
To be published in the
Proceedings of the��th GI Workshop on �Alternative Konzepte f�ur Sprachen und Rechner�

Physikzentrum Bad Honnef� May ��� ����

Optimal Code Motion for Parallel Programs

� Extended Abstract ��

Jens Knoop y Bernhard Ste�eny J�urgen Vollmer z

Keywords� Parallelism� interleaving semantics� synchronization� compiler� program optimiza�
tion� data �ow analysis� bitvector problems� code motion� partial redundancy elimination�

Motivation

Parallel languages are of growing interest� as they are more and more supported by modern
hardware environments� However� despite their importance �SHW� SW� WS�� there is currently
very little work on classical analyses and optimizations for parallel programs� Probably� the
reason for this de�ciency is that a naive adaptation fails �MP� and the straightforward correct
adaptation needs an unacceptable e	ort which is caused by considering all interleavings that
manifest the possible executions of a parallel program�

Thus� either heuristics are proposed to avoid the consideration of all the interleavings �McD��
or restricted situations are considered� which do not require to consider the interleavings at
all �GS��� Completely di	erent is the approach of abstract interpretation�based state space
reduction proposed in �CH
� CH��� This� however� requires the construction of an appropriately
reduced version of the global state space� which is often still unmanageable�

In �KSV
� we have recently demonstrated that for the large class of bitvector analyses � which
are most relevant in practice� there is an elegant way to avoid the state explosion problem�
In fact� we have shown how to construct arbitrary bitvector analysis algorithms for parallel
programs with shared memory that


� optimally cover the phenomenon of interference

�� are as e�cient as their sequential counterparts and

�� easy to implement�

The key for obtaining this result was the observation that during bitvector analyses the di	erent
interleavings of the executions of parallel components need not be considered� although they are
semantically di	erent� As a consequence� all the well�known bitvector algorithms for liveness�
availability� very business� reaching de�nitions� de�nition�use chains 
cf� �He�� can easily be
adapted for parallel programs at almost no cost on the runtime and the implementation side�

This is practically important as there is a broad variety of powerful classical program op�
timizations including code motion 
cf� �KRS
� KRS���� strength reduction 
cf� �KRS���� partial
dead code elimination 
cf� �KRS���� and assignment motion 
cf� �KRS��� which are solely based
on bitvector analyses� All these optimizations are now available for parallel programs�

�For the full version of this paper see �KSV���
yFakult�at f�ur Mathematik und Informatik� Universit�at Passau� Innstrasse ��� D	
���� Passau� Germany� E	

mail
 fknoop�ste�eng�fmi�uni	passau�de
zInstitut f�ur Programm	 und Datenstrukturen� Universit�at Karlsruhe� Vincenz	Prie�nitz	Stra�e �� D	�����

Karlsruhe� Germany� E	mail
 vollmer�ipd�info�uni	karlsruhe�de
�In �GS� this is achieved by requiring data independence of the parallel components�






Here� we demonstrate this by sketching a code motion algorithm� which is unique in placing
the computations in a parallel program computationally optimal � Intuitively� this means that
in the program resulting from our algorithm there is no program path� on which the number
of computations can be reduced any more by means of a semantics preserving code motion
transformation� Moreover� this algorithm is as e�cient as its underlying sequential counterpart
of �KRS
� KRS���

Fundamental for the proof of optimality is the Parallel Bitvector Coincidence Theorem of
�KSV
�� which provides a su�cient condition for the coincidence of the specifying parallel meet

over all paths solution of a data �ow analysis problem and the parallel maximal �xed point

solution that is computed by our algorithm� Fundamental for proving the e�ciency result is
the restriction to bitvector problems� which due to their structural simplicity do not require the
consideration of the di	erent interleavings 
see �KSV
� for details��

The power of the new algorithm is illustrated by means of the example of Figure 
� where
the components of parallel statements are visualized by means of parallel vertical lines� Here�
our algorithm is unique to obtain the optimization result displayed in Figure �� It eliminates
the partially redundant computations of a� b at the nodes �� ��� ��� ��� ��� ��� �� by moving
them to the nodes �� �� and ��� but it does not touch the partially redundant computations of
a� b at the nodes 	 and �� which cannot safely be eliminated�

19

x := a+b

a := a+by := a+b

z := a+b

x := a+b

a := ...

y := a+b

1

y := a+b

2

3 4

5

6

7 10

8

9

11

12

13

14

15

17

16

18

20x := a+b21

22

25

28

z := a+b

29

30

31

23

24

26

27

Figure 
� The Motivating Example

In the following we give a sketch of this algorithm� which works for programs of a parallel
imperative programming language with an interleaving semantics� where parallelism is syntacti�
cally expressed by means of a parallel statement whose components are assumed to be executed
independently and in parallel on a shared memory�

Sketch of the Algorithm

Intuitively� �code motion� improves the e�ciency of a program by avoiding unnecessary recom�
putations of values at runtime� This is achieved by replacing the original computations of a
program by temporaries that are initialized at suitable program points 
cf� �MR���

�



19

:= a+bh

:= a+bh

:= a+bh
y := a+b

z := a+b

a := ...

1

2

3 4

5

6

7 10

8

9

11

12

13

14

15

17

16

18

2021

22

25

28

29

30

31

23

24

26

27

x :=

a :=

y :=

x :=

h

h

h

h

x :=

y :=

z :=

h

h

h

Figure �� The Computationally Optimal Transformed Program

As in the sequential setting� the central idea to achieve computationally optimal results is to
place the initializations of the temporaries as early as possible in a program� while maintaining
safety and correctness 
cf� �KRS
� KRS���� Intuitively� �safety� means that there is no program
path� on which the computation of a new value is introduced� �correctness� means that the
temporaries are properly initialized� i�e�� they always represent the same value as the computation
they replace�

In order to determine the program points that are earliest in this sense� it su�ces to compute
the set of down�safe and up�safe program points 
cf� �KRS���� Intuitively� a program point is
�down�safe� 
�up�safe��� if there is no program path starting at this point reaching the end node

if there is no program path from the start node of the program reaching it�� on which the
computation of a new value is introduced� In fact� a program point is safe if and only if it is
down�safe or up�safe� Moreover� it is earliest or as early as possible in order to be more precise�
if and only if it is safe and if one of its immediate predecessors is not safe or modi�es an operand
of the computation under consideration�

Technically� the set of down�safe and up�safe program points are characterized by the solu�
tions of the PMFP �approach� the parallel version of the maximal �xed point approach in the
sense of Kam and Ullman 
cf� �KU��� In the parallel setting� however� the computation of the
maximal �xed point solution is preceded by a preprocess which determines the semantics of
parallel statements in terms of transformations of data �ow informations� This preprocess is
successively applied to all parallel statements of the argument program from inside to outside�
It works by iteratively computing for every statement st of the currently investigated parallel
statement a function� which transforms data �ow information that is assumed to be valid at
the entry of the parallel statement under consideration into the information that can be guar�
anteed before the execution of st� The point here is that for bitvector problems the interference
caused by the interleaved execution of parallel components can completely be captured by only
investigating the local e	ects of the elementary statements occurring in components that can be
executed in parallel� The semantics of the parallel statement itself is then essentially given by
the meet of the functions associated with the last statements of each of its parallel components�
After this hierarchical preprocess 
see �KSV
� for details�� which is quite similar in spirit to the

�



preprocess of computing the semantics of procedure calls in interprocedural data �ow analysis

cf� �KS��� the maximal �xed point solution can be computed essentially as in the sequential
case�

All partially redundant computations of a program are then eliminated by performing the
following three step transformation for all program terms t�

� Declare a new temporary tmpt�

� Insert initialization statements tmpt �� t at the entry of all nodes being earliest for t�

� Replace all original computations of t occurring in nodes being safe for t by tmpt�

Figure � shows the result of computing the set of down�safe and up�safe program points for
the term a � b� Moreover� it shows the set of earliest program points and of the set of nodes�
where an original computation of a� b has to be replaced�

x := a+b

a := a+by := a+b

z := a+b

x := a+b

a := ...

y := a+b

1

y := a+b

2

3 4

5

6

7 10

8

9

11

12

13

14

15

17

16

18

20x := a+b21

22

25

28

z := a+b

29

30

31

23

24

26

27

19

Down-Safe Up-Safe Earliest Replace

Figure �� Down�Safe� Up�Safe� Earliest� and Replacement Program Points of a� b

Applying the procedure above to the program of Figure 
 results in the promised program of
Figure �� It is worth noting that the transformed program is indeed computationally optimal�

A variant of the code motion algorithm sketched here is implemented in the ESPRIT project
COMPARE �Vo
� Vo���

References

	CH�
 Chow� J��H�� and Harrison� W� L� Compile time analysis of parallel programs that share mem�
ory� In Conference Record of the ��th International Symposium on Principles of Programming
Languages �POPL	��
� Albuquerque� New Mexico� ����� �
� � ����

	CH�
 Chow� J��H�� and Harrison� W� L� State Space Reduction in Abstract Interpretation of Parallel
Programs� In Proceedings of the International Conference on Computer Languages� �ICCL	��
�
Toulouse� France� May ������ ����� ��������

�



	GS
 Grunwald� D�� and Srinivasan� H� Data �ow equations for explicitely parallel programs�
In Proceedings of the ACM SIGPLAN Symposium on Principles of Parallel Programming
�PPOPP	�

� SIGPLAN Notices �� � � ����
��

	He
 Hecht� M� S� Flow analysis of computer programs� Elsevier� North�Holland� �����

	KRS�
 Knoop� J�� R�uthing� O�� and Ste�en� B� Lazy code motion� In Proceedings of the ACM SIG�
PLAN	�� Conference on Programming Language Design and Implementation �PLDI	��
� San
Francisco� California� SIGPLAN Notices �� � � ������� ��� � �
��

	KRS�
 Knoop� J�� R�uthing� O�� and Ste�en� B� Optimal code motion� Theory and practice� Transac�
tions on Programming Languages and Systems �� � � ������� ���� � �����

	KRS

 Knoop� J�� R�uthing� O�� and Ste�en� B� Lazy strength reduction� Journal of Programming
Languages � � � ����
�� �� � ���

	KRS�
 Knoop� J�� R�uthing� O�� and Ste�en� B� Partial dead code elimination� In Proceedings of
the ACM SIGPLAN	�� Conference on Programming Language Design and Implementation
�PLDI	��
� Orlando� Florida� SIGPLAN Notices �� � � ������� ��� � ����

	KRS�
 Knoop� J�� R�uthing� O�� and Ste�en� B� The power of assignment motion� To appear in Pro�
ceedings of the ACM SIGPLAN	�� Conference on Programming Languag e Design and Imple�
mantion �PLDI	��
� La Jolla� California� June �� � ��� �����

	KS
 Knoop� J�� and Ste�en� B� The interprocedural coincidence theorem� In Proceedings of the �th

International Conference on Compiler Construction �CC	��
� Paderborn� Germany� Springer�
Verlag� LNCS ��� ������� ��� � ����

	KSV�
 Knoop� J�� Ste�en� B�� and Vollmer� J� Parallelism for free� E�cient and optimal bitvector
analyses for parallel programs� In Proceedings of the International Workshop on Tools and
Algorithms for the Construction and Analysis of Systems �TACAS	��
� Aarhus� Denmark�
BRICS Notes Series NS����� ������� 
�� � 


�

	KSV�
 Knoop� J�� Ste�en� B�� and Vollmer� J� Optimal code motion for parallel programs� Fakult�at
f�ur Mathematik und Informatik� Universit�at Passau� Germany� MIP�Bericht �������

	KU
 Kam� J� B�� and Ullman� J� D� Monotone data �ow analysis frameworks� Acta Informatica � �
������� 
�� � 
���

	McD
 McDowell� C� E� A practical algorithm for static analysis of parallel programs� Journal of
Parallel and Distributed Computing � � 
 ������� ��
 � �
��

	MP
 Midki�� S� P�� and Padua� D� A� Issues in the optimization of parallel programs� In Proceedings
of the International Conference on Parallel Processing� Volume II � St� Charles� Illinois� �������
��� � ��
�

	MR
 Morel� E�� and Renvoise� C� Global optimization by suppression of partial redundancies� Com�
munications of the ACM �� � � ������� �� � ��
�

	SHW
 Srinivasan� H�� Hook� J�� and Wolfe� M� Static single assignment form for explicitly parallel
programs� In Conference Record of the ��th ACM SIGPLAN Symposium on Principles of
Programming Languages �POPL	�

� Charleston� South Carolina� ���
� ��� � ����

	SW
 Srinivasan� H�� and Wolfe� M� Analyzing programs with explicit parallelism� In Proceedings of
the �th International Conference on Languages and Compilers for Parallel Computing � Santa
Clara� California� Springer�Verlag� LNCS ��� ������� ��� � ����

	Vo�
 Vollmer� J� Data �ow equations for parallel programs that share memory� Tech� Rep� ������
of the ESPRIT Project COMPARE ������� Fakult�at f�ur Informatik� Universit�at Karlsruhe�
Germany�

	Vo�
 Vollmer� J� Data �ow analysis of parallel programs� To appear in Proceedings of the Interna�
tional Conference on Parallel Architectures and Compilation Techniques �PACT	��
� Limassol�
Cyprus� June �� � ��� �����

	WS
 Wolfe� M� and Srinivasan� H� Data structures for optimizing programs with explicit paral�
lelism� In Proceedings of the �st International Conference of the Austrian Center for Parallel
Computation� Salzburg� Austria� Springer�Verlag� LNCS ��� ������� �
� � ����

�


