�� scalar� vector or matrix upwards �

�� scalar� vector or matrix smallest enclosing interval �

� scalar only exact� no rounding

Table �� Rounding Modes for Accurate Expressions

In practice� dot product expressions may contain a large number of terms making an
explicit notation very cumbersome� To alleviate this di!culty in mathematics� the
symbol

P
is used� If for instance A and B are n�dimensional matrices� then the

evaluation of

d �
nX

k��

Ai�k 	Bk�j

represents a dot product expression� PASCAL�XSC provides the equivalent shorthand
notation sum for this purpose� The corresponding PASCAL�XSC statement for this
expression is



A Survey of PASCAL�XSC and a Language Reference Supplement 
�

d �� ��for k��� to n sum �A�i�k� � B�k�j����

where d is a dotprecision variable�
Dot product expressions or accurate expressions are used mainly in computing a

defect �or residual�� In the case of a linear system Ax � b� A � IRn�n� x� b � IRn� Ay�b
is considered as an example� Then an enclosure of the defect is given by ��b � Ay�
which in PASCAL�XSC can be realized by means of the dot product expression

�� �b � A � y��

with only one interval rounding operation for each component of the resulting interval
vector� To get veri�ed enclosures for linear systems of equations it is necessary to
evaluate the defect expression

��E �RA�

where R � A�� and E is the identity matrix� In PASCAL�XSC this expression can be
programmed as

�� �id�A� � R � A��

where an interval matrix is computed with only one rounding operation per component�
The function id�� � �� is de�ned in the module for real matrix�vector arithmetic and
generates an identity matrix of the same shape as its arguments �see section �����

�	� The String Concept

The tools provided for handling character strings in standard PASCAL do not allow
convenient text processing� For this reason� a string concept was integrated into the
language de�nition of PASCAL�XSC which admits a convenient treatment of textual
information and� using the operator concept� even symbolic computation� With new
data type string� the user can work with strings of up to MAXINT characters� When
declaring variables of type string� the user can specify a maximum string length less
than MAXINT� Thus a string s declared by

var s � string�����

can be up to �� characters long� The following standard operations are available�

� concatenation

� actual length

� conversion string � real

� conversion string � integer

� conversion real � string

� conversion integer � string

� extraction of substrings

� position of �rst appearance

� relational operators ��� �� ��� �� ��� �� and in



�� Peter Januschke� Dietmar Ratz

�	� Standard Modules

The following standard modules are available�

� interval arithmetic �I ARI�

� complex arithmetic �C ARI�

� complex interval arithmetic �CI ARI�

� real matrix�vector arithmetic �MV ARI�

� interval matrix�vector arithmetic �MVI ARI�

� complex matrix�vector arithmetic �MVC ARI�

� complex interval matrix�vector arithmetic �MVCI ARI�

These modules may be incorporated via the use statement described in section ����
As an example� Table � exhibits the operators provided by the module for interval
matrix�vector arithmetic�

Q
Q
Q
Q
QQ

left
operand

right
operand integer

real
interval rvector ivector rmatrix imatrix

monadic ��� ���

integer
real

� �

interval � � � �

rvector �� � ��
���

���� ��
in��� ��

ivector �� � �� �
���

���� ��
�� ��

������
���� ��

in��� ��� ���
��� ����� �

rmatrix �� � � ��
���

���� ��
in��� ��

imatrix �� � �� � � �

���
���� ��
�� ��

������
���� ��

in��� ��� ���
��� ����� �

Table �� Prede�ned Arithmetic and Relational Operators of the Mod�
ule MVI ARI

In addition to these operators� the module MVI ARI provides the following generically
named standard operators� functions� and procedures�

intval� inf� sup� diam� mid� blow� transp� null� id� read� and write�

The function intval is used to generate interval vectors and matrices� whereas inf and
sup are selection functions for the in�mum and supremum of an interval object� The
diameter and the midpoint of interval vectors and matrices can be computed by diam
and mid� blow yields an interval in�ation� and transp delivers the transpose of a
matrix�



A Survey of PASCAL�XSC and a Language Reference Supplement �


Zero vectors and matrices are generated by the function null� while id returns an
identity matrix of appropriate shape� Finally� there are the generic input�output�
procedures read and write� which may be used in connection with all matrix�vector
data types de�ned in the modules mentioned above�

�	�� Problem
Solving Routines

Routines for solving common numerical problems have been implemented in PASCAL�
XSC� The applied methods compute a highly accurate enclosure of the true solution
of the problem and� at the same time� prove the existence and the uniqueness of the
solution in the computed interval� The advantages of these new routines are �

� The solution is computed with maximum or high� but always controlled accuracy�
even in many ill�conditioned cases�

� The correctness of the result is automatically veri�ed� i�e� an enclosing set is com�
puted� which guarantees existence and often also uniqueness of the true solution
contained in this set�

� If no solution exists or if the problem is extremely ill�conditioned� an error mes�
sage is issued�

Among others� PASCAL�XSC routines cover the following subjects�

� linear systems of equations

� full systems �real� complex� interval� cinterval�

� matrix inversion �real� complex� interval� cinterval�

� least squares problems �real� complex� interval� cinterval�

� computation of pseudo inverses �real� complex� interval� cinterval�

� band matrices �real�

� sparse matrices �real�

� polynomial evaluation

� in one variable �real� complex� interval� cinterval�

� in several variables �real�

� zeros of polynomials �real� complex� interval� cinterval�

� eigenvalues and eigenvectors

� symmetric matrices �real�

� arbitrary matrices �real� complex� interval� cinterval�

� initial and boundary value problems of ordinary di�erential equations

� linear

� nonlinear



�� Peter Januschke� Dietmar Ratz

� evaluation of arithmetic expressions

� nonlinear systems of equations

� numerical quadrature

� integral equations

� automatic di�erentiation

� optimization

� The Implementation of PASCAL�XSC

The language PASCAL�XSC extends the PASCAL�SC language ��� �� ���� Both lan�
guages were de�ned and developed at the Institute of Applied Mathematics at the
University of Karlsruhe� The �rst PASCAL�SC compiler was implemented for Z��
processors in 
���� Because of the small memory of the Zilog machine� an interpreter
was used� which slowed down the execution time� This compiler was ported to DOS
machines in the early ��"s ����� Three years later a PASCAL�SC compiler generating
machine code for Motorola�	���� processors was developed ����� This system is much
faster� but it lacks portability� running only on Motorola�	���� processors� The new
PASCAL�XSC system is now available for personal computers� workstations� main�
frames� and supercomputers by means of a portable compiler which translates to ANSI
C�

The main goal of the system is portability� For that purpose� it is necessary

� to provide easy porting of the compiler and the runtime system

� to avoid the necessity to retarget the compiler for every new computer

� to provide porting of the generated code �cross�compilation�

� to provide consistency of results for all installations

The ANSI C language �as de�ned in ���� was chosen as the implementation language
and the target language� The main reason for this choice was the extremely wide
range of computers for which one or more C compilers are available� Besides the C
language allows the programming of portable code� The ANSI C language standard
will impel the producers of C compilers to construct the compilers that correspond
to the standard and impel them to unify the existing compilers� This makes porting
easier� Special compiler options exist to provide cross�compilation� The C language
is highly modular� Small overhead for function calls results in high e!ciency of the
target code�

There are great semantic di�erences between the PASCAL�XSC and the C language�
Since PASCAL�XSC allows dot precision expressions� nested subroutine declarations�
overloading of subroutines� dynamic arrays and subarrays� sets and strings� it becomes
necessary to simulate these concepts in the target code� Partly this task can be solved
using the appropriate functions in the runtime library� but some problems� such as the
simulation of nested subroutines� have to be solved inside the compiler�



A Survey of PASCAL�XSC and a Language Reference Supplement ��

�	� Di�erent Real Arithmetics

A special feature of the new compiler is that the basic operations of the real arith�
metic are exchangeable to support di�erent applications which may require di�erent
properties of the arithmetic �portability� speed or accuracy�� See �
�� for details�
Supported arithmetics are�

� Software emulation of the IEEE ��� standard arithmetic� A complete �oating�
point arithmetic for the double format of the IEEE binary �oating�point standard
��� is simulated in software� All requirements of the standard are ful�lled includ�
ing directed roundings� handling of in�nity� and exception handling� No special
properties of the hardware nor support from the C runtime system are required�

� The hardware arithmetic of the computer in use� The arithmetic operations are
supported by the C runtime system� The data format and the accuracy of the
operations need not necessarily satisfy the IEEE standard� This arithmetic is
intended to be used by programs that shall be �fast��

� Multiple precision arithmetic� It is intended for programs implementing high�
precision numerical algorithms� The arithmetic operations are based on the spe�
cial multiple precision data type� Variables of this type may hold values with a
varying number of mantissa digits during the execution of the program�

� Decimal arithmetic� The BCD version with decimal real and longreal formats
is intended to avoid the conversion errors occurring during input and output of
numerical data�

� A user�de�ned arithmetic� Standard real arithmetic can be replaced by a user�
de�ned real arithmetic in a very simple manner �see ���� ����� The user must
ensure that all features de�ned for standard real arithmetic will be also available
for this new arithmetic�

�	� The PASCAL�XSC Development System

The PASCAL�XSC system ��� includes�

� The manager�

� The PASCAL�XSC to C compiler�

� The listing generator�

� The runtime library�

� The con�guration program�

The main purpose of the manager is to make the program development cycle more user�
friendly and to reduce the number of accidental errors� It is achieved by freeing the user
from having to supply the information about directory conventions and options of the
PASCAL�XSC compiler� C�compiler� and linker in use� The manager o�ers a �make�
facility by linking automatically all the modules that the current program depends on�



�� Peter Januschke� Dietmar Ratz

The dependencies and connections of modules are completely checked for consis�
tency using interface �les associated with the modules that are mentioned in the �use�
clause� if any� The number and the types of actual arguments are checked for confor�
mity to the formal parameters� A module may import other modules� In general� the
module dependencies in an executable program can be described by a directed acyclic
graph�

The compiler o�ers a comprehensive error�checking facility including lexical� syn�
tactical and semantical checking and error recovery� If a module is changed� it is quite
natural that it must be recompiled before the modules which �use� it are compiled�
The compiler checks this condition automatically and generates an error message if the
time�compatibility of modules is violated� The listing generator is called after compil�
ing a program or module containing errors� It produces a readable listing with error
messages and pointers to the exact positions of the errors� the line and the column� It
is possible to correct errors by editing the listing� There exists a program that reads
the listing and reconstructs the source �le from the listing�

After the installation of the compiler� the user may change some system dependen�
cies such as path names and �letype names as well as default values for the compiler
options� These modi�cations are done by means of the con�guration program�

�	� The Current State of Implementation

The conformity of the PASCAL�XSC compiler to standard PASCAL �
�� was tested
using �The PASCAL validation suite� of the Tasmania University ����� Extensive tests
have been carried out concerning di�erent PASCAL�XSC extensions� The system is
widely spread and used for educational purposes and for software development�
Until now the PASCAL�XSC system has been successfully installed and thoroughly
tested on many computers �see table 	�� On some systems hardware arithmetic is
supported� making the generated programs faster�

Computer Operating System C compiler

PC MS�DOS�Windows GNU C��
PC OS�	 ��� GNU C��
PC LINUX GNU C

HP �������� Series UNIX HP C
Sun SPARC Station SunOS ��x SUN C
Sun SPARC Station SunOS ��� Standard C

IBM RS����� AIX ANSI C
Silicon Graphics IRIX GNU C
CONVEX C	�C� UNIX Convex CC

Table 	� Availability of the PASCAL�XSC System

Along with the commercial versions several free versions of the PASCAL�XSC compiler
�for DOS� OS��� LINUX� etc�� are available� The software and further information
can be found on the homepage

http���www�xsc�de

of Numerik Software GmbH �email� numerik�software�csi�com��



A Survey of PASCAL�XSC and a Language Reference Supplement ��

� PASCAL�XSC Sample Programs

In the following� some PASCAL�XSC programs are listed� demonstrating the use of
the arithmetic modules and various concepts of PASCAL�XSC�

Well�known algorithms were intentionally chosen so that a brief explanation of the
mathematical background will su!ce� Since the programs are largely self�explanatory�
comments are kept to a minimum�


� Interval Newton Method

�� Runge�Kutta Method

�� Trace of a Product Matrix

�� Veri�ed Solution of a Linear System

�	� Interval Newton Method

An inclusion of a zero of the real�valued function f�x� is computed� It is assumed that
f ��x� is a continuous function on the interval �a� b�� where � �� ff ��x� � x � �a� b�g and
f�a� 	f�b� � �� If an inclusion Xn for the zero of such a function f�x� is already known�
a better inclusion Xn�� may usually be computed by the iteration formula�

Xn�� �� �m�Xn�� f�m�Xn��

f ��Xn�
� 
Xn �

where m�X� is some point in the interval X �for example the midpoint�� For this
example� the function f�x� �

p
x � �x � 
� 	 cos x is used� In PASCAL�XSC� interval

expressions are written in mathematical notation� Generic function names are used for
the interval square root and interval sine and cosine functions� For the mathematical
theory� see �
��

program inewt �input� output��
use
i�ari� � interval arithmetic �

var
x� y � interval�

������������������������������������������������������������������������������

function f �r� real�� interval�
var
x � interval�

begin
x �� r� � converts r to type interval to obtain a verified inclusion �
f �� sqrt�x� 	 �x 	 �� � cos�x�

end�

������������������������������������������������������������������������������

function deriv �x� interval�� interval�
begin
deriv �� � � �
 � sqrt�x�� 	 cos�x� � �x 	 �� � sin�x�

end�

������������������������������������������������������������������������������



�	 Peter Januschke� Dietmar Ratz

function criter �x � interval� � boolean�
begin
criter �� �sup�f�inf�x�� � f�sup�x��� 
 �� and not �� in deriv�x���

end�

������������������������������������������������������������������������������

begin � main program �
� The interval notation for I�O in PASCAL�XSC is 
 inf � sup � �
� mid�x� is a function returning the midpoint of the interval x �

write ��Please enter starting interval � ��� read �y��

while inf�y� 
� sup�y� do
begin
if criter�y� then

repeat
x �� y�
writeln �x��
y �� � mid�x� � f�mid�x���deriv�x� � �� x�

until x � y
else
writeln ��Criterion not satisfied ����

writeln�
write ��Please enter starting interval � ��� read �y��

end�
end�

With the starting interval ��� �� the computed inclusions are

� 
��E	���� ���E	����
� 
��E	���� 
��E	����
� 
���E	���� 
���E	����
� 
������E	���� 
������E	����
� 
�������
�����E	���� 
�������
�����E	����
� 
�������
��������E	���� 
�������
��������E	����

�	� Runge
Kutta Method

The initial�value problem for a system of di�erential equations is to be solved� The
Runge�Kutta method to solve one di�erential equation may be written in standard
PASCAL in an almost mathematical notation� In PASCAL�XSC it is possible to use
the same notation for a system of di�erential equations� The concept of dynamic
arrays is used to make the program independent of the size of the system� Only as
much storage as needed is occupied during runtime� The following system of �rst�order
di�erential equations

Y � � F �x� Y �

with initial condition Y �x�� � Y� is considered� If the solution Y is known at a point
x� then the approximation Y �x � h� is computed by

K� � h 	 F �x� Y ��

K� � h 	 F �x� h��� Y � K�����

K	 � h 	 F �x� h��� Y � K�����



A Survey of PASCAL�XSC and a Language Reference Supplement ��

K
 � h 	 F �x� h� Y � K	��

Y �x � h� � Y � �K� � � �K� � � �K	 � K
��	�

Starting at x�� an approximate solution may be computed at the points xi � x� � i 	h�
We supply function F in a module�

module f�

use
mv�ari� � matrix�vector arithmetic �

global const
dim � ��

������������������������������������������������������������������������������

global function F �x� real� y� rvector�� rvector����dim��
begin
f��� �� y��� � y�
��
f�
� �� exp�x� � y����
f��� �� �y��� � y�
�� � exp�x��

end�

������������������������������������������������������������������������������

global procedure init �var x� h� real� var y� rvector��
begin
x �� �� h �� ���� y��� �� �� y�
� �� �� y��� �� �

end�

end� � of module f �

Using module f � we can write the following program�

program runge �input� output��

use
mv�ari� f�

var
i � integer�
x� h � real�
y� k�� k
� k�� k� � rvector����dim��

begin
init�x� h� y��

� Classical Runge�Kutta method ��� steps� for a system �
� of first�order differential equations y� � F�x� y� �
for i��� to �� do
begin
k� �� h � f�x� y��
k
 �� h � f�x 	 h � 
� y 	 k� � 
��
k� �� h � f�x 	 h � 
� y 	 k
 � 
��
k� �� h � f�x 	 h� y 	 k���
y �� y 	 �k� 	 
 � k
 	 
 � k� 	 k�� � ��
x �� x 	 h�
writeln ��x � �� x��
writeln ��y � �� y��

end�
end�



�� Peter Januschke� Dietmar Ratz

�	� Trace of a Product Matrix

The following PASCAL�XSC program demonstrates the use of accurate�expressions�
The trace of a product matrix A	B is computed without evaluating the product matrix
itself� The result will be of maximum accuracy� i�e� it is the best possible �oating�point
approximation of the exact solution� The trace of the product matrix is given by

nX
i��

nX
j��

aij 	 bji�

A corresponding program is

program trace �input� output��

use
mv�ari� � matrix�vector arithmetic �

var
n � integer�

������������������������������������������������������������������������������

procedure main �n� integer��

var
i� j � integer�
s� d � real�
A� B � rmatrix ����n����n��

begin
read �A� B��
s �� ��
for i�� � to n do
s �� s 	 A�i� � rvector�B���i���

writeln � �Trace of A�B computed with scalar product ��� s��

d �� ��� for i��� to n sum� A�i� � rvector�B���i�� ���
writeln � �Trace of A�B computed with ��expression ��� d��

end�

�����������������������������������������������������������������������������

begin
read�n�� main�n��

end�

With the following starting matrices

A �

�
BBB�


e� � 
�	 ����

�� � �
� 


e� 
� �
e� �


� �� �� 
e��

�
CCCA

B �

�
BBB�


e� �� � 	

� � 
e� 
�	
� 
� 
e
� 
�
� ����� �
e� �
e��

�
CCCA

the computed results are



A Survey of PASCAL�XSC and a Language Reference Supplement ��

Trace of A�B computed with scalar product � ������������������E����
Trace of A�B computed with ��expression � �����������������E	���

�	� Veri�ed Solution of a Linear System of Equations

The example demonstrates a program for the veri�ed solution of a system of linear
equations� The program delivers either a veri�ed solution or a corresponding failure
message�

Employing the module LIN SOLV� the solution of a system of linear equations is
enclosed in an interval vector by successive interval iterations�

The procedure main� which is called in the body of lin sys� is only used for reading
the dimension of the system and for allocation of the dynamic variables� The numerical
method itself is started by the call to procedure linear system solver de�ned in module
lin solv� This procedure may be called with arrays of arbitrary but matching dimension�

For detailed information on iteration methods with automatic result veri�cation�
see �
��� �
��� �
��� ����� or ��
�� for example�

module lin�solv�

use i�ari� � interval arithmetic �
mv�ari� � matrix�vector arithmetic �
mvi�ari� � matrix�vector interval arithmetic �

������������������������������������������������������������������������������

priority inflated � �� � priority level � �

������������������������������������������������������������������������������

operator inflated �a� ivector� eps� real� infl� ivector����ub�a���

� Computes the so�called epsilon inflation of an interval vector� �

var
i � integer�
x � interval�

begin
for i�� � to ub�a� do
begin
x �� a�i��
if �diam�x� 
� �� then

a�i� �� ��	eps��x � eps�x
else
a�i� �� intval� pred �inf�x��� succ �sup�x�� ��

end� �for�
infl �� a�

end� � operator inflated �

������������������������������������������������������������������������������

function approximate�inverse �A� rmatrix�� rmatrix����ub�A�����ub�A���

� Computation of an approximate inverse of the �n�n��matrix A �
� by application of the Gaussian elimination method� �

var
i� j� k� n � integer�



�� Peter Januschke� Dietmar Ratz

factor � real�
R� Inv� E � rmatrix����ub�A�����ub�A���

begin
n �� ub�A�� � dimension of A �
E �� id�E�� � identity matrix �
R �� A�

� Gaussian elimination step with unit vectors as �
� right�hand sides� Division by R
i�i��� indicates �
� that matrix A is probably singular � �

for i�� � to n do
for j�� �i	�� to n do
begin
factor �� R�j�i��R�i�i��
for k�� i to n do
R�j�k� �� ���R�j�k� � factor�R�i�k���

E�j� �� E�j� � factor�E�i��
end� � for j�� ��� �

� Backward substitution delivers the rows of the inverse of A� �

for i�� n downto � do
Inv�i� �� ���E�i� � for k�� �i	�� to n sum�R�i�k��Inv�k����R�i�i��

approximate�inverse �� Inv�
end� � function approximate�inverse �

������������������������������������������������������������������������������

global procedure linear�system�solver �A� rmatrix� b� rvector�
var x� ivector� var ok� boolean��

� Computation of a verified enclosure vector for the solution of the �
� linear system of equations� If an enclosure is not achieved after �
� a certain number of iteration steps� the algorithm is stopped and �
� the parameter ok is set to false� �

const
epsilon � ��
�� � Constant for the epsilon inflation �
max�steps � ��� � Maximum number of iteration steps �

var
i � integer�
y� z � ivector����ub�A���
R � rmatrix����ub�A�����ub�A���
C � imatrix����ub�A�����ub�A���

begin
R �� approximate�inverse�A��

� R�b is an approximate solution of the linear system �
� and z is an enclosure of this vector� However� it does �
� not usually enclose the true solution� �

z �� R � intval�b��

� An enclosure of I � R�A is computed with maximum accuracy� �
� The �n�n� identity matrix is generated by the function call id�A�� �

C �� ���id�A� � R�A��



A Survey of PASCAL�XSC and a Language Reference Supplement �


x �� z� i �� ��
repeat
i �� i 	 ��
y �� x inf�lated epsilon� � To obtain a true enclosure� the interval �

� vector c is slightly enlarged� �
x �� z 	 C�y� � The new iterate is computed� �

ok �� x in y� � Is c contained in the interior of y� �
until ok or �i � max�steps��

end� � procedure linear�system�solver �

������������������������������������������������������������������������������

end� � module lin�solv �

The following program can be used to apply the routine supplied by module lin solv�

program lin�sys �input� output��

use lin�solv� � linear system solver �
mv�ari� � matrix�vector arithmetic �
mvi�ari� � matrix�vector interval arithmetic �

var n � integer�

������������������������������������������������������������������������������

procedure main �n � integer��

� The matrix A and the vectors b� x are allocated dynamically with �
� this subroutine being called� The matrix A and the right�hand side �
� b are read in and linear�system�solver is called� �

var
ok � boolean�
b � rvector����n��
x � ivector����n��
A � rmatrix����n����n��

begin
writeln��Please enter the matrix A����
read�A��
writeln��Please enter the right�hand side b����
read�b��

linear�system�solver�A�b�x�ok��

if ok then
begin

writeln��The given matrix A is non�singular and the solution ���
writeln��of the linear system is contained in����
write�x��

end
else
writeln��No solution found ����

end� � procedure main �

������������������������������������������������������������������������������

begin
write��Please enter the dimension n of the linear system� ���
read�n��
main�n��

end� � program lin�sys �



�� Peter Januschke� Dietmar Ratz

Appendix

A Review of 	�Expressions

A	� Real and Complex �
Expressions

Syntax� ��Symbol � Exact Expression �

��Symbol Result Type Summands Permitted in the Exact Expression

� dotprecision

� variables� constants� and special function calls of type
integer� real� or dotprecision

� products of type integer or real

� scalar products of type real

real

� variables� constants� and special function calls of type
integer� real� or dotprecision

� products of type integer or real

� scalar products of type real

complex

� variables� constants� and special function calls of type
integer� real� complex� or dotprecision

� products of type integer� real� or complex

� scalar products of type real or complex

��

��
��

rvector

� variables and special function calls of type rvector

� products of type rvector �e�g� rmatrix � rvector� real �
rvector etc�	

cvector

� variables and special function calls of type rvector or
cvector

� products of type rvector or cvector �e�g� cmatrix � rvec�

tor� real � cvector etc�	

rmatrix
� variables and special function calls of type rmatrix

� products of type rmatrix

cmatrix

� variables and special function calls of type rmatrix or
cmatrix

� products of type rmatrix or cmatrix



A Survey of PASCAL�XSC and a Language Reference Supplement ��

A	� Real and Complex Interval �
Expressions

Syntax� �� � Exact Expression �

��Symbol Result Type Summands Permitted in the Exact Expression

interval

� variables� constants� and special function calls of type
integer� real� interval� or dotprecision

� products of type integer� real� or interval

� scalar products of type real or interval

cinterval

� variables� constants� and special function calls of
type integer� real� complex� interval� cinterval� or
dotprecision

� products of type integer� real� complex� interval� or
cinterval

� scalar products of type real� complex� interval� or cin�
terval

�� ivector

� variables and special function calls of type rvector or
ivector

� products of type rvector or ivector

civector

� variables and special function calls of type rvector�
cvector� ivector� or civector

� products of type rvector� cvector� ivector� or civector

imatrix

� variables and special function calls of type rmatrix or
imatrix

� products of type rmatrix or imatrix

cimatrix

� variables and special function calls of type rmatrix�
cmatrix� imatrix� or cimatrix

� products of type rmatrix� cmatrix� imatrix� or cimatrix



�� Peter Januschke� Dietmar Ratz

B Dynamic and Flexible Arrays � A Language

Reference Supplement

This section describes the current concept of dynamic and �exible arrays� which is not
part of early compiler versions �� ����� First� a summary of the basic concept �see
����� is given� Then� the new features are discussed� Since this section is intended
to be a supplement to the Language Reference ����� we use the notation from ���� for
describing the syntax of the new constructs� It is a simpli�ed Backus�Naur�form which
looks similar to usual program code� Syntax descriptions are marked by a vertical
black bar at the left margin�

B	� Dynamic Arrays

The basic characteristic of this concept is the possibility of using dynamic entities
within subroutines� Locally declared dynamic array variables are automatically allo�
cated and deallocated during the execution of the subroutine they belong to� Moreover�
it is possible to access subarrays�

The type declaration for a dynamic array is similar to the declaration of a static
array type� One only has to insert the keyword dynamic and to replace the index
ranges by asterisks�

Example� Type declaration for a real vector�
type vector � dynamic array ��� of real�

The index ranges can be declared individually for each dynamic array variable�

Example� Declaration of a real vector variable�
var v � vector ��������

The main application of dynamic arrays is their use within subroutines� Consider the
following schematic example of the procedure do�something�

procedure do�something �n� integer��
var
local � vector ����n��

begin
��� � do something �

end�

Here� the procedure is declared with an integer parameter n� By means of this pa�
rameter the index bounds of the local variable local are speci�ed� This means� that
local may hold a di�erent number of elements upon di�erent calls of do�something�
The disadvantage of this method is that it is not possible to reallocate local while the
procedure is being executed� In practice� however� it is desirable to be able to use a
structured variable� with a di�erent number of elements for di�erent purposes within
the same subroutine� This could be realized by declaring several dynamic array vari�
ables with di�erent element numbers� However� to minimize memory usage it should
be possible to reuse variables� i�e� to reallocate them� whenever this is appropriate�
This is the motivation for the extension to the concept of dynamic arrays we discuss
in the next section�

�In our example this is a real vector



A Survey of PASCAL�XSC and a Language Reference Supplement ��

B	� Flexible Arrays

We call an array �exible if it can be reallocated with new index bounds and new size
at any time during its lifetime�

The realization of this concept led to the following basic ideas�

� The syntax and semantics for declaring dynamic array types and dynamic array
variables is extended�

� The use of �exible arrays according to the previous rules for dynamic arrays does
not result in di�erent behaviour of PASCAL�XSC programs�

� Standard procedures for memory allocation and deallocation for �exible arrays
are provided�

� Assignment of a �exible array to another �exible array implicitly allocates the
destination array� if it has not been allocated before�

� The semantics of type declarations is extended� �exible arrays may be used as
components of other composite data types�

B���� Declaring a Flexible Array Type

The syntax for specifying a �exible array type �FlexTypeSpeci�cation� in a type dec�
laration is as follows�

dynamic array �DimensionList� of TypeIdenti�er

A DimensionList is either a list� of asterisks ��� or a list of index types� An index type
is speci�ed by either the type identi�er of an integer subrange type or by explicitly
specifying the index bounds in the usual way�

IntegerExpression �� IntegerExpression

Thus� there are two possibilities of declaring �exible array types� The �rst possibility
simply is the adaption of the old declaration rules�

type vector � dynamic array ��� of real�

i�e� every dynamic array is also a �exible array� The second possibility is to provide
default index ranges by

type vec � dynamic array ������� of real�

or by

type vec � vector ��������

for �exible array variables� In practice� a program often uses many array variables of
the same array type with identical index bounds and only a few variables of the same
type but with other index bounds� For this situation� the extended rules for array
declaration allow the speci�cation of default index ranges�

When declaring �exible array types with more than one index ranges it is not
allowed to mix asterisks with default index ranges� Thus the semantics for using
�exible arrays is kept simple�

�A list always consist of at least one element� If more than one element is to be speci
ed then the
elements have to be separated by commas�



�	 Peter Januschke� Dietmar Ratz

B���� Declaring Flexible Array Variables

The syntax for the declaration of a dynamic array variable has been extended according
to the changes for type declarations in Section B���
� It is possible to use a type
identi�er by

var Identi�erList � FlexTypeIdenti�er
�DimensionList� f may be omitted g

or an explicit type speci�cation by

var Identi�erList � FlexTypeSpeci�cation

Again� these rules allow several possibilities of declaring �exible array variables� With
the type identi�ers from Section B���
� we can

� specify index ranges by

var v � vector ��������

or by

var v � dynamic array ������� of real�

and the variables declared in this way are automatically allocated and deallocated
on entry and exit of the subroutine they belong to� But those variables may also
be reallocated during the execution of the subroutine they belong to�

� omit index ranges by

var v � vector�

or by

var v � dynamic array ��� of real�

and we must explicitly allocate v by ourselves� Nevertheless� it will be automat�
ically deallocated on exit of the subroutine it belongs to�

� use a �exible array with default index range by

var v � vec�

or by

var v � vec ����
���

where in both cases automatic memory allocation and deallocation will be carried
out� but the allocation process is di�erent� In the �rst case the index bounds for
v are the the default index bounds of vec� in the second case the speci�ed index
bounds replace the default bounds�



A Survey of PASCAL�XSC and a Language Reference Supplement ��

The variable v may be reallocated by the user in any case�
The concept of �exible arrays is an extension to that of dynamic arrays� Programs

developed by exclusively using the previous dynamic array features can be compiled
with current ��exible� compiler versions without change�

In the following descriptions of further language extensions it is no longer necessary
to distinguish between dynamic and �exible arrays� These features apply to both�
Consequently we only speak of dynamic arrays from now on�

B���� Memory Management Subroutines

This section introduces a set of subroutines for handling dynamic arrays� in particular
for memory management� The �rst routine is the procedure allocate which allows the
explicit allocation of a dynamic array with the speci�ed index bounds� It is called in
the form�

allocate � DynamicArrayVariable � IndexRangesList � 

Its �rst parameter is a dynamic array variable which is followed by a list of index
ranges� Index ranges are speci�ed in the usual way by specifying the index bounds�

IntegerExpression �� IntegerExpression

The number of index ranges speci�ed must be the same as the number of index ranges
in the declaration of the corresponding dynamic array type of the �rst parameter� If
the array variable passed to allocate is not allocated yet� it will be allocated with
the speci�ed index bounds� If an array variable is already allocated� it �rst will be
deallocated� The latter allows the user to reallocate an array with new index bounds
and new size�

A further procedure provides the possibility of freeing memory occupied by a dy�
namic array variable� i�e� a dynamic array may explicitly be deallocated� It is called
by

free � DynamicArrayVariable � 

free has only a single parameter which must be a dynamic array variable� After a call
of free the index bounds of the array parameter are unde�ned as long as the array
is not allocated again� free will have no e�ect if an array is not allocated when it is
passed as a parameter�

Access to an array which is not allocated may have undesirable consequences such
as a runtime error �see B������ Therefore� PASCAL�XSC provides a function for testing
the accessibility of dynamic arrays� It is called by

allocated � DynamicArrayVariable �

and delivers a boolean result� allocated yields the value true� if the dynamic array
variable which has to be passed as the only parameter is allocated� and false otherwise�



�� Peter Januschke� Dietmar Ratz

Example� In Section B�
� procedure do�something was an example of how to use
dynamic arrays within subroutines� It contained a declaration of the local variable
local the size of which was speci�ed by the integer parameter of the procedure�

Now� let us assume that we want to double the size of local within the procedure�
By means of the new standard subroutines described in Section B����� we may change
do�something as follows�

type vector � dynamic array ��� of real�

procedure do�something �n� integer��
var

local � vector�
begin

allocate �local� ���n��
��� � do something �
free �local�� � might be omitted �
allocate �local� ���
�n��
��� � do something else �

end�

The �rst call to allocate sets up the variable local with indices ranging from 
 to n�
After some further statements we deallocate local by calling free� In this example�
this would not be necessary because the following call of allocate �rst deallocates local
automatically� However� if the program was in danger to run out of memory and local

was not be used in the remaining statements of the procedure� it would surely be useful
to deallocate the array here� Finally� the second call to allocate sets up local once
more� this time with an index range from 
 to �n�

B���� Access to and Assignment of Dynamic Arrays

Compared to the present implementation �see ������ the semantics of an assignment
statement

A �� B�

where A and B are assignment compatible dynamic arrays� will not change with the
following exceptions�


� A runtime error will be issued if B is not allocated�

�� if A is not allocated� it will be allocated before assignment will be carried out� A
will have the same size and index bounds as B�

A runtime error is issued if a dynamic array which is not allocated is accessed in an
expression and if array indices are to be checked� Otherwise� if array indices are not
checked then the e�ect of accessing a dynamic array which is not allocated is unde�ned�	

�The checking of array indices is controlled by compiler options�



A Survey of PASCAL�XSC and a Language Reference Supplement ��

B���� Dynamic Arrays as Components of Other Types

Dynamic arrays may now be components of other structured data types like static
arrays or records� They may also be referenced by pointers� This is not a syntax
extension but an extension to the semantics of type declarations� The declaration of a
dynamic array type as the component type of a composite data type follows the rules
for dynamic array type declarations given in Section B���
� In particular� default index
ranges may be speci�ed�

Examples�

type
rec � record

a� b � real�
v � dynamic array ��� of real

end�

type
rec � record

a� b � real�
v � dynamic array ������ of real

end�

The rules for allocation and deallocation of dynamic components are the same as for
dynamic array variables�

Special care has to be taken when a program uses pointers to dynamic arrays�
Consider the following

Example�

type
dyn � dynamic array ��� of integer�
dyn
 � dynamic array ������� of integer�

var
p� � �dyn�
p
 � �dyn
�

begin
new �p
�� � automatic allocation of p�� �

new �p��� � allocation of a runtime descriptor only �

allocate �p��� ������� � explicit allocation of p�� �

��� � do something �
end�

As you can see p� points to a dynamic array with default index range from 
 to 
��
Therefore� the call of new automatically allocates the dynamic array p� points to� This
is not the case for the second call of new� Since p� points to a dynamic array which
has no default index ranges new only creates a runtime descriptor for the array� The
array itself has to be explicitly allocated with a call of allocate�



�� Peter Januschke� Dietmar Ratz

References

��� Alefeld� G� and Herzberger� J�
 Introduction to Interval Analysis � Academic Press� ��
��

�	� Allend�orfer� U� and Shiriaev� D�
 PASCAL�XSC to C � A portable PASCAL�XSC
compiler� In ����� ������� �����

��� Allend�orfer� U� and Shiriaev� D�
 PASCAL�XSC � A portable development system� In
���� ���	�

��� American National Standards Institute � Institute of Electrical and Electronics Engi�
neers
 IEEE Standard for Binary Floating�Point Arithmetic� ANSI�IEEE Std� ������
��
New York� ��
��

��� American National Standard for Information Systems
 Programming Language C � ANSI
X��������
��

��� Bohlender� G�� Cordes� D�� Kn�ofel� A�� Kulisch� U�� Lohner� R�� and Walter� W� V�

Proposal for Accurate Floating�Point Vector Arithmetic� In Adams� E� and Kulisch�
U� �Eds��
 Scienti�c Computing with Automatic Result Veri�cation� 
����	� Academic
Press� Orlando� to be published ���	�

��� Bohlender� G�� Rall� L�� Ullrich� Ch�� and Wol� von Gudenberg� J�
 PASCAL�SC� A
Computer Language for Scienti�c Computation� Academic Press� New York� ��
��

�
� Bohlender� G�� Rall� L�� Ullrich� Ch� and Wol� von Gudenberg� J�
 PASCAL�

SC � Wirkungsvoll programmieren� kontrolliert rechnen� Bibliographisches Institut�
Mannheim� ��
��

��� Brezinsky� C� and Kulisch� U�� �Eds�
 Computational and Applied Mathematics I � Al�

gorithms and Theory � Proceedings of the ��th IMACS World Congress� Dublin� Ireland�
Elsevier� Science publishers B�V�� to be published in ���	�

���� British Standards Institute
 Computer programming language PASCAL� BS ���	
��
	�

���� Buchholz� W�
 The IBM System	
�� Vector Architecture� IBM Systems Journal 	����
��
��

��	� Cordes� D�
 Runtime System for a PASCAL�XSC Compiler � In ����� �������� �����

���� D�a�ler� K� and Sommer� M�
 PASCAL� Einf
uhrung in die Sprache� Norm Entwurf DIN
��	��� Erl�auterungen� Springer�Verlag� Berlin� ��
��

���� Ge�org� S�� Hammer� R�� Kulisch� U�� Ratz� D� �Hrsg��
 Wissenschaftliches Rechnen mit

Ergebnisveri�kation � Eine Einf
uhrung� Akademie Verlag� Ost�Berlin� Vieweg� Wies�
baden� ��
��

���� Hammer� R�
 How Reliable is the Arithmetic of Vector Computers� In ��	�� �����

���� Hammer� R�
 Maximal genaue Berechnung von Skalarproduktausdr
ucken und hochge�

naue Auswertung von Programmteilen� Dissertation� Universit�at Karlsruhe� ���	�

���� Hammer� R�� Hocks� M�� Kulisch� U�� and Ratz� D�
 Numerical Toolbox for Veri�ed

Computing I� Springer�Verlag� Berlin� �����

��
� Kaucher� E�� Kulisch� U�� and Ullrich� Ch� �Eds��
 Computer Arithmetic � Scienti�c
Computation and Programming Languages� Teubner� Stuttgart� ��
��



A Survey of PASCAL�XSC and a Language Reference Supplement �


���� Kaucher� E�� Markov� S� M�� and Mayer� G� �Eds�
 Computer Arithmetic� Scienti�c
Computation and Mathematical Modelling� IMACS Annals on Computing and Applied
Mathematics ��� J�C� Baltzer� Basel� �����

�	�� Kirchner� R� and Kulisch� U�
 Accurate Arithmetic for Vector Processors� Journal of
Parallel and Distributed Computing �� 	���	��� ��

�

�	�� Klatte� R�� Kulisch� U�� Neaga� M�� Ratz� D�� and Ullrich� Ch�
 PASCAL�XSC

Sprachbeschreibung mit Beispielen� Springer�Verlag� Heidelberg� �����

�		� Klatte� R�� Kulisch� U�� Neaga� M�� Ratz� D�� and Ullrich� Ch�
 PASCAL�XSC Language
Reference with Examples� Springer�Verlag� Heidelberg� ���	�

�	�� Kulisch� U� �Ed��
 PASCAL�SC� A PASCAL Extension for Scienti�c Computation�
Information Manual and Floppy Disks� Version ATARI ST� Teubner� Stuttgart� ��
��

�	�� Kulisch� U� �Ed��
 PASCAL�SC� A PASCAL Extension for Scienti�c Computation�
Information Manual and Floppy Disks� Version IBM PC�AT �DOS�� Teubner� Stuttgart�
��
��

�	�� Kulisch� U� and Miranker� W� L�
 Computer Arithmetic in Theory and Practice� Aca�
demic Press� New York� ��
��

�	�� Kulisch� U� and Miranker� W� L� �Eds��
 A New Approach to Scienti�c Computation�
Academic Press� New York� ��
��

�	�� Kulisch� U� and Stetter� H� J� �Eds��
 Scienti�c Computation with Automatic Result
Veri�cation� Computing Suppl� �� Springer�Verlag� Wien� ��

�

�	
� Neaga� M�
 Erweiterungen von Programmiersprachen f
ur wissenschaftliches Rechnen

und Er
orterung einer Implementierung� Dissertation� Universit�at Kaiserslautern� ��
��

�	�� Neaga� M�
 PASCAL�SC � Eine PASCAL�Erweiterung f
ur wissenschaftliches Rechnen�
In
 ����� ��
��

���� Ratz� D�
 The E�ects of the Arithmetic of Vector Computers on Basic Numerical Meth�
ods� In
 ��	�� �����

���� Rump� S� M�
 Solving Algebraic Problems with High Accuracy� In �	��� ��
��

��	� Ullrich� Ch� �Ed��
 Contributions to Computer Arithmetic and Self�Validating Numerical
Methods� J� C� Baltzer AG� Scienti�c Publishing Co�� IMACS� �����

���� Wichmann� B� and Ciechanowicz� Z�J� �Eds��
 PASCAL Compiler Validation� John
Wiley � Sons� ��
��





In dieser Reihe sind bisher die folgenden Arbeiten erschienen�

�
���� Ulrich Kulisch� Memorandum �uber Computer� Arithmetik und Numerik�

�
���� Andreas Wietho�� C�XSC � A C�� Class Library for Extended Scienti�c

Computing�

�
���� Walter Kr�amer� Sichere und genaue Absch�atzung des Approximationsfehlers
bei rationalen Approximationen�

�
���� Dietmar Ratz� An Optimized Interval Slope Arithmetic and its Application�

�
���� Dietmar Ratz� Inclusion Isotone Extended Interval Arithmetic�

�
���� Astrid Goos� Dietmar Ratz� Praktische Realisierung und Test eines Veri	

�kationsverfahrens zur L�osung globaler Optimierungsprobleme mit Unglei	

chungsnebenbedingungen�

�
���� Stefan Herbort� Dietmar Ratz� Improving the E
ciency of a Nonlinear	

System	Solver Using a Componentwise Newton Method�

�
���� Ulrich Kulisch� Die f�unfte Gleitkommaoperation f�ur top	performance Com	

puter � oder � Akkumulation von Gleitkommazahlen und 	produkten in

Festkommaarithmetik�

�
���� Ulrich Kulisch� The Fifth Floating	Point Operation for Top	Performance

Computers � or � Accumulation of Floating	Point Numbers and Products

in Fixed	Point Arithmetic�

�
���� Walter Kr�amer� Eine Fehlerfaktorarithmetik f�ur zuverl�assige a priori Fehler	
absch�atzungen�

�
���� Peter Januschke� Dietmar Ratz� A Survey of PASCAL�XSC and a Language

Reference Supplement on Dynamic and Flexible Arrays�


