
A MODEL-BASED GAZE TRACKING SYSTEM

RAINER STIEFELHAGEN, JIE YANG and ALEX WAIBEL

Interactive System Laboratories

Carnegie Mellon University, USA

and

University of Karlsruhe, Germany

stiefel@ira.uka.de, yang+@cs.cmu.edu, waibel@cs.cmu.edu

Abstract

In this paper we present a non-intrusive model-based gaze tracking sys-

tem. The system estimates the 3-D pose of a user's head by tracking as few

as six facial feature points. The system locates a human face using a statis-

tical color model and then �nds and tracks the facial features, such as eyes,

nostrils and lip corners. A full perspective model is employed to map these

feature points onto the 3D pose. Several techniques have been developed to

track the features points and recover from failure. We currently achieve a

frame rate of 15+ frames per second using an HP 9000 workstation with a

framegrabber and a Canon VC-C1 camera. The application of the system has

been demonstrated by a gaze-driven panorama image viewer. The potential

applications of the system include multimodal interfaces, virtual reality and

video-teleconferencing.

Keywords: Gaze Tracking, Head Orientation, Human-Computer Interaction,

Multimodal Interfaces, Facial Feature Extraction

1 Introduction

For many human computer interaction applications it would be helpful to know

where a user is looking at and what his/her focus of attention is. Such information

can be obtained from tracking the orientation of a human head, or gaze. While

current approaches to gaze tracking tend to be highly intrusive { the subject must

either stay very still, or wear a special device like a head mounted camera { in this

paper we present a non-intrusive gaze tracking system that allows the user to move

freely in the �eld of view of the camera.



There have been several approaches to estimating the gaze of a person. First to

mention, hardware-intensive and/or intrusive methods, where the user has to wear

special headgear, or methods that use expensive hardware like radar range �nder

[1]. Recently, there have been proposed non-intrusive gaze trackers using mainly

software. Baluja and Pomerleau proposed a method to estimate the eye-gaze onto

a computer monitor [2]. In their approach, however, a user has to stay in an almost

�xed position and is not allowed to turn his/her head, and a 
ash light is required.

Gee & Cipolla [3] developed a system to track the rotation and position of a users'

head by �nding correspondences between facial feature points and corresponding

points in a model of the head, using a weak perspective projection . However, the

system has to be initialized manually because the system cannot locate the face and

the facial feature points automatically.

We present a non-intrusive model-based gaze tracking system in this paper.

The system estimates the 3-D pose of a user's head by tracking as few as six facial

feature points. The system locates a human face using a statistical color model.

It is able to �nd and track facial feature points automatically, as soon as a person

appears in the �eld of view of the camera, and turns his/her face toward the camera.

The system then �nds and tracks the facial features, such as eyes, nostrils and lip

corners. The system is also able to recover from tracking failures. We use the

POSIT-algorithm proposed by DeMenthon & Davis [4] to compute the pose of the

head. This algorithm iteratively approximates a full perspective solution of the

pose, given at least four 3D to 2D correspondences.

The remainder of this paper is organized as follows. In section 2 we formulate

the gaze tracking problem as a pose estimation problem. Section 3 introduces

methods for locating the face, eyes, nostrils and lip-corners. Section 4 describes

the tracking of these features. Section 5 discusses how we �nd the best subset of

the feature points and how to predict true positions of outliers. Section 6 describes

methods to detect a tracking failure and how to recover from failure. Section 7 shows

experimental results. Section 8 demonstrates an application of the gaze tracking

system to multimodal human-computer interaction.

2 Gaze Tracking as Pose Estimation

A person's gaze direction is determined by two factors: the orientation of the head,

and the orientation of the eyes. We limit our discussion to the head orientation

in this paper. Then the gaze estimation can be formulated as a pose estimation

problem. Pose estimation is to compute the 3D position and rotation of an object,

based on a reference coordinate system. The position and rotation of the object can

be described through a 3x3 rotation matrix R and translation vector ~t, which map

the object coordinate system onto the reference coordinate system. Given a model

of the head consisting of the 3D locations of the facial model points, such as eyes,

lip corners and nostrils in the head coordinate system, and given the corresponding

2D positions of these model points in the camera image, the parameters for the



rotation matrix R and translation vector ~t can be computed.

Two issues are crucial for the pose estimation problem: �nding feature points

and computing pose. The problem of computing the object pose from 3D to 2D

correspondences has been investigated extensively in the photogrammetry and com-

puter vision literature. The approaches can be divided in two categories: closed-

form solutions and numerical solutions. Closed-from solutions have been formulated

for example in [5, 6, 7, 8]. However, these methods work only when the number

of correspondences is limited. Whenever the number of correspondences exceeds

four, iterative solutions are needed. Iterative solutions which make use of more

feature points as can be dealt with in closed form solutions may be more robust

with respect to noise and measurement errors because the pose information content

becomes redundant. Such iterative methods were proposed for example by Lowe

[9] and Yuan [10]. However, these techniques rely on the Newton-Raphson method,

which presents two signi�cant drawbacks: �rst, an initial pose has to be provided to

start the iteration process; second, the pseudo-inverse matrix of a Jacobian matrix

has to be computed in each iteration step, which is a computationally expensive

operation.

Dementhon & Davis [4] proposed an iterative method { the POSIT algorithm {

that works for an arbitrary number of point correspondences greater than three.

The points may be either in general position (non-coplanar) or coplanar. Because

no matrix inversions have to be computed in the iteration loop, the method is very

fast and it is robust with respect to image measurements and to camera calibration

errors. Furthermore it does not require an initial pose estimate. The method

combines linear methods, necessary for weak perspective camera models, with non-

linear methods, that are needed to compute the pose under a full perspective model.

It approximates the full perspective solution, using linear computations [4, 8].

Since the POSIT algorithm has these advantages, and speed is essential for our

task, we will use this algorithm to compute the head pose. The rest of the problem

is how to �nd the feature points in a sequence of images, i.e., tracking problem.

For feature-based tracking, a well-chosen feature can make the searching process

much easier. Several factors, such as the existence of a preprocessing algorithm, the

necessity, complexity and generality of the selected features, must be considered in

selecting features for real-time tracking. Considering all these factors, we will track

six facial feature points. In the rest of this paper, we will focus on developing fast

and robust methods to locate and track facial features in a camera image in order

to obtain a number of 3D to 2D correspondences to compute the pose.

3 Searching the Features

In order to search the facial features we use a top-down approach. First we search

for a facial area in the image, using a statistical color model, then search for facial

features within the facial area.



3.1 Searching for a face

To �nd and track the face, we use a statistical color model that consists of a two-

dimensional Gaussian distribution of normalized skin colors. The input image is

searched for pixels with skin colors. The largest connected region of skin-colored

pixels in the camera image is considered as the region of the face. The color distri-

bution is initialized so as to �nd a variety of face colors and is gradually adapted

to the actual found face. The interested reader is referred to [11].

input image (color!) skin-colored regions

Figure 1. Application of the color model to a sample input image. The face is found

in the input image (marked by a white rectangle)

3.2 Searching for pupils

Assuming a frontal view of the face initially, we can search the pupils by looking for

two dark regions within a certain area of the face, which satisfy certain geometric

constraints.

Figure 2. Search area for eyes

For a given situation, these dark regions can be located using a �xed thresholding

within the search area. However, the threshold value may change for di�erent people

and lighting conditions.

To use the thresholding method under changing lighting conditions, we devel-

oped an iterative thresholding algorithm. The algorithm iteratively thresholds the



image, starting with a very low threshold k0, until we �nd a pair of regions that

satis�es the geometric constraints. Thresholding the image with increased values

ki eventually leads to more and bigger blobs, which constitute possible candidates

for the eye regions, and �nally a su�cient pair can be found.

k0 = 30 k1 = 32 k2 = 34

Figure 3. Iterative thresholding of search-window for the eyes

Because the thresholding value is adjustable, this method can be applied to

various lighting conditions and can �nd the pupils in very di�erently illuminated

faces robustly.

3.2.1 Geometric constraints

Using knowledge about anthropometric measures such as approximate distance be-

tween eyes, and location of the eyes, and the assumption that we initially have

a near-frontal view of the face, we have implemented the following constraints to

choose and rank pairs of blobs.

First some initial constraints, such as maximum size, maximum vertical exten-

sion and constraints on the position, are imposed on the found regions in the face.

Within each blob, that satis�es the initial restrictions, the darkest pixel is found and

used as position of the eye candidate. These candidates are now checked pairwise.

The pairs have to satisfy the following constraints: maximum and minimum hori-

zontal distance, maximum vertical distance and symmetry. To measure symmetry

according to the middle of the face, we use the following distance measure:

D(i; j) = jcandi[x]� (w � candj [x])j; (1)

where candi[x] and candj [x] describe the horizontal position of the candidates, and

w is the width of the search-region. D will be zero, if the candidates have the same

distance from the border of the search-window and therefore lie perfectly symmet-

rically. As their distances to the boarder di�er from each other, D(i; j) increases

linearly. If D(i; j) exceeds a certain symmetry-distance Dmax, the candidate pair

(i; j) is rejected.

If more than one pair satis�es the above constraints, then the pair with the least

symmetry distance D(i; j) is chosen.

3.3 Searching the lip corners

First, the approximate positions of the lip corners are predicted, using the positions

of the eyes, the face-model and the assumption, that we have a near-frontal view.

A generously big area around those points is extracted and used for further search.



Figure 4. Integral projection of the search-window

Finding the vertical position of the line between the lips can be performed by

using a horizontal integral projection Ph of the greyscale image in the search region.

Ph is obtained by summing up the greyscale values of the pixels in each row of the

search area:

Ph(x) =

WX

y=1

I(x; y) ; 0 � x � H; (2)

where I(x; y) is the intensity function of the search window, and W and H are the

width and height of the search window, respectively. Because the lip line is the

darkest horizontally extended structure in the search area, its vertical position can

be located where Ph has its global minimum. Figure 4 shows the search window

for the lip-line and a rotated plot of the corresponding projection Ph. The vertical

position, where Ph has its global minimum is marked in the image.

To obtain the horizontal boundaries of the lips, a smaller search area around the

estimated vertical position of the line between the lips is extracted, and a horizontal

edge operator is applied. The approximate horizontal boundaries of the lips can now

be found, regarding the vertical integral projection Pv of this horizontal edge image.

Pv is obtained by columnwise summing up the intensities of the pixels of the edge

image.

Pv(y) =

HX

x=1

Eh(x; y) ; 0 � y �W; (3)

where Eh(x; y) is the intensity function of the horizontal edge image, and W and

H are the width and height of the search area, respectively.

The left and right boundaries of the lips can be located, where Pv exceeds a

certain threshold t or falls below that threshold respectively. We choose t to be the

average of the projection Pv . The vertical positions of the left and right lip corners

can be found by searching for the darkest pixel along the columns at the left and

right estimated boundaries of the lips in that search-region.

The use of integral projections to extract facial features is also described in

[12, 13].



horizontal

edge-image vertical projection

Figure 5. Finding horizontal borders of the lips, using a vertical projection of the horizontal

edge-image of the lips

Figure 6. Initial search areas for the lips and found lip-corners. The small rectangles mark

the predicted positions of the lip-corners.

3.4 Searching for the nostrils

Similar to locating the eyes, the nostrils can be found by searching for two dark

regions that satisfy certain geometric constraints. The search region is restricted to

an area below the eyes and above the lips. Again, iterative thresholding is used to

�nd a pair of legal dark regions, that are considered as the nostrils.

Figure 7. Search region for nostrils and found nostrils

4 Tracking the Features

For tracking, the features can be searched in small search windows around the

last feature position. These search windows additionally are predicted using linear



extrapolation over the two previous positions of those features. The widths of the

local search windows are all automatically adjusted to the size of the face in the

image.

In Figure 8 the search windows for all features are shown. The two white lines

along the line between the lips indicate the search path along this line (see 4.3).

Figure 8. Search windows in tracking mode

4.1 Tracking the face

To track the face, the system searches in a search window at the predicted position,

using the color model (see Figure 8). Because position and size of the face in the

image will normally not change rapidly, it is not necessary to track the face in each

frame. We tracked the face every 5 to 10 frames.

4.2 Tracking eyes

For tracking the eyes, simple darkest pixel �nding in the predicted search windows

around the last eye positions is used.

4.3 Tracking lip corners

Tracking the lip corners consists of the following steps:

(i) Predicting the new positions of the lip corners

(ii) Searching for the darkest pixel in a search region right of the predicted position

of the left corner and left of the predicted position of the right corner. The

found points will lie on the line between the lips

(iii) Searching for the darkest path along the lip-line for a certain distance d to

the left and right respectively, and choose positions with maximum contrast

along the search path as lip corners



Because the shadow between upper and lower lip is the darkest region in the lip-

area, the searching for the darkest pixel in the search windows near the predicted

lip corners guarantees, that even with a bad prediction of the lip corners, a point

on the line between the lips is found. Then the true positions of the lip corners can

be found in the next step. Figure 9 shows the two search windows for the points

on the line between the lips. The two white lines mark the search paths along the

darkest paths, starting from where the darkest pixel in the search windows have

been found. The found corners are marked with small boxes.

Figure 9. Search along the line between the lips

4.4 Tracking the nostrils

Tracking the nostrils is also achieved by iteratively thresholding the search region

and looking for valid blobs. But whereas we have to search a relatively big area

in the initial search, during tracking, the search window can be positioned at the

predicted positions, and can be much smaller. Furthermore, the initial threshold

can be initialized with a value that is a little lower than the intensity of the nostrils

in the previous frame. This limits the number of necessary iterations to be very

small.

However, not always both nostrils are visible in the image. For example, when

the head is rotated strongly to the right, the right nostril will disappear, and only

the left one will remain visible. To deal with this problem, the search for two

nostrils is only performed for a certain number of iterations. If no pair of nostrils

is found, then only one nostril is searched by looking for the darkest pixel in the

search window for the nostrils.

To decide which of the two nostrils was found, we choose the nostril, that leads to

the pose which implies smoother motion of the head compared to the pose obtained

choosing the other nostril (see Section 5). The position of the other nostril can easily

be predicted in the following frame using the current estimated pose, as shown in

Figure 10, where the predicted location of the second nostril is marked with small

rectangles.

5 Rejection and Prediction of Outliers

To increase the robustness and the accuracy of the system, we try to �nd outliers in

the set of found feature points, and predict their true position in the next frame. At



Figure 10. Predicted nostrils (marked with box)

the same time, we use the most consistent subset of 2D to 3D point-correspondences

to compute the pose, instead of using all found points.

To �nd the best subset we investigated two methods proposed by Gee & Cipolla

[14]: sample consensus tracking and temporal continuity tracking. Using the �rst

method, that subset is chosen that leads to the best back-projection of model-points

into the image-plane. Using the second method, the subset that leads to the pose

implying the smoothest motion is chosen.

To compute the pose using the POSIT-algorithm we need at least four corre-

spondences, and the object points should preferably be non-coplanar [4]. We chose

the considered subsets as follows:

� In case that we only found one nostril, only the two subsets are considered,

where the left or the right nostril is missing, respectively. This forces the

system to choose, which of the two nostrils was found.

� In case both nostrils were found, the six subsets where one feature is missing

in each of the subsets are considered, plus the complete set of six correspon-

dences.

Because the pseudo-inverse matrices corresponding to these used subsets can be

computed o�-line, the pose for each subset can be estimated very fast.

Once the best subset of features is found, the true position of an out-lier can be

easily predicted by projecting its model point onto the image, using the computed

pose. This prediction allows the system to recover from tracking errors and leads

to a more robust tracking of the feature points.

6 Recovery from Tracking Failure

Tracking facial features on a freely moving person is a di�cult task and once in a

while tracking failure will occur. In order to build a robust useful gaze tracking

system, the system has to be able to detect tracking failure and to recover from it

automatically.



Figure 11. Adjusted Search Windows

6.1 Detection of failure

Tracking failure occurs, when one or more features couldn't be located or are mis-

takenly located at the wrong position. Whereas detection of the �rst case is trivial,

detection of the second case is not easy.

In our system we use mainly two methods for detection of failure: �rst, after

each feature is located, the system checks, if its position lies within the found face

region. If not, obviously some error occurred, and the features are searched again.

Second, after all features are found, the model points are projected back onto

the image plane, using the found pose, and the average distance between the back-

projected model points and the actual found points is computed. This distance can

serve as a measure of con�dence. If it is above a certain threshold, then the actual

found features and pose are rejected, failure is considered and the features are being

searched again.

6.2 Searching the features based on the previous pose

If failure occurs during tracking, we cannot assume a frontal view of the face any-

more, because failure could have occurred at any possible rotation of the head, and

the initial search might not work anymore. This problem can be solved by initializ-

ing the search windows and the geometrical restrictions according to the previously

found pose. If failure occurred, while the person was looking to the right, we then

shift the search window for the eyes more to the right in the facial area, and more

to the left, if the person was looking to the left.

Figure 11 shows the search windows for cases, where the person was looking to

the left, near frontal or to the right in the image. Only the search windows for the

eyes are shifted according to the pose. The subsequent search windows for lips and

nostrils are adjusted according to the found position of the eyes or lips respectively.

7 Results

To evaluate the system, we recorded several sequences to hard disk, and the facial

feature positions were located manually. With these manually marked positions,

the reference pose for each frame was computed. Then, the gaze tracker was run



with the pre-recorded sequences, and the obtained results were compared to the

results, obtained with the manually marked sequence. Three tracking methods

were investigated:

(i) All found points are used to compute the pose and no prediction of outliers

is done (no pred-method).

(ii) The best subset of points is found using the sample consensus method (SC-

method), positions of outliers are predicted.

(iii) The best subset is chosen using the temporal continuity method (TC-method),

positions of outliers are predicted.

While running the gaze tracker on the image sequence, the system lost the features

during several frames, but recovered automatically from tracking failure. The av-

erage error of each parameter was computed just on those frames, where the gaze

tracking system didn't consider the features as lost.

Table 1 to 3 show the results that we obtained with one of the sequences. Table

1 shows average errors in pixel for locating each feature. Table 2 and 3 show the

average rotation and translation errors in millimeter for the same sequence. In the

test sequences we achieved rotation errors as low as 5 degrees for rotation around

the x- and y-axis and 1 degree for rotation around the z-axis.

Table 1. Average location error in pixel.

eyes lips nostrils all features

method X Y X Y X Y eucl. dist.

TC 3.2 2.5 3.2 2.1 2.0 2.5 4.1

SC 3.9 3.0 3.5 2.9 3.5 3.2 5.2

no pred 2.6 2.7 2.8 1.9 3.8 2.7 4.4

Table 2. Average rotation error in degrees for sequence 1.

method Rx error Ry error Rz error

TC 5.5 7.6 2.2

SC 7.4 11.8 2.3

no pred 5.6 10.7 2.1

In all test sequences, using the temporal continuity tracking method leads to the

best pose estimation results. Furthermore, using this method leads to a reduction

of tracking failure of up to 60 % compared to using no prediction of outliers.



Table 3. Sequence 1: Average translation error in mm.

method Tx error (mm) Ty error (mm) Tz error (mm)

TC 7 4 63

SC 6 5 100

no pred 5 4 59

7.1 Discussion of sample test sequence

Figure 12 shows plots of the rotation parameters Rx, Ry and Rz for test sequence

\sequence 2". The solid lines indicate the reference rotation parameters, obtained

with hand-labelled features and the dashed line shows the results obtained with our

gaze tracker. Figure 13 shows a plot of the corresponding errors in Rx, Ry and Rz.

It can be observed that, for about the �rst one hundred and ten frames, the pose

estimation is very close to the reference parameters. Then tracking failure occurs.

Because no gross error occurred from the beginning of the failure { one eye was

just found slightly o� the real position { the system did not detect tracking failure

immediately. At around frame 150 serious tracking failure occurred and the system

detected tracking failure. The tracker then starts searching for the features again,

and fully recovers at frame 178. The features were then tracked again accurately

and the pose estimates are very close to the reference parameters until frame 240.

Here another failure occurs, but the system is able to recover after only three frames.

This shows the ability of the system to recover from tracking failure.

8 An Application: Controlling an Image Viewer [15]

In order to show the applicability of our gaze tracking system to human-computer

interaction, we developed a multimodal interface to view panorama images. A

panorama image is made from photographs, video stills, or computer renderings.

Most panoramas are made from photographs as they provide the most realistic

images. The QTVR Player is a stand-alone application for Mac or PC that lets you

experience virtual reality scenes and objects from your desktop. It usually allows

the user to scroll through 360 degree panorama images by using the mouse and

to zoom in and out using the keyboard. In order to make the user hands free,

we habe developed and interface that uses gaze to control scrolling through the

panorama images, and voice-commands to control the zoom. The interface receives

parameters describing the rotation of the users' head from the gaze tracker and

parameters for the spoken commands from a speech-recognizer. It then sends the

appropriate mouse- or key-events to the image viewer. The interface and the image

viewer are running on a PC, and communication is done via sockets.

With such an interface, users can fully control the panorama image viewer with-

out using their hands as shown in Figure 14. They can scroll through the panorama



Rotation around x-axis - Rx

Rotation around y-axis - Ry

Rotation around z-axis - Rz

Figure 12. Estimated rotation angles with hand-labelled features (solid line) and with au-

tomatically tracked features (dashed line) on test sequence.

images in a natural way by looking to the left and right or up and down, and they

can control the zoom by speaking commands such as \zoom in", \zoom out" or

\zoom in three times". The concept of this interface can be extended to navigate

in a virtual environment where the surrounding then can be rendered according to

the users' gaze.

9 Conclusion

We have developed a non-intrusive real-time gaze tracking system, which estimates

the gaze by computing the pose of the user's head. The system automatically

�nds and tracks the face and the facial feature points in the image and is able to

recover from tracking failure automatically. Several algorithms to �nd and track

facial features such as eyes, nostrils and lip corners have been developed. With the

system, a user is allowed to move freely in the view of the camera and no special

lighting or marks are needed. The system has achieved average rotation errors as low



Error of Rx

Error of Ry

Error of Rz

Figure 13. Rotation errors

as 5 degrees for rotation around the x- and y-axis and as low as 1 degree for rotation

around the z-axis and a frame rate of 15+ frames per second. The usefulness of

the gaze tracker to human-computer interaction has been demonstrated by driving

a multimodal interface to watch panorama images.

Acknowledgements

We thank our colleagues in Interactive Systems Laboratories for their technical

supports to this project. This research was sponsored by the Advanced Research

Projects Agency under the Department of the Navy, Naval Research O�ce under

grant number N00014-93-1-0806.

References

[1] D. A. Simon, M. Hebert, and T. Kanade. Real-time 3-D pose estimation using a

high-speed range sensor. In International Conference of Robotics and Automation

Proceedings, pages 142{147, May 1994.



Figure 14. Controlling a panorama image viewer

[2] Shumet Baluja and Dean Pomerleau. Non-intrusive gaze tracking using arti�cial neu-

ral networks. Technical Report CMU-CS-94-102, Carnegie Mellon University, 1994.

[3] Andrew H. Gee and Roberto Cipolla. Non-intrusive gaze tracking for human-computer

interaction. In Proc. Mechatronics and Machine Vision in Practise, pages 112{

117, 1994.

[4] Daniel F. DeMenthon and Larry S. Davis. Model based object pose in 25 lines of code.

In Proceedings of Second European Conference on Computer Vision, pages 335

{ 343. Springer Verlag, May 1992.

[5] M.A. Fischler and R.C. Bolles. Random sample consensus: A paradigm for model

�tting with applications to image analysis and automated cartography. Communi-

cations of the ACM, 24(6):381{395, June 1981.

[6] R.Horaud, B. Conio, O. Leboulleux, and B. Lacolle. An analytic solution for the

perspective 4-point problem. Computer Vision, Graphics, and image Processing,

47(1):33{44, July 1989.

[7] L.G Roberts. Machine perception of three-dimensional solids. In J. Tippet et al.,

editor, Optical and Electrooptical Information Processing. MIT Press, 1965.

[8] Radu Horaud, St�ephane Christy, and Fadi Dornaika. Object pose: The link between

weak perspective, para perspective, and full perspective. Technical Report No. 2356,

INRIA, September 1994.

[9] D. G. Lowe. Fitting parameterized three-dimensional models to images. IEEE Trans-

actions on Pattern Analysis an Machine Intelligence, 13(5):441{450, May 1991.

[10] J. S.-C. Yuan. A general photogrammetric method for determining object position

and orientation. IEEE Transactions on Robotics and Automation, 5(2):129{142,

April 1989.



[11] Jie Yang and Alex Waibel. A real-time face tracker. In Proceedings of WACV, pages

142{147, 1996.

[12] R. Brunelli and T. Poggio. Face recognition: Features versus templates. IEEE

Transaction on Pattern Analysis and Machine Intelligence, 15(10), October 1993.

[13] Takeo Kanade. Picture processing by computer complex and recognition of human

faces. Technical report, Kyoto Univ., Dept. Inform. Sci., 1973.

[14] Andrew H. Gee and Roberto Cipolla. Fast visual tracking by temporal consensus.

Technical Report CUED/F-INFENG/TR-207, University of Cambridge, February

1995.

[15] Rainer Stiefelhagen and Jie Yang. Gaze tracking for multimodal human-computer

interaction. In Proceedings of International Conf. on Acoustics, Speech, and

Signal Processing, April 1997.


