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Abstract

By means of a special stereographic mapping, a sphere corresponds to a
point in 4-space. A canal surface then corresponds to a curve in 4-space.
The poster gives insights into this mapping and presents a construction of
an osculating Dupin cyclide, which provides the principal curvatures for each
generating circle of a curvature continuous canal surface.

Basic idea

A canal surface is the envelope of spheres, whose centers move on a so-called
spine curve. These spheres will be mapped onto points in four-dimensional
space, which we will call M-space. Investigating a number of spheres takes
over to investigating a number of points in M. Hence, a canal surface cor-
responds to a curve in M. A construction is given, how to receive an os-
culating conic in M, which corresponds to an osculating Dupin cyclide in
three-dimensional space. By means of this cyclide, it is easy to calculate the
curvature values for a point of the canal surface.

M-space

Let M be a four-dimensional Euclidean space, where points will be denoted
by small hollow letters in homogeneous coordinates, eg. y = [y1 Yz Y3 Y4 Yo
The unit hypersphere, which is given by

Yl +ys +ys +yi =0,

will be called Mdbius hypersphere and is denoted by ¥. Other characteristic
elements in M are the following:

e the north pole of ¥: n=[00011]
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Figure 1: The sphere S is mapped onto the point s

e the north hyperplane N: yo = y4
o the scalar product: zy := z1y1 + z2y2 + T3ys + Tays — Toyo

A simple observation shows, that a point y lies outside (on / inside)
the M&bius hypersphere W iff yy is greater than (equal / lower than) zero.
Further, given a point y, then all the points x with xy = 0 lie in the polar
hyperplane of y, denoted by ). The points y and x are a conjugate pair with
respect to V.

Note: N is the polar hyperplane of the north pole m.

The mapping

Combining a standard stereographic projection with the polarity induced by
zy = 0 leads to a mapping from spheres and planes of ordinary three-
dimensional space to points in M. First, the stereographic projection maps a
sphere or plane of three-dimensional space to a sphere on the Mobius hyper-
sphere. The polarity then maps its points to their unique pole.

More precisely, a sphere S with center m = [a b¢| and radius r is mapped
onto the point
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In particular, a sphere of radius oo, i.e. a plane U, given by u’x — uy =
U1z + u2y + usz — up = 0 is mapped onto the point
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Conversely, the preimage of the point y = [y1 Y2 Y3 y4 yo], where yo # y4,

is the sphere defined by

1 h
Y21,
Y3

m = .
Yo — Ya

r=
Yo — Ya

In the case yo = ya, y corresponds to the plane with the equation

Y1z + Y2y +ysz —yo = 0.

Some useful observations

The mapping induces a correspondence of figures in three-dimensional space
to figures in M. The most obvious ones are the following:

Property (P)
Two spheres span a linear family of
spheres, which will be called a pencil.

The intersection of all spheres of the
pencil is a circle.

Property (N)
Three spheres span a linear family of
spheres, which we will call a net.

The intersection of all spheres of the
net is a pair of points.

Property (T)

Two spheres are tangent, if they have
exactly one point in common, in other
words, if their span intersects in ex-
actly one circle of zero radius.

Property (0O)

Two spheres are orthogonal, if the co-
sine of their intersection angles equals
zero.

Two points span a linear family of
points.

The join of all points of the above
family is a line.

Three points span a linear family of
points.

The join of all points of the above
family is a plane.

Two points lie on a W-tangent, if
their span contains exactly one point
of ¥.

Two points are conjugate, if
the following equation  holds:
_ ),

O = ) (yy)



Figure 2: The Dupin conic has double contact with ¥.

Dupin cyclides

It follows directly, that curves in M correspond to canal surfaces in three-
dimensional space. We will now have a look at Dupin cyclides as special
canal surfaces.

A Dupin cyclide is a canal surface, whose spine curve is of second or-
der. Hence, the spine curve is planar and its spheres belong to a net. But
even more: Dupin cyclides are simultanously the enveloppe of two families
of spheres. Each sphere of one family is tangent to all spheres of the other
family.

In terms of M-space, this reads as follows: A Dupin cyclide corresponds
simultanously to two curves of second degree, which will be called Dupin
conics, denoted by C' and D . Picking out a point d of conic D, we can trace
lines from d to each point of the other conic C'. All theses lines are tangent to
the Mé&bius hypersphere ¥ (recall property (T)) . This makes d the vertex of
a tangent hypercone of ¥. The intersection of this hypercone with a suitable
plane gives the conic C.

Applying property (N), we find that the suitable plane is the image of the
net, to which the Dupin cyclide’s spheres belong to. The plane intersects the
M&bius hypersphere in a circle (of real or imaginary radius). As the conic
lies on a tangent ¥ hypercone, C' has double contact with the circle in two
points (with real or imaginary coordinates).

Property (DC)

A Dupin cyclide is a canal surface
with a conic spine curve where one
sphere exists, which is tangent to all
spheres of the canal spheres.

A Dupin conic is a conic with two
double contacts at points of W.



Constructing a Dupin Conic

We will now construct a conic C', which is lying in the plane spanned by three
given points pi1, P2, Ps. In particular, the conic C will satisfy the following
conditions: C passes through 1, is tangent to the line p1 + ¢tp2 and has two
double contacts with the Mobius hypersphere W. Hence, C is a Dupin conic.
In the given plane, we will use a local homogeneous coordinate system,
taking p1, P2, P3 as base points: y = p1z1 + p22z2 + pss.
Intersecting this plane with the Mdbius hypersphere, we get a circle T',

yy = Z pPiPrZizr = 0.
ik

The two contact points lie on a line A with the equation
ux = w11 + uzx2 + usxz =0,

where x = [z1,z2,23]" are local coordinates. T' and A carry a pencil of
conics, which all are double tangent to the contact points, namely

D +AA* = (pipk — wiwk)zizy = »  cpzizy, = 0.
ik ik

Figure 3: Finding the Dupin conic

Under these conics, we have to find one, that fulfills the above stated
properties. Passing through [1,0,0]" with the tangent through [0, 1, 0]’ leads
to

C11 = Ci12 = 0.

Note that ci3c3, # 0.



If we look at by = [1,0,0]* and by = [0,1,0]" as two Bézier points of
the conic C', we have to find a third point bs on C, whose tangent passes
through b;. It lies on the polar of by, which intersects C' in the point

2
C22C33 — C23
b: = 2c13cC23
—2c13C22

To get the final Bézier representation of C,
bo + b1 -25t+b2 -tz,

it is easy to check that b; must get the weight 8 = *ci3.

The Osculating Dupin Conic ...

Let a canal surface be given by its image curve ao(¢) in M. The first and
second order derivative with respect to ¢ will be denoted by &(t) and &(¢).
The Taylor expansion at ¢o up to the second order gives

1
y(t) =o+a- (to + At) + Edﬂ-(t0+At)2.

Comparing this with the equation of a conic, which is tangent to p; and ps
from above, given by
y(r)=p1+pz-7+ps-77,

leads to

Now, we can proceed as above.

... iIs @ Curvature Cuff

Using a theorem of Aurel Voss, we arrive at the osculating cyclide of a canal
surface. Voss stated in 1919 :

The principal curvatures of the points along a generating circle do not
depend on the torsion of the spin.

This leads at once to the theorem, which we exploited in M:

Three consecutive spheres of a canal
surface determine the osculating
Dupin cyclide.

Three consecutive points of an M-
curve determine an osculating Dupin
conic.



Résumé

Given a curvature continous canal surface, the poster presented the con-
struction of its osculating Dupin cyclide. This was done by transfering the
problem into a problem of four-dimensional space. The curves in this space
correspond to canal surfaces. It turned out, that an osculating conic to the
four-dimensional curve corresponds to the osculating Dupin cyclide in three-
dimensional space, the curvature cuff.
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