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Motivation

Parallel languages are of growing interest, as they are more and more supported by modern
hardware environments. However, despite their importance [SHW, SW, WS], there is currently
very little work on classical analyses and optimizations for parallel programs. Probably, the
reason for this deficiency is that a naive adaptation fails [MP] and the straightforward correct
adaptation needs an unacceptable effort which is caused by considering all interleavings that
manifest the possible executions of a parallel program.

Thus, either heuristics are proposed to avoid the consideration of all the interleavings [McD],
or restricted situations are considered, which do not require to consider the interleavings at
all [GS].! Completely different is the approach of abstract interpretation-based state space
reduction proposed in [CH1, CH2]. This, however, requires the construction of an appropriately
reduced version of the global state space, which is often still unmanageable.

In [KSV1] we have recently demonstrated that for the large class of bitvector analyses, which
are most relevant in practice, there is an elegant way to avoid the state explosion problem.
In fact, we have shown how to construct arbitrary bitvector analysis algorithms for parallel
programs with shared memory that

1. optimally cover the phenomenon of interference
2. are as efficient as their sequential counterparts and
3. easy to implement.

The key for obtaining this result was the observation that during bitvector analyses the different
interleavings of the executions of parallel components need not be considered, although they are
semantically different. As a consequence, all the well-known bitvector algorithms for liveness,
availability, very business, reaching definitions, definition-use chains (cf. [He]) can easily be
adapted for parallel programs at almost no cost on the runtime and the implementation side.

This is practically important as there is a broad variety of powerful classical program op-
timizations including code motion (cf. [KRS1, KRS2]), strength reduction (cf. [KRS3]), partial
dead code elimination (cf. [KRS4]), and assignment motion (cf. [KRS5]) which are solely based
on bitvector analyses. All these optimizations are now available for parallel programs.

*For the full version of this paper see [KSV2].
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'In [GS] this is achieved by requiring data independence of the parallel components.



Here, we demonstrate this by sketching a code motion algorithm, which is unique in placing
the computations in a parallel program computationally optimal. Intuitively, this means that
in the program resulting from our algorithm there is no program path, on which the number
of computations can be reduced any more by means of a semantics preserving code motion
transformation. Moreover, this algorithm is as efficient as its underlying sequential counterpart
of [KRS1, KRS2].

Fundamental for the proof of optimality is the Parallel Bitvector Coincidence Theorem of
[KSV1], which provides a sufficient condition for the coincidence of the specifying parallel meet
over all paths solution of a data flow analysis problem and the parallel mazimal fized point
solution that is computed by our algorithm. Fundamental for proving the efficiency result is
the restriction to bitvector problems, which due to their structural simplicity do not require the
consideration of the different interleavings (see [KSV1] for details).

The power of the new algorithm is illustrated by means of the example of Figure 1, where
the components of parallel statements are visualized by means of parallel vertical lines. Here,
our algorithm is unique to obtain the optimization result displayed in Figure 2. It eliminates
the partially redundant computations of a + b at the nodes 3, 10, 12, 14, 21, 22, 30 by moving
them to the nodes 2, 11 and 19, but it does not touch the partially redundant computations of
a + b at the nodes 7 and 9, which cannot safely be eliminated.

Figure 1: The Motivating Example

In the following we give a sketch of this algorithm, which works for programs of a parallel
imperative programming language with an interleaving semantics, where parallelism is syntacti-
cally expressed by means of a parallel statement whose components are assumed to be executed
independently and in parallel on a shared memory.

Sketch of the Algorithm

Intuitively, ‘code motion’ improves the efficiency of a program by avoiding unnecessary recom-
putations of values at runtime. This is achieved by replacing the original computations of a
program by temporaries that are initialized at suitable program points (cf. [MR]).
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Figure 2: The Computationally Optimal Transformed Program

As in the sequential setting, the central idea to achieve computationally optimal results is to
place the initializations of the temporaries as early as possible in a program, while maintaining
safety and correctness (cf. [KRS1, KRS2]). Intuitively, ‘safety’ means that there is no program
path, on which the computation of a new value is introduced; ‘correctness’ means that the
temporaries are properly initialized, i.e., they always represent the same value as the computation
they replace.

In order to determine the program points that are earliest in this sense, it suffices to compute
the set of down-safe and up-safe program points (cf. [KRS2]). Intuitively, a program point is
‘down-safe’ (‘up-safe’), if there is no program path starting at this point reaching the end node
(if there is no program path from the start node of the program reaching it), on which the
computation of a new value is introduced. In fact, a program point is safe if and only if it is
down-safe or up-safe. Moreover, it is earliest or as early as possible in order to be more precise,
if and only if it is safe and if one of its immediate predecessors is not safe or modifies an operand
of the computation under consideration.

Technically, the set of down-safe and up-safe program points are characterized by the solu-
tions of the PMFP-approach, the parallel version of the maximal fixed point approach in the
sense of Kam and Ullman (cf. [KU]). In the parallel setting, however, the computation of the
maximal fixed point solution is preceded by a preprocess which determines the semantics of
parallel statements in terms of transformations of data flow informations. This preprocess is
successively applied to all parallel statements of the argument program from inside to outside.
It works by iteratively computing for every statement st of the currently investigated parallel
statement a function, which transforms data flow information that is assumed to be valid at
the entry of the parallel statement under consideration into the information that can be guar-
anteed before the execution of st. The point here is that for bitvector problems the interference
caused by the interleaved execution of parallel components can completely be captured by only
investigating the local effects of the elementary statements occurring in components that can be
executed in parallel. The semantics of the parallel statement itself is then essentially given by
the meet of the functions associated with the last statements of each of its parallel components.
After this hierarchical preprocess (see [KSV1] for details), which is quite similar in spirit to the



preprocess of computing the semantics of procedure calls in interprocedural data flow analysis
(cf. [KS]), the maximal fixed point solution can be computed essentially as in the sequential
case.

All partially redundant computations of a program are then eliminated by performing the
following three step transformation for all program terms t:

e Declare a new temporary tmp;.
o Insert initialization statements tmp; := ¢t at the entry of all nodes being earliest for t.
e Replace all original computations of ¢ occurring in nodes being safe for ¢ by tmp;.

Figure 3 shows the result of computing the set of down-safe and up-safe program points for
the term a 4+ b. Moreover, it shows the set of earliest program points and of the set of nodes,
where an original computation of a + b has to be replaced.
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Figure 3: Down-Safe, Up-Safe, Farliest, and Replacement Program Points of a + b

Applying the procedure above to the program of Figure 1 results in the promised program of
Figure 2. It is worth noting that the transformed program is indeed computationally optimal.

A variant of the code motion algorithm sketched here is implemented in the ESPRIT project
COMPARE [Vol, Vo2].
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