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ABSTRACT Neural Network (MS-TDNN), an extension of the TDNN, com-
bines the high accuracy character recognition capabilities of a

In this paper we show how the Multi-State Time Delay Neural TDNN with a non-linear time alignment procedure (Dynamic
Network (MS-TDNN), which is already used successfully in Time Warping) [7] for finding an optimal alignment between
continuous Speech recognition tasks, can be app“ed both to on_StrOkeS and characters in handwritten continuous words.
line single character and cursive (continuous) handwriting recog- The following section describes the basic network architecture
nition. The MS-TDNN integrates the high accuracy single char- and training method of the MS-TDNN, followed by a description
acter recognition capabilities of a TDNN with a non-linear time of the input features used in this paper (section 3). Section 4 pre-
alignment procedure (dynamic time warping algorithm) for find- sents results both on different writer dependent/writer indepen-
ing stroke and character boundaries in isolated, handwritten char-dent, single character recognition tasks and writer dependent,
acters and words. In this approach each character is modelled bycursive handwriting recognition tasks.
up to 3 different states and words are represented as a sequence
of these characters. We describe the basic MS-TDNN architec- 2. THE MULTI-STATE TIME DELAY NEURAL
ture and the input features used in this paper, and present results NETWORK (MS-TDNN)
(up to 97.7% word recognition rate) both on writer dependent/
independent, single character recognition tasks and writer depen-The Time Delay Neural Network provides a time-shift invariant
dent, cursive handwriting tasks with varying vocabulary sizes up architecture for high performance on-line single character recog-
to 20000 words. nition. The Multi-State TDNN is capable of recognizing continu-
ous words by integrating a dynamic time warping algorithm
1. INTRODUCTION (DTW) into the TDNN architecture. Words are represented as a
) ] o ) sequence of characters, where each character is modelled by one
This paper describes a connectionist solution for the problem of 5 more states. For the results in this paper, each character is
single character and cursive (continuous) handwriting recogni-
tion. The recognition of continuous handwriting, as it is being
written on a touch screen or graphics tablet, has not only scien-
tific but also significant practical value, e.g. for note pad comput-
ers or for integration into multi-modal systems. In Figure 1, the 8
example application which we use for on-line demonstrations of "f‘jr*’ W ’fe"“
our handwriting recognizer is shown. The main advantage-of :
line handwriting recognition is the temporal information of writ- “ﬁh'i’rﬂ” k. ﬂ""‘"“&rhﬂ'
ing, which can be recorded and used for recognition. Handwrit- K ASSPE 1114
ten words can be represented as a time-ordered sequence o
coor_dlnates with varying speed ar_ld pressure in each pqordlnate. o
.As in speech recognition, the main problem of recognizing con-
tinuous words is that character or stroke boundaries are not - ,;:___,/J
known (in particular if no pen lifts or white space indicate these f T
boundaries) and an optimal time alignment has to be found [1]. -
The connectionist recognizer, described in this paper, integrates "—|
I

the recognition and segmentation into a single network architec-
ture, the Multi-State Time Delay Neural Network (MS-TDNN), it 2 AME e "
which was originally proposed for continuous speech recognition
tasks [2,3,4].

For on-linesingle character recognition, the Time Delay Neural
Network (TDNN) [5] with its time-shift invariant architecture
has been applied successfully [6]. The Multi-State Time Delay

Figure 1: Demonstration application for our on-line
continuous handwriting recognizer
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Figure 2: Architecture of the basic MS-TDNN

modelled with 3 states representing the first, middle, and last part All network parameters like the number of states per character,
of the characters. We use this approach not only for the recogni- the size of the input windows, or the number of hidden units are
tion of cursive words, but also for the recognition of isolated sin- optimized manually for the results presented in this paper, but
gle characters (letters and digits). In Figure 2 the basic can also be optimized automatically by the Automatic Structure
architecture of the MS-TDNN is shown. The first three layers Optimization (ASO) algorithm that we have already proposed in
constitute a standard TDNN with sliding input windows of cer- [8,9]. By using the ASO algorithm, no time-consuming manual
tain sizes. This TDNN computes scores for each state and for tuning of these network parameters for particular handwriting
each time frame in the states layer. In the DTW layer each word tasks and training set sizes is necessary to get optimal recognition
to be recognized is modelled by a sequence of states, the corre-performances.

sponding scores for the states are simply copied from the statesThe MS-TDNN is trained with standard back-propagation and
layer into the word models of the DTW layer. An optimal align-  training starts in a forced alignment mode, during which the MS-
ment path is found by the DTW algorithm for each word and the TDNN is trained with hand-segmented training data. For this
sum of all activations along this optimal path is taken as the score purpose only a small part of the training data must be labeled
for the word output unit. manually with character boundaries. Stroke boundaries are deter-
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Figure 3: a) the word “be” written on the graphics tablet and b) its input representation

mined automatically. During this forced alignment mode the
back-propagation starts at the states layer of the front-end TDNN
with fixed state boundaries.

After a certain number of iterations, when the network has suc-
cessfully learned character boundaries of the first smaller training
set, the forced alignment is replaced by a free alignment found by
the DTW algorithm. Now training starts at the word level of the
MS-TDNN and is performed on unsegmented training data.

During training in forced alignment mode the McClelland objec-
tive function [3] is used to avoid the problem witbout-of-n
codings for largen which appear with the Mean Squared Error.
For word level training (where back-propagation starts at the out-
put units) we use an objective function (Classification Figure of
Merit [10]), which tries to maximize the distance between the
activation of the correct output unit and the activation of the best
incorrect output unit.

3. DATA COLLECTION AND PREPROCESSING

The databases used for training and testing of the MS-TDNN
were collected at the University of Karlsruhe. All data is

describe relative x and y position changes of each dot. Using
these 13 features, one can combine the advantages of pure pixel-
maps (all dots can be seen at once) with the dynamic writing
information (order of writing). We will present these features in
more detail in a forthcoming paper.

Figure 2 shows the handwritten word “be” as it has been written
on the graphics tablet and its input representation after prepro-
cessing.

4. EXPERIMENTS AND RESULTS

The proposed MS-TDNN architecture was trained and tested
both onwriter dependent, cursive (continuous) handwriting
tasks andwriter dependent/writer independent, single char-
acter recognition tasks.

a) writer dependent, cursive (continuous) handwriting

The MS-TDNN was trained in writer dependent mode with 2000

training patterns (isolated words) from a 400 word vocabulary (5
training patterns for each word in the vocabulary). The average
word length of this vocabulary is 6.3 characters/word and it cov-

recorded on a pressure sensitive graphics tablet with a cordlessers all single lower case letters.

stylus which produces a sequence of time ordered 3-dimensional
vectors (at a maximum rate of 200 dots per second) consisting of
the x-y-coordinates and a pressure value for each dot. All sub-
jects had to write a set of single words from a 400 word vocabu-

lary, covering all lower case letters and at least one set of isolated
lower case letters, upper case letters, and digits. For the continu-
ous handwriting results presented in this paper only the data of
the first author was used.

A relatively straightforward and fast preprocessing is performed
on this data. To preserve the dynamic writing information, which
is the main advantage of on-line handwriting recognition over
pure optical handwriting recognition, these sequences of 3-

The trained network was then tested without any retraining on 5
different vocabularies with varying vocabulary sizes from 400 up
to 20000 words. Test results for these vocabularies (given as
word recognition rates) are shown in Table 1.

dimensional vectors are transformed into time-ordered sequences
of equally spaced, 13-dimensional feature vectors, which
describe relative position changes and the local topological con-
text of each dot. The local context is represented by a 3x3 context
pixel-map, which is calculated from a larger 20x20 pixel-map
around the current dot. This pixel-map encodes the local shape of
the curvature and all previous or future dots in the context of the
current dot. For calculating the 20x20 bitmap, all dots of the cur-
rent word or character are used. So one always knows if a partic-
ular dot is visited twice. E.g. in the contextpixel-maps for the
dots of the up-stroke of a handwritten “t” the dots of the horizon-
tal stroke of the “t” are already visible). The remaining 4 features

Vocabulary Test Recognition
Task Size (words) | Patterns Rate
msm_400_a | 400 800 97.7%
msm_400_b | 400 800 96.7%
msm_1000 | 1000 2000 94.8%
msm_10000 | 10000 2000 86.6%
msm_20000 | 20000 2000 83.0%

Table 1: Results for different writer dependent contin-
uous handwriting tasks.

Databasensm_400_a&onsists of 800 test patterns from the same
400 word vocabulary the network was trained on.

All othertest sets njsm_400_bpmsm_1000 msm_10000 and
msm_2000Pare selected randomly from a 100.000 word vocab-
ulary (Wall Street Journal vocabulary) and are completely differ-



ent from thensm_400_a&ocabulary. The average word length of
these vocabularies is around 8.2 characters/word.

Work is in progress to train and test the MS-TDNN architecture
on larger writer independent databases, that we have already col-
lected. First results which we have achieved on a smaller witer
b) writer dependent/writer independent, single (iso- mde_pendent database are a_bout 75% word recognition rate. In
addition we are currently testing the MS-TDNN with a first-best/

lated) characters ; ; . I

i ) N-best dynamic programming search driven by a statistical lan-
We have trained and tested the same network architecture bothgyage-model replacing the fixed word models.
for writer dependent and writer independent, single character
recognition tasks. For the results presented in this paper, we haveA
used separate networks for lower case letters (task a_z), upper ) ) ) )
case letters (task A_Z), and digits (task 0_9). Writer dependent The authors Y"OUld like to thank Ml(?hael Elnke, Hermann Hild,
results for these tasks are shown in Table 2 and writer indepen-and Alex Waibel for many helpful discussions, and all students

cknowledgments

dent results in Table 3.

Table 2: Single character recognition results (writer

and colleagues for contributing to our handwriting databases.

Task Training Test Recognition References
Patterns Patterns Rate [1] M. Schenkel, H. Weissman, |. Guydd. Nohl, and D. Hend-
msm_0_9 | 400 200 99.5% erson. Recognition-based Segmentation of On-line Hand-
. printed Words Advances in Neural Network Information
msm_A Z | 1040 520 99.0% Processing Systems (NIPS-8jorgan Kaufmann, 1993.
msm_a_z | 1040 520 98.1% [2] P. Haffner, M. Franzini, and A. Waibel. Integrating Time

Alignment and Neural Networks for High Performance Con-

dependent) tinuous Speech RecognitidAroceedings of the ICASSP:91
[3] H. Hild and A. Waibel. Connected Letter Recognition with a
Task Training Test Recognition Multi-State Time Delay Neural Networldvances in Neu-
Patterns Patterns Rate ral Network Information Processing Systems (NIPSVE)r-
- gan Kaufmann, 1993.
09 1600 200 (20 writers)|  99.5% ) ) .
- [4] C. Bregler, H. Hild, S. Manke, and A. Waibel. Improving
AL 2000 520 (20 writers)|  93.9% Connected Letter Recognition by LipreadiRgoceedings of
az 2000 520 (20 writers)| 91.5% the ICASSP-93Minneapolis, April 1993.

Table 3: Single character recognition results (writer
independent)

[5] A. Waibel, T. Hanazawa, G. Hinton, K. Shiano, and K. Lang.
Phoneme Recognition using Time-Delay Neural Networks.
IEEE Transactions on Acoustics, Speech and Signal Process-
ing, March 1989.

[6] I. Guyon, P. Albrecht, Y. Le Cun, W. Denker, and W. Hub-
bard. Design of a Neural Network Character Recognizer for a
Touch TerminalPattern Recognitior24(2), 1991.

single architecture, the MS-TDNN, which combines a time-shift [7] H. Ney. The Use of a One-Stage Dynamic Programming

invariant Time Delay Neural Network with a non-linear time Algorithm for Connected Word RecognitiolEEE Transac-
alignment algorithm for finding stroke and character boundaries. tions on Acoustics, Speech and Signal Processitagch

No separate recognition and segmentation steps are necessary in 1984.

this approach. The MS-TDNN architecture can be used both for ) o
single character and cursive handwriting recognition tasks. The [8] U- Bodenhausen, S. Manke, and A. Waibel. Connectionist
results on different writer dependent, cursive handwriting tasks ~ A\rchitectural Learning for High Performance Character and
(Table 1) show that the MS-TDNN is capable of learning and Speech Recognitioroceedings of the ICASSP;93inne-
finding stroke and character boundaries in handwritten words and ~ 2POlis, April 1993.

classifying these characters and words with high recognition per- [9] U. Bodenhausen and S. Manke. Automatically Structured
formances. The MS-TDNN performs well not only on the vocab- Neural Networks for Handwritten Character and Word Rec-
ulary it was trained for (see tasksm_400_j but also for other ognition. Proceedings of the ICANN-98msterdam, Sep-
vocabularies it has never seen before (taskn_400_)) even on tember 1993.

much larger ~vocabularies mém_1000 msm_10000 and [10] J. Hampshire and A. Waibel. A Novel Objective Function
msm_2000p0 This shows that the MS-TDNN successfully learns for Improved Phoneme RecognitidEEE Transactions on

to recognize characters and character boundaries independent of  Neural NetworksJune 1990.

the training vocabulary.

5. CONCLUSIONS AND FUTURE WORK

In this paper we have shown how recognition and segmentation
of isolated, cursive handwritten words can be integrated into a



