
Developing Knowledge-Based Systems with
MIKE

J. Angele, D. Fensel, D. Landes*, and R. Studer
Institute AIFB, University of Karlsruhe
76128 Karlsruhe, Germany,
tel. [049] (0)721 608 3923, fax [049] (0)721 693717
e-mail: {angele | fensel | studer}@aifb.uni-karlsruhe.de

Abstract
The paper describes the MIKE (Model-based and Incremental Knowledge Engineering) ap-
proach for developing knowledge-based systems. MIKE integrates semiformal and formal
specification techniques together with prototyping into a coherent framework. All activities
in the building process of a knowledge-based system are embedded in a cyclic process model.
For the semiformal representation we use a hypermedia-based formalism which serves as a
communication basis between expert and knowledge engineer during knowledge acquisition.
The semiformal knowledge representation is also the basis for formalization, resulting in a
formal and executable model specified in the Knowledge Acquisition and Representation
Language (KARL). Since KARL is executable, the model of expertise can be developed and
validated by prototyping. A smooth transition from a semiformal to a formal specification
and further on to design is achieved because all the description techniques rely on the same
conceptual model to describe the functional and non-functional aspects of the system. Thus,
the system is thoroughly documented at different description levels, each of which focuses
on a distinct aspect of the entire development effort. Traceability of requirements is support-
ed by linking the different models to each other.

Keywords
Knowledge Engineering, Knowledge Acquisition, Knowledge-based Systems, Domain
Modeling, Task Modeling, Problem-Solving Method

*.Author’s current address: Daimler-Benz Research and Technology, Dept. Software Engineering
(F3K/S), D-89013 Ulm, tel. [049] (0)731 505 2869, e-mail: landes@dbag.ulm.DaimlerBenz.COM

1 INTRODUCTION

Edward A. Feigenbaum (1977) defines the activity of knowledge engineering as “the art of
building complex computer programs that represent and reason with knowledge of the
world.“ In the last twenty years, significant progress has been achieved in improving the
understanding of the knowledge engineering activity and in providing methods and tools
that shifted knowledge engineering from an art to an engineering activity. Basically, two
waves can be identified, which we will call the knowledgetransferperiod and knowledge
modelling period.

During theknowledge transfer period a number of tools were developed which should
support the rapid transfer process of human knowledge into implemented systems. Rule-
based interpreters which support the rapid implementation of knowledge-based systems
(KBSs) were developed (cf. Hayes-Roth et al., 1983). However, the elicitation of knowl-
edge was soon identified as the main bottleneck in developing such systems. A number of
knowledge elicitation tools were developed to support the mining process for the knowl-
edge nuggets. Two implicit assumptions were made by these approaches: (1) Production
rules systems are the correct and adequate level for representing such knowledge and (2)
the knowledge that is required by a knowledge-based system already exists and only needs
to be collected.

The above techniques worked well in quickly deriving small prototypical systems; they
failed however to produce large, reliable and maintainable KBSs. In reaction to these prob-
lems both assumptions were criticized. For example, Clancey (1983) discussed the limita-
tions of production rules and Wielinga & Breuker (1984) proposed a modelling point of
view on knowledge acquisition. That is, knowledge acquisition is not the elicitation and
collection of already existing knowledge pieces, but the process of creating a knowledge
model which did not exist beforehand. In consequence, knowledge engineering is no longer
seen as a direct transfer process of human knowledge in a production rule implementation.
Instead, amodel of the required functionality of the KBS and the knowledge that is required
to achieve the functionality is built to bridge the large gap between informal requirements
and human expertise on the one hand and an implemented system on the other hand. Mean-
while, the modelling paradigm has become quite dominant in the knowledge engineering
area and a number of principles are shared by most approaches.
• Separating a domain model from a task model. A task model describes the problem that

should be solved by a KBS. A generic task (Chandrasekaran et al., 1992) abstracts from
the specific application domain and is therefore applicable to (i.e., reusablein) a broad
range of domains. A diagnostic task can be described independently from whether it is
performed to diagnose cancer, heart diseases, or faults of mechanical devices. In the
same sense, domain models can be used (i.e., reused) for a number of tasks. Building a
domain model is expensive and knowledge sharing and reuse can significantly reduce
development costs (cf. Farquhar et al., 1997; van Heijst et al., 1997). A functional com-
ponent model of a technical artefact can be used for design tasks or to diagnose a mal-
function using model-based diagnosis techniques (de Kleer et al., 1992).

• Modelling the problem-solving process is part of the knowledge model. In textbooks on
software engineering, authors propose a clean distinction between what the system
should achieve and how it achieves it. The former is the specification and the latter is
realized during design and implementation. In KBS development a more differentiated
point of view is taken. That is, not only thewhat, but also an implementation independ-
ent description of thehow , is a necessary part of a specification of a KBS. In general,
most problems tackled with knowledge-based systems are inherently complex and in-
tractable (see Fensel & Straatman, 1996; Nebel, 1996). A specification of a KBS has to

describe not just a realization of the functionality, but one which takes into account the
constraints of the reasoning process and the complexity of the task.Problem-solving
methods(cf. Breuker & Van de Velde, 1994) link domain and task models by describing
how the domain knowledge can be used to achieve the goals of the task in an efficient
manner.

In this paper we present one of these approaches: the MIKE approach (Model-based and
Incremental Knowledge Engineering), which provides a development method for KBSs cov-
ering all steps from the initial elicitation through specification to design and implementation.
MIKE proposes the integration ofsemiformalandformal specification techniques, prototyp-
ing, andlife cycle models into an engineering framework:
• Informal and semiformal modelsof the knowledge provide a high and informal level for

knowledge description. Graphical means like entity-relationship diagrams, data flow di-
agrams, flow charts, and state-transition diagrams, are used. This type of information is
easy to understand and very useful as a mediating representation for the communication
between the domain expert, the user, and the system developer. The semiformal models
are represented in a hypermedia-based formalism (Neubert, 1993).

• The language KARL (Knowledge Acquisition and Representation Language, (Fensel et
al., to appear (a)) allows the functionality as well as the knowledge necessary to achieve
the functionality to be described in an unambiguous and precise manner. The language
DesignKARL (Landes, 1994) provides additional primitives that allow the implementa-
tion-oriented aspects of the system to be modelled.

• Because KARL is an executable language the specification may be developed by a pro-
totyping approach, i.e. it may be evaluated by a running prototype. Often, this is nearly
the only way to arrive at realistic descriptions of the desired functionality as well as a
judgement of the competence of the captured knowledge.

• Additional representations the modelling decisions made during the various phases of the
life-cycle (Landes & Studer, 1995) to be documented. This enables requirements to be
traced back, i.e. it is recorded which parts of the implementation are addressing a partic-
ular requirement.

All different activities of the building process itself are embedded in a cyclic life cycle
model reflecting the incremental, cyclic and highly reversible nature of knowledge acquisi-
tion (Morik, 1987). Integrating prototyping and support for an incremental and reversible
system development process into a model-based framework is actually the main distinction
between MIKE and other model-based approaches like CommonKADS (Schreiber et al.,
1994):
• MIKE took themodel of expertise of CommonKADS as its general model pattern and

provides a smooth transition from a semiformal model to a formal model and further to
the design model of the system. Each of these different documents represent the model of
expertise at different levels of detail. The smooth transition between the different model
types is an essential support enabling incremental and reversible system development in
practice.

• The executability of KARL enables validation of the models by prototyping. From our
point of view, prototyping is an essential means to clarify weak requirements and to es-
tablish a notion of the competence of the modelled knowledge.

Though the MIKE approach addresses the building process of KBSs, these principles and
methods apply to requirements analysis and the specification of information systems and
“conventional“ software systems as well. For instance Fensel et al. (1993) show how KARL
may be used to formalize the system model of Structured Analysis and Angele (1996) shows
how KARL may be used for conceptual modelling of information systems.

The paper is organized as follows. Section two introduces the overall process model of

MIKE. Section three discusses the documents and models which are the results of the dif-
ferent MIKE development steps. Section four sketches the tool support that is provided by
MIKE and section five discusses related work. Section 6 draws some conclusions.

2 THE DEVELOPMENT PROCESS

In this section we will describe the MIKE knowledge engineeringprocess. First, we will
sketch the underlying modelling paradigm. Then we will describe the different activities
and their resulting documents and the sequence in which these activities are performed. Fi-
nally, we will discuss the use of prototyping and reuse as two guiding principles of such a
development process.

2.1 The Model of Expertise

The distinction of symbol level and knowledge level (Newell, 1982) gives rise to a separa-
tion of the description of a KBS at the knowledge level from the description at the symbol
level. A similar separation is made in software engineering where a specification of a sys-
tem should be clearly separated from its design and implementation. In an extension of such
a specification, a knowledge level model does not only describe the functionality of the sys-
tem but also describes at a high level of abstractionhow the system provides this function-
ality. This is done for the following reasons:
• As already mentioned, most problems tackled with KBSs are intractable in their general

definition (Nebel, 1996; Fensel & Straatman, 1996). Therefore, it is necessary to model
problem restriction as well as heuristics that improve the efficiency of the system. Prag-
matic restrictions as well as “clever heuristics“ are often exactly the knowledge that dis-
tinguishes an expert from a novice (VanLehn, 1989).

• Typically, the necessary functionality of a KBS is only available as procedural
knowledge of how to perform the task. Therefore, specifying the functionality of a KBS
is only possible as result of modelling how it is achieved.

In consequence, it is not sufficient to give a detailed functional specification of a KBS
and to build a solution using ’normal’ computer science know-how. Instead task and do-
main specific knowledge and problem-solving methods that make use of this knowledge
are necessary to build a solution.

According to the KADS approach the knowledge level description of a KBS is called the
Model of Expertise(MoE) (cf. Schreiber et al., 1994). This model separates different kinds
of knowledge at different layers:
• Thedomain layer contains knowledge about domain-specific concepts, their attributes

and their relationships and it contains domain specific heuristics for the problem-solv-
ing process.

• The inference layer contains the knowledge about the functional behavior of the prob-
lem-solving process. This layer indicates which inferences are necessary and which
data dependencies exist between them.

• Thetask layer (calledcontrol layer in MIKE) contains knowledge about the goals of a
task and the control knowledge required to perform the task. This layer specifies the se-
quence of the inferences within the problem-solving process.

The problem-solving process is represented at the inference and control layer. Thus these
two layers together with the heuristics at the domain layer describe how the system pro-

vides its functionality.
This structure and the building primitives of the MoE are used throughout the entire devel-

opment process in MIKE. So all development activities work on the same conceptual model
and all documents resulting from these activities are based on this same conceptual model.
During the succeeding realization process the structure of this model should be preserved as
best as possible. This allows parts of the final expert system to be traced back to correspond-
ent descriptions of earlier development steps.

2.2 Steps and documents

The different development activities and the documents resulting from these activities are
shown in Figure 1. Within the entire development process a large gap has to be bridged be-
tween the informal requirements and human knowledge on the one hand and the final reali-
zation of the expert system on the other hand. Dividing this gap into smaller ones reduces the
complexity of the entire modelling process because in every step different aspects may be
considered independently from other aspects. Therefore in MIKE the entire development
process is divided into a number of subactivities:Elicitation, Interpretation, Formalization/
Operationalization, Design, andImplementation. Each of these activities deals with different
aspects of the entire system development.

The knowledge acquisition process starts withElicitation (see Figure 1), i.e. trying to get
hold of the experts’ knowledge. Methods like structured interviews, observation, structuring
techniques etc. (Eriksson, 1992) are used for acquiring informal descriptions of the knowl-
edge about the specific domain and the problem-solving process itself. The resulting knowl-
edge expressed in natural language is stored in so-called knowledge protocols.

R

RC

E Design

Design
Model KARL Model

Model
Structure

Implemen-
tation

Formalization
Operationalization

Interpretation

knowledge
protocolsexpert

expert
system

Elicitation

evaluation

Figure 1 Steps and documents in the MIKE development process

activity document

During theInterpretation phase the knowledge structures which may be identified in the
knowledge protocols are represented in a semi-formal variant of the MoE: theStructure
Model(Neubert, 1993). All structuring information in this model, like the data dependen-
cies between two inferences, is expressed in a fixed, restricted language while the basic
building blocks, e.g. the description of an inference, are represented by unrestricted texts.
This representation provides an intitial structured description of the emerging knowledge
structures. It has a mediating role between the natural language descriptions and the formal
MoE. The development of mediating representations provides various advantages: Semi-
formal representations can be used as a communication level between the knowledge engi-
neer and the expert. The expert can be integrated in the process of structuring the complex
knowledge such that the knowledge engineer is able to interpret and formalize it more eas-
ily. Thus, the cooperation between expert and knowledge engineer is improved and the for-
malization process is simplified. An early evaluation process is possible in which the expert
himself is integrated. In addition, a mediating representation is a basis for documentation
and explanation. The maintenance of the system is also simplified.The Structure Model
may be evaluated by semi-automatical simulation.

This semi-formal MoE is the foundation for theFormalization/Operationalization proc-
ess which results in the formal MoE: the KARL Model. This formal MoE has the same
structure as the semi-formal MoE while the basic building blocks which have been repre-
sented as natural language texts are now expressed in the formal languageKARL(Fensel et
al., to appear (a)). This representation avoids the vagueness and ambiguity of natural lan-
guage descriptions. Because the former texts have to be interpreted, the formalization helps
to get a clearer understanding of the entire problem-solving process. This formalized MoE
can be directly mapped to an operational representation because KARL (with some small
limitations) is an executable language. Thus the KARL Model can be evaluated by testing.

The result of the knowledge acquisition phase, the KARL Model, captures all functional
requirements for the final expert system. During theDesign phase additional non-function-
al requirements are considered. These non-functional requirements include e.g. efficiency,
maintainability, robustness, portability, etc., but also the constraints imposed by target soft-
ware and hardware environments. Efficiency is already partially covered in the knowledge
acquisition phase, but only to the extent as it determines the problem-solving method. Con-
sequently, functional decomposition is already part of the knowledge acquisition phase.
Therefore, the design phase in MIKE constitutes the equivalent of detailed design and unit
design in software engineering approaches. TheDesign Model which is the result of this
phase is expressed with the languageDesignKARL (Landes, 1994). DesignKARL extends
KARL by providing additional primitives for structuring the model and for describing al-
gorithms and data types. Similar to the MoE, the Design Model can be evaluated through
testing. DesignKARL additionally allows the design process itself and interactions be-
tween design decisions to be described.

The Design Model captures all functional and non-functional requirements posed to the
KBS. In theImplementation process the Design Model is implemented in the target hard-
ware and software environment.

The result of all phases is a set of several interrelated refinement states of the MoE. The
knowledge in the Structure Model is related to the corresponding knowledge in the knowl-
edge protocols viaelicitation links. Concepts as well as inference actions are related to pro-
tocol nodes, in which they have been described using natural language. The Design Model
refines the KARL Model by refining inferences into algorithms and by introducing addi-
tional data structures. These parts of the Design Model are linked to the corresponding in-
ferences of the MoE and are thus in turn linked to the knowledge protocols (Landes, 1994).
Combined with the goal of preserving the structure of the MoE during design, the links be-

tween the different model variants and the final implementation ensure traceability of (non-
)functional requirements.

2.3 Prototyping

The development process of MIKE inherently integrates different types of prototyping (An-
gele et al., 1996a). The entire development process, i.e. the sequence of knowledge acquisi-
tion, design, and implementation, is performed in a cycle guided by aspiral model (Boehm,
1988) as process model. Every cycle produces a prototype of the expert system which may
be evaluated by testing it in the real target environment. The results of the evaluation are used
in the next cycle to correct, modify, or extend this prototype. This process is continued until
all requirements posed to the KBS are fulfilled. In contrast to a linear process model this al-
lows even changing requirements to be taken into account. This cyclic approach also inte-
grates the maintenance of the system into the development process. Maintenance is
performed by evaluating the current system and subsequently performing a set of develop-
ment cycles in order to correct the system or to adapt it to changed requirements.

The executability of the language KARL allows the MoE to be built by explorative proto-
typing. Thus the different steps of knowledge acquisition are performed cyclically until the
desired functionality has been reached. Thus the result of knowledge acquisition has been
evaluated by the expert and therefore provides a well-founded basis for the succeeding real-
ization process.

In a similar way, non-functional requirements are tackled by experimental prototyping in
the design phase. DesignKARL can be mapped to an executable version which allows the
Design Model to be evaluated by testing. The Design Model is refined by iterating the sub-
phases of the design phase until all requirements are met.

Because of the possibility to clearly separate the modeling of the functional requirements
in knowledge acquisition, the non-functional requirements in the design phase, and the im-
plementation in the implementation phase, the development activities may focus separately
on different aspects: this divide-and-conquer strategy considerably reduces the complexity of
the entire development process.

2.4 Reuse

The above described development process may be supplemented by reusing parts of models
developed earlier for similar problems.

The method for tackling the given task is represented at the control layer and the inference
layer of the MoE. These two parts together are called problem-solving method (PSM)(Breuk-
er & Van de Velde, 1994; Puppe, 1993). A PSM decomposes the given task into a hierarchy
of subtasks. A method is assigned to each subtask which solves this subtask. Each method in
turn may pose new subtasks until a level of elementary methods is reached. A PSM generi-
cally describes the different roles which are played by different kinds of domain knowledge
during the problem-solving process. This may be exploited by using a PSM as a guideline to
acquire static domain knowledge and additional domain-specific problem-solving knowl-
edge like heuristics and constraints. A PSM may be represented independently of the domain
it is applied in. For instance the PSM Hierarchical Classification which classifies an object
in a hierarchy of object classes may be applied to classify cars or to classify animals. So for
another problem which may be solved by Hierarchical Classification the PSM may be reused.
Reusing and adapting PSMs is based on the assumptions they introduce on the required do-
main knowledge and the restriction of the task (Benjamins et al., 1996). How to organize a

library of PSMs and how to support the stepwise refinement process of PSMs is described
in (Fensel, 1997b).

In a similar way, the construction of the domain layer of the MoE is supported by ontol-
ogies. Anontology provides an explicit specification of a conceptualization (Gruber, 1993).
In essence, two types of ontologies may be distinguished:
• Commonsense ontologies aim at defining a collection of top-level concepts and associ-

ated relations which are independent of a specific application domain. In order to make
the development of these ontologies manageable, they are typically divided into differ-
ent clusters, e.g. for time and events, space or quantities (compare e.g. Lenat & Guha,
1990; Knight & Luk, 1994).

• Domain ontologies provide a conceptualization of a specific domain. They constrain
the structure and contents of particular domain knowledge and define the vocabulary
which is used to model the domain (van Heijst et al., 1997). Domain ontologies aim at
making domain knowledge shareable across different tasks and reusable for different
tasks. Farquhar et al. (1997) describe the Ontolingua server which supports composing
complex ontologies from a library of already available ontologies.

Appropriate methods are required for supporting the reuse of ontologies. Pirlein & Stud-
er (1994) introduce the KARO approach, which offers an integrated set of formal, lexical,
and graphical methods for reusing ontologies and adapting them to the new task context. In
general, a reuse-oriented approach should support both the reuse of PSMs and the reuse of
ontologies. Pirlein & Studer (1997) discuss, how the reuse of PSMs may be integrated with
the reuse of ontologies to support the construction of the MoE.

3 THE DOCUMENTS AND THEIR REPRESENTATIONS

In this section we present in detail the documents and models which are the results of the
different MIKE development steps. These models describe the various types of knowledge
at different levels of formality.

3.1 Knowledge Protocols

The MIKE development process begins with the Elicitation step. In this step various types
of interviews are conducted. In addition, relevant sections of textbooks as well as Web doc-
uments and other kinds of documents are collected. The results of all these activities are
stored in so-calledknowledge protocols which contain natural language descriptions of the
acquired knowledge (Neubert, 1993). In addition, administrative information like the date
or the participants of the interview is stored. Knowledge protocols may be connected to
each other by using two types of links: anordering link specifies the temporal order in
which two protocols have been collected, whereas arefinement link indicates that one pro-
tocol is a refinement of another one, i.e. is describing a specific subject in more detail.

Subsequently, we will use a running example for illustrating the MIKE documents and
models: the task is to select appropriate methods for dismantling a building which allow at
least parts of the building rubble (Fichtner et al., 1995) to be recycled. The task was tackled
in cooperation with an external partner* in order to evaluate the MIKE approach in a com-
plex domain. In Figure 2 we show parts of three knowledge protocols which resulted from

*.Institute for Industrial Production, University of Karlsruhe

various interviews with the domain experts.

Knowledge protocol 2 is connected by a refinement link to knowledge protocol 1 since it
describes the pruning of methods in more detail. Furthermore, we have an ordering link be-
tween knowledge protocol 1 and knowledge protocol 3, because protocol 3 is based on an
interview which had been conducted later in the elicitation process.

3.2 The Common Conceptual Model: The Model of Expertise

Throughout the MIKE development process a common conceptual model is used for describ-
ing the functionality of the KBS under development: theModel of Expertise (MoE). The
MIKE Model of Expertise is derived from theKADS model of expertise (Schreiber at al.,
1993). It is divided into different layers, each containing a different type of knowledge. The
MIKE Model of Expertise distinguishes three types of knowledge at three different layers.
These types establish a static view, a functional view, and a dynamic view to the KBS.

Domain knowledgeat thedomain layerconsists of static knowledge about the application
domain. The domain knowledge should define a conceptualization of the domain as well as
task-specific heuristics.

Inference knowledge at theinference layer specifies the inferences that can be made using
the domain knowledge and theknowledge roles which model input and output of the infer-
ences. Three types of knowledge roles are distinguished. Roles which supply domain knowl-
edge to an inference action are calledviews, roles which model the data flow dependencies
between inference actions are calledstores, and roles which are used to write final results
back to the domain layer are calledterminators. The inferences and roles together with their
data flow dependencies constitute a description of the problem-solving method applied. The
roles and the inference actions are specified in aproblem-solving-method-specific terminol-
ogy independently of the domain-specific terminology (cf. Studer et al., 1996).

A domain view specifies the relationship between the knowledge used at the inference lay-
er and the domain-specific knowledge. It performs a transformation of the domain-specific

The selection of a method for dis-
mantling buildings is based on subjec-
tive and objective criteria. ... The
selection is done in three steps: First,
you determine which methods are in
general applicable to dismantle speci-
fic parts of a building. In a second step
you have to check what assignments
of methods to parts are valid - typical-
ly, only a subset will be valid. Finally,
you have to assess all the valid me-
thods and select the most appropriate
ones. This assessment is done in se-
veral substeps. ...

Let us again consider the pruning of
methods. A set of assignments of dis-
mantling methods to parts is only va-
lid if the mentioned conditions are
met. ...

In general, there are lots of different
dismantling methods available.
Among others, these methods are des-
cribed by the required equipment, the
required space, and the costs. ...

Protocol 1

Protocol 2

Protocol 3

refinement link ordering link

Figure 2 Knowledge Protocols (translated in English for the purpose of the paper)

terminology of the domain layer into the terminology specific to the problem-solving meth-
od at the inference layer (cf. Gennari et al., 1994).

Dynamic control knowledgeat thecontrol layer is used to specifycontrol over the exe-
cution of the inferences of the inference layer. It determines the sequence in which the in-
ferences are activated.

Both inference and control knowledge are domain independent, i.e. they describe the
problem-solving process in a generic way using a terminology specific to the problem-solv-
ing method.

3.3 The Semi-formal Model of Expertise: The Structure Model

In MIKE the knowledge acquisition phase results in a formal specification of the Model of
Expertise using the formal specification language KARL. However, the construction of this
formal specification is divided into two steps: first, a semi-formal description of the Model
of Expertise is constructed in the Interpretation phase, resulting in the so-called Structure
Model. Using the Structure Model as a starting point, the formal KARL Model is construct-
ed in the Formalization/Operationalization step.

TheStructure Model is described in a hypertext-based formalism offering various types
of nodes andlinks. Each node is inscribed by natural language text (Neubert, 1993).

On the domain layer, nodes represent domain conceptsand links represent various types
of relationships between concepts:generalization, aggregation, anddomain specific rela-
tionships. The graphical notation for the describing the domain layer has been adopted from
OMT (Rumbaugh et al., 1991).Thus, concepts are modeled as classes and relationships are
modeled as associations.

Figure 3 shows both the Structure Model and the KARL Model of our running example
(Fichtner et al., 1995). The domain terminology and domain knowledge needed to choose
appropriate methods and techniques for dismantling a building are defined at the domain
layer. For instance the availabledismantling methods may among others be divided into
knocking down andblasting. Thebuilding parts are represented in a part-of hierarchy. It
should be clear that the domain layer contains additional knowledge, e.g. the conditions
which enable or disable certain techniques for the case at hand.

It is important to note that the inscriptions of the nodes of the Structure Model are direct-
ly copied from the knowledge protocols. For instance the inscription of the nodedisman-
tling method is taken from knowledge protocol 3. As a consequence, an elicitation link is
established between this node and protocol 3.

On the inference layer nodes represent the inference steps and knowledge roles. In our
example the global inference actionSelect Dismantling Method is decomposed into three
top-level inference actions (compare knowledge protocol 1 in Figure 2). Therefore, we find
three inference actions on the inference layer: the inference actionAssigndetermines all
methods which are applicable for demolishing or removing the different parts of the build-
ing and assigns them to the appropriate parts. Therefore,methods andparts are used as in-
put roles forAssign. Prune eliminates part-methods pairs which are disabled by case
specific conditions. Here again, we see that the description of the inference actionPrune is
copied from one of the knowledge protocols.Assess then assesses the remaining part-meth-
od pairs and chooses those methods which are best suited and produce the least costs.As-
sessis a complex inference action, i.e. it is hierarchically refined until elementary inference
steps are reached.

The control flow between these inferences is defined at the control layer. In general,se-

quence, loop, andalternative are used to specify the control flow. In our example the control
flow is very simple: the three top-level inference actions are executed once in the orderAs-
sign, Prune, andAssess.

As an extension to the KARL Model, the Structure Model includes an additional layer for
modeling non-functional requirements (NFRs): the so-calledNFR layer. This is due to the
fact that the KARL Model provides a formal specification of thefunctional behavior of the
KBS, whereas non-functional requirements are used duringDesign to derive the Design
Model from the KARL Model.

The NFR layer is used for describing the NFRs the system must fulfill. Basically, node
types likerequirements category orevaluation criterion as well as link types likecorrelation
or conflict solution are used to semi-formally describe types of requirements and various re-
lationships which may exist between them (see Landes & Studer, 1995 for details). In Figure
4 a partial NFR context for our running example is shown. We assume that we find in a
knowledge protocol the statement that the resulting KBS would solve the problem faster than

superclass

subclass

Generalization

assembly class

part-class

Aggregationprocess

class,store
ordering link
dataflow link

view

terminator

domain view

dismantling method

Prune

control

inference layer

domain layer

layer Prune

INFERENCE ACTION Prune
PREMISES conditions,

CONCLUSIONS

(X[avail:TRUE] ←

check(X)).
END;

dismantling method

CLASS dismantling_method

equipment:: {STRING};

END;

name: {STRING};

Assign

Prune

Assess

methods

 parts

Assign

part-method-pairs
Prune

conditionsAssess
solution

.......

part-method-pairs;

part-method-pairs;

 X ∈ part-method-pairs ∧

building

technical
structural

building parts
dismantling

knocking blasting

method

down

complex process

Figure 3 Model of Expertise for the task of selecting methods to dismantle a buil-
ding. At the left the semi-formal variant (Structure Model), at the right
the formal variant (KARL Model) is shown.

parts
parts

Let us again consider the
pruning of methods. A set
of assignments of dis-
mantling methods to
parts is only valid if the
mentioned conditions are
met. ...

In general, there are lots
of different dismantling
methods available.
Among others, these
methods are described
by the required equip-
ment, the required spa-
ce, and the costs. ...

a human expert. This statement is interpreted as a runtime requirement. Thus, an instance of
the requirement categoryruntime efficiency is created on the NFR layer and linked to the cor-
responding text fragment in the knowledge protocol. Since the text fragment also contains a
criterion to check whether the requirement has been met (the KBS should need less than 2
hours), a node of type evaluation criterion is created as well. In addition, we find areference
link to the global inference actionSelect Dismantling Method since the requirement affects
all the steps which have to be carried out for solving our problem.

The graphical representations of the control flow, the data flow, and the static knowledge
have been adopted from corresponding representations in software engineering (program
flow diagrams, data flow diagrams, OMT notation), and the representation of non-functional
requirements is similar to corresponding graphical representations in software engineering
and information systems engineering. The Structure Model is an adequate basis for the de-
velopment of the KARL Model as well as of the Design Model: it comprises the knowledge
about the functional aspects as well as non-functional aspects, the domain knowledge is
clearly separated from the problem-solving knowledge, and all the different parts of the
Structure Model are well-integrated and linked to the appropriate parts of the knowledge pro-
tocols.

3.4 The formal Model of Expertise: the KARL Model

In this section we describe the formal Model of Expertise, the KARL Model, represented in
the language KARL. A detailed description of KARL may be found in (Fensel et al., to ap-
pear (a)). The main characteristics of KARL are the combination of aconceptual description
of a KBS with aformal andexecutable specification. In the following we give a brief over-

reusability efficiency

RC RC

runtime efficiency

RC

R

negc

negc

isa

inst

runtime < 2h

E...
a solution should
be computed faster than
it may be done by a
human expert. A human

NFR
layer

RC
requirements class

R
requirement

E
evaluation criterion

negative correlation
IsA
instance

association

ass

negc
isa

inst

ass

reference
ref

Selectref

Structure Model

knowledge

elicitation link

expert typically needs
2 hours.
....

Figure 4 Non-Functional Requirements for the task of selecting methods for dis-
mantling a building

 Dismantling
Method

protocol 4

view of KARL and its use to specify the different types of knowledge at the different layers
of the KARL Model.

Logical-KARL (L-KARL)
L-KARL enriches the modelling primitives of first-order logic through the inclusion of epis-
temological primitives but preserves its model-theoretical semantics. These additional prim-
itives allow static aspects to be described more adequately than pure first-order logic. In this
way, ideas of semantical and object-oriented data models are integrated into a logical frame-
work enabling the declarative description of terminological as well as assertional knowledge.

L-KARL distinguishes classes, objects, and values. Classes which are arranged in an is-a
hierarchy with multiple attribute inheritance are used to describe terminological knowledge
at the domain layer and in knowledge roles at the inference layer. In Figure 1 dismantling
methods are described by a class hierarchy:

CLASS dismantling_method CLASS knocking_down
name: {STRING}; ISA dismantling_method;
equipment::{STRING}; space: {INTEGER};
....

END; END;

The attributes have range restrictions described within the curved brackets: for the attribute
name, for instance, only strings are allowed as values.Equipment is a set-valued attribute, i.e.
it has a set of values assigned. The classknocking_downinherits all attributes from its super-
classdismantling_method.

Intentional and factual knowledge is described by logical formulae dealing with classes,
instances of classes, and values. Such formulae are used to describe (i) facts and sufficient
conditions at the domain layer, (ii) to declaratively describe the input-output behavior of in-
ference actions at the inference layer, and (iii) to represent views and terminators, i.e. to trans-
form domain specific knowledge into generic knowledge needed by the problem-solving
method and vice versa.
The basic ingredients of logical formulae in KARL are F-atoms:
• e ∈ c is anelement-atom wheree is an element identifier andc is a class identifier. An

element-atom states that an objecte is an element of classc.
• c ≤ d is anis-a-atom, wherec andd are class identifiers. An is-a-atom expresses the fact

that a classc is a subclass of classd. Using variables withinc or d it is possible to browse
through the class hierarchy using this term.

• o[..., a:T,..., s::{ S1,..,Sn},...] is a data-atom, whereo is either an element identifier or a
class identifier,T, Si are data-atoms.a is an attribute name of a single-valued attribute,s
of a set-valued attribute. A data-atom defines attribute values for the object which is re-
ferred to by the identifiero.

• e = d denotes anequality-atom, wheree andd are identifiers. This means thate andd de-
note the same element, class, or value.

In addition,P-atoms p(a1:T1, ...,an:Tn) allow the expression of relationships between objects
Ti in a similar way as in predicate logic. The arguments of a predicate are named by the ai´s
in order to improve readability. A set of built-in P-atoms is available for instance for mathe-
matical computations.

Instances of classes are described by facts (F-atoms without variables). Objects are repre-
sented by unique identifiers. For instance a knocking down method with identifierkm1 may
be given by the following fact (data-atom):

km1[name: knock1, equipment:: {sphere}, space: 2,45]. // method with attributes

To express the fact thatkm1 is an element of the classknocking_down the following fact (el-
ement-atom) is used:

km1 ∈ knocking_down. // km1 is an instance of knocking_down

Facts are used for representing factual knowledge at the domain layer. In addition the con-
tents of stores at the inference layer consist of sets of facts.

Logical formulae are built from F-atoms in the usual way using logical connectors∧ (and),
∨ (or),¬ (not),← (implication), brackets, and variable quantification.
For instance the inference actionPrune in Figure 1 is represented by the rule:

X[avail:TRUE] ← X ∈ part-method-pairs∧ check(X).
This rule checks allpart-method pairsto determine whether they are suitable via the predi-
catecheck (which is defined at the domain layer) and marks them as available (avail: TRUE).

The following rule determines all subclasses of the classdismantling_method by using an is-
a-atom in its rule body:

sub(c: X) ← X ≤ dismantling_method.

One resulting instance of the P-atomsub in our example issub(c:knocking_down).

The logical language KARL is restricted to Horn logic with equality extended by stratified
negation. Using a logical language enriched by additional primitives allows the description
of the respective parts of the model on an adequate abstraction level and the restriction to
Horn logic allows the KARL Model to be executed and thus supports the construction proc-
ess by means of prototyping.

Procedural-KARL (P-KARL)
In KARL, knowledge about the control flow is explicitly described by the language P-KARL.
The control flow at the control layer, i.e. the sequence of the activation of inference actions,
is specified by the modelling primitivessequence, loop, and alternative which are similar to
the control flow statements of procedural programming languages. The conditions for con-
troling loops and alternatives consist of boolean expressions including boolean variables and
boolean functions of the formempty(s,c). The boolean functionempty(s,c) delivers the value
true if the classc in stores at the inference layer contains no elements. For instance the simple
control flow of our example in Figure 1 consists of a sequence of invocations of inference
actions at the inference layer:

Assign;
Prune;
Assess;

The KARL Model
The two sublanguages of KARL, L-KARL and P-KARL, are used to represent the following
parts of the KARL Model (see Figure 5).
L- KARL is used to represent:
• a hierarchy of classes, their relationships, and their attributes at the domain layer,
• sufficient and necessary conditions using logical formulae at the domain layer,
• the connections between the inference layer and the domain layer, i.e. views and termi-

nators, using logical formulae (rules),
• the input-/output behavior of inference actions at the inference layer using logical formu-

lae (rules),
• the internal structure of stores, views, and terminators at the inference layer by means of

classes, relationships between classes, and attributes of classes.
• facts at the domain layer and facts as conctents of stores at the inference layer.

P-KARL is used to represent:
• the control flow at the control layer.

KARL as a Formal and Executable Specification Language
The KARL Model contains the description of domain knowledge and knowledge about the
problem-solving method (inference and control layer). The gist of theformal semantics of
KARL is therefore the integration of static and procedural knowledge. For this purpose, two
different types of logic have been used and integrated. The sublanguage L-KARL, which is
based on object-oriented logics, combines frames and logic to define terminological as well
as assertional knowledge. The sublanguage P-KARL, which is a variant of dynamic logic, is
used to express knowledge about the control flow of a problem-solving method in a proce-
dural manner. Both types of languages have been combined to specify the semantics of
KARL. This semantics of KARL is defined by enriching the possible worlds semantics of
Kripke structures (cf. Harel, 1984) with minimal model semantics of logic programs (cf. Ul-
lman, 1988; Przymusinski, 1988) for defining possible worlds and elementary transition be-
tween worlds, see (Fensel, 1995; Fensel et al., to appear (a)) for more details. Based on this
semantics, a constructive semantics and an optimized evaluation strategy have been devel-
oped which establish the foundation of an interpreter and debugger for KARL (Angele,
1993), (Fensel et al., to appear (a)). In this way it becomes possible to validate a formal spec-
ification by executing it and to create this specification using a prototyping approach.

3.5 The extended Model of Expertise: the Design Model

In this section, the Design Model and the underlying description language DesignKARL will
be outlined. More details can be found in (Landes, 1994) and (Landes & Studer, 1995).

control layer

inference layer

domain layer

P - KARL

L - KARL

Figure 5 Representation of different parts of the KARL Model using the
sublanguages of KARL.

The Contents of the Design Model
The Design Model prescribes how the system has to be realized in order to comply to the
functional and non-functional requirements posed against it. Thus, the Design Model encom-
passes the knowledge that is already contained in the MoE but adds information that forms
the basis for the ensuing implementation of the system. In its final stage, the Design Model
has to indicate precisely
• what the interfaces between the reasoning component and other components of the sys-

tem look like,
• the constituents which make upf the reasoning component,
• what the interfaces and interactions between these constituents are, and
• how these constituents work internally, i.e. which algorithms and data structures have to

be employed in which specific locations.
Basically, the design process can be viewed as a refinement of the information contained

in the KARL Model, triggered by the non-functional requirements collected in the NFR layer
of the Structure Model. Design decisions are constrained by the aim to preserve the structure
of the KARL Model as far as appropriate. Structure-preserving design (Schreiber, 1993) is
believed to facilitate a number of processes, e.g., maintenance, since portions of the design
and implementation can be traced back to the KARL Model (or earlier models) more easily.
Furthermore, structure-preserving design may support the system´s explanation capabilities
since explanations may also resort to more intuitive and less implementation-dependent rep-
resentations.

Maintainability is usually one of the major problems when building complex software sys-
tems. As a consequence, the Design Model does not pay attention exclusively to the artefact
that will be the starting point for the implementation of a KBS, but also takes the process into
account by which this artefact is constructed, in order to make sure that the rationale of design
activities will not get lost. Therefore, the Design Model in MIKE consists of two parts, name-
ly theproduct model and theprocess model.

Especially, the history of the design process has to be captured in addition to the motiva-
tions behind design decisions. The former is addressed by collecting and interrelating all the
various versions of constituents in the product model that evolve during the design process.
The latter aspect is covered in the process model. Since non-functional requirements moti-
vate most of the design decisions in MIKE, they are an important aspect when trying to ex-
plicate the motivations for design decisions. A second major issue in regard to the process
model is the description of design activities. Design activities are, on the one hand, the de-
composition of goals, i.e. non-functional requirements, into subgoals and, on the other hand,
elementary design decisions which directly affect specific portions of the product model and
which fulfill subgoals that cannot be decomposed further.

Both parts of the Design Model are expressed using the same formalism, DesignKARL,
which will be discussed in more detail in the following section.

DesignKARL: Language primitives for the product model
Since the MoE can be viewed as the initial stage of the product model, DesignKARL is a su-
perset of KARL. Extensions introduced in DesignKARL for the description of the product
model are targeted towards design-specific considerations, namely the definition of suitable
data representations and algorithms and the definition of an appropriate system structure.

Data Types
An object class in KARL characterizes its elements by certain attributes, but abstracts from
information which is irrelevant from a conceptual point of view. A key issue in the attempt

to improve efficiency is the introduction of data structures which exploit such additional in-
formation, e.g. an ordering of elements in a class or of values for a set-valued attribute, or
support more efficient data access. Ideally, these data structures should also facilitate the
mapping to the implementation environment. To these ends, DesignKARL supplies a collec-
tion of data types which currently comprises the typesvalue, class, predicate, andset (which
are already known in KARL) as well as the typessequence, stack, queue, n-ary tree, hash
table, index structure, andreference. Instances of these data types can be introduced both at
the domain layer and in roles at the inference layer.

For instance, in our running example of selecting appropriate dismantling methods, one
factor that influences the appropriateness of a method is the cost it incurs. In order to retrieve
the cheapest methods more efficiently, an instance of the data type sequence can be used in
the store part-method-pairs (see Figure 5) such that it will include the possible associations
of methods to parts of the building ordered by cost:

STORE part-method-pairs

SEQUENCE part-methods-pairs OF part-method-assoc;
// the instances of the class part-method-assoc are arranged as sequence
CLASS part-method-assoc;

END;
Each data type is associated with pre-defined operations that may be performed on instanc-

es of the respective type for testing, data retrieval, and data storage. For instance, the data
type sequence can be manipulated using operations which
• retrieve the first element of the sequence (head)
• return the sequence without its first element (tail)
• retrieve the data element located at a particular position of the sequence ([])
• insert a data element into a particular position of the sequence (insert)
• remove a data element from a particular position of the sequence (remove)
• append a sequence to another one (append), or
• test whether a particular data item appears as an element of a sequence (∈, index).

 DesignKARL only provides a restricted set of data types since a balance between simplic-
ity and expressiveness has to be kept: on the one hand, the data types should be powerful
enough to express the designer’s intentions, on the other hand, a small collection of data types
facilitates the largely automatic generation of appropriate code fragments which implement
the respective data types for particular target environments. Data types available in
DesignKARL are similar to those in common programming languages like C++ or Modula
plus data types, such as hash tables and index structures, which are widely used in database
applications. Therefore, the collection of data appears to be sufficient for most applications.

Besides supplying additional data types in DesignKARL, data types which are already
known in KARL are extended with additional features. Classes, for example, can be associ-
ated with methods, i.e. user-defined operations. Methods may apply to the class as such (class
methods) or to its elements (member methods) and can be specified either by means of logi-
cal expressions or by algorithms (see below). Subclasses and instances of a class inherit the
methods defined in that class. Methods are used, e.g., for computing values of derived at-
tributes of an object, but can also be employed to connect classes at the inference layer with
data items at the domain layer.

DesignKARL: Algorithms
Besides employing appropriate data types, the design phase is concerned with developing
suitable algorithms. While knowledge acquisition focuses on specifying which processing
steps have to be carried out in principle to solve the given task, this description may need to

be refined and, possibly, restructured in order to be realized efficiently. Thus, an algorithm
in DesignKARL need not necessarily be a sophisticated algorithm from a textbook, but may
simply result from adding control information (which had previously been neglected since it
was not required from a conceptual point of view) to the description of an inference action.
The description of algorithms may be carried out similarly to control flow specifications in
KARL, thus giving them an imperative flavor. An algorithm is built from primitive expres-
sions which either assign a value to a variable or invoke an inference action (or another algo-
rithm) and assign the return values to role variables. In the design phase, variables used in an
algorithm may be of any of the data types available in DesignKARL. Primitive expressions
may be combined using the control constructs sequence, iteration, and alternative.

In addition,enriched inference actions may be used as a preliminary form of algorithm.
Enriched inference actions are described by logical clauses which, unlike inference actions
during knowledge acquisition, also contain references to DesignKARL data types by means
of their pre-defined test, retrieval, or storage operations. This type of description is intended
particularly for the refinement of bodies of inference actions as a consequence of introducing
data types. In the course of development, enriched inference actions may be further refined
into algorithms. Note that the logic-based description of an enriched inference action must
not comprise imperative-style primitives as used in the description of algorithms.

For example, after introducing an instance of the data type sequence to the storepart-meth-
od-pairs, the inference actionPrune (see Figure 5) can be turned into an algorithm which re-
moves invalid associations from the sequence method-part-pairs rather than flagging them as
being valid or invalid:

ALGORITHM Prune
PREMISES conditions, part-method-pairs;
CONCLUSIONS part-method-pairs;

...
WHILE I <= LENGTH(part-method-pairs) DO

IF NOT check(part-method-pairs[I]) THEN
part-method-pairs := REMOVE(part-method-pairs, I);

...
END;

Algorithms may be introduced either in the context of methods associated to object classes
at the domain and inference layer or in the bodies of inference actions. Algorithms may be
subject to decomposition, i.e. may invoke more elementary algorithms as well as enriched
inference actions. Algorithms can be introduced at any level of decomposition, i.e. they may
substitute composed inference actions and the corresponding subtasks as well as refine ele-
mentary inference actions.

Typically, declarative specifications of elementary inference actions are refined to algo-
rithms by adding control information while preserving validity. In this context, the fact that
an algorithmic description yields a (not necessarily proper) subset of the output values of the
original declarative specification given the same input data constitutes a sufficient condition
for validity. For validity it is not always required to reproduce the set of output values of the
original description exactly. If only a subset of the original output data is actually used for
further processing it is sufficient for the validity of the algorithm to compute just this subset.
Likewise, it is not mandatory to meet the above condition at each level of decomposition of
the two representations.

Modules
Experience in conventional software engineering shows the need to reduce the complexity of

large software systems by decomposing them into manageable, largely self-contained pieces.
To that end, DesignKARL introduces modules as structuring primitives. As the design phase
should aim at preserving the structure of the KARL Model, DesignKARL provides two types
of modules, namelydomain modules andprocessing modules, which retain the distinction
between domain-specific and domain-independent parts of the required knowledge.Domain
modules collect related domain knowledge in a single place. A processing module corre-
sponds to the decomposition of a composed inference action together with its associated sub-
task. Domain and processing modules can only interact in defined ways. More detailed
accounts of the module concept of DesignKARL may be found in (Landes & Studer, 1994).

Language primitives for the process model
The language primitives that DesignKARL provides for the description of the design process
itself are similar in spirit to proposals that have been made to express design rationale in a
more general context (see Moran & Carroll (1996) for an overview of the field).

Goals and Their Relationships
The non-functional requirements modelled in theNFR layer (see section 3.3) constitute the
basis for the design process. NFRs are viewed as goals to be achieved by means of suitable
design decisions. Thus, we take a goal-oriented viewpoint on KBS design as, e.g., Dardenne
et al. (1993) do on requirements engineering and Mylopoulos et al. (1992) do on information
systems design.

The refinement of the functional specification, e.g. by using instances of particular data
types, is motivated by NFRs and is effected by elementary design decisions (see below). Yet,
top-level requirements formulated in the NFR layer tend to be fairly coarse: a top level goal
might, e.g., express that “the system should be able to find a solution faster than a human ex-
pert” (cf. Figure 4). It is not immediately clear how such a requirement can be met or which
portions of the system it affects specifically. Therefore, goals are gradually decomposed into
subgoals until they can be satisfied by performing a collection of elementary design deci-
sions. As decomposition continues, goals tend to become more constructive, i.e. they provide
a high-level outline of how to reach a goal rather than just claim that a requirement must be
met. Usually, goals can be decomposed in several ways, i.e. there are alternative ways to
reach a goal. Therefore, decomposition of goals generally results in an AND/OR graph.

DesignKARL describesGOALs in an object-like fashion, i.e. it characterizes them by
means of particular attributes. Attributes include, e.g., ancestors and successors in the decom-
position hierarchy, dependencies on and correlations with other goals, the importance of the
goal, its status (ACTIVE, INACTIVE, ACHIEVED, etc.), references to the evaluation criterion
used as well as the portion of the design product affected by the goal, and a textual description
of the goal.

The high-level requirement mentioned above can, for example be decomposed to a sub-
goal indicating that the assessment of possiblepart-method associations should be carried out
efficiently, which in turn can be decomposed to a set of subgoals, one of which indicates that
the most promisingpart-method associations should be retrievable quickly. In DesignKARL
notation, the latter goal is expressed as:

GOAL RtEffPartMethPairAccess
DECOMPOSITION OF RtEffPartMethPairAssessment;
ACHIEVED BY STPartMethodPairs, ...;
REFERENCE COMPOSED INFERENCE ACTION Assess,

STORE part-method-pairs;
STATUS ACTIVE;

DESCRIPTION “Make sure that those method-part associations can be
retrieved most efficiently where the method involved incurs
the least costs.”;

IMPORTANCE HIGH;
END;

This goal also indicates that it will not be decomposed further, but can be achieved by ap-
plying several elementary design decisions, one of which (STPartMethodPairs) will be de-
tailed below.

During the decomposition of goals, conflicts between goals may arise which must be re-
solved. Similar to the NFR context, claims that substantiate goals involved in a conflict are
modelled asARGUMENTs. CONFLICTs andARGUMENTs are again DesignKARL primi-
tives that are associated with suitable attributes.

Since goals may be decomposed in various ways, the designer has to select a subset of the
available alternatives that seems to be most suitable in the given context. The motivation for
preferring one alternative over another can be expressed byPREFERENCEs in a similar way
asARGUMENTs explain the reasons for resolving a conflict.PREFERENCEs indicate the
criteria which makes an alternative preferrable over another or explicate the previous deci-
sions on which the current decision depends.

In some cases, the selection of an alternative may be due to the fact that some potential
alternatives are excluded because they are incompatible with previous design activities or,
conversely, implied by earlier activities. These circumstances can be expressed asIMPLICA-
TIONs or EXCLUSIONs between subgoals in the process model.

Often, design decisions are made tentatively and have to be withdrawn at a later stage of
the design process when additional information has been gained. This circumstance can be
expressed as aREVISIONwhich points to the elements of the process model that are now su-
perseded. Revised elements are retained in the process model since they document the design
alternatives which have already been explored unsuccessfully and thus prevent a waste of re-
sources by exploring them again. However, the status of these elements is changed toINAC-
TIVE as a consequence of the revision.

Elementary Design Decisions
The decomposition of a goal continues until subgoals that can be achieved by means of ele-
mentary design decisions are reached . Elementary design decisions effect a modification of
a part of the product model, i.e. the “refinement” of the functional specification. Thus, ele-
mentary design decisions also establish the link between functional requirements (embedded
in the product model) and non-functional requirements (captured in the process model). Four
basic types of elementary design decisions are distinguished in MIKE and provided as lan-
guage primitives of DesignKARL:REFINEMENT, which refines parts of the model by in-
troducing algorithms and data structures,STRUCTURE, which indicates the application of
structuring primitives to decompose the overall model into smaller, largely self-contained
parts or externally visible modifications of such parts,INTRODUCTION, which refers to por-
tions of the model which appear without being a refinement of previously existing parts of
the model, andELIMINATION, which indicates that parts of the model are no longer needed
and, thus, removed.

During the design process, the product model passes through a series of states which are
determined by the versions of its constituents. The transition between two adjacent states is
caused by (a collection of) elementary design decisions. The description of elementary de-
sign decisions in the process model indicates which parts of a state of the product model are
replaced by new versions in the following state. Furthermore,REFINEMENTsalso specify

by means of logical formulae the way in which the two versions of affected constituents relate
to each other in detail. Elementary design decisions may also be undone as a consequence of
revisions.

For instance, the introduction of an instance of the data type sequence in the storepart-
method-pairs is a refinement which contributes to the achievement of the goalRtEffPart-
MethPairAccess mentioned above. This particular design decision can be specified in
DesignKARL by expressing the fact that the elements of the sequencepart-method-pairs in
versionz1 are elements of the classpart-method-assoc as in the previous versionz0 of the
store in question, and that these elements are ordered by increasing cost incurred:

REFINEMENT STPartMethodPairs
PRE STORE part-method-pairs@z0;
POST STORE part-method-pairs@z1 ;
STATUS ACTIVE;
RULES

(X = part-method-pairs[I]∧ Y = part-method-pairs[J]∧ I < J)@z1 →
(X ∈ part-method-assoc∧ Y ∈ part-method-assoc∧

X[cost: C1]∧ Y[cost: C2]∧ C1 < C2)@z0 .
END;

The model adopted in MIKE for describing the rationale of design decisions is in some
parts based on earlier work by Potts & Bruns (1988) and Lee (1991) which promote an issue-
based style, basically consisting of setting up questions and providing potential answers. In
MIKE, a more result-oriented stance is taken and design decisions are linked to requirements
more directly. It is not attempted to capture the discourse leading to the preference of one pos-
sible solution over others in order to avoid burdening the designer with too much additional
overhead for documentation. Also, neither Potts & Bruns (1988) nor Lee (1991) provide
equivalents to elementary design decisions in their schemes. They also do not address the
elicitation and interpretation of requirements in their models.

4 THE MIKE TOOL

For supporting the development process of MIKE a tool called MIKE tool has been devel-
oped (Neubert, 1993). This tool has the following features:
• It provides structured editors for the knowledge protocols which include a text editor for

the protocols itself and graphical editors to create and modify the additional structuring
information of the knowledge protocols.

• Graphical editors support the creation and modification of the graphical primitives of the
MoE in the Structure Model and the KARL Model. This includes an editor for program
flow diagrams at the control layer, for the extended data flow diagrams at the inference
layer, and the object diagrams at the domain layer. These graphical representations are
easily understandable and provide a high and informal level for the representation of the
knowledge. Thus they may be easily communicated to the expert and they may be used
for documentation and maintenance.

• The MIKE-tool integrates an editor for the language KARL
• The testing of the KARL Model is supported by an interpreter for KARL. This interpreter

is the basis for a debugger for KARL (see Figure 7). This debugger works on the graph-
ical representation of the inference layer and provides breakpoints, inspection of stores,

step by step execution etc. This allows the KARL Model to be built by prototyping.
• The MIKE tool supports the transfer process between the different development steps by

supporting the common conceptual model for the Structure Model, the KARL Model and
the Design Model. Model part created in earlier steps may be enriched by additional
knowledge in later steps. So for instance the semi-formal representation in the Structure
Model is enriched by formal descriptions in KARL in the Formalization step.

• The MIKE tool automatically creates and administers the links between the different
models. Thus traceability is supported between all the developed models.

Up to now this tool does not provide additional support for the development process itself,
i.e. it does not survey and restrict the sequence of the development steps as described in sec-
tion 2).

Similar tools for supporting the development process of KBS as well as for the develop-
ment process of "conventional software" have been realized for other methods too.

The tools that were developed by commercial partners in the KADS-I and CommonKADS
projects are basically customized editors using the structure of the semiformal model of ex-
pertise. However, neither the formalization of the model of expertise nor the development of
the design model and in consequence no links between different modelling aspects are sup-
ported. Finally, no evaluation support is provided. Neither validation via executing a speci-
fication like in MIKE nor verification is available. Therefore, these tools only cover a small
fragment of the tool support in MIKE.

The tool OMT-Select which supports OMT (Rumbaugh et al., 1991), provides graphical
editors for state transition diagrams, data flow diagrams, and object diagrams. These dia-
grams correspond to the dynamic, functional, and static points of view of OMT-models.
OMT-Select administers the relations between the three models by means of a common dic-
tionary. The basic processes within the functional view are represented either by structured
natural language or by an implementation. Therefore, such a model lacks an abstract formal
description of the functionality. As a consequence, it only supports prototyping at the imple-
mentation level. In contrast to the MIKE tool it does not distinguish different models for dif-
ferent aspects but integrates analysis, design and implementation into one model.

Figure 6 Editor of the MIKE-Tool for KARL. The picture shows the formal re-
presentation of the inference actionprune.

5 RELATED WORK

MIKE relies heavily on the model of expertise as it was developed in the KADS-I (Wielinga
et al., 1992) and CommonKADS (Schreiber et al., 1994) projects. The success of this model
is based on the fact that it incorporates many of the existing approaches to knowledge engi-
neering. Therefore, the use of this model makes MIKE comprehensible and enables sharing
results with other approaches. However, some important differences exist when comparing
MIKE with CommonKADS:
• In CommonKADS, the semiformal model in CML (Schreiber et al., 1994) is only loosely

coupled with the formalization language (ML)2 (van Harmelen & Balder, 1992). (ML)2

uses different modeling primitives making the conceptual distance between the semifor-
mal and formal models much wider. Conversely, a formal specification in KARL is a re-
finement of the semiformal model by adding an additional level of detail.*

• MIKE includes prototyping into a model-based framework. The executability of KARL
allows models to be evaluated in an early stage of the development process which pre-
vents high costs in detecting and revising errors during the implementation phase.

• CommonKADS makes a clear and sharp distinction between several models used to rep-
resent the development process of a KBS. MIKE provides a smooth transition between
its model types. Actually, these models are different levels of refinement of the same
model pattern, the MoE. Based on the smooth transitions, MIKE provides strong support
in tracing development decisions through the cascade of models supporting revision and
maintenance of the KBS.

• Finally, CommonKADS does not provide a systematic treatment of design issues compa-
*. Fensel & van Harmelen (1994) provide a detailed comparison of KARL and (ML)2.

Figure 7 Graphical debugger of the MIKE-Tool for KARL. The current inference
action is highlighted. The content of the storemethods is shown in the
small window.

rable to the Design Model and DesignKARL in MIKE.
Similar to MIKE Structured Analysis (Yourdon, 1989) and OMT (Rumbaugh et al., 1991)

distinguishes different points of view during analysis. A static view is established by an en-
tity-relationship model and the data dictionary in Structured Analysis or by object diagrams
in OMT. The function oriented point of view considers the data flows between the processes.
These processes are hierarchically refined. Elementary processes are described semi-formal-
ly in a pseudo-code notation. This point of view strongly resembles the inference layer of the
MoE. State-transition diagrams represent the control flow in OMT which thus correspond to
the control layer in MIKE. Due to the semi-formal nature of these models they correspond to
the semi-formal variant of the MoE: the Structure Model. The Design Model of MIKE cor-
responds to the result of Structured Design or the design model of OMT. Despite these com-
monalities a lot of differences exist:
• The separation of knowledge about the domain and knowledge about the problem-

solving method has no analogy in Structured Analysis or OMT. Here both aspects are
mixed which prevents the independent reuse of both parts.

• Neither OMT nor Structured Analysis provides a formal variant of their system model.
Thus this model still allows room for interpretation and is thus not an unambiguous doc-
ument for the further development process.

• As a consequence of the previous point, the system models of Structured Analysis and
OMT are not executable. These models may not be evaluated by executing them and thus
they may not be built by prototyping within the analysis phase.

• The successor of the system model is the design model in Structured Analysis which may
be structured very differently. Additionally, no explicit links are supported between the
two models. This complicates traceability of the models and makes maintenance and re-
vision much more difficult.

The construction and reuse of models as part of requirements engineering has attracted a
lot of interest in recent years (see e.g. Jarke et al., 1993). Sutcliff & Maider, (1994) introduce
the notion of object system models which is used for describing types of applications like ob-
ject composition (which can be instantiated to manufacturing systems) or agent-object con-
trol (which can be instantiated to command and control applications). Such object system
models are embedded into a specialization hierarchy: each object type may be refined to ob-
tain further specialized object system models by using additional knowledge types for dis-
crimination. These object system types provide a framework for reuse during requirements
engineering since they can be used as initial generic descriptions of application types. Com-
pared to the notion of reusable problem-solving methods, object system models are used rath-
er for describing problem spaces whereas problem-solving methods are used for specifying
solution spaces (compare Sutcliff & Maiden, 1994). It should be noted further noticed that
the notion of domain model as used in (Sutcliff & Maiden, 1994) has a much broader mean-
ing than the notion of domain model as used in the KADS or MIKE framework, since behav-
ioral aspects are not included in the domain model there, these aspects are modeled rather at
the inference and control layers of the Model of Expertise.

6 CONCLUSION

MIKE integrates semiformal, formal, and operational description formalisms in an incremen-
tal development process. The semiformal Structure Model is not only used to facilitate the
formalization process, but is also seen as an important result itself. It structures the domain
knowledge and the knowledge about the problem-solving process (task related knowledge)
and due to its semi-formal description it can be used for documentation. The formal specifi-

cation describes the functionality of the system precisely, yet abstracting from implementa-
tion details. Since the formal specification is operational, it is used as a prototype to validate
the Model of Expertise. The clear separation of knowledge about the problem-solving meth-
od and domain knowledge allows the reuse of these parts. During design, the formal specifi-
cation is extended with respect to aspects related to the implementation of the system, taking
non-functional requirements into particular account.

Due to the common underlying conceptual model, the different representations can easily
be linked to each other and there is a smooth transition from one representation to the other.
By linking the models, we gain the advantage of using, e.g., the semiformal model as an ad-
ditional documentation of the formal specification. Furthermore, requirements traceability is
supported by interrelating all the models. The MIKE tool environment provides different in-
tegrated graphical editors for constructing the models and their relationships and it integrates
a debugging tool based on the interpreter for KARL.

In that way MIKE addresses one of the main topics which have been put on the research
agenda for requirements engineering in software engineering and information systems engi-
neering: combination of different representations (Pohl et al., 1995) based on a strong con-
ceptual model involving aspects like smooth coupling of different representations,
traceability and consistency.

In the meantime MIKE has been applied to more than a dozen applications including the
mentioned application for selecting techniques for dismantling buildings (Fichtner et al.,
1995), an application for supporting a help desk service for users of a communication net-
work (Waarle, 1995), an application for designing artefacts in engineering tasks (Poeck et al.,
1996), and an application for determining optimal shift-systems for various types of compa-
nies (Gissel & Knauth, 1997).

Current work addresses the verification of formal specifications (Fensel et al., to appear
(b); Fensel & Schönegge, 1997); extensions of the Model of Expertise to cope more ade-
quately with issues of reuse (Angele et al., 1996b; Fensel & Groenboom, 1997); extensions
of MIKE to address organisational and business process aspects (Decker et al., 1997); and
the development of broker architectures that enable use and reuse of ontologies and problem-
solving methods in distributed networks like the WWW (Fensel et al., 1997; Fensel, 1997a).

Acknowledgement:
We thank Susanne Neubert who provided valuable contributions to many of the ideas ad-
dressed in this paper and Wolf Fichtner who developed the MIKE solution for the disman-
tling task. The support of the Institute of Industrial Production (IIP) of the University of
Karlsruhe in handling the dismantling tasks is gratefully acknowledged.

7 REFERENCES

Angele, 1993J. Angele (1993): Operationalisierung des Modells der Expertise mit KARL,
PhD thesis University of Karlsruhe, Infix-Verlag, St. Augustin, 1993.

Angele, 1996J. Angele (1996): Conceptual Modeling in KARL and G-KARL. In
Proceedings of the CASE Workshop during the 15th International Conference on
Conceptual Modelling (ER-96), Cottbus, October 7-10, 1996.

Angele et al., 1996aJ. Angele, D. Fensel, and R. Studer (1996): Domain and Task Modelling
in MIKE. In A. Sutcliffe et al. (eds.):Domain Knowledge for Interactive System Design,
Chapman & Hall, 1996.

Angele et al., 1996bJ. Angele, S. Decker, R. Perkuhn und R. Studer (1996): Modeling Pro-
blem-Solving Methods in New KARL. InProceedings of the 10th Knowledge Acquisi-
tion for Knowledge-Based Systems Workshop (KAW´96), Banff, Canada, November
1996.

Benjamins et al., 1996 R. Benjamins, D. Fensel, and R. Straatman (1996): Assumptions of
Problem-Solving Methods and Their Role in Knowledge Engineering. InProceedings of
the 12. European Conference on Artificial Intelligence (ECAI-96), Budapest, August 12-
16, 1996.

Boehm, 1988B.W. Boehm (1988): A Spiral Model of Software Development and Enhance-
ment,IEEE Computer,May 1988, 61-72.

Breuker & Van de Velde, 1994J. Breuker and W. Van de Velde (eds.) (1994):The
CommonKADS Library for Expertise Modelling. IOS Press, Amsterdam, The
Netherlands, 1994.

Chandrasekaran et al., 1992B. Chandrasekaran, T.R. Johnson, and J. W. Smith (1992): Task
Structure Analysis for Knowledge Modeling,Communications of the ACM, 35(9), 1992,
124—137.

Clancey, 1983W. J. Clancey (1983): The Epistemology of a Rule-Based Expert System—a
Framework for Explanation,Artificial Intelligence, 20, 1983, 215—251.

Dardenne et al., 1993A. Dardenne, A. van Lamsweerde, and S. Fickas (1993): Goal-directed
requirements acquisition,Science of Computer Programming 20, 1993, 3-50.

Decker et al., 1997S. Decker, M. Daniel, M. Erdmann, and R. Studer (1997): An Enterprise
Reference Scheme for Integrating Model-based Knowledge Engineering and Enterprise
Modeling. InProceedings of the 10th European Workshop on Knowledge Acquisition ,
Modeling, and Management (EKAW-97), LNAI, Springer Verlag, 1997.

de Kleer et al., 1992J. de Kleer, A. K. Mackworth, and R. Reiter (1992): Characterizing Dia-
gnoses and Systems,Artificial Intelligence, 56, 1992.

Eriksson, 1992H. Eriksson (1992): A survey of knowledge acquisition techniques and tools
and their relationship to software engineering,Journal of Systems and Software ,19: 97-
107, 1992.

Farquhar et al., 1997A. Farquhar, R. Fikes, and J. Rice: The Ontolingua Server (1997): a
Tool for Collaborative Ontology Construction,International Journal of Human-
Computer Studies (IJHCS), 46(6), 1997, 707—728.

Feigenbaum, 1977E. A. Feigenbaum (1977): The Art of Artificial Intelligence: Themes and
Case Studies of Knowledge Engineering. InProceedings of the International Joint
Conference on AI (IJCAI-77), 1977, 1014—1029.

Fensel, 1995D. Fensel:The Knowledge Acquisition and Representation Language KARL.
Kluwer Academic Publ., Boston, 1995.

Fensel, 1997aD. Fensel (1997a): An Ontology-based Broker: Making Problem-Solving
Method Reuse Work. InProceedings of the Workshop on Problem-Solving Methods for
Knowledge-based Systems at the 15th International Joint Conference on AI (IJCAI-97),
Nagoya, Japan, August 23, 1997.

Fensel, 1997bD. Fensel (1997b): The Tower-of-Adapter Method for Developing and
Reusing Problem-Solving Methods. To appear inProceedings of European Knowledge
Acquisition Workshop (EKAW-97), LNAI, Springer-Verlag, 1997.

Fensel & Groenboom, 1997D. Fensel and R. Groenboom (1997): Specifying Knowledge-
Based Systems with Reusable Components. InProceedings of the 9th International

Conference on Software Engineering & Knowledge Engineering (SEKE-97), Madrid,
Spain, June 18-20, 1997.

Fensel & Schönegge, 1997 D. Fensel and A. Schönegge (1997): Specifying and Verifying
Knowledge-Based Systems with KIV. InProceedings of the European Symposium on
the Validation and Verification of Knowledge Based Systems EUROVAV-97, Leuven
Belgium, June 26-28, 1997.

Fensel & Straatman, 1996D. Fensel and R. Straatman (1996): The Essence of Problem-
Solving Methods: Making Assumptions for Efficiency Reasons. In N. Shadbolt et al.
(eds.):Advances in Knowledge Acquisition, LNAI 1076, Springer-Verlag, 1996.

Fensel & van Harmelen, 1994D. Fensel and F. van Harmelen (1994): A Comparison of
Languages which Operationalize and Formalize KADS Models of Expertise,The
Knowledge Engineering Review, 9(2), 1994.

Fensel et al., 1993D. Fensel, J. Angele, D. Landes, and R. Studer (1993): Giving Structured
Analysis Techniques a Formal and Operational Semantics with KARL. In Züllighoven
et al. (eds):Requirements Engineering ‘93: Prototyping, Teubner Verlag, Stuttgart,
1993.

Fensel et al., 1997D. Fensel, M. Erdmann, and R. Studer (1997): Ontology Groups:
Semantically Enriched Subnets of the WWW. InProceedings of the International
Workshop Intelligent Information Integration during the 21st German Annual
Conference on Artificial Intelligence, Freiburg, Germany, September 9-12, 1997.

Fensel et al., to appear (a) D. Fensel, J. Angele, R. Studer (a): The Knowledge Acquisition
and Representation Language KARL, to appear inIEEE Transactions on Knowledge
and Data Engineering.

Fensel et al., to appear (b)D. Fensel, R. Groenboom and G. R. Renardel de Lavalette (b):
MCL: Specifying the Reasoning of Knowledge-based Systems, to appear inData and
Knowledge Engineering (DKE).

Fichtner et al., 1995W. Fichtner, D. Landes, Th. Spengler, M. Ruch, O. Rentz, and R. Studer
(1995): Der MIKE Ansatz zur Modellierung von Expertenwissen im Umweltbereich -
dargestellt am Beispiel des Bauschuttrecyclings. In H. Kremers et al. (eds.):Space and
Time in Environmental Information Systems, Proceedings of the 9th Int. Symposium on
Computer Science for Environmental Protection, Berlin, September 1995, Metropolis
Verlag, 1995.

Gennari et al., 1994J. Gennari, S. Tu, Th. Rothenfluh, and M. Musen (1994): Mapping
Domains to Methods in Support of Reuse,Int. J. of Human-Computer Studies (IJHCS),
41, 1994, 399-424.

Gissel & Knauth, 1997Gissel, A. and Knauth, P. (1997): Knowledge based support for the
participatory design and implementation of shift systems,Shiftwork International
Newsletter (14), 1, 9, 1997.

Gruber, 1993T.R. Gruber (1993): A Translation Approach to Portable Ontology Specificati-
ons,Knowledge Acquisition 5(2):199-221, 1993.

Hayes-Roth et al., 1983F. Hayes-Roth, D. A. Waterman, and D. B. Lenat (eds.) (1983):
Building Expert Systems. Addison-Wesley Publisher, 1983.

Harel, 1984D. Harel: Dynamic Logic. In D. Gabby et al. (eds.) (1984), Handbook of Philo-
sophical Logic, vol. II, Extensions of Classical Logic. Publishing Company, Dordrecht
(NL), 1984, 497-604.

Jarke et al., 1993M. Jarke, J. Bubenko, C. Rolland, A. Sutcliffe, and Y. Vassiliou (1993):
Theories Underlying Requirements Engineering: An Overview of NATURE at Genesis.

In Proc. IEEE Symposium on Requirements Engineering, San Diego, 1993.
Knight & Luk, 1994K. Knight and S. Luk (1994): Building a Large Knowledge Base for Ma-

chine Translation. InProc. of the American Ass. for Artificial Intelligence Conference
(AAAI’94), Seattle, 1994.

Landes, 1994 D. Landes (1994): DesignKARL - A Language for the Design of Knowledge-
Based Systems. InProceedings of the 6th International Conference on Software
Engineering and Knowledge Engineering SEKE’94, Jurmala, Latvia, June 20-23, 1994.

Landes & Studer, 1994D. Landes and R. Studer (1994): Mechanisms for Structuring Know-
ledge-Based Systems. InDatabase and Expert System Applications, D. Karagiannis, ed.
Lecture Notes in Computer Science 856, Springer, Berlin, 1994, 488-497

Landes & Studer, 1995D. Landes and R. Studer (1995): The Treatment of Non-Functional
Requirements in MIKE. In Wilhelm Schäfer, Pere Botella (eds.):Proceedings of the 5th
European Software Engineering Conference ESEC´95 (Sitges, Spain, September 25-28,
1995), Berlin, Springer, (Lecture Notes in Computer Science; 989), 1995.

Lenat & Guha, 1990D.B. Lenat and R.V. Guha (1990):Building Large Knowledge-Based Sy-
stems: Representation and Inference in the CYC Project. Addison-Wesley Publ. Co.,
Inc., Reading, Massachusetts, 1990.

Lee, 1991J. Lee (1991): Extending the Potts and Bruns model for recording design
rationale. InProc. 13th Int. Conference on Software Engineering ICSE’91 (Austin,
USA), 1991, 114-125.

Moran & Carroll, 1996T.P. Moran and J.M. Carroll (1996):Design Rationale - Concepts,
Techniques, and Use. Erlbaum, Mahwah, 1996.

Morik, 1987K. Morik (1987): Sloppy Modeling. In K. Morik (ed.),Knowledge
Representation and Organisation in Machine Learning, LNAI 347, Springer-Verlag,
1987.

Mylopoulos et al. 1992J. Mylopoulos, L. Chung, and B. Nixon (1992): Representing and
using non-functional requirements: a process-oriented approach. In IEEE Transactions
on Software Engineering 18(6), 1992, 483-497.

Neubert, 1993S. Neubert: Model Construction in MIKE (Model-Based and Incremental
Knowledge Engineering). In N. Aussenac et al. (eds.),Knowledge Acquisition for
Knowledge-Based Systems, Proceedings of the 7th European Workshop (EKAW´93),
Toulouse, France, 1993, LNAI 723, Springer-Verlag, 1993.

Nebel, 1996 B. Nebel (1996): Artificial Intelligence: A Computational Perspective. In G.
Brewka (ed.):Principles of Knowledge Representation, CSLI publications, Studies in
Logic, Language and Information, Stanford, 1996.

Newell, 1982A. Newell (1982): The Knowledge Level,Artificial Intelligence, 18:87-127,
1982.

Pirlein & Studer, 1994T. Pirlein and R. Studer (1994): KARO: An Integrated Environment
for Reusing Ontologies. In Steels et al. (eds): A Future of Knowledge Acquisition, Proc.
8th European Knowledge Acquisition Workshop (EKAW´94), Hoegaarden, LNCS, 867,
Springer, 1994.

Pirlein & Studer, 1997Th. Pirlein and R. Studer (1997): Integrating the Reuse of Common-
sense Ontologies and Problem-Solving Methods, University of Karlsruhe, Institute
AIFB, Research Report 354, May 1997, submitted for publication.

Poeck et al., 1996K. Poeck, D. Fensel, D. Landes, and J. Angele (1996): Combining KARL
And CRLM For Designing Vertical Transportation Systems,The International Journal
of Human-Computer Studies (IJHCS), 44(3-4), 1996.

Pohl et al., 1995 K. Pohl, G. Starke, and P. Peters (1995): Workshop Summary First
International Workshop on Requirements Engineering: Foundation of Software Quality
(REFSQ´94),ACM SIGSOFT,20(1), 1995, 39—45.

Potts & Bruns, 1988C. Potts and G. Bruns (1988): Recording the Reasons for Design
Decisions. InProc. 10th Int. Conference on Software Engineering ICSE’88 (Singapore),
1988, 418-427.

Przymusinski, 1988T. C. Przymusinski (1988): On the Declarative Semantics of Deductive
Databases and Logic Programs. In J. Minker (ed.):Foundations of Deductive Databases
and Logic Programming, Morgan Kaufmann Publisher, Los Altos, CA, 1988.

Puppe, 1993F. Puppe (1993):Systematic Introduction to Expert Systems: Knowledge Repre-
sentation and Problem-Solving Methods. Springer, 1993.

Rumbaugh et al., 1991J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy und W. Lorensen
(1991):Object-Oriented Modeling and Design. Prentice Hall, 1991.

Schreiber, 1993G. Schreiber (1993): Operationalizing models of expertise. In (Schreiber at
al., 1993), 119-149.

Schreiber at al., 1993G. Schreiber, B. Wielinga, and J. Breuker (eds.) (1993):KADS - A Prin-
cipled Approach to Knowledge-Based Systems Development. Academic Press, London,
1993.

Schreiber et al., 1994 A. TH. Schreiber, B. Wielinga, J. M. Akkermans, W. Van De Velde,
and R. de Hoog (1994): CommonKADS. A Comprehensive Methodology for KBS
Development,IEEE Expert, 9(6), 1994, 28—37.

Studer et al., 1996 R. Studer, H. Eriksson, J. Gennari, S. Tu, D. Fensel, and M. Musen
(1996): Ontologies and the Configuration of Prolem-Solving Methods. InProc. of the
10th Knowledge Acquisition for Knowledge-based Systems Workshop (KAW-96), Banff,
November 1996.

Sutcliff & Maiden, 1994A.G. Sutcliff and N.A.M. Maiden (1994): Domain Modeling for
Reuse. InProc. 3rd International Conference on Software Reuse, Rio de Janeiro, 1994.

Ullman, 1988J. D. Ullman (1988):Principles of Database and Knowledge-Base Systems, vol
I. Computer Sciences Press, Rockville, Maryland, 1988.

van Harmelen & Balder, 1992F. v. Harmelen and J. Balder: (ML)2: A Formal Language for
KADS Conceptual Models,Knowledge Acquisition, vol 4, no 1, 1992.

van Heijst et al., 1997 G. van Heijst, A. T. Schreiber, and B. J. Wielinga (1997): Using
Explicit Ontologies in Knowledge-Based System Development,International Journal of
Human-Computer Interaction (IJHCI), 46(6), 1997.

Waarle, 1995H. Waarle (1995): Knowledge-based System Modeling Using MIKE. Swiss
PTT, R&D Department, Technical Report, November 1995.

Wielinga & Breuker, 1984 B. J. Wielinga and J. A. Breuker (1984): Interpretation Models
for Knowledge Acquisition. InProceedings of the European Conference on AI (ECAI-
84), Pisa, 1984.

Wielinga et al., 1992Wielinga, B., Schreiber, G. & Breuker, J., A. (1992): KADS: A
Modeling Approach to Knowledge Engineering,Knowledge Acquisition, 4(1), 1992.

VanLehn, 1989K. VanLehn (1989): Problem-Solving and Cognitive Skill Acquisition. In
M. I. Posner (ed.):Foundations of Cognitive Science, The MIT Press, Cambridge, 1989.

Yourdon, 1989E. Yourdon (1989):Modern Structured Analysis. Prentice-Hall, Englewood
Cliffs, 1989.

