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Abstract 

In a multicellular organism the fate of cells is regulated by the surrounding 
environment. One important example of such a regulation is the development 
of blood cells. This complex process during which all type of blood cells are 
produced from a common pluripotent precursor cell is named hematopoiesis. 
In the adult mammals hematopoiesis is restricted to the extravascular 
compartments of the hone marrow, where primitive hematopoietic cells and 
their progeny develop in intimate contiguity with hone marrow 
microenvironment. Heterogeneaus populations of stromal cells and 
components of extracellular matrix (ECM) have been identified as a part of 
this microenvironment. A crucial component of the ECM in hone marrow is 
hyaluronic acid (HA) which is instrumental for the organisation of ECM. 
Moreover HA can act as a signalling molecule regulating cellular functions. 
This work is based on the observation that in an in vitro hematopoietic 
system, the so-called Long Term Bone Marrow Culture (L TBMC), HA 
addition enhances the production of progenitor and mature cells by inducing 
the production of the crucial hematopoietic cytokine IL-6 in Bone Marrow 
Derived Macraphages (BMDM). 
To gain insight into the mechanisms of HA-regulated cytokine production, I 
established a system consisting of the progenitor cell line TF-1 and the 
hematopoietic supportive stromal cellline MS-5. HA triggers the production 
of cytokines IL-6, GM-CSF and IL-4 in MS-5 cells. I found HA regulates 
production of the IL-6 cytokine via the RAF-MEK-ERK signal transduction 
pathway. HA-induced production of IL-6 is regulated on the transcriptional 
Ievel, via NF-lCB and NF-IL-6 binding-sequences in the IL-6 promoter. 
The TF -1 progenitor cell line also induces the production of cytokines in the 
MS-5 cells. Furthermore, the induction of IL-6 by TF-1 cells is also 
regulated on the transcriptionallevel and is mediated by NF-KB and NF-IL-6 
cis-elements in the IL-6 promoter. 
Taken tagether these data explore the mechanism of regulated cytokine 
production by stromal cells and underline the importance of ECM-cell and 
cell-cell interactions in hematopoiesis. 



Hyaluronsäure induziert Zytokine in Stromazellen 
welche Hämatopoiese unterstützen 

Zusammenfassung 

In ei9em multizellulären Organismus wird das Zellschicksal durch 
Umgebungseinflüsse reguliert. Ein wichtiges Beispiel für eine solche Regulation 
ist die· Entwicklung von Blutzellen. Dieser komplexe Prozeß, bei dem alle Arten 
von Blutzellen aus einer gemeinsamen pluripotenten Vorläuferzelle produziert 
werden, wird als Hämatopoiese bezeichnet. 
In erwachsenen Säugetieren ist die Hämatopoiese auf die extravasalen 
Kompartimente des Knochenmarks beschränkt, wo einfache hämatopoietische 
Zellen und ihre Abkömmlinge sich in enger Einbindung in der Mikroumgebung 
des Knochenmarks entwickeln. Heterogene Populationen von Stromazellen und 
Komponenten der extrazellulären Matrix (ECM) sind als Bestandteile dieser 
Mikroumgebung identifiziert worden. Ein entscheidender Bestandteil der ECM 
des Knochenmarks ist Hyaluronsäure (HA), die wesentlich an der Organisation 
der ECM beteiligt ist. Darüber hinaus kann HA als Signalmolekül 
funktionieren, welches zelluläre Funktionen reguliert. 
Die hier vorliegende Arbeit basiert auf der Beobachtung, daß HA in einem in­
vitro System, der sog. Langzeit-Knochenmarkskultur (LTBMC), die Produktion 
von Vorläuferzellen und reifen Zellen erhöht, indem es die Produktion des 
entscheidenden hämatopoietischen Zytokins, IL-6, in den vom Knochenmark 
abgeleiteten Makrophagen (BMDM), induziert. 
Um Einsicht in die Mechanismen der HA-regulierten Zytokin-Produktion zu 
erhalten, habe ich ein System mit der hämatopoietischen Vorläufer-Zelllinie 
TF-1 und der supportiven Stromazelllinie MS-5 etabliert. HA löst die 
Produktion der Zytokine IL-6, GM-CSF und IL-4 in MS-5 Zellen aus. Ich fand 
heraus, daß HA die Produktion des Zytokins IL-6 über den Raf-MEK-ERK 
Signaltransduktionsweg reguliert. Die HA-induzierte Produktion von IL-6 wird 
auf transkriptioneHer Ebene über NF-KB und NF-IL-6 Bindesequenzen im IL-
6-Promotor reguliert. 
Die TF-1 Vorläufer-Zelllinie induziert ebenfalls die Produktion von Zytokinen 
in MS-5 Zellen. Weiterhin wird die Induktion von IL-6 durch TF-1 Zellen 
ebenfalls auftranskriptioneUer Ebene durch NF-KB und NF-IL-6 cis-Elemente 
im IL-6 Promotor reguliert. 
Zusammengenommen zeigen diese Daten die Mechanismen der durch 
Stromazellen regulierten Zytokin-Produktion und unterstreichen die Bedeutung 
von ECM-Zell- und Zell-Zell-Interaktionen während der Hämatopoiese. 
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Introduction 
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1 lntroduction 

1.1 The extracellular matrix component hyaluronic acid (HA) 

The development and function of all cells in a mammalian organism depend on 

interactions with molecules in their environment. The classes of molecules in 

this environment represent growth factors, cell adhesion molecules and 

components of the extracellular matrix (ECM). In a multicellular organism the 

ECM controls homeostasis, cell growth and differentiation. The ECM is a 

complex and highly diverse structure, including many different components 

such as proteoglycans, glycosaminoglycans, fibronectin, collagen, laminin, 

hemonectin, thrombospondin etc. Glycosaminoglycans (GAGs) are negatively 

charged hexosamine containing polysaccharides. They are ubiquitously present 

in the ECM of connective tissues, in body fluids and can be also found on the 

cell surface. 

In the last years, glycosaminoglycans have been intensively studied because of 

their prominent role in tissue homeostasis andin pathological disorders. In this 

work we would like to introduce one member of the GAG family - hyaluronic 

acid (HA). 

1.1.1 Molecular properties of HA 

HA was originally isolated and described by Karl Meyer as the maJor 

glycosaminoglycan of the vitreous body of the eye and of the synovial fluid 

(Meyer and Palmer, 1934; Meyer et al., 1947). Later on, HA was also found in 

a number of other tissues such as the umbilical cord, the skin, the rooster comb 

and the cartilage. HA is the largest ECM component with a molecular mass of 

several million daltons. It is a linear polymer composed of disaccharide repeats 

that consist of N-acetylglycosamine and D-glucuronic acid (Fig.1) (Laurent, 

1989). 

1 
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Figure 1. The structure of HA disaccharides. 
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Because of its charged residues HA can adopt many water molecules and thus is 

able to expand into tissue spaces and to occupy an area of several magnitudes 

larger than expected from its size. The hydratation properties of HA are 

important for creation of an environment that maintains homeostasis and 

facilitates cell movement. 

In solution the HA molecules form three-dimensional structures, which show 

extensive intramolecular hydrogen bonding. This restricts the conformation 

flexibility of the polymer chains and induces distinct secondary (helical) and 

tertiary (coiled coil) structures (Evered and Whelan (eds), 1989). Because of 

such an organisation, HA behaves in aqueous solutions as an unusually stiff 

polymer. This rigidity is important for the space-filling role of HA and also for 

the formation of specific channels through which different water-soluble 

molecules can diffuse. 

Another important feature of HA is that it interacts with proteoglycans and 

other matrix components, which use the HA network in order to associate and 

orientate themselves. Thus, HA organises the macrostructure of the ECM and 

provides stability and elasticity to the organism (Knudson and Knudson, 1993), 

for example as a central structural unit in cartilage or as a lubricant in sinovial 

fluid. However, it was recently discovered that HA has a variety of other 
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important functions. It influences cell differentiation, motility, proliferation and 

migration and thus affects cellular fate in the embryo as weil as in the adult 

organism (for review see Evered and Whelan (eds), 1989). In embryogenesis 

HA plays a crucial role as it surrounds the proliferating and migrating cells of 

developing tissues. The presence of HA from the very beginning of the 

development of the embryo (Brown and Papaioannou, 1993) underlines the 

importance of this molecule in a variety of decisive events oiigoing in 

embryogenesis. 

For example, HAinduces condensation ofmesenchymal cells, that results in the 

onset of chondrogenesis and myogenesis (Knudson, 1993). HA has also been 

shown to promote migratory and proliferative events during the maturation of 

the nervaus system (Erickson and Perris, 1993) and to take part in the brain 

development (Bignami et a/., 1993; Marret et a/., 1994). HA is the major 

glycosaminoglycan of the early cardiac ECM during the heart development. The 

strongest evidences for a function of HA in the development of the heart came 

from the observation that degradation of HA caused abnormal formation of the 

heart structure (Baldwin et a/., 1994). The general importance of HA in 

embryonie development is emphasised by the observation that abrogation of HA 

synthesis in knock out mice Ieads to the early death of the embryo. 

In the adult organism, in addition to the functions already mentioned above HA 

is specifically involved in hematopoiesis and in the function of the immune 

system (Minguell, 1993; Naor et al., 1997; Siegelman et a/., 1999). HA also 

contributes to the motile responses and migration of cells during wound repair 

(Weigel et a/., 1986; Weigel et a/., 1988; Weigel et a/., 1989). 

HA is also important in pathological processes such as inflammation and 

tumorigenesis. Increased Ievels of HA in the serum have been found in 

inflammatory rheumatic diseases such as rheumatoid arthritis, scleroderma and 

psoriatic arthritis (Engstrom-Laurent et al., 1985; Dahl et a/., 1985). The 

regulatory role of HA in inflammation was further confirmed by the 

observation that HA stimulates phagocytosis in monocytes and granulocytes and 

that HA mediates lymphocyte activation (Hakansson et a/., 1980; Ahlgren and 

Jarstrand, 1984; Bourguignon et a/., 1993; Galandrini et a/., 1994; de Grendele 

3 
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et al., 1996). lnteresting1y, HA like other GAGs have important functions in the 

regulation of the activity of the inflammatory cytokine IFN-y in vivo by direct 

binding and presentation of IFN-y molecules to the cells (Femandez-Botran et 

al., 1999). 

The importance of HA for cell migration suggests a role for HA in tumour 

invasion (Knudson 1996; Knudson et al., 1989). Indeed, some solid tumours 

contain high concentrations of HA that correlate with their invasiveness (Menzel 

and Farr, 1998; Hopwood et a/., 1974; Philipson and Schwartz, 1984). 

Interestingly, some tumour cells were shown not only to produce HA on their 

own but also to stimulate other cell types to increase HA production (Knudson 

et al., 1984; Knudson and Knudson, 1990; Asplund et a/., 1993). 

1.1.2 HA synthesis 

The regulation of HA synthesis and catabolism is crucial for its functions and is 

co-ordinately controlled in mammalian organisms. Usually, the synthesis of 

GAGs occurs intracellularly. lt involves elongation of sugar chain residues to 

core proteins followed by modifications in the Golgi apparatus and their 

transport in vesicels to the cell surface. In contrast, the synthesis of the 

enormously huge HA molecule occurs in the plasma membrane (Prehm, 1989). 

The HA synthase (HAS) synthesises HA residues at the inner surface of the 

plasma membrane and the growing HA chain is then extruded through the 

membrane directly into the extracellular space. 

The HA synthesis correlates with the stages of embryonie development, with 

tissue remodeHing and cellular multiplication processes in the adult organism 

(Teder et al., 1995). HA synthesis was also found to be significantly increased 

during inflammation and cancer (Laurent, 1989). The elevation of HA in these 

processes is regulated by growth factors or/and other mediators that can 

stimulate HA synthesis. Indeed, several factors were shown to be involved in the 

regulation of HASes activity such as TGF-~, TNF, IFN-y, PDGF, IGF-1, IL-1 

(Haubeck et al., 1995; Heidin et al., 1989; Heidin et al., 1992; Honda et a/., 

1991; Sampson et al., 1992; Ito et al., 1993). 

4 



lntroduction 
----------------------------------------------~ 

1.1.3 Catabolism of HA 

HA exists as a high molecular weight polymer, but it can be degraded during 

different physiological and pathological processes. In mamrnals, three groups of 

enzymes degrade HA into its monosaccharides components, namely 

hyaluronidases (HA«ase), ~-D-glucuronidases and ~-N-acetyl-D­

hexosaminidases. Hyaluronidases are exclusively involved in the degradation of 

HA and connective tissue polysaccharides, whereas the exoglycosidases (~-D­

glucuronidase and ~-N-acetyl-D-hexosaminidase) participate in addition in the 

catabolism of other substrates. There are several groups of hyaluronidases which 

can specifically degrade HA, using different reaction mechanisms (Csoka et al., 

1997). 

The mammalian forms are endohexosaminidases that randomly reduce the size 

of the polymers through a range of oligosaccharides to finally yield 

tetrasaccharide residues. As we will discuss in the following chapters, for a 

number ofHA-mediated functions the size ofthe polymer plays a crucial role. 

The turnover of HA in the body varies in different tissues according to its 

structure and to the stage of maturity. HA is transported in the lymphatic vessels 

to lymph nodes for degradation or is catabolised locally in tissues (Fraser et al., 

1983; Fraser et a/., 1988; for review see Menzel and Farr, 1988). The lymph 

nodes extract nearly 50-90% from the peripherallymph system. HA can also be 

removed directly from the blood and the lymph circulation by endothelial cells 

of the liver sinusoids. In tissues macrophages, chondrocytes, fibroblasts and 

epidermal cells take part in HA degradation. The catabolism of HA is mediated 

via receptor-mediated up-take. Two of such receptors have been described: one 

is CD44, which plays this role in fibroblasts and alveolar macrophages (Culty et 

al., 1992; Culty et a/., 1994; Hua et al., 1993) Another one was identified on 

liver endothelial cells LEC (Yannarielo- Brown et a/., 1992). In addition non­

specific endocytosis or/and binding to low affinity receptor can also take part in 

HA uptake. 

5 
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1.1.4 HA-binding proteins 

HA -binding proteins can be separated in two groups according to the structure 

of their HA-binding region. In both cases, the respective proteins have defined 

HA-binding motifs which are characterised by two basic amino acids flanking a 

region ofseven amino acids B(X7)B, among which one at least is basic (Yang et 

a/., 1994). The first group of HA-binding proteins contain only such motifs. 

These proteins can bind HA under reducing as weil as under non-reducing 

conditions. The other group ofHA-binding proteinsform in addition a common 

protein domain (link module) firstly detected in the link protein, a protein of 

the ECM that "links" HA to other ECM components. This module is 

characterised by cystein residues (in apart of HA-binding domain), which form 

disulphide bonds and establish a defined tertiary structure in the molecule 

(Goetinck et al., 1987). The functional importance of this module was 

demonstrated by the fact that HA -binding is abrogated under reducing 

conditions (Toole, 1990). 

Some of the HA binding proteins like the cartilage link protein, versican, 

aggrecan, hyaladherins bind HA within the ECM. Others are specific cell­

surface HA-binding receptors. 

1.1.5 HA-receptors 

For many of the physiological functions of HA such as cell adhesion, growth 

and migration its binding to receptors is required (for review see Sherman et 

a/., 1994). The HA -receptor association is significantly elevated in situations 

when rapid tissue tumover and remodelling occur (Csoka et a/, 1997). HA 

interactions with cell receptors also contribute to pathological processes such as 

wound healing and tumorigenesis (Laurent, 1989). Two such receptors namely 

CD44 and LIVE-I have been identified to date. The previous description of 

RHAMM (receptor for hyaluronate mediated motility) and ICAM-1 

(intercellular cell adhesion molecule-1) as cell-surface HA-receptors (Turley et 

a/., 1991; McCourt et a/., 1994) tumed outtobe based on artefacts (Hofmann 

et a/., 1998; McCourt and Gustafson, 1997). 

6 
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1.1.5.1 CD44 protein family 

CD44 was originally discovered by means of antiborlies as a protein on 

leukocytes. Now we know that CD44 comprises a family of transmembrane cell 

surface glycoproteins type I. Members of the CD44 protein family play roles in 

physiological and pathological processes such as limb development, 

hematopoiesis, lymphocyte homing, in immune responses and cancer ( for 

review see Lesley et a/., 1993a; Naor et a/., 1997). 

Proteins of the CD44 family are widely distributed on various cells, including 

keratinocytes, hematopoietic cells and many others. However, the pattem of 

CD44 expression in the body was shown to be specific for certain cell types and 

for differentiation stages. 

The standardform of CD44 (CD44s) consists of a stretch of 248 amino acid in 

the extracellular part, a stretch of 23 amino acid comprising the transmembrane 

part and of a stretch of 70 amino acid establishing the intracellular part. The 

variety of CD44 isoforms is created by alternative splicing of variant exons 

sequences that are all excised in the CD44s isoform (Stamenkovic et a/., 1991; 

Screaton et a/., 1992). The difference between CD44s and the higher molecular 

weight variant forms (CD44v) consists of additional peptide sequences inserted 

into the membrane-proximal extracellular part of the CD44s molecule. Different 

splice variants of CD44 are believed to have distinct physiological functions. 

For example, CD44 variants containing the variant exon 6 (v6) were shown to 

confer the metastatic potential to non- metastatic pancreatic carcinoma cells 

upon transfection (Herrlich et al., 1993). Exon v6 containing variants are 

expressed on BIT lymphocytes and on macrophages upon antigenic stimulation. 

CD44 variants containing v7 exon sequences are involved in chronic 

inflammatory diseases (Wittig et a/., 1997). A v3 containing variant is crucial 

for limb development. In this case the function of the CD44 variant appeared to 

be the presentation of growth factors to target cells (Bennett et al., 1995; 

Sherman et a/., 1998). 

Many if not all functions of CD44 require binding to a Iigand. CD44 can bind 

several molecules such as fibronectin (Jalkanen and Jalkanen, 1992; Toyama-

7 
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Sorimachi et al., 1995) collagen, laminin {Turley et a/., 1984) the chondroitin 

sulfate modified form of the invariant chain (Naujokas et a/., 1993), 

osteopontin (Weber et al., 1996) and some growth factors {Tanaka et a/., 1993; 

Bennett et a/., 1995; Van der Voort et a/., 1999). The best characterised Iigand 

of CD44 is HA (Aruffo et al., 1990; Miyake et a/., 1990). 

The evidence that CD44 is a cell surface receptor for HA came from the 

observation that purified CD44 can bind HA in vitro and specific antibodies 

against CD44 block HA-binding to the cell surface. In addition, introduction of 

CD44 into cells that do not bind HA confer the HA binding ability (for review 

see Lesly et al., 1993a). 

CD44 has two HA-binding motifs in its extracellular domain similar to those of 

other HA-binding proteins (see above) (Peach et al., 1993). The significance of 

these two motifs with respect to HA-binding was confirmed by site -directed 

mutagenesis. One additional motif for HA-binding was found in the cytoplasmic 

tail of CD44. lt is functional in vitro, although its functional role in vivo is still 

not clear. In addition to these binding motifs, a secondary loop structure forms 

the link domain characteristic for HA binding (see above) in the N-terminus of 

CD44. The minimal size of HA molecule CD44 can interact with is six sugar 

disaccharides, but higher affinity is observed for Ionger HA molecules 

(Underhill et a/., 1983). 

HA-binding of CD44 can be modulated 

Many cells do not bind HA, although they express high Ievels of CD44, 

suggesting that additional activating events are necessary. Indeed, some cells can 

be "activated" to bind HA by various stimuli including certain CD44 antibodies. 

For example, the CD44 specific monoclonal antibodies (mAbs) IRA WB14 as 

well as antigenic stimulation can induce non HA-binding T-cells to bind HA 

(Lesley and Hyman, 1992). Cytokines regulate CD44 dependent HA binding of 

cells of the immune system. E.g. the cytokine TNF-a increases HA-binding of 

monocytes, whereas IL-4 and IL-13 decrease it (Levesque et al., 1999; 

Levesque and Haynes, 1997). IL-5 stimulates CD44 dependent HA binding in 

B-cells (Murakami et al., 1990). The bacterial component LPS 

8 
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(lipopolysaccharide) was shown to stimulate CD44 mediated HA-binding in 

peripherial blood monocytes (Levesque and Reines, 1997). TP A treatment can 

also activate CD44 mediated HA-binding (Liao et al., 1993; Sionov and Naor, 

1998). 

Cross-linking or dustering of CD44 may influence its HA binding. This can be 

concluded from the observation that only multivalently binding anti-CD44 

antibodies enhance HA-binding ability to CD44 receptors (Lesley et al., 1993b; 

Sleeman et a/., 1996; Liu et a/., 1997). Interestingly, in some experiments the 

cytoplasmic portion of CD44 also influences HA binding, since the truncation 

of this part results in the reduction of HA binding {Thomas et a/., 1992; Lesley 

et al., 1992; Liao et al., 1993; He et a/., 1992). However in other experimental 

systems it bad no influence. 

CD44 interacts specifically with cytoskeleton elements such as ankyrin 

(Bourguignon et al., 1992) and actin (Lacy et al., 1987) via the "linker 

proteins" ezrin, radixin, moesin and merlin (Algrain et a/., 1993; Tsukita et a/., 

1994; Hirao et a/., 1996). However the significance of such interactions for HA 

binding is still a matter of discussion. Prevention of ankyrin binding to CD44 or 

disruption of actin polymerisation and actinomyosin contractions abrogates 

CD44-mediated HA-binding in some systems (Lokeshwar et a/., 1994; Galluzzo 

et a/., 1995). In contrast, there are data indicating that disruption of the 

cytoskeleton by itself does not affect CD44 mediated HA binding (Murakami et 

a/., 1994). 

The HA-binding ability of CD44 proteins is dependent on the type of isoform 

expressed and on the post-translation modifications. For example, the presence 

of splice variants on human T-cells Ieads to an increase in HA-binding as 

compared to cells expressing only the standard form. Moreover, activated 

human T -cells transiently express v6 and v9 CD44 variants, and their expression 

is important for adhesion of these cells to HA (Galluzo et a/., 1995). Some 

CD44 isoforms also play critical roles in mediating HA dependent adhesion in 

dendritic cells (Haegel-Kronenberger et al., 1998). 

CD44 isoforms differ in the repertoire of ligands they interact with. E.g. 

inclusion of peptide sequences encoded by the v6 and the v7 exons extends the 
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repertoire of GAGs, to which CD44 can bind, to chondroitin sulfate, heparin 

and heparin sulfate as weil if CD44 is solubilised or it is expressed on the cell 

surface (Sleeman et al., 1997). 

The importance of CD44 posttranscriptional modifications for HA binding was 

demonstrated by experimental modifying of CD44. CD44 has potential 

glycosylation and phosphorylation sites and can also undergo glycanation. 

Sulfatation and addition of chondroitin sulfate are required for HA-binding by 

CD44 in some cells (Esford et a/., 1998). Keratinsulfate modification of CD44 

has an inhibitory effect on its HA binding (Takahashi et a/., 1996). 

The glycosylation status of CD44 is important for its HA-binding ability 

(Katoh et a/., 1995; Bartolazzi et al., 1994; Skelton et a/., 1998). Different 

pattern of glycosylation can regulate HA-binding in both a positive and a 
negative manner. Whereas the inhibition of N-linked glycosylation of CD44 

does not influence HA-binding in colon carcinoma cells, the inhibition of 0-

glycosylation can significantly enhance it (Dasgupta et al., 1996). In activated 

B-lymphocytes, abrogation of N-glycosylation Ieads to increased HA-binding 

(Hathcock et a/., 1993). 

However, in hematopoietic progenitor cells and in CD44v4-v7 transfected 

pancreatic tumour cells the contrary result was observed. When N-glycosylation 

was reduced HA-binding was decreased (Sleeman et a/., 1996; Moll et a/., 

1998). The importance of phosphorylation of the CD44 cytoplasmic tail for 

HA-binding in a murine systemwas shown by using CD44 mutants defective in 

phosphorylation. The abrogation of phosphorylation of the serine residues 325, 

327 led to the reduction of HA-binding (Pure et a/., 1995). However, human 

cells transfected with such defective CD44 mutants were still able to bind HA 

(Uff et a/., 1995). 

Taken together, different factors such as changes in glycosylation, distribution 

of CD44 on cell surface and modification of the cytoplasmic domain of CD44 

contribute to the regulation of CD44 mediated HA-binding. 
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1.1.5.2 LIVE-1 

LIVE-I (Lymphatic vessel endothelial HA receptor I) seems to be the major 

HA receptor on lymph vessel endothelia (Banerji et al., I999). lt was shown to 

bind both immobilised and soluble HA. This receptor, similarly to CD44, is a 

member ofthe link protein superfamily. LIVE-I consists of322 aminoacids and 

shows the features of an integral membrane protein type I. LIVE-I has a 

hydrophobic domain of 2I2 amino acids with seven cystein residues, a 

serine/threonin-rich region and two motifs for N-linked glycosylation in the 

extracellular domain. LIVE-I has 4I% of homology with CD44. The region of 

the highest homology with CD44 is located in the area of the link domain. 

It is speculated that LIVE-1 functions on the surface of endothelial cells as an 

endocytic receptor like CD44 on macrophages and might be as weil involved in 

the migration of immune cells. 

1.1.6 HA as a signalling molecule 

Through its interactions with cellular receptors HA can act as a signaHing 

molecule in various systems. For example, HAinduces tyrosine phosphorylation 

of several proteins in bovine aortic endothelial cells (Slevin et al., I998), 

increases tyrosine phosphorylation of two proteins (m.w. I24 kDa and 60 kDa) 

in NIH 3T3 cells (Moon et al., I998) and triggers Ca2
+ -dependent signal 

transduction cascade in T -lymphocytes followed by cytoskeleton rearrangement 

(Bourguignon et al., I993). HA mediated-activation of Mitogen-Activated 

Protein Kinases (MAPKs) was also observed in several cell types (Slevin et al .• 

I998; Khaldoyanidi et al., 1999). 

HA-induced signal cascades result in regulation of expression of genes and 

thereby regulate cellular fate andlor tissue morphogenesis. One consequence of 

HA signalling is the induction of proliferation observed in the aortic endothelial 

cells andin NIH3T3 cells similar to the action of growth factors (Moon et al., 

1998). Interestingly, in primary fibroblasts HA regulates proliferation by 

increasing tubulin expression, which, in turn, drives cells through the cell cycle 

and thus promotes cell division (Greco et al., I998). 
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An important examp1e of the ro1e of HA in morphogenesis is its regulation of 

neo-vascu1arisation. Interestingly, the size of HA is crucial for this process. For 

example, neo-vascularisation during wound healing is inhibited by high­

molecular weight HA, but is induced by shorter HA products (Lees et al., 

1995). Also low molecular weight products of HA degradation, but not native 

high molecular weight HA, are able to induce angiogenesis in vivo (Deed et al., 

1997). In agreement with this observation, HA derived oligosaccharides (o-HA) 

were reported to modulate the invasive properties of bovine microvascular 

endothelial cells and synergise specifically with VEGF in the induction of 

angiogenesis (Montesano et al., 1996). Another role of low molecular weight 

HA in tissue morphogenesis is the induction of vascular tube formation by brain 

endothelial cells (Rahmanian et al., 1997). 

Most importantly, HA can trigger signals stimulating and regulating the 

expression of a number of genes crucial for the immune response and function 

of hematopoietic system. In both systems HA can stimulate the expression of 

chemokines and cytokines in a variety of cell types such as macrophages, 

monocytes, T -cells, dendritic cells (Hiro et al., 1986; Noble et al., 1993; 

Galandrini et a/., 1994; Haegel-Kronenberger et a/., 1998; McKee et al., 1996). 

E.g. rabbit peritoneal macrophages and human peripheral monocytes as weil as 

murine macrophages and dendritic cells produce IL-1 ß upon HA stimulation 

(Hiro et a/., 1986). The induction of IL-1 ß cytokine might also explain the role 

of HA in pathological and physiological processes in connective tissues. In the 

inflammatory response HA induces in addition other types of inflammatory 

molecules. E.g. in dendritic cells HA triggers the expression of IL-8, IL-1 0 and 

IL-12 cytokines that then regulate the maturation and function of immune cells 

(Haegel-Kronenberger et al., 1998). 

HA fragments can induce the metalloelastase (MME) production in mouse 

alveolar macrophages. MME is implicated in different lung disorders. Therefore 

HA fragments, which usually accumulate at sites of lung inflammation, may 

trigger the expression of MME by macrophages resulting in lung inflammation 

(Horton et al., 1999). Several other genes of the inflammatory response such as 

MIP-1 a, the cytokine responsive gene-2 and the monocyte chemoattractant 
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protein-1 were identified to be induced upon treatment of macrophages with 

HA-fragments (McKee et al., 1996). In human alveolar macrophages from 

patients suffering from idiopathic pulmonary fibrosis IL=8 mRNA was also 

significantly increased upon HA-fragments treatment (McKee et al., 1996). In 

alveolar macrophages HA also induces the expression of inducible nitric oxide 

synthase (INOS), another molecule involved in the inflamrnatory response. HA 

fragments can induce INOS expression on their own, but the expression of the 

INOS gene is significantly increased when HA synergizes with INF-y (McKee et 

al., 1997). 

In hematopoiesis HA has an enhancing effect on the production of blood cells in 

vitro, that is due to the increased production of IL-6, one of the crucial 

hematopoietic cytokine, by hone marrow derived macrophages (BMDM) 

(Khaldoyanidi et al., 1999). Dendritic cells respond to HA also by upregulation 

of cytokines relevant for hematopoiesis such as IL-6 and GM-CSF (Haegel= 

Kronenherger et al., 1998). 

1.2 Hematopoiesis 

Throughout their lifespan all mamrnals continuously produce different types of 

blood cells such as monocytes/macrophages, red cells, platelets, T and B 

lymphocytes and neutrophils in a process called hematopoiesis. 

These cells all originate from comrnon pluripotent hematopoietic stem cells 

(HSCs). The HSCs are the only cells that are able to fully reconstitute the 

hematopoietic system of animals in which all hematopoietic cells have been 

killed upon irradiation. In addition to their differentiation capacity, HSCs are 

capable of self -renewal. 

The HSCs first differentiate into progenitor cells, which are committed to the 

various hematopoietic lineages. Therefore, in a hierarchical order, the HSCs 

initiate the production of more and more specialised cells (Fig.2) (Metcalf, 

1989). The final mature cells entering the blood are fully differentiated. The 

majority of mature blood cells are short-lived and incapable of further division. 
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Rasma oel T-all 

Figure 2. The hierarchy of the hematopoietic system. 

1.2.1 Embryonie development of hematopietic system 

The pluripotent HSCs do not develop in the embryo from the very beginning. 

Firstly, a primitive hematopoitic system is established in the embryo composed 

of primitive hematopoetic precursors for the erythro-myeloid, granulocyte­

macrophage and lymphoid lineages. The definitive (adult -type) HSCs, capable 

of full multilineage repopulation are detected in the embryo only at later stages 

(Dzierzak et al., 1998). 
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The hematopoietic system develops during embryogenesis in several tissues such 

as the yolk sac, the aorta-gonad-mesonephros (AGM), the paraaortic 

splanchnopleura (PAS), the liver, the spieen and the thymus. The earliest 

hematopoietic activities are observed in the yolk sac andin the intraembryonie 

PAS/ AGM region. These tissues develop from the mesodermal germ layer cells 

formed in the gastrulating embryo. The molecular mechanism of hematopoietic 

specification within the mesoderm involves the action of various factors of the 

TGF-ß superfamily and the FGF family (Smith and Albano, 1993; Dale et al., 

1992; Mead et al., 1996; Turpen et al., 1997). In particular BMP-4 (bone 

morphogenesis protein), a member ofthe TGF-ß family, and its receptor BMP-

2/4 play a crucial role in this early transition step. This was convincingly shown 

in BMP-4 knock out embryos the majority of which die around gastrulation 

with little or no mesoderm differentiation and the surviving embryos have 

profound defects in the yolk sac mesoderm (Winnier et al., 1995). Further 

support for a decisive role of BMP-4 in hematopoiesisis originates from the 

observation that BMP-4 can induce hematopoietic differentiation of pluripotent 

embryonie stem cells (Johansson and Willes, 1995). 

Transcription factors have also been identified that are crucial for the 

development of the embryonie hematopoietic system. The transcription factor 

Tal-1/SCL (T-cellleukaemia oncoproteinl stem cellleukaemia) is thought tobe 

the "master" gene inducing embryonie hematopoiesis and formation of HSCs. 

Tal-1/SCL-/- mice do not establish embryonie erythropoiesis within the yolk sac 

and develop no myeloid progenitors (Shivdasani et al., 1995a). In addition, Tal-

1/SCL-/- mice are also unable to generate definitive HSCs (Porcher et al., 

1996). 

The PAS/ AGM region is the primary tissue developing definitive HSCs, which 

colonise later the yolk sac. However, this does not exclude further colonisation 

of the PAS/ AGM region by the yolk sac cells (Fig.3). The yolk sac and the 

intraembryonie PAS/ AGM region represent two "pre-liver" stage tissues for 

hematopoiesis. Later, at embryonie day 9 to 11, the hematopoietic progenitors 

from these tissues inoculate the liver, which is the major hematopoietic tissue 

during the fetal stage. Fetal liver HSCs undergo daily self-renewing divisions 
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and are mobilised around embryonie day 15 to colonise the hone marrow and 

the spieen (Fig.3) (Morrison et al., 1995). 

Figure 3. Sequence of hematopoietic colonisation events in the 
deve/oping mouse embryo. Bold black arrows represent general colonisation 
events; b/ack arrows represent additional colonisation events. 

Shortly before birth, in the last stages of embryogenesis, and during the adult 

life the hone marrow becomes the major site ofhematopoiesis. 

1.2.2 Hematopoiesis in adult mammals. 

The processes of self-renewal and differentiation of pluripotent stem cells are 

maintained almost throughout the adult life span, but seem to cease at high age. 

The reduction of the proliferative capacity could be caused by a shorting of the 

telomeres in pluripotent stem cell upon more and more divisions (Vaziri et al., 

1994 ). Compatible with a function of telomers in determining the proliferation 

potential of stem cells is also the finding that self-renewing mouse 

hematopoietic cells, unlike non-self-renewing cells, express telomerase, an 

enzyme that reconstitutes telomere ends (Morrison et al., 1996). 
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The major steps of differentiation of HSCs take place in special sites of the hone 

marrow. Stern cells can circulate in the blood and can re-enter the marrow and 

re-establish hematopoiesis in the marrow cords. Thereby retention and 

migration of stem cells and progenitors within hone marrow are important 

features of hematopoiesis. 

Primitive hematopoietic precursors express a variety of cell adhesion molecules 

(CAMs) implicated in the regulation of retention and migration such as the 

integrin VLA-4 (for very late antigen), the member of sialomycin family CD34, 

the immunoglobulins CD31, CD50 and the ligands for selectin (Simmons et a/., 

1997). In particular, the interaction between the integrin VLA-4 expressed on 

HSCs and VCAM-1 expressed in the hone marrow stroma is an important key in 

the HSC retention and migration (Miyake et a/., 1991). The importance of the 

VLA -4 integrin molecule for retention is confirmed by the fact that antiborlies 

directed against this integrin can efficiently mobilise hematopoietic progenitors 

(Yang et a/., 1995; Hirsch et al., 1996). 

Immature hematopoietic progenitors receive from the hone marrow 

microenvironment a number of stimuli for further differentiation which include 

membrane- bound, soluble or ECM- associated cytokines, ECM components and 

adhesion molecules. Under the influence of these stimuli the early hematopoietic 

progenitors switch their transcriptional programs, which then determine the 

subsequent fate of the cells (Hu et a/., 1997). Several lineage-restricted 

transcription factors have already been identified as necessary for the 

hematopoietic development of particular lineages (Shivdasani and Orkin, 1996). 

For example GATA-2 and c-Myb are implicated in the maintenance and the 

expansion of most early progenitors {Tsai et a/., 1994; Mucenski et al., 1991). 

The transcription factor giving rise to erythroid differentiation is GATA-1 {Tsai 

et a/., 1989; Evans and Felsenfeld, 1989). 

The transcription factors C/EBPß (also called NF-IL-6) and PU.l were shown 

to regulate a large number of myeloid specific genes (Scott et a/., 1994; Zhang 

et a/., 1994). Ikaros, Pu-l, Pax-5 and E2A seem tobe responsible forT and B 

lymphoid lineage differentiation (Cross and Enver, et a/., 1997; Georgopoulos 

et al., 1994; Urbanek et a/., 1994; Zhuang et a/., 1994). NF-E2 was reported to 
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be specific for the megakaryocytic development (Shivdasani et al., 1995b). The 

transcription factor NF-KB plays an important role in B cells maturation 

(Franzoso et al., 1997). 

1.2.3 The structure of bone marrow 

Although in the adult organism hematopoietic precursors can be found in a 

number of tissues, the hone marrow is the only tissue in which myelopoiesis, 

lymphopoiesis and erythropoiesis occur simultaneously (Rosse, 1976). These 

processes take place in the extravasewar space between the hone marrow 

sinuses. As pictured in Fig. 4, those sinuses are organised by a sinusoidal 

network from the branches of artherias re-entering the marrow cavity. These 

sinuses collect into a large central sinus from which the blood enters the 

systemic venous circulation through emissary veins (De Bruyn, 1970). 

Figure 4. Cross-section of a long bone showing the medullary cavity 
and the marrow circulation. Redrawn from Dorshkind. 
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The development of hematopoietic progenitors strongly depends upon their 
interaction with the marrow environment (Verfaillie et al., 1994) comprising 
cellular and non-cellular components. The cellular environment in the hone 
marrow hematopoietic spaces consists of odent stromal cells such as endothelial 
cells, reticular cells, osteoblasts and adipocytes with addition of macrophages 

and lymphocytes. These stromal cells produce components of the ECM 
including proteoglycans, glycosaminoglycans, laminin, collagen, tenescin, 
fibronectin (Gallagher et al., 1983; Wight et al., 1986). The ECM tagether with 

growth factors and other molecules form the non-cellular environment for 
progenitor cells within the hone marrow. 

1.2.4 Role of the stromal cells in hematopoiesis 

The contribution of stromal cells to the regulation of hematopoiesis includes 

cell-cell interactions, cell-matrix interactions and the production of different 
soluble factors. 

In situ sturlies of the hone marrow reveal that hematopoietic cells can be found 
in close association with stromal cells. Moreover, the Ievel of this association 
depends on the maturation stage of hematopoietic progenitors (Mauch et al., 

1980; Dorshkind and Phillips, 1982; Coulombel et al., 1983). In an in vitro 

hematopoietic system called long term hone marrow culture (L TBMC) the stem 

cells and the earliest precursors bind tightly to the stromal cell layer, whereas 

more mature cells can be found in the non-adherent cell fraction of L TBMC 
(Dexter et al., 1977; Witte et al., 1987; Harrison et al., 1987). In accordance 
with this notion, the population of CD34+ cells containing predominantly 

immature precursor cells have greater affinity for stromal cells than the 

unselected pool of hematopoietic cells (Liesveld et al., 1989; Verfaillie et al., 

1990; Andrews et al., 1990; Gunji et al., 1992). Furthermore, human blast­
colony forming cells can be separated from more mature colony forming 

progenitors by using their enhanced ability to adhere to stromal cells (Gordon et 

al., 1985 Gordon et al., 1987). 

Formation of blood cells is highly dependent on those complex stromal cells -
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hematopoietic cells interactions. For example, the number of cells able to form 

colonies of differentiated cells in methylcellulose is significantly decreased in 

L TBMCs in which progenitors were separated from stromal cells by a 

membrane as compared to control cultures (Bentley, 1981). The same is also 

true for some stromal cell lines, which can be generated from the adherent layer 

of LTBMC. E.g. more colony forming hematopoietic precursors were obtained 

after co-culture of hematopoietic cells on preadipocyte stromal cell lines as 

compared to control (Kodama et al., 1982; Kodama et al., 1986). 

The cross-talk between hematopoietic cells and stromal cells is mediated by 

specific receptor-ligand interactions. The previously mentioned interaction 

between the integrin VLA-4 on hematopoietic cells with its Iigand VCAM-1 on 

the stromal cells is crucial for the development of cells of the murine B-lineage 

and human CD34+ early precursors (Simmons et al., 1992). a-VLA-4 

antibodies which abrogate binding of CD34+ cells to the stromal layer were 

reported to abolish lymphopoiesis and delay myelopoiesis in LTBMC (Miyake 

et a/., 1991). 

The cell adhesion molecule CD44 is expressed on both hematopoietic 

progenitors and stromal cells and was shown to be involved in hematopoiesis 

(Miyake et a/., 1990; Rossbach et a/., 1996; Moll et a/., 1998), although the 

Iigand for CD44 in a number of interactions between hematopoietic and stromal 

cells is not yet identified. Anti-CD44 mAbs inhibit hematopoiesis in both 

lymphoid and myeloid cultures most likely by abrogation of the attachment of 

progenitors to stromal cells. In support of this assumption, the same anti-CD44 

mAbs or the CD44 Iigand HA could prevent interaction between B-eeil 

hybridoma and stromal cells (Miyake et a/., 1990). Rosette formation of 

erythroid progenitors, an indication of their interaction with stromal cells, seems 

also to be dependent on CD44. However, this effect is not mediated by HA 

binding (Sugimoto et al., 1994). 

The adhesion of hematopoietic cells to stromal cells can also be mediated and 

modulated by cytokines. E.g. mast cells can adhere to stromal cells via the c-kit 

receptor through binding to the cytokine "stem cell factor" (SCF) (Fujita et a/., 

1989; Boswell et al., 1990; Tan et a/., 1990), which is located on stromal cells 
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(Anderson et al., 1990; Toksoz et al., 1992). Consequently mAbs abrogating 

the interaction between SCF and its receptor c-kit strongly suppress 

myelopoiesis in LTBMC (Ogawa et al., 1991; Kodama et al., 1992). CD44 

mediated adhesion of human hematopoietic CD34+ progenitors is enhanced by 

cytokines such as GM-CSF, IL-3 and SCF (Legras et al., 1997; Levesque et al., 

1995). Moreover, the cytokines IL-3, IL-6, IL-11 and SCF were shown to 

directly modulate the expression of cell adhesion molecules on hematopoietic 

progenitors (Becker et al., 1999) . 

1.2.5 The role of the ECM in hematopoiesis 

The ECM, which is produced by stromal cells, also contributes to the 

differentiation and the proliferation of progenitor cells (Dorshkind., 1990; 

Klein, 1995; Whetton and Spooncer, 1998). The different ECM molecules can 

interact with each other and thereby provide a network which embeds the 

stromal cells and the hematopoietic precursors (Long, 1992). The hematopoietic 

cells can attach to the ECM and some ECM components are preferentially 

bound by cells of particular lineages (Del Rosso et al., 1981; Giancotti et al., 

1986; Campbell et al., 1987; Campbell et al., 1988; Weinstein et al., 1989; 

Campbellet al., 1990). 

Moreover, the components of the ECM can also bind to cytokines, growth 

factors and other molecules critical for hematopoiesis and compartmentalise 

them thereby creating niches for differentiation of hemopoietic progenitor cells. 

For example, 0-sulfated heparin sulphate proteoglycans can bind cytokines IL-3 

and MIP-1 a and proteins important for hematopoiesis such a thrombospondin 

(Gupta et al., 1998). GM-CSF can be bound by bone marrow GAGs including 

HA and chondroitin sulfate and presented to hematopoietic progenitors cells 

(Gordon et al., 1987). HA as well as some other GAGs can compartmentalise 

IFN-'Y (Femandez-Botran et al., 1999). GAGs including heparan sulfate, 

chondroitin sulfate, dermatan sulfate and HA can regulate the activity of several 

cytokines and growth factors including IL-6, C-Mplligand, TGF-ß and platelet 

factor 4 (Han et al., 1996). 
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Thus, a main contribution of the ECM in hematopoiesis might be the binding of 

cytokines which are thereby regulated in their activity, which in turn is 

important for their presentation to target cells. 

1.2.6 HA in hematopoiesis. 

A crucial component of the ECM in mammalian bone marrow is HA. It is 

instrumental for the organisation of the ECM and regulates in addition the 

metabolism of cell surface glycoproteins, extracellular proteins and its own 

synthesis. 

HA is required for the adhesion of progenitor cells directly to the stromal ECM 

and to the stromal cells (Morimoto et al., 1994; Smadja-Joffe et al., 1996; 

Wilson, 1997; Mollet al., 1998). HA can in addition upregulate the expression 

of several adhesion molecules on the surface of hematopoietic cells (Oertly et 

a/., 1998). 

HA is involved in the regulation of differentiation and proliferation of certain 

lineages in the hematopoietic system. E.g. HA can inhibit the differentiation of 

lymphocytes into lymphoblastoid cells and this effect is dependent on the 

concentration and the size of HA. HA can enhance megakaryocytopoiesis by 

regulating the activity of several growth factors (Han et a/., 1996). It stimulates 

increased proliferation of CD34+ progenitors and their differentiation into 

mature eosinophils via its binding to the CD44 receptor (Hamann et a/., 1995). 

As we described in chapter 1 HA can stimulate the production of several 

cytokines crucial for the hematopoietic system. 

1.2. 7 Cytokines 

Cytokines are produced by cells to influence the growth and the differentiation 

of the same or of neighbouring cells by interacting with their specific receptors. 

Their importance for hematopoiesisis is underlined by the fact that disregulation 

of cytokine production Ieads to a variety of hematological disorders such as 

myeloproliferative syndroms, myelodisplasias and leukemias characterised by an 
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uncontrolled proliferation or/and an abrogation of differentiation of immature 
hematopoietic cells (for review see Beutler, Lichtman, Coller, Kipps (eds), 

1995) 
In most instances the development of certain hematopoietic lineages is 
controlled by a distinct combination of those factors. E.g. growth and 

differentiation of the myeloid lineage are stimulated mainly by the cytokines: 
GM-CSF, G-CSF, M-CSF and IL-6 and the differentiation of the lymphoid 
lineage is predominantly controlled by IL-7, IL-4 (Dorshkind, 1990). 

Some factors can also provide a negative effect on the proliferation of 
progenitor cells, thereby preventing proliferative disoders. One example is 

TGF-ß which is produced by the hone marrow cells and shows an inhibitory 
effect on both the lymphoid and the myeloid lineages. (Ohta et al., 1987; 
Lenfant et al., 1989; Dubois et al., 1990). IL-4, in addition to its stimulatory 
function (see above), can also inhibit development of both lymphoid and 

myeloid lineages directly or can induce authentic hematopoietic inhibitors 
(Peschel et al., 1987; Jansen et al., 1989; Dorshkind, 1990). 

The stromal cells of L TBMC produce several cytokines. Different 

subpopulations of hone marrow stromal cells produce distinct sets of cytokines 
(for review see Deryugina and Muller-Sieburg, 1993). This fact explains why 
certain stromal cells can support differentiation and proliferation of different 

types of progenitor cells. 
The cytokine production can be regulated by several exogenaus stimuli, 

including cytokines themselves, growth factors, bacterial LPS and ECM 
components such as HA (Tanigushi, 1988). Of particular interest is the fact that 
HA can induce the production of one of the most crucial cytokines in the 

hemapoietic system namely IL-6 (Haegel-Kronenberger et al., 1998; 

Khaldoyanidi et al., 1999). 

1.2. 7.1 Interleukine-6 ( IL-6) 

The murine IL-6 gene is located on chromosome 5 (Mock et al., 1989), the 

human IL-6 gene has been mapped to chromosome 7 (Sehgal et al., 1986). Both 

the human and the mouse genes consist of five exons. Human IL-6 shares 65% 
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homology with the mouse one. Thus, human IL-6 can substitute its mouse 

homolog (Yasukawa et al., 1987; Tanabe et al., 1988; Zilberstein et al., 1986). 

The murine protein consists of 211 amino acids (Simpson et al., 1988). 

Depending on the different posttranscriptional modifications present in the IL-6 

molecule, both mouse and human IL-6 show heterogenicity with respect to their 

molecular weight (between 21 and 29 kD) (May et al., 1988a; May et al., 

1988b ). IL-6 is produced by a variety of cells including endothelial cells, 

fibroblasts, keratinocytes, T -cells, mast cells, monocytes and macrophages. It is 

involved in physiological processes such as hematopoiesis as weil as in 

pathological processes e.g. acute phase response, tumorigenesis and host defence 

reactions. 

In hematopoiesis, IL-6 plays a crucial role at different stages. For example IL-6 

induces the entry of dormant primitive stem cell into the cell cycle (Ikebuchi et 

al., 1987; Koike et al., 1988) supports the proliferation of primitive 

hematopoietic precursors (Suda et al., 1988; Miura et al., 1993), supports the 

proliferation of granulocyte/macrophage progenitors (Wong et al., 1988), 

stimulates the differentiation of megakaryocytes (Ishibashi et al., 1989) and is 

required for B cell maturation (Kishimoto and Hirano, 1988) and activation of 

T -cells (V an Snick, 1990). 

IL-6 synergises with several other cytokines such as IL-1, M-CSF, GM-CSF 

and IL-3, e.g. with IL-1 in B-cell differentiation (Vink et al., 1988) with M­

CSF in macrophage formation (Bot et al., 1989), with GM-CSF in the 

differentiation of granulocyte and monocyte precursors (Hoang et al., 1988) and 

with IL-3 in the proliferation of multipotential progenitors (Ikebuchi et al., 

1987). These observations are underlined by the fact that in IL-6 deficient mice 

the proliferation and differention of hematopoietic progenitors are strongly 

decreased (Bemad et al., 1994). 

In acute phase response, IL-6 induces acute phase proteins (Geiger et al., 1988), 

enhances fever (Helle et al., 1988) and triggers the release of the 

adrenocorticotropic hormone (Marinkovic et al., 1989). 

Several observations suggest a role of IL-6 in tumorigenicity. For example, IL-

6 enhances the growth of B-cell hybridomas, mouse plasmacytoma and 
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myelomas, which suggests that IL-6 may act as a tumor growth factor (Astaldi 

et al., 1980; Nordan and Potter, 1986; Klein, 1990a; Klein, 1990b; Hirano et 

al., 1992). In support for this assumption, plasmacytomas transfected with IL-6 

cDNA were found tobe dramatically more tumorogenic then the parental.cells 

01 an Snick, 1990). Besides its effects on proliferation, IL-6 induces the 

production of matrix-metalloproteinases (MMP-2 and MMP-9) which are 

important for the pathogenesis of some Iymphomas (Kossakowska et al., 1999). 

IL-6 disregulation is linked to various diseases. For example, overproduction of 

IL-6 is observed in proliferative diseases such as the Lennert«s T -cell 

lymphoma, a disease characterised by a massive macrophage infiltration of the 

lymphomatous tissue (Shimizu et al., 1988). Disregulation of IL-6 can cause 

autoimmune diseases such as glomerulonephritis and plasma cell neoplasias 

(Hirano, 1992; Horii et al., 1993). IL-6 production by malignant tumours 

accounts for the development of the autoimmune syndrom in cancer patients 

(Y oshizaki et al., 1992). 

IL-6 production is stimulated by viral or bacterial infections, by HA and by 

various cytokines such as IL-1, TNF-a, IL-3, GM-CSF, platelet derived factor 

(Shalaby et al., 1989; Van Damme et al., 1987; Kohase et al., 1987; Bemasconi 

et al., 1995; Tuyt et al., 1996). 

1.2.8 Experimental hematopoietic systems 

In order to study mechanisms which regulate blood cell production, several 

systems were developed that allow to study the different steps of hematopoiesis 

in vitro. 

1.2.8.1 In vitro differentiation of embryonie stem cells (EC) 

One system corresponds to the embryonie stem cells (ES cells) grown in vitro. 

ES cells are totipotent cells derived from the inner cell mass of the developing 

blastocysts (Evans and Kaufman, 1981 ). When those cells are cultured on 

embryonie fibroblasts or in the presence of the leukaemia inhibitory factor 

(LIF), they retain their totipotent capacity (Williams et al., 1988). 
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Differentiation of ES cells can be induced by several means in vitro. For the 

investigation of hematopoiesis, ES cells are cultured on stromal cells. In this 

case stromal cells provide the necessary microenvironment for the development 

of hematopoietic cells in the embryonie body (EB), which develops from the 

ES cells (Keller et al., 1995). 

The mo1ecu1ar mechanisms involved in the establishment of the hematopoietic 

system in vivo are also functioning in the deve1opment of the EBs (Burkert et 

al., 1991; Schrnitt et al., 1991). Therefore, the ES/EB system is especially 

useful for defining the earliest steps of hematopoiesis, corresponding to the 

commitment of the precursor populations and for analysing the genes involved 

in this process. 

1.2.8.2 LTBMC 

Another system to investigate hematopoiesis in vitro is the so-called long term 

hone marrow cultures (L TBMC). According to the culture conditions, one can 

study myeloid or lymphoid differentiation in murine L TBMC or myeloid 

differentiation in LTBMC derived from human bone marrow (Dexter et al., 

1977; Whitlock and Witte 1982; Whitlock et al., 1984). The composition of the 

medium, the temperature and the establishment of the stromal 1ayer determine 

whether myelopoiesis or 1ymphopoiesis is triggered in the murine L TBMC. 

1.2.8.3 Hematopoiesis -supporting stromal cell lines 

Stromal celllines can mirnie in part the hematopoietic support provided by the 

stromallayer in L TBMC. Since they originate from different stromal cells such 

as fibroblast, preadipocytes and endothelial cells they reflect the heterogeneity 

ofthe bone marrow stroma (Deryugina and Muller-Sieburg, 1993). They differ 

in their morphology, in the production of cytokines and of ECM components. 

This explains their ability to support different types of hematopoietic cells. 

Therefore different cell lines are used to study steps of certain lineage 

differentiation, to examine signalling events which are leading to the activation 

of particular transcription factors and/or to the production of particular 

cytokines. 
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1.2.8.4 MS-5 cellline 

One of such supportive hematopoitic stromal cell lines is the munne hone 

marrow derived stromal cellline MS-5. This cellline is derives from adherent 

layer of LTBMC (Itoh et al., 1989) and can support the growth and 

proliferation of hematopoietic stem cells and progenitor cells but also of some 

progenitor cell lines (Suzuki et al., 1992; Issaad et al., 1993; Auffray et al., 

1994; Nishi et al., 1997; Berthier et al., 1997). The supportive property of MS-

5 cells can be explained by the production of a number of molecules critical for 

hematopoiesis. MS-5 cells produce the ECM components fibronectin, laminin, 

collagen type 1, heparin sulfate and chondroitin sulfate proteoglycans (Drzeniek 

et al., 1997) and basal Ievels of cytokines such as IL-6, GM-CSF and SCF 

(Suzuki et al., 1992). MS-5 cells also produce stromal cell- derived factor 1 

(Bleul et al., 1996), which was previously implicated in the direct migration of 

lymphocytes and nerve growth factor, which together with SCF is required for 

the proliferation of the human progenitor cellline UT -7 on MS-5 cells (Auffray 

et al., 1996). 

To trigger hematopoiesis, a close contact between the MS-5 cells and progenitor 

cells seems to be essential. In some instances such a close contact is mediated via 
HA binding, e.g. for the myeloid KG562 cell line (Moll et al., 1998). For 

another cellline ELM-1-1 cell-cell contact with MS-5 cells also appears to be 

required for their proliferation, but in that case this contact seems nottobe HA­

dependent (Sugimoto et al., 1994). 

1.3 The aims of the project and system used 

The basis for this work was the observation that HA treatment of L TBMC 
stimulates the production of progenitor cells and mature cells. HA treatment 

induces signalling that Ieads to the production of IL-1ß and IL-6 cytokines. To 

gain a mechanistic understanding how HA stimulates cytokine production, we 

wanted to establish a simple system, composed of cell lines, which mirnies at 

least some steps of L TBMC. As a substitute for stromal cells we took the 

stromal cell line MS-5, which supports steps of hematopoiesis in several 
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systems, including some progenitor cell lines. As progenitor cells we used the 

erythroleukaemic progenitor cell line TF-1, which requires for its growth the 

cytokines GM-CSF or IL-3 cytokines andrespondsalso to IL-6. We aimed to 

investigate the responsiveness of MS-5 to HA, study the cytokine production in 

these cells and eventually elucidate the mechanism of IL-6 regulation. This 

response of MS-5 cells to HA should be compared with the ability of MS-5 cells 

to support the progenitor cellline TF-1. 
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2 Materials and Methods 

2.1 Materials 

All general chemieals were supplied from Merck (Darmstadt), Carl Roth 

GmbH & Co (Karlsruhe }, Sigma Chemie GmbH (Diesenhofen) and were of 

highest purity grade. The HA (from rooster comb) and other polysaccharides 

were dissolved in H20 and then incubated for 10 min at 95jC. 

2.1.1 Mice 

C57bl/6 mice were provided from Jackson Laboratories (USA}, kept under 

specific pathogen-free conditions and used for experimental passage at the 

age of 8-12 weeks. 

2.1.2 Celllines and mediums 

All cells were maintained in a 37°C incubator in a humid atmosphere with 5% 

C02. Cell stocks were maintained at -80°C and in liquid nitrogen. Trypsin 

was obtained from Difco Laboratories (Detroit, USA) and diluted to 0,25% in 

15 mM sodium citrate, 134 mM potassium ch1oride. EDT A (Merck, 

Darmstadt) was used as a 5 mM solution in PBS. 

The MS-5 cell line is bone marrow derived stromal cell line (ltoh et al., 

1989). MS-5 cells were maintained in Alpha medium containing 10% FCS 

and 2mM Glutamin. 

The TF-1 cellline is a CD34+human erythro-myeloid progenitor cellline. 

TF-1 cells depend for the growth on either GM-CSF, ll..-3, ll...-6 and for the 

differentiation on erythropoietin (Kitamura et al., 1989a; Kitamura et al., 

1989b; Kitamura et al., 1991). TF-1 cells were cultured in RPMI 1640 

medium supplemented with 10% FCS and 500 U/ml of human recombinant 

GM-CSF. 
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The HA9 cellline (a kind gift of D. Naor) is a clone from a mouse T-cell 

Iymphoma LB cellline which is constitutively binding hyaluronic acid. HA9 

cells were maintained in RPMI 1640 medium containing 10% FCS, 10 mM 
Hepes (pH=7 ,4), 1% non-essential amino acids, 1 mM sodium pyruvate, 

lmg/ml insulin, 0,05 mM ß-Mercaptoethanol. 

2.1.3 Plasmids and constructs. 

PGL2 vector (Promega); p3xKB-§Glo-TATA-luc ( 3xNF-1CB) and §Glo­

TATA-luc (vector control) were kindly provided by Dr.Weih; Raf-C4 

dominant-negative and Raf-wt constructs (Bruder et al., 1992); p50pcDNAl 

(Invitrogen); p65/RelApcDNA1 (Invitrogen) 

IL-6 promoter deletion and point-mutated constructs, containing the luciferase 

reporter gene, were the kind gift from Dr.Vellenga: 

Name Description 

1 )piL6luc( -602) - 602 bp upstream of IL-6 transcription start 

2)p1L6luc(-298) - 298 bp upstream ofiL-6 transcription start 

3)p1L6luc( -235) - 235 bp upstream ofiL-6 transcription start 

4 )piL6luc( -169) - 169 bp upstream of IL-6 transcription start 

5)p1L6luc(-122) - 122 bp upstream ofiL-6 transcription start 

6)p1L6luc( -60) - 60 bp upstream of IL-6 transcription start 

7)piL6lucNF-1CBm - 602 bp upstream ofiL-6 transcription start, 

- NF-KB mutated site. 

8)piL6lucNF-IL-6m - 602 bp upstream ofiL-6 transcription start, 

- NF-IL-6 mutated site. 

2.1.4 Radiochemicals. 

CHJ Thymidin 

[p32] dCTP 
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2.1.5 Primers 

All primers were produced and HPLC purified by MWG biotech (Ebersberg) 

or Birsner&Grob Biotech GmbH. 

2.1.5.1 Primers used for CD44 exon-specific RT -PCR analysis 

C13 5'-AAG ACA TCG ATG CCT CAA AC-3' 

C2A 5'-GGC ACT ACA CCC CAA TCT TC-3' 

constant region, oligo3' 

constant region, oligo5' 

pV2 5'-GAT GAC TAC CCC TGA AAC AC-3' variant region, oligo5' 

pV3 5'-ACG GAG TCA AAT ACC AAC CC-3' variant region, oligo5' 

p V 4 5'-TGC AAC TAC TCC ATG GGT TT -3 variant region, oligo5' 

pV5 5'-TAT AGA CAG AAA CAG CAC CA-3' variant region, oligo5' 

pV6 5'-TGG GCA GAT CCT AAT AGC AC-3' variant region ,oligo5' 

pV7 5'-CTG CCT CAG CCC ACA ACA AC-3' variant region, oligo5' 

pVS 5'-CCA GTC ATA GTA CAA CCC TT-3' variant region, oligo5' 

pV9 5'-CAG AAC TTC TCT ACA TTA CC-3' variant region, oligo5' 

p V10 5'-GGT CGA AGA AGA GGT GGA AG-3' variant region, oligo5' 

GAPDH5' 5'-GTT CGA CAG TCA GCC GCA TCT-3' control GAPDH 

GAPDH3'-5-TTC TCC ATG GTG GTG AAG ACG-3' control GAPDH 

2.1.5.2 Primers used for cloning the IL-6 promoter construct 

piL61uk(1,3) 

IL65p 5 '-GAG CTC GAG GGA TCC TGA GAG TGT GT -3' 

IL63p 5'-CTC AGA TCT AGC GGT TTC TGG AAT TGA-3' 
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2.1.6 . Antibodies 

2.1.6.1 Primary Antibodies 

Name Descri~tion Supplier~eference 

KM81 anti-mouse CD44 rat ATCCTffi241 

mAbs HA-binding domain 

KM81 (Fab')2 Eurogentee Bel S .A. 

IM7 anti-mouse/human pan PharMingen 

CD44 rat mAbs lgG2b 

ERK-112 rabbit poly Abs Santa Cruz, USA 

p38 rabbit poly Abs Santa Cruz, USA 

SAPK/JNK rabbit _poly Abs New England Biolabs 

Phospho ERK -112 rahbitpoly Abs New England Biolabs 

Phospho p38 rabbit poly Abs New En_gland Biolabs 

Phospho SAPK/JNK rabbit poly Abs New England Biolabs -

Name Descri_ption Supplier~eference 

VFF4 anti-human CD44v6 munne Bender+Co Ges GmbH 

mAbslgG2b 

VFF8 anti-human CD44v5 munne Bender+Co Ges GmbH 

mAbs lgGl 

VFF14 anti-human CD44v10 munne Bender+Co Ges GmbH 

mAbslgGl 

VFF16 anti-human CD44v10 munne Bender+Co Ges GmbH 

mAbs lgGl 

VFF17 anti-human CD44v7-8 munne Bender+Co Ges GmbH 

mAbs IgG2b 

VFF18 anti-human CD44v6 munne Bender+Co Ges GmbH 

mAbs lgGl 

CD44-FITC anti- mouse CD44 PharMingen 

CD44- PE anti- mouse CD44 PharMingen 
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2.1.6.2 Secondary Antibodies. 

Name Description SuppliernReference 

RabbitHRP goatlgG Dako, Harnburg 

MouseFITC .g_oat Ig_G Phanningen 

Mouse PE rabbit lgG Dako, Harnburg 

RatFITC goat lgG Phanningen 

Rat PE goat lg(H+L) Phanningen 

2.2 Methods 

A number of protocols and prescriptions for commonly used buffers were 

taken from the Labaratory Manual of Maniatis et al. (Maniatis et al., 1989) 

and from the Current Protocols in Molecular Biology (Ausubel et al., 1989). 

2.2.1 Restrietion endonuclease digestion of DNA 

DNA was digested at a final concentration of 1-5 Jlg/Jll. Digestion was 

performed with 3-5 units of enzyme per 1 J..Lg DNA in the buffer 

recommended by suppliers.The reaction was maintained at 37°C for 2 hours 

till 0/N and terminated by phenol/chloroform extraction and ethanol 

precipiation.The digestion products were analysed by agarase gel 

electrophoresis. 

2.2.2 Phenol/chlorophorm extraction 

To remove contaminating proteins from nucleic acids, a mixture of Tris 

buffered phenol, chloroform and isopropanol (2-propanol) at a ratio 25:24:1 

was added and vortexed in. The phases were separated by centrifugation at 

14000 rpm for 5 min. The upper phase, containing the nucleic acids was 

transferred into a new tube and used for a next round of extraction with 

chloroform/isopropanol (24: 1 ). 
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2.2.3 Isolation of DNA fragments from agarose gel 

a) Direct method of DNA isolation from agarose gel 

The necessary DNA band was cut out from the gel with a scalpel under long 

wave UV light. The gel strip, containing the DNA, was placed into a pierced 

0,5 ml reaction tube containing glass wool, which in turn was placed inside a 

1,5 ml Eppendorf tube and centrifuged at 12000 rpm for 30 min. The DNA 

was collected in the reaction tube, leaving the agarose caught in the glass 

wool. The DNA was then extracted with phenol chloroform and precipitated 

with ethanol. 

b) EasyPure Kit (Biozyme) DNA isolation 

The necessary DNA band was cut out and the gel piece was added to 3 

volumes (w/v) of Salt Bufferand incubated for 15 min at 65jC. After adding 

binding resin the mixture was incubated for 5 min at R T. The resin with 

bound DNA was washed twice with ethanol and air dried. The DNA was 

diluted with bidist. H20 or TE buffer (10 mM Tris-HCI, pH=8,0; 1 mM 

EDTA). 

2.2.4 Precipitation of nucleic acid 

The precipitation of DNA and RNA was done by adjusting the final salt 

concentration of the reaction mixture to 300 mM using 3M Na-acetate. The 

precipitate was pelleted by centrifugation at 14000 rpm at 12°C for 30 min, 

washed twice with 75% ethanol and allowed to airdry for 15 minutes. 

2.2.5 Determination of nucleic acid concentration 

The concentration of nucleic acids was determined by measuring their OD 

(optical density) at 260 and 280 nm. One OD26onm is equvalent to 50 ).lg/ml of 

double strained DNA and 40 J.tg/ml of RNA. The OD2aonm is an indicator of 

the purity of the nucleic acid and should have approximatly 50% of the value 

of0D260nm. 
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2.2.6 Size separation of nucleic acid by agarose gel electropboresis 

The required amount of agarose was dissolved in T AE buffer (20 mM Tris­

HCl, 10 mM acetic acid, 1 mM EDTA, pH=8,3 ) and boiled. The ethidium 
bromide was added until the final concentration was 0,3 J.Lg/ml. The gel was 

poured into a horizontal (13,5x8 cm) chamber containing the appropriate 

number and size of the teeth to make loading slots. When set, the gel was 

covered with T AE buffer and DNA samples were loaded into the wells using 

load}ng buffer (10 mM EDTA, 10% v/v glycerol, 0,1% w/v SDS, 0,02% 

bromphenol blue). The migration of DNA was visualised by UV ligh 

transilluminator. 

2.2.7 Preparation of competent cells 

A single colony of E.coli DH5a. was transferred into 3 ml of LB medium (1 0 

g/1 tryptone, 5 g/1 yeast extract, 5 g/1 NaCl) and incubated 0/N at 37°C with 

shaking (220 rpm). 4ml of the 0/N culture were taken to innoculate 400 ml of 

LB medium, grown to an OD59onm of 0,375 and incubated on ice for 15 min. 

The bacteria were pelleted by centrifugation at 3600 g for 10 min at 4 °C, 

pellet was resuspended in 20 ml of ice-cold 0,1 M CaC12 and incubated on ice 

for 15 min. The process was repeated and the pellet was finally resuspended 

in 2 ml of ice-cold CaC12 with 10% glycerol. 

The bacteria were kept in 80J.d aliquots at -80iC. 

2.2.8 DNA ligation 

Ligation reaction was usually performed in a volume of 20 Jll. Usually, 100-

200 ng of DNA fragment were mixed with 300-500 ng of vector DNA and 
with 2 J.Ll of 10x Ligase buffer. 1 J.Ll of T4 ligase was added and the reaction 

was performed 0/N at 16 i C. 

2.2.9 Transformation of competent bacteria 

The transformation was done by electroporation using the Gene Pulser from 
Biorad. Usually, 1 fll of a ligation mixture was added to 40 Jll of 

electrocompetent cells and incubated on ice for 1 min. Cells were transferred 
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into pre-cooled electroporation cuvette (0,1 cm, BioRad) and pulsed at 1,8 

kV. Immediately after pulsing, the cells were supplemented with 1 ml SOC 

medium (20 g/1 Bacto trypton, 5 g/1 Y east extract, 0,5 g/1 NaCI, 2,5 mM KCI, 

10mM MgC12, 10 mM MgS04, 2mM Glucose) incubated at 37°C for 45 min 

and plated ( 100 J.Ll of the cell mixture) on LB- agar plates ( 1% Bacto trypton, 

0,5% Yeasr extract, 1% NaCl, 1% Agar) with the appropriate antibiotic. 

2.2.10 Small scale plasmid preparation (Miniprep) 

3 ml of LB mediom containing the appropriate antibiotic were inoculated with 

a single bacterial colony and incubated 0/N at 37°C. 0/N culture was 

centrifuged for 5 min at 14000 rpm; the pellet was resuspended in 150 f.Ll of 

GTE solution (50 mM glucose, 25 mM Tris-HCI, pH=8,0) and incubated on 

ice for 5 min. After this, 200 J.Ll of the Iysis buffer (0,2 M NaOH and 1% w/v 

SDS) were added, briefly vortexed and incubated again on ice for 5 min; 150 

f.ll of 3M Na-acetate, pH=5,2 were added, the contents mixed by inversion of 

the tube and incubated on ice for 5 min. After 15 min of centrifugation at 

14000 rpm, the supematant was transferred into a tube containing an equal 

volume of phenol/chlorofonn, vortexed and centrifuged for 5 min at 14000 

rpm. The aqueous phase containing the DNA was removed to a fresh tube and 

precipitated with lml of pre-cooled ethanol and 55 J.!l of 3M NaAc. The 

DNA pellet was air dried and resuspended in 20 J.Ll of TE buffer (10 mM 
Tris-HCI, pH=8,0; 1 mM EDTA). 

2.2.11 Large scale plasmid preparation (Maxiprep) 

The large scale plasmid preparation was perfomed using the Qiagen Kit. A 

single bacterial colony was picked and transferred into 5 mi of LB medium 

with the appropriate antibiotic, and incubated for several hours at 37°C. 1 ml 

of this medium was inoculated into 500 ml of LB medium with antibiotic and 

incubated 0/N at 37°C. The bacteria were pelleted by centrifugation at 6000 

rpm at 4°C for 15 min and resuspended in 10 ml of PI buffer (50 mM Tris­

HCI; 10 mM EDTA; 100 J.Lg/ml RNase A). Bacteria were lysed by addition of 

P2 buffer (200 mM NaOH, 1 % w/v SDS), carefully mixed and incubated for 

5 min at RT. 10 ml of P3 buffer (2,55 M KAc, pH=4,8) were gently mixed in 
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and after 20 min of incubation on ice the precipitated material was centrifuged 

down at 12000 rpm, at 4 oc for 30 min. The supematant was transferred to a 

Qiagen-tip 500 column, pre-equilibrated with QBT solution (750 mM NaCl, 

50 mM MOPS, 15% v/v), and allowed to drip through. 

The bound DNA was washed twice with 30 ml of QC solution (1M NaCl, 50 

mM MOPS, 15% v/v ethanol, pH=7 ,0) and eluted with 5 ml of QF buffer 

(1,25 M NaCl, 50 mM MOPS, 15% v/v ethanol, pH=8,2) and precipitated 

with 12 ml of isopropanol. After a washing step with 70% ethanol the DNA 
pellet was resuspended in 200 J..Ll TE. The amount of obtained DNA was 

detennined by measuring its OD (optical density) at 260 nm. 

2.2.12 Radioactive labelfing of DNA probes 

Radioactive labeHing of DNA probes was done with the ReadyPrime kit 

(Amersham Life Science) using [p32]-dCTP (Amersham Buchler GmbH, 

Braunschweig, 370 Mbq/ml, 10 mCilml) according to the manufacturers 

protocol. Unincorporated nucleotides were removed from Iabelied DNA using 

Chromospin+STE-100 columns (Clontex Laboratories, Inc.). 

2.2.13 Polymerase Chain Reaction (PCR) 

Usually the PCR was performed in a total volume of 10-100 J..Ll; the PCR 

mixture consisted of 1 pmol of 3' and 5' primer(s), 250 J.!M of dNTP mix (10 

mM of each: dATP, dCTP, dGTP, dTIP), lx appropriate suppliers buffer 

with a defined concentration of MgC12, 1-4 U of Taq polymerase (prepared by 

J.Moll) and variable amounts of DNA. The reaction was carried out in the 

commercially available PCR machine (Peltier Thermal Cycler, MJ Research). 

Specific cycling parameters were used depending on the application. 

For cloning the 1,3 kb part of the IL-6 promoter following parameters were 

used: 

94°C lmin 1 c~cle 

94°C lmin 

56°C Imin 30 cycles 

72°C Imin 

The PCR products were analysed using gel electrophoresis. 
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2.2.14 CD-44 exon specific RT -PCR analysis. 

Poly A +RNA was prepared from the MS-5 cells and used for single strain 

cDNA synthesis. 

1-2 J.tg ofpoly A+RNA were mixed with 500 ng of oligo(dT)12_18 primer in a 

total volume of 12 J.tl, heated to 70°C for 10 min and rapidly chilled on ice. 

The mixturewas supplemented with 4 J.tl of 5x firststrand reaction buffer, 2 

J.tl of 0,1 M DTT and 1 J.tl d.NTP mix (10 mM of each: dATP, dCTP, dGTP, 

dTTP). 1 Jll of SuperScript reverse transcriptase (Gibco BRL) was added just 

before incubation and the reaction was performed at 42° for 1 hour. The 

reaction was terminated by heating the mixture to 94°C for 3 min and placing 

the tube on ice. This frrst strand reaction was stored at -20°C and used later 

for RT -PCR reaction. 

RT -PCR reactions were performed as described for normal PCR with the 

exeption that first strand cDNA was used as template DNA. 

The following PCR parameters were used for CD44 exon-specific RT -PCR: 

94 oc 10 min 1 cycles 

30sec 

1 min 35 cycles 

The PCR was performed in total volume 100 J.L].. 

The mixture consisted of: 

2,5 Jll cDNA, 

2 J.ll 

2 J.ll 

10 Jll 

2,5 Jll 

8 J.ll 

0,5 J.ll 

72,5 Jll 

oligo 3' 

oligo 5' 

lOxbuffer 

dNTPs 

25mMMgC12 

Taq polymerase 

bidest. H20 
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C2A primer located in the 3' constant region of CD44 was used as oligo 5'. 

C13 primer located in the 5'constant region of CD44 and individual variant 

exon-specific primers (pV1-pV10) was used as oligo3'. GAPDH5' and 

GAPDH3' primers were used for the positive control. The PCR products were 

analysed by agarose gel electrophoresis. 

2.2.15 DNA isolation 

For the isolation of total genomic DNA, 750 J..Ll of proteinase K buffer (50 

mM Tris-HCl, pH=8,0; 100 mM EDTA; 100 mM NaCl; 1% SDS w/v; 0,5 

mg/ml proteinase K) were added to the cell pellet ( or to the 2cm piece of 

mouse tail) and incubated 0/N at 55°C. The resulting suspension was 
supplemented with 250 J..Ll of 6M NaCl and mixed for 5 min with an 

Eppendorf mixer. Contaminating material was pelleted by 5 min 
centrifugation at 14000 rpm and 750 Jll of the supematant (without top phase 

and pellet) were transferred into the new tube. The DNA was precipitated 

with an equal volume of isopropanol, washed with 75% ethanol and incubated 
with 300 J..Ll of TE buffer for 2 hours at 37°C. The amount and quality of the 

obtained DNA were analysed on an agarose gel and by measuring its OD at 

260 nm. 

2.2.16 Isolation of total RNA 

TRI REAGENT (Sigma) was used for the isolation of total RNA and 

simultanious isolation of DNA and proteins. Cells were directly lysed with 1 

ml of TRI-REAGENT on 9,4 cm culture dishes. The aqueous phase was 

transferred to a fresh tube and 0,2 ml of chlorophorm and 0,5 ml of 

isopropanol was added. Sampies were incubated for 5 -10 min at RT and 

centrifuged at 14000 rpm for 10 min at 4°C. The pellet was washed with 1ml 

of 75% ethanol, air dried and dissolved in bidist. H20. The amount of obtained 

RNA was determined by measuring its OD at 260 nm. 

2.2.17 Isolation of Poly A + RNA 

Cells were washed twice with PBS and harvested from 15 cm dishes using 10 

ml of STE-SDS buffer (100 mM NaCl, 20 mM Tris, pH=7,4; 10 mM EDTA; 
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0,5% w/v SDS) containing 300 mg/ml proteinase K. The cell mixture was 

homogenised with a ultraturax and incubated at 55°C for 30 min. After the 

incubation, the solutionwas supplemented with 1ml of 5 M NaCI and 100 f.!g 

Oligo-dT -cellulose. The suspension was rotated 0/N at RT to permit binding 

of poly A + RNA. Oligo-dT -cellulose was centrifuged for 3 min at 2000 rpm at 

12°C and washed 3 times with 10 ml HSB buffer (300 mM NaCI; 10 mM 

Tris, pH=7,4; 5 mM EDTA; 0,1% w/v SDS) and once with distilled H20. 

In order to elute DNA, Oligo-dT -cellulose was washed 3 times with H20; 

After each centrifugation the supematant was collected in fresh pre-cooled 

tube. Once completed, RNA was precipitated by addition 2,5 volumes of 

ethanol, 200 f.!l NaAc and 6f.!l tRNA as a carrier and incubated at -20°C 0/N. 

RNA was pelleted by 30 min centrifugation at 10500 rpm in a Beckman 

Swing out rotor at 4 °C, washed once with 75% ethanol and resuspended in 

bidest. H20. The amount of the RNA obtained was determined by measuring 

its OD at 260 nm. 

2.2.18 Northern blot hybridisaöon 

Usually 5 ).11 of RNA solution {lJ.Lg/f.!l) were mixed with 15 f.!l of 

formaldehyde denaturing buffer (50 f.!l IOxMOPS, 87,5 f.!l 37% viv 
formaldehyde, 250 Jll formamide, 3 f.!g/ml ethidium bromide) and denaturated 

at 65°C for 15 min. Sampies were suplemented with 2 f.!l of 10x loading 

buffer (10 f.1l 0,5 M EDTA, 5m150% glycerol, 0,1 % w/v bromphenol blue) 

The 100 ml of RNA-gel- mix consisted of 1g agarose, 10ml10xMops(41,85g 

MOPS, 6,8g NaOAc x 3 H20, 20 ml 0,5 M N~EDTA in 1 L H20, pH=7,0), 

3,5 ml formaldehyde, 85 ml bidest. H20). The gel was poured into a chamber 

with the comb containing the appropriate nurober and size of the teeth to 

make loading slots. When set, the gel was covered with 1xMOPS running 

buffer and the RNA samples were loaded into the wells. The migration of 

RNA was visualised by a UV light transilluminator and photographed. The 

gelwas blotted 0/N on a Hybond N+ membrane with 20 x SSC. The RNA 

was covalently crosslinked to the active OH groups in the membrane by a UV 

stratalinker 2400. 

Hybridisation was performed in Church buffer (0,25 M NaP04, 7% w/v SDS, 

1 mM EDTA pH=8,0) 0/N at 65°C. 
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Filter was washed 2 times with Church buffer and once with 1% SDS/1x SSC 

at 65°C. The filterwas sealed in a plastig bag and exposed to an Amersham 

Hyperfilm or to Phosphorimager screen. 

2.2.19 Transient transfection 

The transient transfections were performed by electroporation using 

Electroporation dense pulse. 

One day before use the cells were replated a in 9,4 cm culture dishes and 

allowed to reach 70% confluence. After trypsinisation, cells were resuspended 
in 400 J.il of medium containing 10% FCS, mixed with 2-10 J.Lg DNA and 

transferred to the pre-cooled 0,4 ml cuvettes; they were pulsed at 270V, 

250J.LF, immediately supplemented with 400 J.Ll of FCS and plated in 10 cm 

culture dishes. The transformation efficiency was monitared by co­

transfection with GFP (green fluorescence protein) and checked 24-48 hours 

after electroporation by F ACS or fluorescent microscopy. 

2.2.20 Measurement of luciferase activity 

The cells used for assay were growing in 9,4 cm dishes. After removing the 

medium, the cells were washed twice with PBS without Ca2+ and Mg2+ and 

incubated with 400 J.Ll of Iysis buffer (0,1 M Tris acetate, pH=7,5, 2 mM 

EDTA, 1% Triton X-100 v/v) on ice for 20 min (with occasional rocking). 

The cell lysates were collected with the rubber policemen into precooled 

tubes, and cleared by 5 min centrifugation at 12000 rpm. To determine the 

luciferase activity, 100 J.LI of the lysate were transferred to a reading tube. The 

measurement was done by a Luminator (Berthold, Wildbad) with 
autoinjection of 350 J.Ll of assay buffer (1 mM DTT, 1 mM ATP in 

glycylglycine buffer (25 mM GlyGly, 15 mM MgS04 and 4 mM EGTA) and 

100 J.Ll of Iuciferin assay solution (lmM Iuciferin stock solution (0,28 mg/ml) 

in glycylglycine buffer [1:5]). 

2.2.21 Transweil assay 

Adherent cells were cultured in 6-well culture plates until 70% confluence. To 

avoid the direct contact between the two cell lines, the suspended cells were 
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added to the same plates in the presence of transweil filters ( 40 Jlm). In this 

case, cells were still cultured in the same medium volume but separated from 

direct interaction. The supematants were investigated for the amount of 

cytokines using an ELISA kits. 

2.2.22 LTBMC 

Myeloid LTBMCs (Long termhone marrow culture) were established as 

described (Whitlock et al., 1982). In brief, femurs and tibias were removed 

from mice, which were killed by cervical dislocation. Bone marrow cells were 

flushed out of the bones, using Dulbecco medium containing 2% FCS. The 

isolated hone marrow cells were washed twice, counted and cultured in 

DMEM, supplemented with 20 % horse serum (Linaris) and Hydrocortisone 

(1 o-6 M; Sigma) in 6 or 24 weil plates at 33°C in a humid atmosphere 

containing 5% co2. 

2.2.23 ELISA 

Cells were stimulated with HA (100 J..Lg/ml) or other reagents. The supematant 

samples were collected and kept frozen at -80°C. The frozen samples were 

checked by ELISA (Enzyme-linked immunosorbent assay)-kits (Biozol) for 

the presence of different cytokines according to the manufacturer instructions. 

2.2.24 Immunohistochemistry (staining of actin cytoskeleton) 

Cells were washed twice with.PHEM buffer (60 mM Pipes, 25 mM Hepes, 10 

mM EGTA, 2 mM MgC12, pH 6,9), fixed with 2,5% glutaraldehyde (Serva) in 

stabilising buffer (20 mM Hepes, 5 mM EGTA, 2 mM PMSF, 1 mM MgS04, 

1gll Na-Tosyl- L-argininmethylester, 20% v/v Glycerin, pH=6,8) at 37°C for 
15 min. Thereafter cells were treated with 50-100 Jll staining solution (3,3 

mM phalloidine -rhodamine in methanol1:10 in PHEM-buffer) at 37°C for 2 

hours. The staining was visualised by fluorescence microscopy. 

42 



-------------------'Materials and Methods 

2.2.25 Flow cytometry 

To investigate the expression of molecules on the cell surface, cells were 
harvested, pelleted and dissolved in FACS buffer (PBS, 3% FCS ). After 15 
min of preincubation, 5x105 cells perprobe were incubated with 10 J.Lg/ml of 

primary antiboilies in FACS buffer (30 min, on ice). After two washing steps 

with PBS, probes were incubated with appropriate FITC-, or PE- labeled 

antibodies and washed twise again. To detect HA-binding, cells were 

incubated with FITC-labeled HA instead of primary and secondary 

antibodies. 

The fluorescence was analysed by F ACS-Star plus flow cytometer (Becton 

Dickinson). 

2.2.26 fH] Thymidin incorporation 

The cells were plated in 96-well plates (105/per weil), allowed to grow 0/N 

and treated with the reagents of interest. [3H] Thymidin was added until a 
final concentration of 1 J.LCilml. After 6 hours the cells were harvested by a 

TOMTBC Harvester (Wallac ADL GmbH) and amount of incorporated 

radioactivity was analysed by 1450 Microbeta liquid scintillation and 

luminiscence counter (Wallac ADL GmbH). 

For proliferation-analysis of TF-1 cells on a MS-5 feeder layer, the MS-5 

cells were allowed to grow until confluence in 6-well plates and were 
irradiated with 900 rad by y-ray. TF-1 cells (105

) were added directly on MS-5 

stroma. After 12-24 hours of co-culture, the cells were pulsed with [3H] 

Thymidin for 6 hours, harvested and analysed as discribed before. 

2.2.27 lmmunoblot analysis of proteins (Western blot) 

a) Celllysates 

Cells were grown to confluence, treated with appropriate reagents and 

harvested by scraping with a ruhher policeman in the presence of sample 

buffer (125 mM Tris pH=6,8, 2% w/v SDS, 0,02% bromphenol blue), 

containing 10% glycerol for nonreducing, and 100 mM Dithiothreitol (DTT) 

for reducing conditions. Sampies were boiled for five minutes, sonicated for 

30 seconds and kept frozen at -80°C. 
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b)SDS-PAGE 

Proteins were separated electrophoretically on the basis of molecular weight 

using the method of Laemmli. 

The running gel mixture was poured between glass plates separated with 

special spacers until two thirds full, overlaid with ethanol and allowed to 

polymerase. The stacking gel mixture was poured on top of the running gel. 

The sample wells were formed by appropriate combs placed in the stacking 

gel. The gel was fixed into a vertical running chamber filled with 

electrophoresis buffer (25 mM Tris, 192 mM glycine, 0,1% w/v SDS). 

Running gel mix (25 ml): 

30% acrylamid-bisacrylamide 8,325 ml 

1,5 M Tris pH=8,8 6,25 ml 

20% SDS 0,125 ml 

H20 10,05 ml 

+250 J . .tl Ammoniumpersulfate (10% w/v) 

+ 15 J.1l TEMED 

stacking gel mix (20 ml) 

30% acrylamid-bisacrylamide 

0,5 M Tris pH=6,8 

20% SDS 

3,4ml 

.5,00 ml 

0,1 ml 

H20 11,3 ml 

+200 Jll Ammoniumpersulfate (10% w/v) 

+20 J.1l TEMED 

Sampies were run into the stacking gel at 70V and then at 30V overnight or 

140V during the day. 

c) Protein staining with Coomassie Brüliant Blue 

In order to visualise proteins in SDS-PAGE, the gelwas incubated for 1-2 h 

in staining solution (50% methanol, 7,5% acetic acid, 0,2% w/v Coomassie 

brilliant blue R250) and destained for several hours in a destaining solution 

(50% methanol; 7,5% acetic acid) which was changed until the gel 

background is clear. Once completed, the gelwas dried on What 3MM paper. 
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d) Western blotting 

Proteins resolved by SDS-Page were transferred to lmmunobilon-PVDF 

membrane (Milipore, Bedford, UK) using BioRad Transfer chambers 

containing blotting buffer (20 mM Tris, 192 mM glycine, 0,1% w/v SDS, 

20% v/v methanol). According to the size of the protein and the current 

applied transfer time varied from 4-6 hours to 0/N. 

e) Western blot prohing 

The membrane was briefly washed in PBS, preincubated for 1 hour in 

blocking buffer (PBS+5% w/v BSA, 0,1% v/v Tween) and incubated with the 

primary antibody for 1h to 0/N (according the manufacturer instructions for 

the antibody) at 4°C. After 3 washing steps with PBS + 0,1% v/v Tween, the 

· membranewas incubated another hour with the secondary antiborlies at RT 

and washed 3 times again with PBC. The proteins were visualised by ECL 

reaction (Amersham) and exposed to the ECL- Hyperfilm (Amersham). 

2.2.28 CPC precipitation 

a) Biotinylation of cell surface proteins 

Cells were washed three times with ice-cold PBS (without Ca2+, Mg2+) andre­

suspended in freshly prepared 1 mg/ml NHC-biotin/PBS solution (NHS-LC­

Biotin, Pierce) at a concentration 5x105 cells/ml. The cell mixture was 

incubated on ice for 1 hour with additional rocking. After incubation, cells 

were washed 3 times with PBS containing 200 mM of glycine. The 

biotinylated cells were used for CPC precipitation. 

b) Cell preparation. 

Previously biotinylated cells or confluent cells of a 15 cm dish, washed three 

times with PBS were used for the preparation of celllysate. They were lysed 

with 1 ml PBS/0,5% NP40, supplemented with PMSF (1 mM final 

concentration), incubated on ice for 30 min. and centifuged at 14000 rpm, 10 

min in order to pellet insoluble material; the supernatant was taken as the cell 

lysate. 100 J.Ll of celllysate were mixed with 350 J.ll of reducing sample buffer 

and 50 J.Ll1M DTT and stored as a positive control. 
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c) Precipitation 

Aliquots (100 J.Ll) of the cell lysates were used for CPC (Cetylpyridinium 

chloride (Sigma chemical co, USA)) precipitation. 

Glycosaminoglycans were dissolved in water to a final concentration of 

lmg/ml. 50 J.Ll of glycosaminoglycan solution were mixed with 100 J.Ll of cell 

lysate and incubated at roorn ternperature for 1 hour.Once cornpleted, 350 J.Ll 

of a 1.4% CPC solution were added to the rnixture and incubated foranother 

hour at RT. Precipitate was pelleted by 10 min centrifugation in a swingout 

rotor and washed 3 tirnes with 1ml of 1 %CPC/30rnM NaCl and disolved in 50 

Jll of reducing sarnple buffer. Sampies were shaked for 30-60 minutes to 

dissolve the pellet cornpletely, boiled and loaded on a SDS-PAGE gel. SOS­

gel was bloted as for a Western blot. In the case of biotinylated cells, the blot 

was probed with HRP coupled to streptavidin (Dianova) and analysed by ECL 

reaction. For CD44 detection the procedure was done at non-reducing 

conditions and the blot was probed with IM7 antibodies. 
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3 Results 

3.1 Part 1: HA mediated cytokine induction in MS-5 cells 

The starting point of this project was the observation that HA, a component 

of the hone marrow environment, can significantly enhance hematopoiesis 

and plays a regulatory role in this process (Khaldoyanidi et al., 1999). 

Exogeneously added HA increases the numher of myeloid and lymphoid 

non-adherent cells in L TBMC and also the total amount of clonogenic cells. 

It was shown that HA acts on hematopoiesis via stromal cells, which respond 

to HA hy upregulation of IL-6 and IL-1 ß cytokines. The enhancing HA 

effect on L TBMC was due to IL-6 cytokine release from hone marrow 

macrophage stromal cells. 

3.1.1 Stromal celllines can support hematopoietic progenitors 

The hematopoietic potential of L TBMC can he partially simulated by a 

system consisting of progenitor cells and hematopoietic stromal cell lines 

(Dorshkind, 1990). To test whether in such a system HA would also 

stimulate cytokine production similarly to the effect in L TBMC we used the 

hone marrow stromal cell line MS-5 and the CD34+ progenitor cell line 

TF-1. 

At first, we tested whether MS-5 cells can support the survival and the 

proliferation of TF-1 cells. Forthis purpose, MS-5 cells were grown up to 

confluence and were suhsequently irradiated hy y-ray (900 rad ). TF-1 cells 

were then seeded on the MS-5 layer and their proliferation was examined at 

different tim es hy the [3H) thymidin incorporation method. TF -1 cells were 

also grown in the presence of recombinant GM-CSF (positive control) in the 

medium and without cytokine addition (negative control). At each time point 

for the last 6 hours thymidin was added. Afterwards cells were harvested and 

incorporated radioactivity was counted. 

After 24 hours we could ohserve a significant difference in proliferation 

between co-culture ofTF-1 cells with MS-5 cells and TF-1 cultures without 

cytokine addition, which became even more pronounced after 36 hours 

(Fig.5). 
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Figure 5. MS-5 feeder layer supports the survival and the 
proliferation of TF-1 cells. MS-5 cells were grown up to confluence and 
irradiated with 900 rad by r-irradiation. TF-1 cel/s ( 105

) were co-cultured with 
the MS-5 feeder layer. The proliferation of TF-1 cells was examined with the (lH) 
thymidin incorporation assay. TF-1 cel/s alone and supplemented with rGM-CSF 
were used as negative and positive controls. SO was calculated from results 
obtained from triplicates. 

The TF-1 cells in the absence of cytokines or MS-5 cells did not proliferate. 

TF-1 cells in the presence of recombinant GM-CSF (rGM-CSF) showed 

proliferation as did TF -1 cells grown on MS-5 feeder layer. Thus, we 

conclude that the MS-5 cellline can support the growth of TF-1 cells. This 

result suggests that MS-5 cells produce a basic amount of one of the factors, 

which could support the growth of the TF -1 cell line. Indeed it was 

previously described that MS-5 cells produce GM-CSF and IL-6. Thus the 

MS-5 clone had the desired property to support hematopoietic progenitors, 

an absolute requirement for our further studies. 
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3.1.2 MS-5 cells can bind FITC-Iabelled HA on their surface 

To study the influence of HA on MS-5 cells we examined binding of HA to 

the MS-5 cell line. Cells were pre-treated with hyaluronidase (HA ase) and 

then incubated with FITC- labelled HA. Bound HA was measured by F ACS­

Star plus flow cytometer. The method demonstrated HA binding to MS-5 

cells (Fig.6) . 

... 
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D control MS-5 
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Figure 6. MSmS cells bind HA (FACS staining with FITC-HA). 1 OS cells 
were stained with F/TC Iabeiied HA. The f/uorescence was analysed on a FACS­
Star plus flow cytometer. 

3.1.3 HA specifically stimulates cytokine production by MS-5 cells 

We tested whether MS-5 cells respond to HA treatment by the induction of 

cytokines similarly to bone marrow derived macrophages (BMDM) in 

LTBMC. For this purpose MS-5 cells were grown up to 70 o/o confluency 

and treated with HA. The production of cytokines was measured using 

ELISA kits. HA treatment increased the production of IL-6, GM-CSF and 

IL-4 cytokines, whereas IL-3 and IL-1 ß production was not influenced 

(Fig.7). To further characterise our system we examined the time course and 

concentration dependence of cytokine production induced by HA (Fig.8). 

The first significant increase in cytokine production was seen 6 hours after 

the addition of HA. The maximal increase was reached after 24 hours. The 

specificity of HA action was demonstrated by the fact that a treatment with 

chondroitin sulfate (CS), another glycosaminoglycan, had no effect on MS-5 

cells (Fig.9). 
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Our results indicate that the MS-5 cell line responds to HA treatment by 

upregulation of cytokines relevant for hematopoiesis, particularly of IL-6. 

Although other cytokines are released by MS-5 cells than the ones from 

BMDM, we believe that this difference reflects the reaction of particular 

stromal cell compartments. Therefore, the MS-5 cell line could be an 

excellent model to assess the mechanism of cytokine activation upon HA 
treatment. 
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Figure 7. HA stimulates the production of /L-6, GM-CSF and /L-4 
cytokines in MS-5 cells. Cells were allowed to grow up to 70% confluence 
and were stimulated for 24 hours with 100 J.Lg/ml of HA. The concentration of IL-
6 (A}, /L-4 (8), GM-CSF (C), IL-1ß (D) and /L-3 (E) in the supernatants was 
determined by ELISA kits. SO was calculated from triplicates. 
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Figure 8. HA stimulates the production of cytokines in MS-5 cel/s in a 
time and dose dependent manner. 
A) Time dependent effect of HA on cytokine production. 
8) Stimulation ot MS-5 cultures with different HA di/utions. 
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3.1.4 MS-5 cells can be stimulated by immobilised HA 

HA can induce cytokine release either by binding to and activating its 

receptor on the cell surface or by being uptaken into the cells by a process 

called endocytosis. To distinguish between these two possibilities, we 

performed an experiment using for MS-5 activation HA fixed to the culture 

plates and compared the effect with that of soluble HA. Cytokine production 

in the culture supematants was measured by ELISA (Fig.l 0). Immobilised 

HA induced cytokine production similarly to soluble HA. BSA- covered and 

PBS-treated plates had no influence. The observation that immobilised HA is 

still able to induce cytokines in MS-5 cells, suggests the involvement of a 

receptor-ligand interaction and signaHing from the cell surface. 
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Figure 10. lmmobilised HA can stimulate IL-6 production in MS-5 
cells. The plates were incubated 0/N at 4°C with PBS, 1mg/ml BSA or 1mglml 
HA so/ution and washed 3 times with PBS. MS-5 cells were cultured on the HA­
BSA- or PBS -covered plates for 24 hours. Cytokine concentration in the 
supernatants was measured by an ELISA kit. SD was calcu/ated from results 
obtained from triplicates 

3.1.5 Is CD44 the receptor mediating cytokine induction? 

Since CD44 is the most widely expressed HA receptor, we tested whether it 

accounts for the HA effect on MS-5 cells. We first looked at the expression 

of CD44 isoforms on MS-5 cells. As shown in Fig.ll, a F ACS analysis and a 

CD44 exon specific RT-PCR analysis revealed that MS-5 cells carry the 

CD44 standardisoform and the CD44v9 isoform. 
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Figure 11. MS-5 cells express CD44 mo/ecules on their surface. 

A) FACS staining with anti-CD44 IM? antibodies. 

1 0 5 cel/s were stained with anti-CD44 antibodies. The f/uorescence was 
analysed on a FACS-Star plus flow cytometer. 

B) CD44 exon-specific RT-PCR analysis. 

CD44 exon-specific RT-PCR analysis was performed as described in Materials 
and Methods. The PCR products were analysed by an agarase gel 
e/ectrophoresis. 

54 



----------------------------------------------~Resuhs 

To answer the question whether MS-5 cells bind HA through CD44, we 

performed a F ACS analysis with FITC labelled HA. The CD44 specificity of 

the bindingwas tested with antiborlies that react with the HA-binding domain 

of CD44 (KM81) and thereby prevent HA binding. Pre-treatment of MS-5 

cells with KM81 mAbs antiborlies for 1 hour before addition of HA strongly 

decreased this HA-binding. Thus, we concluded that MS-5 cells bind HA 

mainly via CD44 (Fig.12). 
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Figure 12. Ktyl81 antibodies abrogate HA binding by MS-5 cells. 10 5 

cel/s were stained with FITC-HA with or without pre-treatment with KMB1 
antibodies. The f/uorescence was ana/ysed on a FACS-Star plus flow cytometer 

To determine whether the binding of HA to CD44 is required for the 

induction of cytokines we investigated the effect of the anti-CD44 antiborlies 

KM81 on HA-stimulated cytokine production. The MS-5 cells were pre­

incubated with the antiborlies for 30 min before HA treatment. The pre­

incubation with antiborlies was done at 3 7 j C or on ice ( to avoid the possible 

uptake of the antiborlies by cells ). 24 hours after Stimulation with HA the 

culture supematants were checked for the presence of cytokines. 
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Figure 13. KMB1 mAbs 
do not inf/uence HA-
mediated cytokine 
production. MS-5 cells 
were grown up to 70% 
confluence, pre-treated for 
1 hour with 20 Jlg/ml o f 
KM81 and induced with 100 
Jlglml of HA. After 2 4 
hours the cytokine 
concentration in the 
supernatants was 
measured by an ELISA kit. 
SD was calculated from 
results obtained from 
trip!icates. 

A) /L-6 B) GM-CSF. 

W e showed that under both conditions (3 7 j C or 4 j C), neither IL-6 induction 

(Fig.13) nor GM-CSF induction was repressed by the anti-CD44 antibodies. 

This observation suggests that, despite the involvement of CD44 in the HA 

binding, the HA- induced cytokine secretion in MS-5 cells seems to occur 

through a CD44 independent mechanism. 

3.1.6 Possible involvement of another HA receptor in the induction of 

cytokines response 

We investigated whether other proteins on the surface of MS-5 cells could 

bind HA. Forthis purpose we took advantage of the CPC (Cetylpyridinium 

chloride) precipitation method, which allows to pull down proteins that bind 

glycosaminoglycans (Sleeman et al., 1993). Surface proteins on MS-5 cells 
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were biotinylated and protein lysates were used for the CPC precipitation 

with HA and with CS (as a control). Proteins bound to glycosaminoglycans 

were resolved on a SDS-PAGE gel under reducing conditions, blotted onto a 

membrane and visualised by means ofHRP-conjugated antibodies (Fig.14). 
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Figure 14. CPC precipitation of biotinylated surface profeins from 
the MS-5 ce/1 line. The ce/1 surface profeins were biotinylafed as described in 
Materials and Methods. Protein lysates were incubated with 1 mg/ml of HA, CS o r 
with H20. Bound profeins have been precipitated with CPC solution. Total ce/1 
lysate was used as a positive control. 

9 proteins from MS-5 cells seem to specifically bind HA as compared to CS 
and H20 controls (Fig.14). They are putative receptors for HA and could 

mediate HA signaHing leading to cytokine induction. To demoostrate the 

specificity of the CPC precipitation method, we examined whether CD44 is 

pulled down by HA among the other proteins. In this case the whole 

procedure was performed in non-reducing conditions and CD44 was 

visualised with the IM7 mAb. We observed that two CD44 isoforms can be 

CPC-precipitated from the MS-5 cells protein lysate among other HA­

binding proteins (Fig.15). 
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Figure 15. CD44 is CPC precipitated from the MS-5 ce/1 line. Protein 
/ysates were incubated with 1 mglml of HA, es or with H20. Bound profeins have 
been precipitated with CPC Solution. Total ce/1 /ysate was used as a positive 
control. The blot was probed with pan CD44 (/Ml) antibodies. 

From those observations we conclude that not only CD44, but also other 

proteins on the MS-5 cell surface can bind HA and their binding might be 

decisive for the induction of cytokine production. 

3.1.7 HA stimulation of MS-5 cells Ieads to rearrangment of 

cytoskeleton. 

Extracellular signals affecting cells often result in cytoskeleton. 

rearrangements. In order to investigate whether the cytoskeleton structure of 

MS-5 cells is changed upon HA treatment we stained the cells with 

phalloidine-rhodamine antibodies before and after Stimulation with HA. 

lndeed the treatment of MS-5 cells with HA was accompanied by a 

rearrangement of the cytoskeleton resulting in the appearance of 

lammellopodias and membrane ruffles. The effect was observed already 15 

min after HA-stimulation and Iasted up to 16 hours (Fig.16). 
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Figure 16. HA-mediated cytoskeleton rearrangement in MS-5 cells. 
MSS cells were incubated with 100 Jlg/ml of HA for different times (15 min, 4 
hours, 16 hours). Actin staining was performed with phalloidine-rhodamine and 
was evaluated by fluorescence microscopy. 
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3.1.8 Involvement of ERK and p38 in HA- signalling. 

Extracellular signals received by receptors are further transmitted to the 

nucleus via intracellular signalling cascades finally leading to changes in gene 

expression. These cascades include activation of mitogen activated protein 

kinases (MAPKs) (Su and Karin, 1996) (Fig.17). MAPKs constitute a group 

of serine/treonin specific, proline directed protein kinases. So far several 

distinct MAPKs in vertebrates have been identified including ERK.l/2, 

SAPK/JNK and p38. 

We investigated the possible involvement of members of the protein kinase 

family in mediating cytokine expression in MS-5 cells upon HA treatment. 

The activation of kinases was monitored by their phosphorylation status. MS-

5 cells were incubated in serum-free medium for 24 hours and induced with 

HA for different times. HA treated and non-treated cells were lysed and 

samples were investigated for MAPK activity using antibodies specific for 

the phosphorylated forms of ERK.l/2, p38 and SAPK/JNK. 
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Figure 17. Schematic representation of eukaryotic MAPK signal 
transduction pathways (ERK112, JNKs/SAPKs and p3Bs pathway). 

ATF: activating transcription factor, ERK: extracellular signa/-regulated 
kinase, JNK: Jun-N-terminal kinase, MAPK: mitogen activated profein kinase , 
MAPKK: MAP-Kinase-Kinase, MAPKKK: MAP-kinase-kinase-kinase, MEK: 
MAPKIERK-kinase, MEKK: MEK-kinase, MKK: MAP-kinase-kinase, PAK: p21-
activated profein kinase, RTK: Receptor-Tyrosin-Kinase, SAPK: Stress­
activated Protein Kinase, SEK: SAPK/erk-Kinase, TPA: 12-0-tetradecanoy/­
phorbo/-13-Acetat. 
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Figure 18. HAainduces activation of ERK and p38 MAPKs in MSa5 cells 
and does not influence SAPKIJUN kinase. MS-5 cells were a/lowed to grow 
up to 70% confluence and were starved for 24 hours. Cells were incubated with 
100 J.Lglml of HA for different times and Jysed with profein sample buffer. The 
samples were loaded on the SOS PAGE ge/ in duplicates and ana/ysed b y 
standard wesfern blot procedure with anti- phosphospecific a)ERK, b)p38 or 
c)SAPKIJUN Kinase antibodies. 

SAPK/JNK was not influenced by the HA-treatment (Fig.18). In contrast, 

ERK.l/2 and p38 became activated upon HA stimulation (Fig.18). The period 

of activation for the kinases was between 5-30 and 60-90 min for ERK.l/2 

and between 60-90 min for p38. 
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3.1.9 Kinases inhibitors prevent HA-mediated cytokine induction 

HA treatment of MS-5 cells Ieads to the activation of ERK and p38 kinases, 

two kinases that belong to different signal transduction pathways (Fig.17). 

Using specific kinase inhibitors, we made an attempt to find out which 

pathway is directly involved in the upregulation of the cytokine production. 

The MS-5 cells were pre-incubated with different inhibitors for 30 min 

before HA induction. The culture supematants were checked for the presence 

of cytokines. Wortmanin, a specific inhibitor of PI3 kinase (Okada et al., 
1994) did not influence IL-6 and GM -CSF cytokine production. The specific 

p38 inhibitor SB203580 (Simon et al., 1998) down regulated GM-CSF 

production but did not influence the IL-6 response (Fig.19). ERK activation 

is mediated through specific protein kinases MAPKIERK kinases (MEK) 
(Fig.17). The specific MEK1 inhibitor PD-98059 (Simon et al., 1996) 

strongly decreased IL-6 production and only partially affected the production 

of GM-CSF (Fig.19). To further confirm the involvement of the ERK 

pathway in IL-6 production induced by HA, we also used the inhibitor 

U0126, that also inhibits the ERK activating MAPK kinase MEK (Favata et 
al., 1998). U0126 treatment completely abrogated HA-mediated IL-6 

induction (Fig.20). 
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Figure 19. lnf/uence of inhibitors of signal/ing cascade on HA-induced 
cytokine production by MS-5 cells MS-5 cells were grown up to 70% 
confluence and starved for 24 hours in medium containing 0% FCS. Ce/ls were 
pre-treated for 30 min with 88203580 (25 11M), PD98059 (50 11M) o r 
Whortmanin (1 11M) and induced with 100 Jlglml HA. Cytokine concentration in 
the supernatants was measured by an ELISA kit. 
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These results demonstrate the involvement of MAPKs in the HA-induced 

cytokine response. We conclude that the IL-6 stimulating HA signal in MS-5 

ceHs is transferred mainly through the MEK-ERK pathway and the GM-CSF 

signaHing possibly involves p38 activation. 

3.1.10 Raf dominant-negative mutant downregulates IL-6 production 

To further dissect the signaHing pathway involved in the HA-mediated IL-6 

activation, we examined the contribution of Raf, a kinase upstream of MEK. 

Its possible involvement was tested using a dominant-negative mutant 

(Fig.21). 

MS-5 ceHs were transiently transfected with this Raf-1 -dominant-negative 

mutant or with a Raf-1-wild type construct, before stimulation with HA. 24 

hours after HA addition the supernatants. were tested for the amount of 

cytokine produced. 
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Raf-1 
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inhibits HA-
/L-6 

secretion. MS-5 cel/s were 
transiently transfected b y 
e/ectroporation with Rafwt 
and RafC4 dominant­
negative construct. Cel/s 
were cultured 12 hours 
after transfection, starved 
for the next 12 hours in 
medium with 0% FCS and 
stimulated tor 24 hours 
with 100 Jlglml of HA. 
Cytokine concentration in 
the supernatants was 
measured by an ELISA kit. 

The Raf dominant-negative mutant reduced the HA-mediated IL-6 response 

in MS-5 cells by approximately 50%. The transfection efficiency of MS-5 

cells in those experiments was approximately 42% (as controlled by co­

transfection of cells with the green fluorescence protein (GFP). Since only 

the transfected cells can show the Raf dominant-negative effect, we conclude 

that IL-6 induction in all transfectants is completely abrogated. Thus, our 

results place HA-signalling leading to IL-6 production in the Raf-MEK-ERK 

transduction pathway. 
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3.1.11 HAinduces IL-6 mRNA expression in MS-5 cells at the Ievel of 

gene transcription 

To examine whether the increase of IL-6 and GM-CSF expression upon HA 

treatment is due to upregulation of transcription and not due to RNA 

stabilisation, we preincubated cells before HA-stimulation with the 

transcription inhibitor actinomycin D. Actinomycin D could completely 

block the ability of HA to increase the amount of IL-6 specific RNA. This 

result indicates that HA regulates IL-6 in MS-5 cells at the Ievel of 

transcription. In contrast, pre-treatment of the MS-5 cells with actinomycin 

D did not significantly affect HA- dependent GM-CSF increase (Fig.22). 

Therefore GM-CSF production seems tobe due to RNA stabilisation. 

67 



--------------------------------------------~Resuhs 

HA +' 
ACTD +· 

GMCSF 

HA 

ACTD 

IL-6 .._ 

+ 

', ,· 

-+~.;· ·'·,­.·.-,. 

+ 

28S 

...,.._ 28S 

~18S 

Figure 22. HA induces /L-6 expression on the transcriptional Ievel. 
MS-5 cel/s were grown up to 70% conf/uence and starved for 24 hours in medium 
with 0% FCS. Cel/s were pre-treated with actinomycin D and induced with 100 
Jlg/ml of HA. After 6 hours RNA was isolated and Northern blot analysis was 
performed. 

A) GM-CSF 
B) /L-6 
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3.1.12 HA enhances IL-6 promoter activity in MS-5 cells 

To further confinn that induction of IL-6 by HA is the result of a 

transcriptional enhancement, we tested whether transfected IL-6 promoter 
constructs also respond to HA treatment. A full length promoter construct 

was cloned from MS-5 DNA using specific 5' and 3' primers (see Material 

and Methods) and fused to the luciferase gene sequence as a reporter gene. 

MS-5 cells were transiently transfected by electroporation with this IL-6 

promoter construct ( or vector control) and stimulated with HA for 24 hours. 

Cell lysates were examined for the amount of luciferase activity. We 

observed that HA could indeed activate the exogenous IL~6 promoter 

construct (piL6luc(1.3)). Surprisingly, a smaller (602 bp) IL-6 promoterwas 

stronger induced by HA than the Ionger promoter construct, which could 
indicate the existence of a negative regulatory cis- elements within the region 

-602Jp to -1.3 kb. In further experiments we used the construct piL6luc(-

602) as an entire promoter construct because of its maximal inducibility 

(Fig.23). Parallel to the activation of IL-6 promoter constructs we always 

tested the activation of the endogenous IL-6 gene by an ELISA assay. 
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Figure 23. HA enhances IL-6 promoter activity in MS-5 cells. MS-5 cel/s 
were transiently transfected by electroporation with /L-6 promoter /uciferace 
reporter constrt.ict. Cel/s were cu/tured 12 hours after transfection, starved for 
the next 12 hours in medium with 0% FCS and stimulated for 24 hours with 1 00 
JLg/ml of HA. After Stimulation cel/s were lysed and analysed for the amount o f 
luciferase profein produced. The mean and SD represent three identical 
experiments. 
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To define which of the sequences in the IL-6 promoter account for the HA 
response, we transiently transfected MS-5 cells with IL-6 promoter 
constructs containing further truncations at the 5'-end: piL6luc(-602), 
piL6luc( -298), piL6luc( -235), piL6luc( -169), piL6luc( -122), piL6luc( -60). 
Deletions up to -169bp in the IL-6 promoter did not significantly reduce 

HA-induced IL-6 promoter activity. Further deletions, to -122 bp and:o -60 
bp (piL6luc(-122) and piL6luc(-60}}, showed no HA response (Fig. 24). 
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Figure 24. The deletion mutants of /L-6 promoter can abrogate HA­
mediated /L-6 activation. MS-5 cel/s were transiently transtected by 
electroporation with IL-6 promoter luciferace reporter deletion constructs. Cells 
were cultured 12 hours atter transfection, starved for the next 12 hours in 
medium with 0% FCS and stimulated for 24 hours with 100 Jlglml of HA. After 
stimulation cel/s were lysed and analysed for the amount of luciferase protein 
produced. The mean and SD represent three identical experiments. 
A) Represents the mean of luciferase relative units. 
8) Represents the mean of fold induction. 
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3.1.13 HA enhances the IL-6 promoter activity in MS-5 cells through 

NF-IL-6 and NF-KB regulatory cis-elements 

In the reg10n between -122bp and -60bp of the IL-6 promoter two 

potential binding sites for transcription factors are removed: at -122bp a 

NF -IL-6 binding site and at -60 bp a NF -ld3 binding site. 

We therefore addressed the question whether both, the NF-IL-6 and the NF­

KB site are important and necessary for HA-mediated IL-6 expression. We 

introduced into the 602 bp promoter construct point mutations in the NF-KB 

binding site and in the NF-IL-6 binding site which should inactivate these 

sites. The mutant constructs were transiently transfected into MS-5 cells and 

the expression of luciferase was tested upon HA treatment. Both mutants 
strongly abolished HA-mediated IL-6 promoter activation (Fig.25). This 

result demonstrates that the NF-IL-6 and the NF-KB regulatory cis-element 

are targets for HA-dependent activation. To test whether NF-KB suffices for 

activation we additionally transfected the MS-5 cells with a construct 

containing 3 times a repeat of an NF-KB cis-element ( 3xNF-kB construct). 
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Figure 25. NF-JCB and NF-IL-6 mutated cis- elements abrogate HA­
mediated activation of IL-6 promoter constructs. MS-5 cells were 
transiently transfected by electroporation with the /L-6 promoter luciferase 
reporter constructs p/L61uc(-602), piL61ucNF-JCBm, p/L6/ucNF-IL-6m. Cells were 
cultured 12 hours after transfection, starved for the next 12 hours in medium 
with 0% FCS and stimulated for 24 hours with 100 }lglml of HA. After 
Stimulation cells were lysed and analysed for the amount of luciferase protein 
produced. The mean and SD represent three identical experiments. 

A) Represents the luciferase relative units. 
B) Represents the mean of fold induction. 
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Figure 26. Construct containing a 3xNF-1CB cis-element can be 
activated in MS-5 ce/ls by HA-stimulation. MS-5 ce/ls were transiently 
transfected by electroporation with 3xNF-1CB luciferace reporter construct. Cells 
were cultured 12 hours after transfection, starved tor the next 12 hours in 
medium with 0% FCS and stimulated tor 24 hours with 100 pg/ml of HA. After 
Stimulation cells were /ysed and ana/ysed tor the amount of Juciferase profein 
produced. The mean and SO represent three identical experiments. 

The result of this experiment, illustrated in Fig.26, suggests that HA can 

directly increase NF-KB mediated transactivation. The NF-KB construct can 

be stimulated by HA, but not to such a high extent as the complete IL-6 

promoter. However, this construct consists of 3 times repeated NF-KB cis­

element. Thereby, in the endogenous IL-6 promoter the cooperative 

involvement ofNF-IL-6 and NF-lCB elements might be necessary. 

Altogether our results indicate that: 

A) HAis a potent inducer ofthe IL-6 gene promoter. 

B) The synergistic transactivation by NF-IL6 and NF-KB factors might be a 

necessary and crucial event in HA-mediated IL-6 gene transcription. 
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3.2 Part 2: SignaHing induced by interaction between MS-5 cells and 

TF-1 cells 

Components of the ECM can be involved in cell- cell communication 

between hematopoietic progenitors and stromal cells. Previously the HA 

mediated adhesion of myeloid progenitor cell lines to the hone marrow 

stromal cellline MS-5 was demonstrated tobe mediated by HA (Moll et al., 

1998). 

Our observation about the regulatory role of HA on the stromal cells and the 

data showing that HA might be involved in progenitor -stromal cells 

adhesion motivated us to investigate a direct interaction between MS-5 

stromal cells and CD34+ TF-1 progenitor cells and later on possible 

involvement of HA in this process. 

3.2.1 TF-1 cells stimulate MS-5 cells to produce cytokines 

We investigated the cytokine production from the MS-5 cells before and 

after co-culturing with TF-1 cells. Since the MS-5 cells are murine cells and 

the TF-1 cells are of human origin, we used species-specific ELISA kits 

which allowed to distinguish which cell line is responsible for the cytokine 

production. Interestingly, we observed that upon co-culture with TF-1 cells, 

the MS-5 cell line can be activated to increase the amount of particular 

cytokines IL-6, GM-CSF and IL-4 (Fig.27). 

The profile of cytokines upregulated upon TF-1 cells co-culturing with MS-5 

cells- IL-6, IL-4 and GM-CSF- was similar to that observed upon HA­

mediated activation of MS-5 cells. We also could not detect IL-3 or IL-1 ß 
production from MS-5 cells upon TF-1 co-culturing. 
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Figure 27. TF-1 ce/1 line stimulates the production of /L-6, GM-CSF 
and /L-4 cytokines in MS-5 cel/s. MS-5 cel/s were allowed to grow up t o 
70% confluence and were stimulated for 24 hours with 105 TF -1 ce/ls. The 
concentration of /L-6 (A), /L-4 (B) and GM-CSF (C) in supernatants was 
determined by an ELISA kits. SD was calculated from results obtained from 
triplicates. 

3.2.2 ls a direct contact between MS-5 cells and TF-1 cells required for 

cytokine production? 

MS-5 cells might be stimulated to produce cytokines by a direct cell contact 

with TF-1 cells or TF-1 cells can produce some soluble factors which are 

responsible for the TF-1- mediated cytokine response in MS-5 cells. To 

decide between these two possibilities, we performed a transweil assay. In 

this assay the two cell lines are separated by a filter. MS-5 cells were 
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cultured in 6-well culture plates up to 70 % confluence. Then the TF-1 cells 

were added to the plates either directly (for control) or seeded on transweH 

filters ( 45J.Lm). The cytokine production was measured 24 hours later. 
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Figure 28. Transweil assay. MS-5 ce/ls were grown up to 70% confluence 
and pulsed by co-culture with TF-1 cells in the presence or the absence of a 
transweil filter. The concentration of cytokine in the supernatants was monitared 
by ELISA after 24 hours. Pure TF-1 cu/ture was used as a negative control. SD 
was calculated from results obtained from triplicates.(GM-CSF kit). 

As already described the direct contact between TF-1 and MS-5 cells results 

in cytokine induction. The abrogation of the direct interaction between TF -1 

and MS-5 cells abolished the TF-1- dependent cytokine induction in MS-5 

cells (Fig.28). 

3.2.3 Effect of suramin on TF-1 stimulated cytokine production 

To test whether surface receptor contacts are required for the cytokine 

induction we tested the effect of suramin, an inhibitor of receptor activation 

(Stein, 1993), on TF-1-induced cytokine release. Pre-treatment ofMS-5 cells 
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with 3 mM of suramin prior to TF-1 addition completely abolished the TF-1 
effect (Fig.29). 

Taken together, our results suggest that the induction of cytokines in the 

stromal MS-5 cells upon TF-1 addition is dependent on a direct cell-cell 

contact via surface receptor(s). 
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Figure 29. TF-1 mediated activation of MS-5 cells can be blocked by 
suramin. MS-5 cells were grown up to 70% conf/uence. 1(/ TF-1 or H9 cel/s (as 
a control) were co-cultured with a MS-5 feeder layer with or without suramin 
pre-treatment. Cytokine concentration in the supernatants was measured by an 
ELISA kit. SD was ca/culated from resu/ts obtained from triplicates. 

3.2.4 CD44 antibodies have no influence on TF-1 triggered cytokine 

response in MS-5 cells 

CD44 was previously shown to be implicated in the processes of cell 

adhesion (for review see Simmons et al., 1997). Moreover the HA affinity 

for some progenitor cell lines was exclusively mediated by CD44 (Moll et 

al., 1998). Therefore we investigated the expression of CD44 standard and 

variant forms on the surface of TF-1 cells by FACS analysis. 5xl05 cells 

were incubated for 30 min on ice with different anti-CD44 antibodies. The 
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result of this experiment is summarised in a Tab.l. The TF-1 cells carry the 

standard and several variant epitopes of CD44 molecule. 

CD44 epitopes expressed by Anti-CD44 antibodies used for the 

TF-1 cells FACS staining. 

CD44st SFFpan 

CD44v5 VFF8 

CD44v7 VFF9 

CD44v9 VFF14 

CD44v7-8 VFF17 

CD44v6 VFF18 

Tab 1. The expression of CD44 epitopes on TF-1 cel/s. 10 5 ce/ls were 
stained with different anti-CD44 antibodies. The antibodies demonstrating 
positive staining are summarised in the table according to the CD44 epitopes 
they recognise. 

Next we tested whether a pre-treatment of cells with anti-CD44 antibodies 

had an effect on cytokine induction. Cells were pre-treated with anti-CD44 

antibodies for 30 min before co-culture. The cytokine production in the 

supematants was measured 24 hours later. Using anti-CD44 pan antibodies 

and antibodies against all expressed variant epitopes, we demonstrated that 

CD44 molecules do not play a role in TF-1 induced cytokine release in MS-5 

cells, similarly to the case ofHA-mediated activation (Fig.30). 
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Figure 30. CD44 is not involved in TF-1-mediated cytokine 
production. MS-5 ce/ls were grown up to 70% confluence. MS-5 or/and TF-1 
cells were pre-treated for 1 hour with 20 JLglml of anti-CD44 antibodies and co­
cultured for 24 hours. Afterwards, the cytokine concentration in the 
supernatants was measured by an ELISA kit. 

A) human anti-CD44 antibodies SFF-CD44st, VFFB-CD44v5, VFF9-CD44v7, 
VFF14-CD44v10, VFF17-cD44v7-8, VFF18-CD44v6. 
B) mause pan anti-CD44 antibodies /Ml (cross-react with human CD44) and 
KM81. 
SD was ca/culated from resu/ts obtained from triplicates 
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3.2.5 Support of hematopoiesis by MS-5 cells requires cytokine 
production. 

In order to compare the property of MS-5 cells to be activated to produce 

cytokines with their ability to support the survival of TF -1 cells, we 

established several MS-5 sub-lines by sub-cloning and checked these clones 

for the cytokine induction by TF -1 cells and HA. Among the sub-clones 

there were some that responded to TF -1 co-culturing but also some that did 

not respond (Fig.31). When tested for HA responsiveness, the same clones 

that were not induced for cytokine production by TF -1 also did not respond 

to HA. Moreover the inducibility of the clones positively correlated with 

their ability to support the growth ofTF-1 cells (Fig.31). 

Taken together these data indicate that the ability of the clones to be induced 

by the TF-1 cellline to produce cytokine correlates with their HA- mediated 

inducibility as weil as with their property to support the proliferation of TF-

1 cells, suggesting that in both cases a similar receptor or a similar signal 

transduction pathway might be involved. 
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Figure 31. Responsiveness of MS-5 sub-clones to HA and TF-1 
stimulation. Different sub-c/ones of MS-5 ce/1 line were grown up to 70% 
confluence and induced either with TF-1 cel/s or with HA. Cytokine concentration 
in the supernatants was measured by an ELJSA kit. (GM-CSF kit). 
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3.2.6 TF-1 cells activate the IL-6 promoter on the transcriptional Ievel 

through NF-KB and NF-IL-6 cis-elements. 

The similarities between TF-l~mediated and HA-mediated cytokine 

activation, e.g. the cytokine pattem obtained and the independence of CD44 

suggest that TF -1 activation might occur by a similar mechanism than that 

involved in HA-mediated cytokine production. We therefore tested whether 

similar sequences within the IL-6 promoter are responsible for the TF -1 

induced cytokine production by MS-5 cells. We transiently transfected the 

MS-5 cells with IL-6 promoter constructs containing truncations at the 5'. 
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Figure 32. The deletion mutants of the IL-6 promoter can abrogate 
TF-1-mediated IL-6 activation. MS-5 ce/ls were transiently transfected by 
electroporation with /L-6 promoter Juciferace reporter deletion constructs. Cel/s 
were cu/tured for 12 hours after transfection, starved tor the next 12 hours in 
medium with 0% FCS and stimulated tor 24 hours with 105 TF-1 ce/ls. After 
stimu/ation cells were Jysed and analysed for the amount of luciferase profein 
produced. The mean and SD represent three identical experiments. The figure 
represents the mean ot fold induction. 

Thereafter, MS-5 cells were plated on 5 cm2 dishes, starved and then treated 

with TF-1 cells. TF-1 cells were able to induce the IL-6 promoter activity 

(Fig.32). 

The region between -169bpto -602bp did not contribute to the TF-1 

mediated IL-6 activation, because deletion mutants covering this region did 

not show any change in inducibility by TF -1 cells as compared to the entire 

promoter (Fig32). In contrast, the deletion mutants loosing NF-IL-6 and 
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NF-KB binding sites were not inducible any more. Similarly to HA, it seems 

that the MS-5 response to the TF-1 cells regulating the production of IL-6 

depends on the activation of NF-IL-6 and NF-KB transcription factors. This 

was further confirmed by testing IL-6 promoter constructs containing point 

mutations in the NF-KB and NF-IL-6 sites. Both abrogated the response of 

MS-5 cells to TF-1 cells (Fig.33). Moreover TF-1 cells can activate a 

construct containing 3 times a repeat of an NF-KB cis-element ( 3xNF-kB 

construct), transiently transfected into MS-5 cells (Fig.34). 
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Figure 33. NF-1e8 and NF-IL-6 mutated cis- elements abrogate TF-1 
mediated activation of IL-6 promoter constructs. MS-5 cells were 
transiently transfected by electroporation with the /L-6 promoter /uciferace 
reporter constructs p/L6/uc(-602), p/L6/ucNF-1CBm, p/L6/ucNF-IL-6m. Cel/s were 
cu/tured for 12 hours after transfection, starved for the next 12 hours in 
medium with 0% FCS and stimu/ated for 24 hours by co-culture with 1 OS TF-1 
cel/s. After stimulation cells were lysed and ana/ysed for the amount of /uciferase 
profein produced. The mean and SD represent three identical experiments. 

A) Represents the mean of /uciferase relative units. 
8) Represents the mean of fold induction. 
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Figure 34. Construct containing 3xNF-KB cis-element can be 
activated in MS-5 cells by TF-1 stimulation. MS-5 cel/s were transiently 
transfected by electroporation with 3xNF-KB /uciferace reporter constructs. Cel/s 
were cu/tured 12 hours after transfection, starved for the next 12 hours in 
medium wlth 0% FCS and stimu/ated for 24 hours with TF-1 cells. After 
stimulation cel/s were /ysed and ana/ysed for the amount of luciferase protein 
produced. The mean and SD represent three identica/ experiments. 

3.2.7 Do TF-1 cells interact with MS-5 cells via HA? 

The response of MS-5 cells to TF-1 cells is by and large similar to that 

obtained with HA. Moreover, TF-1 cells can bind HA on their surface 

(Fig.35). Therefore we tested whether HA might be also involved in the TF-

1 mediated response. To remove HA from the reaction, cells were pre-treated 

with HA'ase prior to addition to the MS-5 cells. HA'ase treatment did not 

affect TF-1 mediated cytokine response (Fig.36). 
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Figure 35. TF-1 cells bind HA (FACS staining with FITC-HA). 105 ce/ls 
were stained with FITC Iabeiied HA. The fluorescence was analysed by FACS-Star 
plus flow cytometer. 
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Figure 36. The HA'ase treatment does not abrogate TF-1 mediated 
cytokine response. MS-5 cells were grown up to confluence. 1 OS TF-1 were co­
cultured on MS-5 cells with or without HA 'ase pre-treatment (HA 'ase was 
present during whole incubation time). Cytokine concentration in the 
supernatants was measured by an ELISA kit. SO was calculated from results 
obtained from trip/icates. 
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One still cannot completely exclude a role of HA in this process. Firstly, the 

components in HA 'ase preparation itself can non -specifically stimulate MS-

5 cells (data not shown). 

Secondly, MS-5 cells might be stimulated by smaller HA products which 

were not removed from the reaction. However, we believe that the TF-1 

mediated and HA mediated induction of cytokines in the MS-5 stromal cell 

line are two independent events. 

Taken together, our findings indicate that MS-5 stromal cells can be induced 

by HA to produce the cytokines IL-6, GM-CSF and IL-4. The production of 

the IL-6 cytokine is regulated by a pathway involving Raf, MEK and ERK 

molecules. This signal cascade results in the upregulation of the IL-6 

expression on the transcriptional Ievel through the NF -KB and the NF-IL-6 

cis-elements in the IL-6 promoter. 

The MS-5 cell line can also be stimulated to produce the same cytokines by 

direct contact with progenitor cells. In this case the mechanism of IL-6 

activation also involves NF-KB and NF-IL-6 elements in the IL-6 promoter. 
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4 Discussion 

Close contact with the hone marrow microenvironment is an essential 

requirement for the maturation of hematopoietic cells in adult mammals. In 

this work we concentrated on two components of the marrow environment: 

the stromal cells and the ECM component HA. We have chosen the murine 

hematopoietic supportive cell line MS-5 as an experimental system to gain 

insight into the mechanisms regulating HA-triggered cytokine production in 

stromal cells. 

At frrst we investigated the cytokine profile induced by HA in the MS-5 cell 

line. We observed the production of IL-6, GM-CSF and IL-4 upon HA 

stimulation. W e showed that despite the fact that MS-5 cells bind HA via 

CD44, the pre-treatment ofthe MS-5 cells with anti-CD44 KM81 mAbs, that 

block HA binding does not affect IL-6 nor GM-CSF production. 

HA induces a signalling cascade in MS-5 cells which results in the activation 

of the ERK and p38 MAPKs pathways as weil as in cytoskeleton 

rearrangement. Using a Raf-1 dominant-negative mutant we proved that Raf 

is an upstream target in the HA-induced signaHing cascade. 

HA induced production of IL-6 is regulated on the transcriptional Ievel, 

whereas the increase of GM-CSF is due to RNA stabilisation. NF-KB and 

NF-IL-6 cis-sequences in the IL-6 promoter are the targets ofHA action. 

The progenitor cellline TF-1 induces the production of IL-6, GM-CSF and 

IL-4 cytokines in MS-5 cells as weil. Furthermore, TF-1 cells also trigger 

IL-6 and GM-CSF responsein a CD44 independent manner. The induction 

of IL-6 by TF -1 cells is regulated on the transcriptionallevel and is mediated 

by NF-IL-6 and NF-KB cis-elements in the IL-6 promoter. 

4.1 HA-triggered cytokine activation in MS5 cells. 

The involvement of ECM components, especially HA, in hematopoiesis and 

cytokine regulationwas shown previously. HA can stimulate several cells of 

hematopoietic origin such as macrophages and dendritic cells to produce 

various cytokines (McKee et al., 1996; Hodge-Dufour et al., 1997; Haegel­

Kronenberger et al., 1998). In LTBMC the HA-triggered IL-6 production 
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seemed to be the maJor effector of hematopoiesis (Khaldoyanidi et al., 

1999). 
In MS-5 cells HA upregulates the production of IL-6, IL-4 and GM-CSF. 
HA- triggered IL-6 and GM-CSF stimulation was already described in 

BMDM and dendritic cells. The induction of IL-4 upon HA-stimulation is 
reported here for the first time. 
With respect to hematopoiesis, those cytokines have different target cells and 

act at distinct steps of the hematopoietic process. IL-6 as described before 
(see introduction) has a direct effect on primitive hematopoietic progenitor 

cell proliferation and maintenance, and synergistically interacts with other 
cytokines to stimulate the myeloid proliferation (Suda et al., 1988). In 

addition, IL-6 stimulates the granulocyte-macrophage and megakaryocyte 
colony fonnation (Lotem et al., 1989; Jansen et al., 1992). GM-CSF 
stimulates the proliferation of marrow progenitors including granulocytes, 

macrophages, erythrocytes (for review see Metcalf, 1986). It effectively 
induces granulocyte and monocyte differentiation and synergises with 

erythropoietin to support the growth of erythroid hurst fonning units (Sieff 
et al., 1985). Later on, GM-CSF enhances the functions of mature effector 
cells (Handman and Burges, 1979; Weisbart et al., 1986; Grabstein et al., 

1986; Weiser et al., 1987). IL-4 has a more restricted effect in the 

hematopoietic system and was described to act predominantly in 
lymphopoiesis. It stimulates B-eeil maturation and immunoglobulin 

production; generates cytotoxic and helper T-lymphocytes (Howard et al., 

1982; Vitetta et al., 1984; Noma et al., 1986; Coffman et al., 1986). By 
interacting with other growth factors it takes part in the regulation of 
megakaryocyte, granulocyte-macrophage and mast cell proliferation in 

murine system (Peschel et al., 1987; Broxmeyer and Cooper, 1988). Taken 
tagether these data indicate that the induction of those three cytokines by the 

same population of hone marrow stromal cells might be required to support 

different sub-populations of progenitor cells. 
The cytokines induced by HA in MS-5 cells are in partdifferent from those 

induced in BMDM, where IL-1ß and IL-6 were upregulated upon HA­

treatment. A plausible explanation for this fact could be that this difference 
reflects a divergent action of HA on various stromal cell compartments. Most 
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importantly, the IL-6 cytokine, which was shown to be the crucial 

component induced in L TBMC, was also produced in MS-5 cells upon HA 

stimulation. However, the L TBMC cultures mirnie some (particularly early) 

but not all steps of hematopoiesis. Therefore, production of two other 

cytokines (particularly GM-CSF) can also be physiologically relevant for 

other (or later) steps in hematopoiesis or for certain sub-populations of 

hematopoietic progenitors which are not present in LTBMC. 

4.1.1 Putative receptor for the HA effect in MS5 cells. 

The HA effect on the MS-5 cells could be mediated in two different ways: 

HA can be uptaken via endocytosis or may act through cell surface HA­

receptors. W e believe that in our system an interaction with a receptor is 

most likely involved. lndeed, MS-5 cells could be induced by immobilised 

HA from HA-covered plates as weil as by soluble HA. Unfortunately, we 

could not support this observation by using endocytosis inhibitors, since they 

dramatically affected the morphology and survival of MS-5 cells, therefore 

we cannot completely exclude the possibility of an endocytotic process. 

The possible involvement of a receptor -Iigand interaction raiseS:he question 

about the relevant HA-receptor responsible for the effect. One candidate 

could be the CD44 adhesion molecule. CD44 is known to be the principle 

receptor for HA and has been shown to be involved in the regulation of 

hematopoiesis (Aruffo et al., 1990; Moll et al., 1998). Moreover, HA 

binding to CD44 was reported to induce IGF-1, IL-1ß, MIP-1a, MIP-1ß and 

TNF-a cytokines in BMDM (Noble et al., 1993; McKee et al., 1996). 

Recently, HA-induced IL-6 production by dendritic cells was reported tobe 

CD44 mediated (Haegel-Kronenberger et al., 1998). Although the HA 

binding by MS-5 cells could be by and large repressed by anti-CD44 KM81 

mAbs, the same mAbs did not abrogate IL-6 increase nor the GM -CSF 

production suggesting the action of HA via a different receptor. This 

observation is in agreement with previous findings in BMDM, in which IL-6 

production was also induced in a CD44 independent manner (Khaldoyanidi et 

al., 1999). 

There are several evidences that other unknown HA-receptors are existing. 

Moreover, HA effects can be mediatedvia such HA-binding receptors, even 
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when CD44 is also present on the cell surface. For example it was shown that 

brain endothelial cells carry an unknown HA-binding receptor in addition to 

CD44 (Rahmanian et a/., 1997). The stimulating effect of HA on BMDM is 

provided by CD44 and another unidentified receptor (Khaldoyanidi et al., 

1999). HA-mediated ehemoleine induction in alveolar macrophages, 

described by McKee et al, is only in part mediated by CD44 and the 

existence of additional unknown receptor was postulated by the authors 

(McKee et a/., 1996). 

The possible presence of an HA binding protein, other than CD44, on MS-5 

cells is supported by CPC precipitation experiments, where several proteins 

can be shown to interact with HA. Taken together, we propose that MS-5 

cells carry in addition to CD44 another (or others) HA-binding receptor(s) 

which might be responsible for the HA-mediated cytokine upregulation. 

4.1.2 HA-induced signalling cascade 

The interaction between HA and cell surface receptors has been shown to 

generate a variety of signaHing events including triggering of tyrosine kinase 

activation, transient increase of tyrosine phosphorylation of some proteins, 

and focal adhesion turnover (for review see Entwistle et a/., 1996). In MS-5 

cells we observed activation of p38 and ERK MAPKs upon HA Stimulation. 

In BMDMs, HA also induced activation of ERK and p38. However, in 

BMDM the p38 activation was involved in the induction of IL-1 ß. In our 

system p38 activation did not result in IL-1 ß upregulation. One could 

speculate that the signalling cascade induced by HA is similar between 

different stromal cells. However, it might Iead to the regulation of divergent 

target genes underlining additionally the divergence between stromal cell 

populations. 

In addition to MAPK activation we observed cytoskeleton rearrangement in 

MS-5 cells upon HA treatment leading to lamellopodia- like filament 

structures and ruffles. The signalling pathways that induce different 

cytoskeleton pattems converge at one or several members of the Rho family 

of small GTP-binding proteins (Cdc 42, Rac and Rho) (Zigmond, 1996). As 

it was described in a fibroblast model, constitutively active Cdc42 induces 

lamellopodias, activation of Rac Ieads to the membrane ruffles, and 
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activation of Rho induces stress fibers (Nobes and Hall, 1995). Therefore the 

induction of lamellopodias and ruffies in MS-5 cells upon HA treatment 

would speak for an activation of Cdc 42 and Rac GTP-binding proteins. 

4.1.3 HA-induced signal regulates IL-6 production on the 

transcriptionallevel 

We found that in MS-5 stromal cells the IL-6 production is regulated on 

transcriptionallevel, whereas the GM-CSF response seems to be controlled 

by posttranscriptional events. This is in line with the fact that the regulation 

of IL-6 gene in most systems occurs at the transcriptional Ievel although 

mechanisms of post-transcriptional regulation have also been described 

(Akira and Kishimoto, 1997). For example activation of IL-6 by IFN-y and 

TNF -a is transcriptionally controlled. Induction of IL-6 by hypoxia, by 

human hepatitis B virus, LPS and a variety of other agents as well as 

repression by the estrogen receptor or estradiol is also regulated at the 

transcriptional Ievel (Ray et al., 1995; Matsiu et al., 1999; Ohno et al., 

1999). GM-CSF can be regulated m both transcriptional and 

postranscriptional manner depending from the inducing event as it has been 

described for hone marrow stromal cells (Derigs et al., 1994). Interestingly, 

in MS-5 cells the same stimulus (HA) contro1s the production of GM-CSF 

and IL-6 on different Ievels. 

The observation that IL-6 is induced by HA on the transcriptional Ievel 

means that the interaction between certain transcription factors and 

corresponding DNA cis-elements is responsible for this phenomena. Several 

cis-elements controlling IL-6 expression were previously described in the IL-

6 promoter. We report here that NF-KB and NF-IL-6 cis-elements are crucial 

for the HA-mediated IL-6 response. Our finding that NF-KB is involved in 

HA response is in agreement with the case of the INOX gene induced by HA 

in monocytes, where NF-KB activation is also needed (McKee et al., 1997). 

To our knowledge, we report here for the firsttime the involvement of NF­

IL-6 in a response to a component of the ECM. 
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4.1.4 NF-KB and NF-IL-6 factors are the targets for HA-signalling 

4.1.4.1 NF-KB 

NF-KB exists in the cytoplasm of a majority of cell types as homo- or hetero­

dimers of a family of structurally related proteins (Rel-family). In its 

inactive form NF-KB is associated with the inhibitory protein (IKB) and can 

be activated in cells by a wide variety of stimuli through the signal-induced 

proteolytic degradation of IKB in the cytoplasm (Fig.37). 
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Figure 37. Signalling cascades /eading to the activation of NF-1CB. 
IKKa/IKKß: I1CB Kinase; MEKK1: Mitogen- activated protein kinase/ extracellular 
signal-regulated kinase kinase-1; NIK: NF-1CB inducing kinase; p90-RSK: p90-
ribosomal s6 protein kinase; P: phosphate; PKAc: Protein kinase A catalytic 
subunit; PKC: protein kinase C. 
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With regard to the HA-mediated IL-6 production, we have been able to show 

two important points. Firstly, the removal of NF-KB cis-element from the 

IL-6 promoter completely abolishes HA-induced IL-6 response. Secondly, 

the inhibition of the Raf- Mek -Erk pathway abrogates HA-mediated IL-6 

production. These findings suggest a putative connection between the ERK 

cascade and the NF-KB activation in our model. 

Several observations from other systems support our findings. E.g. in 

lymphoblastoid cells overexpression of either MEK1 or ERK results in 

constitutive nuclear localisation ofNF-KB (Briant et a/., 1998). In COS cells 

the downstream kinase of Raf-MEK-ERK. pathway -90 RSKl- has been 

observed to phosphorylate the N-terminal regulatory domain of IKB and thus 

to enhance NF-KB DNA-binding (Ghoda et a/., 1997). Okadaik acid­

stimulated IL-6 production in human monocytes includes the activation of 

Raf-MEK-ERK cascade resulting in enhancing of the transactivation capacity 

of NF-lCB {Tuyt et a/., 1999). In addition, okadaic acid-activated ERK was 

reported to phosphorylate GST-IKB in vitro (Sonoda et al., 1997). 

These findings suggest the involvement of the classical ERK pathway in the 

inactivation of I KB. Our observations provide additional evidence that the 

ERK. pathway might be a signaHing pathway regulating the NF-KB activity, 

however the mechanism of this activation is still unclear. 

The p38 activation was also shown to result in NF-KB activation in some 

systems (reviewed by Schulze-Osthoff et a/., 1997; Vanden Berghe et al., 

1998). Although we did not test the direct involvement of p38 signaHing 

pathway in HA-triggered NF-KB activation in our system, we believe that 

p38 activation is not relevant in this respect. The basis for this assumption is 

that a specific p38 inhibitor does not affect HA-induced IL-6 response. 

4.1.4.2 NF-IL-6 

The NF-IL-6 transcription factor, also named CEBP/ß, is a member of the 

CCAAT/enhancer-binding proteins (CEBP) family. This factor modulates 

expression of multiple genes important in host adaptive-, immune- and 

hematopoietic processes. 

NF-IL-6 is responsible for the activation ofiL-6 by several stimuli including 

IL-1, IL-4, bacterial and viral infections (Nakazato et a/., 1998; Zhu et al., 
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1996; Zhang et al., 1995). We show in this work involvement of NF-IL-6 in 

HA-triggered IL6- response. 

NF-IL-6 activity is regulated by phosphorylation and can be achieved by 

different mechanisms. Of particular interest is the finding that the Ras-Raf­

MEK-ERK. pathway Ieads to phosphorylation and activation of NF-IL-6 

(Popik et al., '1998; Reddy et al., 2000). This is in accordance with our 

assurnption that the HA signal leading to NF-IL-6 activation might include 

and require stimulation ofthe Raf-MEK-ERK cascade. 

4.1.4.3 NF-lCB and NF-IL-6 synergise in HA-induced IL-6 induction 

In our experimental system NF-IL-6 factor seems to synergise with NF-lCB. 

A nurober of different transcription factors have been reported to be able 

physically and functionally to interact with C/EBP members and in particular 

with NF-IL-6. The interactions with members of NF-lCB family of 

transcription factors play a crucial role in the regulation of expression of 

various cytokine genes (Y amanaka et al., 1998; Akira and K.ishimoto, 1997). 

Synergistic activation by NF-IL-6 and NF-KB has been also shown for the 

regulation of the genes encoding the acute phase response (Matsusaka et al., 

1993). The induction of IL-6 by hypoxia was also shown tobe mediated by 

NF-KB and NF-IL-6 factors in monocytes (Matsui et al., 1999). Synergism 

between NF-lCB and NF-IL-6 factors is also responsible for IL-6 regulation 

by estrogenes (Stein et al., 1995). 

In our experiments, skipping or mutating the NF-KB cis-element resulted in 

complete abrogation of HA-induced IL-6 production, whereas skipping or 

inactivation of the NF-IL-6 element showed some residual HA-mediated IL-

6 response. A similar effect was observed in hypoxia regulated IL-6 

expression (Matsui et al., 1999). One could assume that NF-lCB cis-element 

suffice for the initial induction, but the promoter activation needs a 

subsequent ~ccumulation of a certain amount of transcription factors. 

We speculate that since the induction of NF-IL-6 usually occurs relatively 

late after stimulation, it is likely that the transcription factor NF-lCB whose 

activation is normally much faster but transient is responsible for the 

initiating of induction of IL-6, being accompanied later on by NF-IL-6 

members. 
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4.2 TFl- MS-5 cross-talk 

4.2.1 MS-5 cellline supports tbe growth of TF-1 cells 

MS-5 ceHs support survival and proliferation of the progenitor ceH line TF-

1. During the preparation of this work a paper was published which also 

reports the support of TF-1 ceHs by the MS-5 ceH line (Heberlein et al., 

1999). The authors implied that the Stern ceH factor (SCF) produced by MS5 

cells is responsible for this supportive effect. The cytokine GM-CSF was not 

considered as a supportive factor by these authors. We, as weH as other 

groups (Suzuki et al., 1992), showed that MS-5 ceHs produce a basic level of 

GM-CSF and IL-6 and the amount of GM-CSF and IL-6 is significantly 

upregulated upon TF-1 co-culture. In additionmousepure recombinant GM­

CSF also supports the proliferation of TF-1 ceHs. Moreover, it was found 

that IL-6 as weH support the growth of TF-1 cells (Kitamura et al., 1991). 

Taken together, these data suggest that in addition to SCF, GM-CSF and IL-

6 might be responsible for the MS-5 effect on TF-1 cells. 

4.2.2 Progenitor- mediated cytokine induction in stromal cell 

The cytokines induced by TF-1 cells in MS-5 cells are the same as those 

induced by HA treatment. Furthermore, TF -1 cells regulate IL-6 production 

in MS-5 cells at the transcriptional level through NF-lCB and NF-IL-6 cis­

elements similar to HA. Multiple myeloma cells can also trigger NF-KB 

activation and IL-6 production in stromal cells (Chauhan et al., 1996). 

Contact between thymocytes and thymic epithelial cells (TEC) activates NF­

IL-6 and NF-KB transcription factors as well as IL-6 production in human 

TECs (Ramarli et al., 1998). These Observations argue for the general 

relevance of this cytokine induction in stromal cells by progenitor ceHs in the 

hematopoietic system. Therefore, we can assume that this cytokine induction 

is rather a more common feature of progenitors than just a unique ability of 

TF-1 cells. 
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4.2.3 How does TF-1 activate MS-5 cells? 

Two possibilities can be proposed for TF-1 action on stromal cells. They can 

either stimulate stromal cells via cell- cell contact or upon production of a 

soluble MS-5 activating factor. Recently the upregulation of IL-6 and G-CSF 

in human hone marrow stromal cell layers upon co-culture with CD34+ hone 

marrow cells in LTBMC was reported (Gupta et al., 1998b). In this report 

the authors postulated the production of a soluble factor by progenitor cells, 

since direct contact between cells appeared not to be essential in that system. 

In our experimental system the contact between progenitors and stromal cells 

is required for the upregulation of cytokine production, since the separation 

of cells by a transweH membrane or pre-treatment of cells with suramin 

could abolish the TF-1 mediated cytokine response. 

We did not clarify yet which receptor could be responsible for the TF -1 

induced cytokine production in MS-5 cells, although we showed that this 

effect is independent from CD44 adhesion receptor. Most likely candidates 

are integrins, which are weil known to play a role in cell -cell adhesion and 

cytoskeleton rearrangement (Clark et al., 1998; Defilippi et al., 1999). lt has 

been already shown that integrins play a role in adhesion of progenitor cells 

to the stromal cells (Simmons et al., 1992). Furthermore, several reports 

implicated integrin family members in cytokine induction (Yurochko et al., 

1992; Jarvis et al., 1995; Lee et al., 1999). Moreover, there are Observations 

connecting integrin-induced signals to NF-KB activation (Udagwa et al., 

1996; Rasalesand Juliano, 1996; Scatena et al., 1998). Lastly, monoclonal 

antibody-mediated dustering of a3ß1 or a6ß4 integrins have been shown to 

mirnie thymocyte contact and to activate interleukin-6 production in human 

thymic epithelial cells by the same mechanism as the one used by thymocytes 

(Ramarli et al., 1998). 

The similarity between HA and TF-1 mediated MS-5 activation triggers the 

question whether TF-1 cells might act on MS-5 cells via HA. Since the 

treatment of TF-1 and MS-5 cells with hyaluronidase could not affect TF-1 

mediated cytokine response, we assume that despite some similarities, TF -1 

and HA action on stromal cells might represent two independent 

mechanisms. This conclusion is in line with experiments in thymocyte or 

multiple myeloma models where no intermediate ECM components were 
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shown to be involved in cytokine production in stromal cells upon cell-cell 

interactions (Chauhan et al., 1996; Ramarli et al., 1998). 

In conclusions, this work explored the mechanism of regulated cytokine 

production by stromal cells. We were able to show several important points: 

1. HA and TF-1 cells activate cytokine production in the stromal MS-5 cells. 

2. IL-6 is transcriptionally upregulated. 

3. The signal cascade to IL-6 gene activation involves the RAF-MEK- ERK 

pathway. 

4. HA and CD34+TF-1 progenitors regulate IL-6 expressionvia NF-kB and 

NF-IL-6 DNA- cis-elements. 

5. Despite some similarities, the HA-induced and TF-1 induced cytokine 

production seem to present two independent mechanisms. 
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Abbreviations 

A 
ACTD 
AGM 
APS 
ATP 
BMDM 
BMP 
bp 
Bq 
BSA 
CAM 
CD 
cDNA 
Ci 
cm 
CPC 
cpm 
es 
CSF 
DEPC 
DMEM 
DMSO 
DNA 
dNTP 
Dom-neg 
DTT 
EB 
ECL 
ECM 
Eds 
EDTA 
ELISA 
ERK 
ES cell 
etal 
FACS 
FCS 
FITC 

Ampere 
Actinomycin D 

Aorta- Gonad-Mesonephros 
Ammoniumpersulfate 

Adenosine Triphosphate 
Bone Marrow Derived Macraphages 

Bone Morphogenie Protein 
Base pair 
Bequerel 

Bovine Serum Albumin 
Cell Adhesion Moleeule 

Cluster of Differentiation 
Complementary DNA 

Curi 
Centimeter 

Cetylpyridinium chloride 
Counts per minute 

Chondroitin sulfate 
Colony Stimulating Factor 

Diethylpyrocarbonate 
Dulbecco s Modified Eagle Medium 

Dimethylsulfoxide 
Deoxyribonucleic Acid 

Deoxyribonucleoside triphosphate 
Dominant negative 

Dithiotreitol 
Embryonie Body 

Enhanced chemiluminescence 
Extracellular Matrix 

Editors 
Ethylendiamine-N ,N -tetracetate 

Enzyme- linked immunosorbent assay 
Extracellular signal regulated kinase 

Embryonie Stern Cell 
and others (Lat. et alii) 

Fluorescence- Activated Cell Sorter 
Fetal Calf Serum 

Fluorescein Isothiocianate 
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g 
GAG 
G-CSF 
GFP 
GM-CSF 
h 
HA 
HE PES 
HPLC 
HRP 
HSC 
HSP 
ICAM 
IFN 
Ig 
IGF 
IL 
INOS 
K 
Kb 
kDa 
L 
LIF 
LPS 
LTBMC 
Luc 
m 
Jl 
M 
MAb 
MAPK 
M-CSF 
:rmn 
MIP 
MME 
MMP 
MOPS 
mRNA 
MW 
n 
NF-IL-6 
NF-lCB 

Gram 
Glycosaminoglycan 

Granulocyte- Colony Stimulating Factor 
Green Fluorescence Protein 

Granulocyte-Macrophage Colony Stimulating Factor 
Ho ur 

Hyaluronic acid 
N-2-Hydroxyethylpiperrasine-N'-2-ethansulfonic acid 

High Pressure Liquid Chromatography 
Horseradish peroxidase 

Hematopoietic Stern Cell 
Heparan sulfated proteoglycan 

Intercellular Adhesion Moleeule 
Interferon 

Immunoglobulin 
Insulin-like Growth Factor 

Interleukin 
Inducible nitric oxide synthase 

Kilo (103
) 

Kilobase (lkb=l OOObp) 
Kilodalton (lkd=lOOOdaltons) 

Litre 
Leukemia Inhibitory Factor 

Lipopolysaccharide 
Long Tenn Bone Marrow Culture 

Luciferase 
Milli (1 o-3

) 

Micro(l 0-6) 
Molar 

Monoclonal antibody 
Mitogen- activated protein kinase 

Macrophage- Colony Stimulating Factor 
Minute 

Macraphage Inflammatory Protein 
Matrixmetalloelastase 

Matrixmetalloproteinases 
4-morpholinepropanesulfonic acid 

Messenger RNA 
Molecular weight 

Nano (10-9
) 

Nuclear factor IL-6 
Nuclear factor-Kß 
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NP-40 
0/N 
oc 
OD 
p 
PAGE 
PAS 
PBS 
PCR 
PDGF 
PE 
PI3K 
PMSF 
R 
Rel 
RNA 
rpm 
RT 
RT-PCR 
SCF 
SD 
SDS 
sec 
st 
TEC 
TEMED 
TGF 
TNF 
TPA 
Tris 
tRNA 
u 
uv 
V 

V 
v/v 
VCAM 
VEGF 
VLA 
vol 
w 
w/v 
wt 

Nonidet P40 
Ovemight 

Degree Celsius 
Optical density 

Pico(l o-12
} 

Polyacrilamide gel electrophoresis 
Paraaortic-Splanchnopleura 

Phosphate buffered saline 
Polymerase Chain Reaction 

Platelet Derived Growth Factor 
Phycoerythrin 

Phosphatidyl-lnositol-3 Kinase 
Phenylmethylsulfonyl fluoride 

Recombinant 
Relative 

Ribonucleic Acid 
Revolutions per minute 

Room Temperature 
Reverse transcription PCR 

Stern Cell Factor 
Standard deviation 

Sodium dodecil sulfate 
Secotid 

Standard 
Thymic Epithelial Cell 

N ,N ,N' ,N!tetramethyl-ethylendiamin 
Transforming Growth Factor 

Tun10ur Necrosis Factor 
12-0-tetradecanoylphorbol-13-acetate 
Tris-(hydroxymethyl)- aminometharr 

transfer RNA 
Unit 

Ultravialet 
Variant 

Volt 
Volume per volume 

V ascular Cell Adhesion Moleeule 
V ascular Endothelial Growth Factor 

Very Late Antigen 
Volume 

Watt 
Weight per volume 

Wild type 
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