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ABSTRACT

This paper presents results of our e�orts on com-
bining standard mixture of Gaussians acoustic model-
ing [10] with a context-dependent hybrid connectionist
HME/HMM architecture [3, 4] for the Switchboard cor-
pus. Using a score normalization scheme which is inde-
pendent of the stream's modeling paradigm and adaptive
methods for combining multiple probability distributions,
we achieve a relative decrease in word error rate of 3.5%
and 9.3%, compared to each of the single stream systems.
As opposed to multiple acoustic streams based on mix-
ture of Gaussians, the integration of hybrid NN/HMM
based modeling appears to be advantageous since the dif-
ferences in modeling techniques and training algorithms
allow to capture di�erent aspects of the speech signal.
Small dependence among emission probability estimates
is considered essential for potential gains in interpolated
systems.

1. INTRODUCTION

Recognizing spontaneous conversational telephone speech
is one of the most challenging �elds being tackled by the
speech recognition community. Sites achieved word error
rates ranging from 38.8% to 47.1% (Switchboard 1996, [8])
and from 44.9% to 51.6% (Switchboard + CallHome 1997)
in NIST's recent Hub-5E LVCSR evaluations based on the
Switchboard and CallHome spontaneous telephone speech
corpora. These �gures compare to only 7-10% error rates
achievable on high-quality read speech (e.g. on the Wall
Street Journal domain). Reasons for the large gap in
performance include di�erences in channel quality, vari-
ances in word pronunciations due to regional dialect and
speaking rate and the casual style of conversation. Lots
of spontaneous speech phenomena such as false-starts and
interjections can be observed in the Switchboard and Call-
Home corpora.

Our recognizer for the Switchboard domain is based on
the Janus Recognition Toolkit (JRTk) [10]. We re-
cently extended the acoustic modeling techniques avail-
able in JRTk by integrating a context-dependent hy-
brid neural network/HMM system [3, 4]. The hybrid
is based on generalized Hierarchical Mixtures of Experts
(HME) [7, 3] which are used as statistical estimators of
HMM observation probabilities. Using polyphonic de-
cision trees and a factorization technique for posterior
probabilities, acoustic contexts can be modeled accurately
within the NN/HMM framework. Using this technology,
the HME/HMM system has recently become competi-
tive with systems based on mixture of Gaussians acoustic
models.

Work by other groups (e.g. [11]) has shown that combina-

tions of di�erent architectures for acoustic modeling can
improve the overall performance, even in the case when
only static linear interpolation with constant weighting
factors is applied. When trying to combine heteroge-
nous systems such as a mixture of Gaussians and a hybrid
NN/HMM system, one has to take care of the fact that
the latter is estimating scaled likelihoods which can not
easily be combined with 'true' likelihoods. In our exper-
iments we are therefore applying a score normalization
technique, before combining multiple acoustic streams.

Viewing streams based on di�erent modeling paradigms
as experts for acoustic observations, we can introduce a
gating mechanism similar to the one used in HME's or in
the Meta-Pi [5] architecture, to merge the outputs of such
experts. A major di�culty of this technique, known in
statistics as linear opinion pooling [6], is the need for rel-
atively independent expert opinions. We are trying to ad-
dress this issue by combining heterogenous systems. How-
ever, independence of observation probability estimates
can not be expected since the systems are trained on the
same data.

In the remainder, we present details of systems and nor-
malization/combination methods, �nally reporting �rst
results of our experiments on Switchboard.

2. MIXTURE OF GAUSSIANS MODELING

This section describes the acoustic modeling part of our
current Janus Recognition Toolkit (JRTk) based mixture
of Gaussians recognizer for the Hub-5E Switchboard +
CallHome task.

� Preprocessing: Input coe�cients consist of 13
MFCC's plus power and the �rst and second deriva-
tives. We normalize for speaker dependent vo-
cal tract lengths by frequency warping the spec-
trum based on a maximum likelihood approach (ML-
VTLN). Cepstral mean normalization is used to com-
pensate for di�erent channels. After transforming the
resulting 42 dimensional feature vector using an LDA
matrix, the �rst 32 coe�cients are used as the �nal
feature vector.

� Acoustic/phonetic modeling: The system uses
3-state left to right tied-state continuous density
HMM's. Context-dependent acoustic modeling has
been augmented from standard triphone to poly-
phone modeling. In the case of the Switchboard rec-
ognizer, polyphone modeling is realized by allowing
questions in the allophonic decision tree refering to a
maximum of 2 phones to each side of a phone. Clus-
tering of the polyphonic decision tree uses an entropy
based splitting criterion and is carried out in a two
pass procedure, where codebooks are clustered in an
initial step, followed by the clustering of a larger num-
ber of distributions which are sharing codebooks [1].
The system used for the experiments reported here



consists of 24k distributions and 6k codebooks, each
containing 16 diagonal-covariance Gaussians.

� Adaptation: The system uses MLLR based unsu-
pervised adaptation on con�dence measure weighted
�rst hypotheses generated by the baseline system.
Adaptation training data are con�ned to words which
are considered error free according to the con�dence
measure. The number of MLLR transformations ac-
tually used to adapt to a speci�c speaker is deter-
mined automatically using a clustering algorithm on
the pooled set of Gaussians. This algorithm adapts
the number of MLLR transformations to the amount
of adaptation data available [10].

This recognizer was one of the best performing systems
participating in the Hub-5E 1996 and 1997 evaluations
[8]. Since at the time of the experiments for this paper,
adaptation was not available for the hybrid HME/HMM
system, we were not using MLLR for the mixture of Gaus-
sians system either.

3. HYBRID HME/HMM MODELING

The hierarchical mixtures of experts (HME) architecture
is a modular neural network suitable for supervised learn-
ing. Jordan and Jacobs [7] introduced the hierarchical
mixtures of experts for solving non-linear regression prob-
lems emphasizing the divide-and-conquer strategy. In our
system, HME's are used as classi�ers which requires dif-
ferent expert parameterizations. In an HME, the learning
task is divided into sets of overlapping regions by a tree-
organized hierarchy of gating networks. Expert networks
at the leaves of the tree perform the learning task in their
speci�c region of the input space. Expert outputs are
blended by the gating networks and proceed up the tree
to yield the �nal output. Expert and gating networks pa-
rameters are jointly estimated in order to maximize the
likelihood of a generative model. That means, the con-
struction of overlapping regions in which experts act re-
quires no supervision and is part of the learning algorithm.
It was shown, that an HME can model discontinuities in
the input-output mapping much better than traditional
monolithic neural networks.
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Fig. 1: Hierarchical Mixtures of Experts

Fig. 1 shows the structure of a binary branching HME of
depth 2. The output vector of such an HME is computed
according to

� =
X

i

gi(x)
X

j

gjji(x)�ij(x)

where gi(x) and gjji(x) are the outputs of gating networks
and �ij(x) are the outputs of the expert networks. In our
case, HME's are being used in a hybrid NN/HMM speech
recognition framework as classi�ers, estimating posterior
class probabilities. For classi�cation, expert and gat-
ing networks in an HME model multinomial probabilities
and are therefore parameterized using the softmax non-
linearity ('canonical link' in GLIM theory):

zi(x) =
exp yi(x)P
j
exp yj(x)

In [7] the yi(x) are parameterized as linear models, lead-
ing to an e�cient EM training algorithm (iteratively re-
weighted weighted least squares) for the hierarchy. How-
ever, we discovered that it is sometimes advantageous to
use more complex parameterizations for gates and ex-
perts. In our system, arbitrary multi-layer feed-forward
architectures using projective and/or radial kernels can be
applied. Such generalized HME architectures can still be
trained e�ciently using generalized EM algorithms with
on-line updates.

So far, we have described the basic modeling units of
the hybrid HME/HMM recognizer. Many research groups
have experimented with hybrid systems based on all kinds
of neural network models, mostly using a single network
to estimate monophone posteriors (sometimes augmented
by additional context networks). In our system, we are
using a more general setup for the estimation of scaled
likelihoods which allows to model any number of acoustic
models by adopting a decision tree based context clus-
tering as being used by most standard HMM systems.
Given a speci�c number of acoustic models, a tree of neu-
ral networks (in our case generalized HME's) is used to
model the required posteriors, which are then converted
to scaled likelihoods by dividing by priors. The applica-
tion of a tree of networks is justi�ed by a factorization of
acoustic model posteriors. For example, consider a system
which models a set of monophones !i in particular con-
texts cij using multi-state HMM's with states sijk. The
HMM requires the modeling of the following conditional
likelihood, which can be factorized as follows:

p(xj!i; cij; sijk)

=
p(!i; cij; sijk jx)

P (!i; cij; sijk)
p(x)

=
p(cij; sijkj!i;x)

P (cij; sijkj!i)

p(!ijx)

P (!i)
p(x)

=
p(sijkj!i; cij;x)

P (sijkj!i; cij)

p(cijj!i;x)

P (cijj!i)

p(!ijx)

P (!i)
p(x)

In our system, this particular factorization (other or-
ders of factorization are possible) would be modeled by
a depth-3 tree of neural networks, having a single mono-
phone discriminator at the root node, a set of context
discriminators (one network for each monophone) in the
�rst level and a set of state discriminators (e.g. modeling
the probability of being in the beginning, middle or end
state of an HMM) in the second level. Computation of
a speci�c conditional likelihood then requires the evalua-
tion of three HME's. Class priors are estimated by their
relative frequency in the training set.

For our Switchboard HME/HMM system, we are using a
more re�ned factorization corresponding to a deeper tree
of networks. The following �gure shows parts of this tree
structure. Each rectangular node contains a single HME



with di�erent architecture, depending on the amount of
training data available (HME architectures are ranging
from single node GLIM's used as state discriminators up
to a depth-2 two-layer MLP based HME with branching
factor 4 as monophone discriminator). Also, as with all
hybrid systems based on relatively large neural networks,
we have to �nd a trade-o� between model complexity
and available computing resources. However, the multi-
network tree can easily be trained in parallel on multiple
workstations since the NN nodes are independent.
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Fig. 1: Tree of networks for the HME/HMM system

The HME/HMM hybrid used for the experiments in this
paper did not contain any unsupervised adaptation proce-
dure. We are currently investigating the viability of linear
front end adaptation networks.

4. STREAM NORMALIZATION

Since the hybrid HME/HMM system is estimating scaled
likelihoods instead of 'true' likelihoods, it is di�cult to
compare and combine scores of heterogenous streams di-
rectly. This fact is illustrated in the following �gure,
which plots the empirical distribution of stream scores
(negative log-domain) for the hybrid HME/HMM and the
mixture of Gaussians (MOG) based systems.
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Fig. 1: Stream score distributions

While the distribution of MOG scores seems to smoothly
follow a Gaussian like statistic, the distribution of
HME/HMM scores contains bumps and a very strong
peak near zero. This peak is attributable to the (very fre-
quent) silence model and the MAP training process, which
leads to good discrimination of silence and speech. To

compensate the di�erences in distribution, we are using a
histogram based normalization technique, which produces
estimates of the following probability mass function on the
stream scores si (assuming negative (scaled) log probabil-
ities):

p(si > Sjx;�i)

Since lower values of si correspond to better scores, this
technique e�ectively normalizes any kind of stream scores
to the range [0,1]. The following �gure shows the resulting
mapping functions for the two systems considered in this
paper.
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Fig. 1: Empirical stream normalization functions

Finally, we note that this normalization method corre-
sponds to a monotonic mapping which preserves the or-
der of scored models while maximizing the entropy of the
resulting normalized stream scores by approximating a
uniform distribution. For the following section on combi-
nation methods, we are assuming that stream scores have
been normalized using the above method.

5. COMBINATION METHODS

A simple, yet e�ective combination method is the appli-
cation of static linear interpolation of normalized scores
pi:

p(xj�) =
X

i

ipi(xj�i) with
X

i

i = 1

When using a single set of i's shared among all acoustic
models, one can empirically determine the best interpo-
lation weights. The above technique can be enhanced by
allowing di�erent acoustic models to have di�erent inter-
polation weights. This, however, requires a learning algo-
rithm to adjust these parameters in order to maximize an
objective function such as the likelihood of the combined
system. Work by other people (e.g. [9]) has shown that
the estimation of model-dependent interpolation weights
requires a discriminative training procedure which can be-
come computationally prohibitive.

The above model of static linear interpolation (also called
linear opinion pooling) can be modi�ed to allow for inter-
polation weights gi which are functions of some feature
vector z:

p(xj�) =
X

i

gi(z)pi(xj�i) with
X

i

gi(z) = 1

This formulation of stream combination is equivalent to
a mixtures of experts approach and we can therefore use



the same framework for stream interpolation as for the
training of (H)ME's. A reasonably complex gating net-
work can be used to learn gating probabilities by �rst
computing stream posteriors

hi =
gi(z)pi(xj�i)P
j
gj(z)pj(xj�j)

which are then acting as target values during the training
of the network. Again, this method of adaptive interpola-
tion can be made model-dependent by allowing the appli-
cation of di�erent gating networks for di�erent acoustic
models.

If word con�dence measures are available by the recog-
nizer, the combination of streams can be guided by the
con�dence of each one of the acoustic streams into hy-
potheses obtained by separate decoding passes using each
one of the acoustic streams stand-alone. The individual
con�dence scores in each frame can either be converted
to gating posteriors or be used to decide on switching en-
tirely from one stream to the other.

Finally, all of the presented combination methods require
to convert the interpolated stream scores back to the log-
domain for decoding.

6. EXPERIMENTS & RESULTS

All experiments were carried out on the o�cial 1997
SWB+CH development test set which consists of 80 con-
versation sides. In order to be able to compare di�er-
ent approaches in a reasonable amount of time, we re-
stricted this test set further, by using only the �rst 30
seconds of speech from each conversation side. The hy-
brid HME/HMM system uses the same preprocessing as
the MOG system but concatenates 7 adjacent MFCC's to
obtain its �nal feature vector instead of applying an LDA
transform. A more detailed description of the recognition
engine (decoder,lexicon,LM) can be found in [2].
The following table summarizes results obtained by ap-
plying some of the stream combination methods described
earlier. The �rst two rows, termed MOG and HME list
the word error rates for the stand-alone systems. The
next three rows contain results for combined systems.

System SWB CH SWB+CH
WER WER WER

MOG 34.1 47.3 40.2
HME 37.3 49.3 42.8

SLI 33.0 45.7 38.9
MEI 33.1 45.5 38.8
CMI 33.9 47.0 40.0

The MOG system used in the above experiments di�ers
from our current best system (used in the 1997 Hub-5E
evaluation) in several respects. The evaluation system
uses an expanded set of phones, re�ned acoustic/phonetic
models, MLLR adaptation and multiple interpolated lan-
guage models. For comparison, we tested this evaluation
system on the test set used in this paper, where it achieves
a word error rate of 31.7%. Despite the much better per-
formance of this system, static linear interpolation with
the HME system still gave a relative improvement of 1.5%
on the 1997 evaluation set.

We now describe the three combined systems that were
tested:

� Static Linear Interpolation (SLI): Constant in-
terpolation weights of 0.6 (MOG) and 0.4 (HME)

� Mixtures of Experts Interpolation (MEI): Us-
ing a single two-layer gating MLP with 64 hidden
units and 32 input features (the same as for the MOG
system). Extracting appropriate features for a gating
network seems very important for this technique and
further work in this direction is necessary. Also, the
application of separate gating networks for di�erent
classes of models might be worth investigating.

� Con�dence Measure Interpolation (CMI):
Here, we were using word con�dence measures (es-
timates of the posterior word correct probabilities)
from the MOG system to weight the two systems.

7. CONCLUSIONS

We present a competitive speech recognition architecture
for the Switchboard telephone speech corpus. Using meth-
ods for adaptive combination of two di�erent acoustic
modeling paradigms, the system achieves a word error
rate of 38.8% on a subset of the 1997 SWB+CH devel-
opment test set, improving the recognition rate by 3.5%
relative to the mixture of Gaussians system. The context-
dependent HME/HMM system evaluated as a stand-alone
system achieves a word error rate of 42.8% on the same
test set.
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