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Motivation

Parallel languages are of growing interest� as they are more and more supported by modern
hardware environments� However� despite their importance �SHW� SW� WS�� there is currently
very little work on classical analyses and optimizations for parallel programs� Probably� the
reason for this de�ciency is that a naive adaptation fails �MP� and the straightforward correct
adaptation needs an unacceptable e	ort which is caused by considering all interleavings that
manifest the possible executions of a parallel program�

Thus� either heuristics are proposed to avoid the consideration of all the interleavings �McD��
or restricted situations are considered� which do not require to consider the interleavings at
all �GS��� Completely di	erent is the approach of abstract interpretation�based state space
reduction proposed in �CH
� CH��� This� however� requires the construction of an appropriately
reduced version of the global state space� which is often still unmanageable�

In �KSV
� we have recently demonstrated that for the large class of bitvector analyses � which
are most relevant in practice� there is an elegant way to avoid the state explosion problem�
In fact� we have shown how to construct arbitrary bitvector analysis algorithms for parallel
programs with shared memory that


� optimally cover the phenomenon of interference

�� are as e�cient as their sequential counterparts and

�� easy to implement�

The key for obtaining this result was the observation that during bitvector analyses the di	erent
interleavings of the executions of parallel components need not be considered� although they are
semantically di	erent� As a consequence� all the well�known bitvector algorithms for liveness�
availability� very business� reaching de�nitions� de�nition�use chains 
cf� �He�� can easily be
adapted for parallel programs at almost no cost on the runtime and the implementation side�

This is practically important as there is a broad variety of powerful classical program op�
timizations including code motion 
cf� �KRS
� KRS���� strength reduction 
cf� �KRS���� partial
dead code elimination 
cf� �KRS���� and assignment motion 
cf� �KRS��� which are solely based
on bitvector analyses� All these optimizations are now available for parallel programs�

�For the full version of this paper see �KSV���
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Here� we demonstrate this by sketching a code motion algorithm� which is unique in placing
the computations in a parallel program computationally optimal � Intuitively� this means that
in the program resulting from our algorithm there is no program path� on which the number
of computations can be reduced any more by means of a semantics preserving code motion
transformation� Moreover� this algorithm is as e�cient as its underlying sequential counterpart
of �KRS
� KRS���

Fundamental for the proof of optimality is the Parallel Bitvector Coincidence Theorem of
�KSV
�� which provides a su�cient condition for the coincidence of the specifying parallel meet

over all paths solution of a data �ow analysis problem and the parallel maximal �xed point

solution that is computed by our algorithm� Fundamental for proving the e�ciency result is
the restriction to bitvector problems� which due to their structural simplicity do not require the
consideration of the di	erent interleavings 
see �KSV
� for details��

The power of the new algorithm is illustrated by means of the example of Figure 
� where
the components of parallel statements are visualized by means of parallel vertical lines� Here�
our algorithm is unique to obtain the optimization result displayed in Figure �� It eliminates
the partially redundant computations of a� b at the nodes �� ��� ��� ��� ��� ��� �� by moving
them to the nodes �� �� and ��� but it does not touch the partially redundant computations of
a� b at the nodes 	 and �� which cannot safely be eliminated�
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Figure 
� The Motivating Example

In the following we give a sketch of this algorithm� which works for programs of a parallel
imperative programming language with an interleaving semantics� where parallelism is syntacti�
cally expressed by means of a parallel statement whose components are assumed to be executed
independently and in parallel on a shared memory�

Sketch of the Algorithm

Intuitively� �code motion� improves the e�ciency of a program by avoiding unnecessary recom�
putations of values at runtime� This is achieved by replacing the original computations of a
program by temporaries that are initialized at suitable program points 
cf� �MR���
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Figure �� The Computationally Optimal Transformed Program

As in the sequential setting� the central idea to achieve computationally optimal results is to
place the initializations of the temporaries as early as possible in a program� while maintaining
safety and correctness 
cf� �KRS
� KRS���� Intuitively� �safety� means that there is no program
path� on which the computation of a new value is introduced� �correctness� means that the
temporaries are properly initialized� i�e�� they always represent the same value as the computation
they replace�

In order to determine the program points that are earliest in this sense� it su�ces to compute
the set of down�safe and up�safe program points 
cf� �KRS���� Intuitively� a program point is
�down�safe� 
�up�safe��� if there is no program path starting at this point reaching the end node

if there is no program path from the start node of the program reaching it�� on which the
computation of a new value is introduced� In fact� a program point is safe if and only if it is
down�safe or up�safe� Moreover� it is earliest or as early as possible in order to be more precise�
if and only if it is safe and if one of its immediate predecessors is not safe or modi�es an operand
of the computation under consideration�

Technically� the set of down�safe and up�safe program points are characterized by the solu�
tions of the PMFP �approach� the parallel version of the maximal �xed point approach in the
sense of Kam and Ullman 
cf� �KU��� In the parallel setting� however� the computation of the
maximal �xed point solution is preceded by a preprocess which determines the semantics of
parallel statements in terms of transformations of data �ow informations� This preprocess is
successively applied to all parallel statements of the argument program from inside to outside�
It works by iteratively computing for every statement st of the currently investigated parallel
statement a function� which transforms data �ow information that is assumed to be valid at
the entry of the parallel statement under consideration into the information that can be guar�
anteed before the execution of st� The point here is that for bitvector problems the interference
caused by the interleaved execution of parallel components can completely be captured by only
investigating the local e	ects of the elementary statements occurring in components that can be
executed in parallel� The semantics of the parallel statement itself is then essentially given by
the meet of the functions associated with the last statements of each of its parallel components�
After this hierarchical preprocess 
see �KSV
� for details�� which is quite similar in spirit to the

�



preprocess of computing the semantics of procedure calls in interprocedural data �ow analysis

cf� �KS��� the maximal �xed point solution can be computed essentially as in the sequential
case�

All partially redundant computations of a program are then eliminated by performing the
following three step transformation for all program terms t�

� Declare a new temporary tmpt�

� Insert initialization statements tmpt �� t at the entry of all nodes being earliest for t�

� Replace all original computations of t occurring in nodes being safe for t by tmpt�

Figure � shows the result of computing the set of down�safe and up�safe program points for
the term a � b� Moreover� it shows the set of earliest program points and of the set of nodes�
where an original computation of a� b has to be replaced�
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Down-Safe Up-Safe Earliest Replace

Figure �� Down�Safe� Up�Safe� Earliest� and Replacement Program Points of a� b

Applying the procedure above to the program of Figure 
 results in the promised program of
Figure �� It is worth noting that the transformed program is indeed computationally optimal�

A variant of the code motion algorithm sketched here is implemented in the ESPRIT project
COMPARE �Vo
� Vo���
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