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Abstract

Code motion is well-known as a powerful technique for the optimization of sequential
programs. It improves the run-time efficiency by avoiding unnecessary recomputations of
values, and it is even possible to obtain computationally optimal results, i.e., results where
no program path can be improved any further by means of semantics preserving code mo-
tion. In this paper we present a code motion algorithm that for the first time achieves this
optimality result for parallel programs. Fundamental is the framework of [KSV1] showing
how to perform optimal bitvector analyses for parallel programs as easily and as efficiently
as for sequential ones. Moreover, the analyses can easily be adapted from their sequential
counterparts. This is demonstrated here by constructing a computationally optimal code
motion algorithm for parallel programs by systematically extending its counterpart for
sequential programs, the busy code motion transformation of [KRS1, KRS2].
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1 Motivation

Parallel languages are of growing interest, as they are more and more supported by modern
hardware environments. However, despite their importance [SHW, SW, WS], there is
currently very little work on classical analyses and optimizations for parallel programs. In
fact, classical optimization and parallelization are often considered to exclude each other
because naive adaptations of the sequential optimization methods fail [MP], and their
straightforward correct adaptations have unacceptable costs caused by the interleavings
which manifest the possible executions of a parallel program.

Thus, either heuristics are proposed to avoid the consideration of all the interleavings
[McD], or restricted situations are considered, which do not require to consider the inter-
leavings at all [GS].! Completely different are approaches that are based on state space
reductions as proposed in [DBDS, CH1, CH2, GW, Va]. This allows general synchroniza-
tion mechanisms, but still requires the investigation of an appropriately reduced version
of the global state space which is often still unmanageable.

In [KSV1, KSV2], however, we have recently shown that for the large class of bitvector
problems, which are most relevant in practice, there is an elegant way out of this dilemma.
We have shown how to construct for unidirectional bitvector problems analysis algorithms
for parallel programs with shared memory and interleaving semantics that

1. optimally cover the phenomenon of interference
2. are as efficient as their sequential counterparts and
3. easy to implement.

The key for this result was the observation that during unidirectional bitvector analyses
the different interleavings of the executions of parallel components need not be considered,
although they are semantically different. As a consequence, all the well-known bitvec-
tor algorithms for liveness, availability, very business, reaching definitions, definition-use
chains (cf. [He]) can easily be adapted for parallel programs at almost no cost on the
runtime and the implementation side.

In this paper we exploit this for the construction of a code motion algorithm for
parallel programs which for the first time achieves computationally optimal placements
of computations for this setting. Intuitively, this means that in the program resulting
from our algorithm there is no program path, on which the number of computations
can be reduced any more by means of semantics preserving code motion. Moreover, this
algorithm is as efficient as its sequential counterpart, the busy code motion transformation
of [KRS1, KRS2]. The power of the new algorithm is illustrated in Figure 1, where the
components of parallel statements are separated by parallels. In this example, which is
discussed in full detail in Section 3.6, our algorithm is unique to obtain the optimization
result of Figure 2. It eliminates the partially redundant computations of a + b at the
nodes 3, 13, 15, 18, 19, 28, 29, 39 by moving them to the nodes 2, 14 and 26, but
it does not touch the partially redundant computations of @ + b at the nodes 8 and 10,
which cannot safely be eliminated.

'In [GS] e.g., this is achieved by requiring data independence of the parallel components according to
the PCF FORTRAN standard.
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Figure 1: The Motivating Example: The Parallel Argument Program G*

Structure of the Paper

In Section 2 we recall the framework of [KSV1] for unidirectional bitvector analyses of
parallel programs. Based on this framework, we subsequently develop our algorithm for
the computationally optimal placement of computations in parallel programs in Section
3. Section 4, finally, contains our conclusions, and the Appendix presents the detailed
generic algorithm of [KSV1] for unidirectional bitvector analyses of parallel programs.

2 The Parallel Setting

We consider a parallel imperative programming language with interleaving semantics.
Parallelism is syntactically expressed by means of a par statement whose components are
assumed to be executed in parallel on a shared memory. As usual, we assume that there
are neither jumps leading into a component of a par statement from outside nor vice
versa. This setup already introduces the phenomena of interference and synchronization,



Figure 2: The Computationally Optimal Result of the BCMpp-Transformation

and allows us to concentrate on the central features of our approach, which, however,
is not limited to this setting. For example, a replicator statement allowing a dynamical
process creation can be integrated along the lines of [CH2, Vol, Vo2].

2.1 Parallel Flow Graphs

Similarly to [SHW] and [GS], we represent a parallel program by a nondeterministic
parallel flow graph G* = (N*, E*,s*,e*) with node set N* and edge set E* as illustrated
in Figure 1. Except for subgraphs representing par statements a parallel flow graph is a
nondeterministic flow graph as for the representation of a sequential program (cf. [He]).
Thus, nodes n € N* represent the statements, edges (m,n) € E* the nondeterministic
branching structure of the procedure under consideration, and s* and e* denote the
distinct start node and end node, which are assumed to represent the empty statement
skip and to possess no predecessors and successors, respectively.

A par statement and each of its components are also considered parallel flow graphs.



The graph G, representing a complete par statement arises from linking its compo-
nent graphs by means of a ParBegin and a ParEnd node which have the start nodes
and the end nodes of the component graphs as their only successors and predecessors,
respectively. The ParBegin node and the ParEnd node are the unique start node and end
node of G4, and are assumed to represent the empty statement skip. They form the
entry and the exit to program regions whose subgraph components are assumed to be
executed in parallel, and thus make the synchronization points in the program explicit.
For clarity we represent ParBegin and ParEnd nodes by ellipses and additionally separate
the corresponding component graphs by two parallels as shown in Figure 1.

Moreover, predg-(n)=q¢ {m|(m,n) € E*} and succg-(n)=g{m| (n,m) € E*}
denote the set of all immediate predecessors and successors of a node n € N*, respectively.
A sequence (ny,...,n,) of nodes such that (n;,n;41) € E* for j € {1,...,¢ — 1} is
called a finite path of G*. Given a finite path p, A\, denotes the length of p. Moreover,
Pg<[m,n] denotes the set of all finite paths from m to n, and Pg-[m,n| the set of
all finite paths from m to a predecessor of n. As usual, we assume that every node
n € N* lies on a finite path from s* to e*. It is worth noting that not all finite paths
of G* represent a proper program execution. This is taken into account by restricting to
parallel paths, which are introduced in Definition 2.2 below.

Additionally, Gp(G*) denotes the set of all subgraphs of G* representing a par state-
ment. In particular,

Gp(G")=¢{G € Gp(G") VG € Gp(G"). GCG' =G =G}

and
Gp™ (G =4 { G € Gp(G") |VG' € Gp(G"). ' CG=G' =G}

denote the set of mazimal and minimal graphs of Gp(G*).2 Moreover, every flow graph
G € Gp(G*) is given a rank that is recursively defined by:

rank(G)= X if G € gpm(G)
Y\ maz{ rank(G") |G’ € Gp(G*) AG' C G} +1 otherwise

For illustration see Figure 3 and Figure 4, which display the set of parallel subgraphs of
rank 1 and of rank 0 of the parallel flow graph of Figure 1.

Furthermore, for G' € Gp(G*), Gc(G') denotes the set of component flow graphs
of G', which we also consider parallel flow graphs for notational convenience. Thus, all
subgraphs of G* referred to in the paper are considered parallel flow graphs, but only
the subgraphs G € Gp(G*) represent parallel statements. It is worth noting that for
G € Gp(G*) every component flow graph G’ € G¢(G) and also G itself is a single-
entry /single-exit region of G*.

Moreover, for G' € Gp(G*), CpNodes(G')=4 N'\{s’, €'} denotes the set of nodes of
its component flow graphs.® Addititionally, we introduce the following abbreviations for
the sets of start nodes (i.e., ParBegin nodes) and end nodes (i.e., ParEnd nodes) of graphs

of Qp(G*)

2For parallel flow graphs G and G' we define: G C G' if and only if N C N’ and E C E'.

3We use the convention that the node set and the edge set, and the start node and the end node of a
flow graph carry the same marking as the flow graph itself. Hence, G and G’ stand for the expanded
versions G = (N, E,s,e) and G' = (N',E',s’,€), respectively.




Figure 4: {G | G e gP(G*) A\ mnk(G) :0} = {G()l, GOQ}

Ny=g {start(G) |G € Gp(G*) } and Ni=4{end(G)|G € Gp(G") }

where start and end are functions, which map a flow graph to its start node and end
node, respectively. Additionally, we need the function Nodes, which maps a flow graph
to its node set, and two functions pfg and cfg. The first function, pfg, maps a node
n occurring in some flow graph G’ € Gp(G*) to the smallest flow graph of Gp(G*¥)



containing n; and it maps the remaining nodes n of N* to G*, i.e.,

B N{G" € Gp(G*¥) |n € Nodes(G')} if n € Nodes(Gp(G*))
Ply(m)=a { G* otherwise

Similarly, c¢fg maps a node n occurring in a component flow graph of some graph G €
Gp(G*) to the smallest component flow graph containing n; and it maps the remaining
nodes n of N* to G*, i.e.,

B N G € Ge(Gp(G*)) |n € Nodes(G') } it n € CpNodes(Gp(G*))
cfg(n)=q¢ G* otherwise

Both pfg and cfg are well-defined, since par statements in a program are either unrelated
or properly nested.

Finally, for each parallel flow graph G we define an associated ‘sequentialized’ flow
graph G, which results from G by replacing all nodes belonging to a component flow
graph of a graph G’ € GF*(G) together with all edges starting or ending in such a
node by an edge leading from start(G’) to end(G'). Note that Gy, is free of nested
parallel statements: all components of parallel statements are standard nondeterministic
sequential flow graphs (cf. [He|). This is illustrated in Figure 5 and Figure 6, which
show the sequentialized versions of the parallel flow graphs of Figure 1 and Figure 3,
respectively.

Interleaving Predecessors

For a sequential flow graph G, the set of nodes that might dynamically precede a node n
is precisely given by the set of its static predecessors predg(n). For a parallel flow graph,
however, the interleaving of statements of parallel components must be taken into account.
Here, nodes n occurring in a component of some par statement can dynamically be
preceded also by nodes, whose execution may be interleaved with that of n. For example,
in the program of Figure 1 the execution of node 26, whose only static predecessor is node
25, may be interleaved with the execution of the nodes 31, 32, 35, and 36. We denote
these ‘potentially parallel’ nodes as interleaving predecessors. The set of all interleaving
predecessors of a node n € N* is recursively defined by means of the function Predm”g :
N*—P(N*), where P denotes the power set operator and mpe-pfg a function, which
maps a node n € N* to its minimal properly enclosing graph of Gp(G*) U {G*}:

0 if n € N*\CpNodes(Gp(G*))
Pred (n )=ar

CpNodes(mpe-pfg(n))\ Nodes(cfg(n)) U
Predl™ (start(cfg(start(mpe-pfg(n))))) otherwise

where mpe-pfg is defined by:

pfg(start(cfg(n))) if n€ Ny UN%

mpe-pfg(n)=q
pfg(n) otherwise

This is illustrated in Figure 7, which shows the sets of static and interleaving prede-
cessors of the nodes 14 and 32 of Figure 1. We have:

predg-(14)={13} and Pred*9(14)={7,...,11}



Figure 5: The Sequentialized Version G?%, of G*
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G
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Figure 6: {Gyeq |G € Gp(G*) A rank(G) =1} = {G,,,}

and
predg-(32)={31} and Pred*9(32)=1{24,...,30,35,36}
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Figure 7: Static and Interleaving Predecessors

Program Paths of Parallel Programs

It is well-known that the interleaving semantics of a parallel imperative programming
language can be defined via a translation that reduces parallel programs to (much larger)
nondeterministic programs. In this section, we recall the alternative view of [KSV1] to
characterize the node sequences constituting a parallel (program) path, which in spirit
follows the definition of an interprocedural program path as proposed by Sharir and Pnueli
[SP]. They start by interpreting every branch statement purely nondeterministically,
which allows to simply use the definition of finite path as introduced in Section 2.1. This
results in a superset of the set of all interprocedurally valid paths, which they then refine
by means of an additional consistency condition. In our case, we are forced to define our
consistency condition on arbitrary node sequences, as the consideration of interleavings
invalidates the first step. Here, the following notion of well-formedness is important.



Definition 2.1 (G-Well-Formedness)
Let G be a (parallel) flow graph, and p=q (n1,...,n,) be a sequence of nodes. Then p
is G-well-formed if and only if

1. the projection ple,. of p onto G lies in Pg,,, [start(Gseq), end(Geq)]

2. for all node occurrences n; € N of the sequence p there exists a j € {i+1,...,q}
such that

(a) n; € Nk,
(b) n; is the successor of n; on plg,  —and

(c) the sequence (nit1,...,n;-1) is G'-well-formed for all G' € Ge(pfg(ni)).
Now the set of parallel paths is defined as follows.

Definition 2.2 (Parallel Path)
Let G* = (N*, E*,s*,e*) be a parallel flow graph, and p=q (n1,...,n,) be a sequence of
nodes of N*. Then:

1. p s a parallel path from s* to e* if and only if p is G*-well-formed.

2. p 1is a parallel path from n; to n, i it is a subpath of some parallel path from s*
to e*.

PP [m,n| denotes the set of all parallel paths from m to n, and PPg-[m,n[ the set
of all parallel paths from m to a (static or interleaving) predecessor of n, defined by

PPg-[m,n[=4 {(n1,...,nq) | (M1, ...,ng,ng+1) € PPg-[m,n|}

2.2 Data Flow Analysis

Data flow analysis (DFA) is the prerequisite of almost any performance improving pro-
gram transformation used by ‘optimizing’ compilers to generate efficient object code (cf.
[He, MJ]). For imperative languages, DFA provides information about the program states
that may occur at some given program points during execution. Theoretically well-
founded are DFAs that are based on abstract interpretation (cf. [CC, Ma]). The point
of this approach is to replace the “full” semantics by a simpler more abstract version,
which is tailored to deal with a specific problem. In the sequential setting, the abstract
semantics is usually specified by a local semantic functional, which gives abstract meaning
to every program statement in terms of a transformation function on a complete lattice
(C,m,C, L, T) with least element L and greatest element T, whose elements express the
DFA-information of interest.* In our framework this carries over to the parallel setting,
i.e., as for a sequential program, a DFA for a parallel program is completely specified by
means of a local semantic functional

[]:N"—=(C—C)

which gives abstract meaning to every node n of a parallel flow graph G* in terms of a
function on a complette lattice C.

“In the following C will always denote a complete lattice.



In order to define the solution of a DFA-problem, it is important that a local se-
mantic functional can easily be extended to cover also parallel paths. For every path
p=(ny,...,ny) € PPg[m,nl|, we define:

[p]= Ide if p=e¢
PI= [(ng,...,ng)Jolni] otherwise

where Ide denotes the identity on C. This extension is the key for defining the solution
of the parallel version of the meet over all paths (MOP) approach in the sense of Kam
and Ullman [KU], which specifies the intuitively desired solution of a DFA-problem. The
MOP-approach (in the parallel setting the PMOP-approach) directly mimics possible
program executions in that it “meets” (intersects) all informations belonging to a program
path reaching the program point under consideration.

The PMOP-Solution:

Vn € N* Ve € C. PMOP - p(n)(co) =IT{[p](co) |p € PPg:[s*,n[}

Obviously, this directly reflects our desires, but is in general not effective. However, as we
will see in the next section, for bitvector problems there exists an elegant and efficient way
for computing the PMOP-solution by means of a fixed point computation. We therefore
recall the essentials of bitvector analyses allowing our efficient fixed point approach.

2.3 Bitvector Analyses

Unidirectional bitvector problems are characterized by the simplicity of their local seman-
tic functional
[]:N"—(B—B)

which specifies the effect of a node n on a particular component of the bitvector (see
Section 3.5 for illustration). Here B is the lattice ({ff,#t},M,C) of Boolean truth values
with ff C ¢t and the logical ‘and’ as meet operation T, or its dual counterpart with
tt C ff and the logical ‘or’ as meet operation [1.

Despite their simplicity, unidirectional bitvector problems are highly relevant in prac-
tice because of their broad scope of applications ranging from simple analyses like liveness,
availability, very business, reaching definitions, and definition-use chains to more sophis-
ticated and powerful program optimizations like code motion, strength reduction, partial
dead code elimination, and assignment motion.

Next we are going to show, how to optimize the effort for computing the PMOP-
solution of bitvector problems. This requires the consideration of the semantic domain
Fp consisting of the monotonic Boolean functions B — B. Obviously, we have:

Proposition 2.3 1. Fp simply consists of the constant functions Consty,, and Constg,
together with the identity Idg on B.

2. Fg, together with the pointwise ordering between functions, forms a complete lattice
with least element Consty and greatest element Consty, which s closed under
function composition.

10



3. All functions of Fp are distributive.

The key to the efficient computation of the ‘interleaving effect’ is based on the following
simple observation, which pinpoints the specific nature of a domain of functions that only
consists of constant functions and the identity on an arbitrary set M.

Lemma 2.4 (Main-Lemma)
Let f;: Fs—Fr, 1 <i<gq, q € IN, be functions from Fg to Fr. Then we have:

Ik e{l,....q}. fyo...0ofsofi=fu ANVjE{k+1,. .. .q} f;=1Ids

Interference

The relevance of Main Lemma 2.4 for bitvector problems is that it restricts the way of
possible interference within a parallel program: each possible interference is due to a single
statement within a parallel component. Combining this observation with the fact that for
m € Pred*%(n), there exists a parallel path leading to n whose last step requires the
execution of m, we obtain that the potential of interference, which in general would be
given in terms of paths, is fully characterized by the set Predm”g (n). In fact, considering
the computation of universal properties that are described by maximal fixed points (the
computation of minimal fixed points requires the dual argument), the obvious existence of
a path to n that does not require the execution of any statement of Pred” “(n) implies
that the only effect of interference is ‘destruction’. This is reflected in the definition of
the following predicate:

NonDestructed : N* — B defined by
Vn € N*. NonDestructed(n)=q4 N{[m](tt) | m € Predm”g( )}

Intuitively, NonDestructed(n)=tt indicates that no node of a parallel component de-
stroys the property under consideration, i.e. [m] # Consty for all m € Predm”g( ).
Note that only the constant function given by the precomputed value of this predicate
is used in Definition 2.7 to model interference, and in fact, Theorem 2.8 guarantees that
this modelling is sufficient. Obviously, this predicate is easily and efficiently computable.
Algorithm A.1 computes it as a side result.

Synchronization

Besides taking care of possible interference, we also need to take care of the synchro-
nization required by nodes in N%: in order to leave a parallel statement, all parallel
components are required to terminate. The information that is necessary to model this
effect can be computed by a hierarchical algorithm that only considers purely sequential
programs. The central idea coincides with that of interprocedural analysis [KS]: we need
to compute the effect of complete subgraphs, or in this case of complete parallel com-
ponents. This information is computed in an ‘innermost’ fashion and then propagated
to the next surrounding parallel statement. The complete three-step procedure is given
below:

1. Terminate, if G does not contain any parallel statement. Otherwise, select succes-
sively all maximal flow graphs G’ occurring in a graph of Gp(G) that do not contain

11



any parallel statement, and determine the effect [ G'] of this (purely sequential)
graph according to the equational system?®

| Ide if n=start(G")
[n] = { [H{[m] o[m]|m € predg(n)}  otherwise

2. Compute the effect [ G"]" of the innermost parallel statements G” of G by

Consty if 3G" € Ge(G"). [ en
I1G"T =< Ids if VG’ € Ge(G"). [ en
Consty otherwise

(G") | = Consty

d
d(G") ] = Ids

3. Transform G by replacing all innermost parallel statements G" = (N", E",s", e")
by ({s”",e"},{(s",€e")},s",€"), and replace the local semantics of s” and e” by
Ids 1T H{[n]| n€ N"} and [G"]", respectively. Continue with step 1.

In essence, this three-step algorithm is a straightforward hierarchical adaptation of the
functional version of the mazimal fized point (MFP) approach in the sense of Kam and
Ullman [KU] to the parallel setting (cf. [SP]). Details can be found in [KSV1]. Here
we only consider the second step realizing the synchronization at nodes in N% in more

detail. Central is the following lemma, which can be proved by means of Main Lemma
2.4.

Lemma 2.5 The PMOP-solution of a parallel flow graph G that only consists of purely
sequential parallel components G+, ..., Gy is given by:

Consty if 31 <i <k.[end(G;)]]=Constyg
PMOP ¢ y(end(G)) = { Ids ~ if V1 <i<k. [ end(G;)]=1Idg
Const;; otherwise

The point here is that a single statement is responsible for the entire effect of a path. Thus,
the effect of each complete path through a parallel statement is already given by some path
through one of the parallel components (the one containing the vital statement). Thus,
in order to model the effect (or PMOP-solution) of a parallel statement, it is sufficient to
combine the effects of all paths local to the components. By means of this fact, which is
formalized in Lemma 2.5, we can prove (cf. [KSV1]):

Theorem 2.6 (The Hierarchical Coincidence Theorem)
Let G € Gp(G*) be a parallel flow graph, and | | : N* — Fp a local semantic functional.
Then we have:

PMOP(g p(end(G) =[G '

After this hierarchical preprocess the following equation system is the key for character-
izing the PMOP-solution of a unidirectional bitvector problem algorithmically:

Note that the local semantic functional [ ]' of G’ is known, whenever this step is executed.

12



Definition 2.7 The functional [ ]| : N*— Fp is defined as the greatest solution of the
equation system given by:

Ids if n=s*

I]In]]] = ﬂ[pfg(n) ]]]* o I]I start(pfg(n)) ]]] M COHStNonDestructed(n) Zf n e N;(

[H{[m]o[m]|m € predg-(n)} Const NonDestructed(n)  Otherwise

In analogy to the MFP-solution of Kam and Ullman [KU] for the sequential setting, we
can now define the PMFPgy -solution of unidirectional bitvector problems for the parallel
setting:

The PMFPgy-Solution:
PMFPBV(G*’[ K N* — Fg defined by Vne N*VbeB. PMFPBV(G*’[ ]])(n)(b) = I]I n]]](b)

As for the sequential setting, the practical relevance of the PMFPgy -solution stems from
the fact that it can efficiently be computed (a generic Algorithm A.1 is given in Appendix
A). Moreover, it coincides with the desired PMOP-solution (cf. [KSV1]).

Theorem 2.8 (The Parallel Bitvector Coincidence Theorem)

Let G*=(N*, E*,s*,e*) be a parallel flow graph, and [ | : N*— F a local semantic
functional. Then we have that the PMOP-solution and the PMFPpgy -solution coincide,
1.e.,

Vne N*. PMOP(G*7[ ]])(n) = PMFPBV(G*,[[ ]])(n)

3 Optimal Code Motion

In this section we demonstrate the practicality and elegance of the framework of Section 2
by constructing a code motion algorithm for parallel programs, which places the compu-
tations of a parallel program computationally optimally. This algorithm, which is unique
in achieving this optimality result, evolves from extending the busy code motion (BCM)
transformation of [KRS1, KRS2] to the parallel setting.

Intuitively, code motion improves the efficiency of a program by avoiding unnecessary
recomputations of values at runtime. This is achieved by replacing the original computa-
tions of a program by temporaries that are initialized at suitable program points. In order
to preserve the semantics of the argument program, code motion must be admissible, i.e.,
it must be correct and safe. Intuitively, ‘correct’ means that the temporaries are properly
initialized, i.e., they always represent the same value as the computation they replace;
‘safe’ means that no computations of new values on paths are introduced. For sequential
programs it is well-known that under these requirements computationally optimal results
can be obtained, i.e., results where the number of computations on each program path
cannot be reduced anymore by means of admissible code motion. The central idea to ob-
tain computational optimality is to place computations as early as possible in a program,
while maintaining admissibility (cf. [Dh1l, Dh2, DS1, DS2, DRZ, KRS1, KRS2, MR]). As
we are going to show here, the same strategy applies to parallel programs (cf. Theorem

13



3.5). Moreover, the transformation we develop has the same simple structure as its under-
lying algorithm for sequential programs: Like the BCM-transformation, it is composed
of only two uni-directional bitvector data flow analyses.

Local Predicates

The definition of the BCMpp-transformation is based on two local predicates Transp and
Comp defined for every node n € N*. Intuitively, they indicate whether ¢ is modified
or computed by the assignment of node n, respectively.b

e Transp (n): n is transparent for t, i.e., n does not modify an operand of ¢.

e Comp(n): n is a computation of t,i.e., n contains an occurrence of t.

‘Recursive’ assignments: Assignments whose left hand side variable occurs in its right
hand side term ¢ use and modify ¢, a property, which cannot be distinguished from a
simple use in our abstract domain. While this distinction is unnecessary in the sequential
setting, it is vital in the parallel setting because of interference. We therefore consider
recursive assignments x:= 1t in parallel statements implicitely as being decomposed into
sequences x;:=1; x:= x4, where x; is a new variable: rather than changing the argument
program, this implicit decomposition is realized by associating two semantic functions with
recursive assignments (in parallel components) (cf. Section 3.5).

Conventions

In order to obtain concise notations we introduce the following abbreviations. Given
a parallel path p=(ny,...,n,) of G* and an index 1 < ¢ < A,, p; denotes the i-
th component of p. Additionally, pli,j] and pi,j[, i, 7 < A, denote the subpaths
(ni,...,n;) and (n;,...,nj_1) of p, respectively. Moreover, if Predicate is a predicate
defined on nodes and p is a path, we define:

o Predicate”(p) <= 4 V1 <i <\, Predicate(p;)

o Predicate?(p) <= 4 31 < i < \,. Predicate(p;)

Note that the formulas —Predicate”(p) and —Predicate®(p) are then abbreviations of the
formulas 31 <i < \,. = Predicate(p;) and V1 <i < \,. =Predicate(p;), respectively.

3.1 Code Motion

Intuitively, a code motion transformation CM for a fixed program term ¢ is characterized
by the following three-step procedure: (1) Declare a new temporary h in the program
G* under consideration, (2) insert assignments of the form h:=1¢ at some nodes in G*,
and (3) replace some of the original computations of ¢t in G* by h.

As the declaration of the temporary is common to all code motion transformations,
a code motion transformation CM is completely specified by two predicates Insertcy
and Replaceg,,;, which denote the set of program points where an initialization must be

In [MR] the predicate Comp is called Antloc.
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inserted and an original computation must be replaced. Without loss of generality, we
assume that Replace,, implies Comp. In the following we denote the set of all code
motion transformations with respect to ¢t by CM. Moreover, as in [KRS1] we assume that
all edges leading to a node outside Ny with more than one predecessor has been split by
inserting a synthetic node. Edge splitting is typical for code motion transformations (cf.
[Dh1, Dh2, DS1, KRS1, KRS2]) in order avoid the blocking of the code motion process
by critical edges as illustrated in Appendix B.

3.2 Admissible Code Motion

As mentioned already, an admissible code motion transformation CM preserves the se-
mantics of the argument program, which requires that CM is safe and correct. ‘Safe’
means that on no program path the computation of a new value is introduced by inserting
a computation of t; ‘correct’ means that every replacement of an original computation
of ¢ by h is proper, i.e., that h always represents the same value as ¢. Formally, two
computations of ¢ represent the same wvalue on a path if and only if no operand of ¢
is modified between them. This is reflected in the following definition, which defines
when inserting and replacing a computation of ¢ is safe and correct in a node n € N*,
respectively.

Definition 3.1 (Safety and Correctness)
For all nodes n € N* we define:

1. Safe(n) <=4 Up-Safe(n) vV Down-Safe(n), where

(a) Up-Safe(n) <=g4
Vp € PPg-[s*,n] 3i < \,. Comp (p;) A Transp” (p[i, \p[)

(b) Down-Safe(n) <=4
Vm € {n}UPredp’®(n) Vp € PPg-[m,e*] 3i < \,. Comp (p;) A Transp”(p[1,i[)

2. Let CM € CM. Then:
Correctoy(n) <4 Vp € PPg-[s*,n] i < \,. Insertou (p;) A Transp” (pli, \[)

The predicate for safety is the disjunction of the predicates for up-safety and down-safety.
Intuitively, a node n is up-safe at its entry, if on every program path starting in the start
node s* reaching n there is a computation of ¢ which is not followed by a modification
of t. Analogously, a node n is down-safe at its entry, if on every program path starting in
n or in a node whose execution may be interleaved with that of n, reaching the end node
e* there is a computation of ¢, which is not preceded by a modification of t.” Intuitively,
the replacement of a computation of ¢t by h is correct at a node n, if h and ¢ represent
the same value at n, i.e., if every path from s* to n goes through an initialization site
of h which is not followed by a modification of ¢.

The predicates for safety and correctness are important because they directly induce
the class of admissible code motion transformations which are guaranteed to preserve the
semantics of the argument program.

TUp-safety and down-safety are often called availability and anticipability, respectively (cf. [MR]).
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Definition 3.2 (Admissible Code Motion)
A code motion transformation CM € CM s admissible if and only if for each n € N*
the following two conditions hold:

1. Insertoy(n) = Safe(n)
2. Replacey, (n) = Correctop (n)

We denote the set of all admissible code motion transformations by CM gqm.

3.3 Computationally Optimal Code Motion

A code motion transformation CM € CM agm is computationally better® than a code
motion transformation CM' € CM g4y, if and only if

V p € PPg-[s*, €*]. Comp# (pomr) < Comp# (peu)

where Comp# (pcy) denotes the number of computations of ¢ on path p after applying
the code motion transformation CM, i.e.:

Comp# (pem)=ar | {¢] Insertem(pi)} | + | {i]| Comp (pi) A ~Replacecy, (pi)} |

Analogously to the sequential case, we can now define:

Definition 3.3 (Computationally Optimal Code Motion)

An admissible code motion transformation CM € CM g4p s computationally optimal if
and only if it 1s computationally better than any other admissible code motion transfor-
mation. We denote the set of all computationally optimal code motion transformations

by CM CmpOpt -

Next we are going to specify the BCMpp-transformation, a computationally optimal code
motion transformation for parallel programs. This transformation evolves directly from its
sequential counterpart, the busy code motion transformation of [KRS1, KRS2]. Central is
the notion of ‘earliest’ safe program points, which are required for the as-early-as-possible
placing strategy realized by this transformation.

Definition 3.4 (Earliestness)
A node n € N* 1is earliest, if it satisfies the predicate Farliest defined by

Earliest (n)=q Down-Safe(n) A = Up-Safe(n) A

tt if n=s*

V —(Transp (m) A Safe(m)) otherwise
mepredgx (n)

8Note that this relation is reflexive. In fact, computationally at least as good would be the more precise
but uglier term.
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Intuitively, n is earliest (for t), if it is

e down-safe, i.e., if the value of ¢ is computed on every continuation of a program
execution leaving n and reaching the end node,

e not up-safe, i.e., if the value of t is not already available at n, and if it is

e cither the start node s*, or if the placement of ¢ in some of n’s predecessors
would not be safe (it would introduce a new value on some path) or would not be
transparent due to a modification of one of t’s operands (a computation there would
not yield the same value as in n).

The BCMpp-Transformation

Table 1 now shows the specification of the BCMpp-transformation:

o Vn e N*. Insertgom,, (n)=q Earliest (n)

o Vn € N*. Replaceypy,,, (n)=4 Comp (n) A Safe(n)

Table 1: The BCMpp-Transformation

Intuitively, the BCM pp-transformation moves computations as far as possible in the oppo-
site direction of the control flow while maintaining admissibility. Thus, like its sequential
counterpart, also the BCMpp-transformation realizes the as-early-as-possible strategy for
placing the computations in a program.

Following the lines of [KRS1, KRS2] we can prove the main result of this section:

Theorem 3.5 (BCMpp-Optimality Theorem)
The BCMpp-transformation is computationally optimal, i.e., BCMpp € CM cmpopt-

3.4 The Impact of Synchronization and Interference

In the sequential setting earliestness and the replacement condition for a node n are
equivalently defined by (cf. [KRS2])

tt if n=s*

Safe(n) A ‘ (1)
v =(Transp (m) A Safe(m)) otherwise

mepredg=(n)

and
Comp (n) (2)

In the parallel setting, however, these equivalences do not hold. The synchronization on
leaving parallel statements necessitates the refinement of the earliestness definition, and
the interference between parallel components requires the strengthening of the replace-
ment condition.

Earliestness: Condition (1) reflects two constraints that must intuitively be satisfied by
an earliest admissible placement:
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e A temporary should at most be initialized at program sites where (i) it does not
introduce the computation of a new value, and where (ii) an ‘earlier’ placement is
hindered by some predecessor.

In the sequential setting the formulation of the safety requirement and the disjunction
over properties of the predecessors can be strengthened to down-safety and a conjunction
over those properties without affecting the meaning of the overall property:

Down-Safe(n) A N\ —(Transp (m) A Safe(m)) (3)

méepredg=(n)

While the second strengthening is essentially a consequence of some edge splitting, which
is typical for code motion transformations (cf. Appendix B), the first strengthening reflects
an additional constraint that must intuitively be satisfied by a computationally optimal
placement:

e A temporary should at most be initialized at program sites where (iii) the value un-
der consideration is not available, but (iv) required on every program continuation.

Remembering that up-safety means availability of the considered value, earliest program
points should never be up-safe. In fact, this requirement is an absolute must for a com-
putationally optimal placement, and it is naturally implied in the sequential case.

Unfortunately, in the parallel flow graph setting these strengthenings have a semantical
impact, because of the synchronization that takes place at the nodes of N%. This can be
illustrated by means of node 33 and node 17 in Figure 14.

Node 33 is safe (even up-safe), and has a predecessor that is not safe (node 32). Thus
it satisfies the weakest formulation of earliest. However, node 33 is not down-safe and it
has a predecessor, which is safe and transparent (node 30). Thus it does not satisfy any of
the strengthened versions. Node 17 illustrates that the condition on up-safety for earliest
program points must explicitly be stated for the parallel setting. Though this node is
down-safe and one of its predecessors (node 11) violates safety, it is up-safe. The point
here is that a single component of a parallel statement is already sufficient to establish
up-safety (availability) at its synchronization node. Thus the value of a + b is available
at node 17 and therefore, it cannot be the initialization site of a computationally optimal
placement.

Replacement: Also the definition of the replacement predicate is more intricate in the
parallel setting, where it does not suffice to simply use Comp (n) (cf. condition (2)): In
the sequential setting the predicate Comp implies the predicate Down-Safe and thus the
predicate Safe. As a consequence all paths reaching a node satisfying Comp are guaran-
teed to go through an ‘earliest’ program point with an initialization of the corresponding
temporary that is not followed by a modification of one of the operands of the computation
under consideration. Unfortunately, this does not work for nodes of parallel statements,
because of interference. See nodes 8 and 10 of Figure 2 for illustration: Though every
program execution reaching node 8 or node 10 goes through the initialization site of h
at node 2, there are some program executions where this initialization is followed by the
modification of a in node 13 before the execution under consideration reaches the use
sites at node 8 and 10. In other words, for nodes n occurring in a parallel statement the
implication Comp (n) = Down-Safe(n) is invalid, whenever an interleaving predecessor
of n modifies the computation under consideration.
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3.5 Computing Up-Safety and Down-Safety

In order to complete the presentation of the BCMpp-transformation, it is sufficient to
specify the local semantic functionals | |,, and [ ], for up-safety and down-safety. The
DFA-algorithms they induce compute the set of up-safe and down-safe program points of

a given argument program, respectively. The functionality of [ ],, and [ ],, is given by

[[ ]]us’ [[ ]]ds : N*—>(B—>B)
and they are defined as follows:”

Consty if Transp (n) A Comp (n)
Vne N [n], =« lds it Transp(n) A =Comp (n)
Constg otherwise

Consty if Comp (n)
Vne N [n],=aq < lds it =Comp (n) A Transp (n)
Constg otherwise

In the literature these definitions are usually given in the following equivalent form:
Vne N*VbeB. [n], )=V Comp(n)) A Transp (n)

and
Vne N*VbeB. [n],(b)=Comp(n)V (Transp(n) A b)

Remember that our implicit decomposition associates recursive assignments in parallel
statements with two local semantic functions, as illustrated in Figures 8 and 11.

3.6 Discussing the Motivating Example

In this section we discuss the BCMpp-transformation by means of the motivating example
of Figure 1. First, we illustrate the hierarchical preprocesses for computing the sets of up-
safe and down-safe program points. Subsequently, we illustrate the induced sets of earliest
program points and of safe program points containing an original computation, which fix
the insertion and the replacement points of the BCMpp-transformation, respectively.

The Hierarchical Preprocesses for Up-Safety and Down-Safety

Figures 8, 9, and 10 illustrate the hierarchical preprocess computing the semantics of
the subgraphs G € Gp(G*) for the predicate up-safe. Figure 8 shows the flow graph
of Figure 1 enhanced with the local semantic functions for up-safety with respect to the
computation a + b. The hierarchical preprocess computes in the first step the semantics
of all par statements of rank 0 of G* as illustrated in Figure 9. These results are then
used for computing the semantics of the single par statement of rank 1 of G*, which is
shown in Figure 10.

Subsequently, Figures 11, 12, and 13 illustrate the hierarchical preprocess of the down-
safety analysis.

9Note that up-safety requires a forward analysis of the argument program, whereas down-safety re-
quires a backward analysis.
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23

24| | 31

Figure 8: G* with the Local Semantic Functional for Up-Safety | |, wrt a +0b

The Effect of the BCMpp-Transformation

After the hierarchical preprocesses for computing the semantics of all subgraphs G €
Gp(G*) with respect to up-safety and down-safety, the PMFPgy -solution for both prop-
erties can be computed essentially as in the sequential case. It is worth noting here that
both the preprocesses and the subsequent analyses for up-safety and down-safety are in-
dependent of each other. Thus, they can be computed in parallel in order to further speed
up the complete analysis process. Figure 14 displays the result of computing the set of
up-safe and down-safe program points based on the results of the preprocesses. Moreover,
it shows the set of earliest program points, where a temporary h must be initialized with
the value of a+ b, and the set of program points, where an original computation of a+ b
must be replaced. This results in the promised program of Figure 2, for which it is easy
to check that it is indeed computationally optimal.
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Figure 9: Up-Safety: After the 1°¢ Iteration of the Outermost For-Loop of GLOBEFF

= Consty

% -

harmful( G )=tt
1
seq

Figure 10: Up-Safety: After the 2" Iteration of the Outermost For-Loop of GLOBEFF

4 Conclusions

In [KSV1] we have recently shown how to perform unidirectional bitvector analyses for
parallel programs as efficiently as for sequential ones. Moreover, the analyses can easily
be adapted from their sequential counterparts. This is highly relevant in practice because
there is a broad variety of powerful classical program optimizations like code motion
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24| | 31

= Constff

Figure 11: G* with the Local Semantic Functional for Down-Safety [ ], wrt a +b

[DS2, DRZ, KRS1, KRS2|, strength reduction [KRS3], partial dead code elimination
[KRS4], and assignment motion [KRS5], which only require bitvector analyses of this
type. All these techniques can now be adapted for parallel programs at almost no cost
on the runtime and the implementation side. In this paper we demonstrated this by
extending the busy code motion transformation of [KRS1, KRS2] to the parallel setting,
which led to a computationally optimal code motion algorithm for parallel programs. The
algorithm is implemented on the Fizpoint Analysis Machine of [SCKKM]. Moreover, the
‘lazy’ variant (cf. [KRS1, KRS2]) of this algorithm is implemented in the ESPRIT project
COMPARE #5933 [Vol, Vo2.
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A Computing the PMFPgy-Solution
Algorithm A.1 (Computing the PMFPg,-Solution)

Input: A parallel flow graph G* = (N*, E*,s*,e*), a local semantic functional | ] :
N*— Fg, a function fiu € Fg and a Boolean value byn;y € B, where fini and by
reflect the assumptions on the context in which the procedure under consideration is called.
Usually, fini and by, are given by Idg and ff, respectively.

Output: An annotation of G* with functions [ G]" € Fs, G € Gp(G*), representing
the semantic functions computed in step 2 of the three-step procedure of Section 2.3, and
with functions [n] € Fs, n € N*, representing the greatest solution of the equation
system of Definition 2.7. In fact, after the termination of the algorithm the functional

[T satisfies:
Vn e N*. [n]=PMFPgy - )(n) =PMOP¢- [ 1)(n)

Remark: The global variables [G]", G € U{Gc(G")|G" € Gp(G*)}, each of which
s storing a function of Fg, are used for storing the global effects of component graphs
of graphs G' € Gp(G*) during the hierarchical computation of the PMFPpgy -solution.
The global variables harmful(Gseq), G € U{Gc(G") |G € Gp(G*)}, store whether G
contains a node n with [n] = Consty. These variables are used to compute the value of
the predicate NonDestructed of Section 2.5.
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BEGIN
( Synchronization: Computing [ G]* for all G € Gp(G*))
GLOBEFF(G*,[ ]);

( Interleaving: Computing the PMFPgy -Solution [n] for all n € N*)
PMFPBV(G*a [[ ]]7 finit: bznzt)
END.

where

PROCEDURE GLOBEFF (G = (N, E,s,e) : Parallel FlowGraph;
[1:N—Fg : Local SemanticFunctional);
VAR i : integer;
BEGIN
FOR i:=0 TO rank(G) DO
FORALL G' € {G"|G" € Gp(G) A rank(G")=1i} DO
FORALL G" € {G”,|G" € Gc(G")} where G" = (N",E",s",e") DO

seq

IdB M COTLStVGEQC(l’fg(n)). —harmful(G) Zf n e NX’
LET Vne N". [n]" =< [pfen) ] if n € N%
[n] otherwise

BEGIN

harmful(G"):= (| {n € N"|[n]" = Consty }| > 1)
MFP(G",[ 1", Idg);
[1G"T =] end(G") ]

END
OD;
{ Constg if 3G" € Ge(G'). [ end(GY,,) | = Consty
I]IG, ]]]* = ldg Zf VG" € gc(G’) I]I end(G’s'eq) ]]] = Idg
Consty otherwise
oD
oD
END.

PROCEDURE PMFPpy (G = (N, E,s,e) : ParallelFlowGraph;

[ ]: N—=Fg : LocalSemanticFunctional;
fstart : fB;
harmful : B);
VAR [ : Fg;
BEGIN
IF harmful THEN FORALL ne€ N DO [n]:= Constyg OD
ELSE
( Initialization of the annotation arrays [[ ] and the variable workset )

FORALL n € Nodes(Ggeq)\{s} DO [n]:= Const, OD;

I][S]]] = fstart; -
workset = {n € Nodes(Gyeq) | n € Ny U{s} V [n]= Consty };
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( Iterative fized point computation )
WHILE workset # () DO
LET n € workset
BEGIN
workset := workset\{ n };
IF n € N\Nj
THEN

f=Tnleolnl;
FORALL m € succg(n) DO
IF [m] O3 f THEN [m]:= f; workset := workset U{m } FI

oD
ELSE
FORALL G’ € Ge(pfg(n)) DO
PMFPs (G [ 1,[n], )y harmful(G")) OD;

G"€Ge(pfg(n))\{G'}
fi=Mpfgm) "o n];
IF [ end(pfg(n)) 13 f
THEN
[ end(pfg(n)) 1= f;
workset :== workset U{ end(pfg(n)) } FI
FI
END
oD
FI
END.

PROCEDURE MFP (G = (N, E,s,e) : Sequential FlowGraph;
[ 1: N—Fs : Local SemanticFunctional;
fstart : ]:B);
VAR f: Fg;
BEGIN
(Initialization of the annotation array gtr and the variable workset )
FORALL n € N\{s} DO [n]:= Const; OD;
I]I S ]]] = fstart;
workset = {n|n=sV [n]= Constyg };

(Iterative fixed point computation )
WHILE workset # () DO
LET n € workset

BEGIN
workset := workset\{ n };
f=[n]o[n];

FORALL m € succg(n) DO
IF [m] 2 f THEN [m]:= f;workset:= workset U{m } FI OD
END
oD
END.
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Let ﬂ[n]ﬂalg, n € N*, denote the final values of the corresponding variables after the
termination of Algorithm A.1, and [[n], n € N*, the greatest solution of the equation
system of Definition 2.7, then we have:

Theorem A.2 Vne N*. [n],, =[n]

B Critical Edges

It is well-known that in order to exploit the full power of code motion, critical edges,
i.e., edges leading from nodes with more than one successor to nodes with more than one
predecessor must be removed in the argument flow graph as it is illustrated by the simple
example of Figure 15.

Figure 15: Critical Edges

Note that in Figure 15(a) the computation of “a+0b" at node 3 is partially redundant
with respect to the computation of “a+b” at node 1. However, this partial redundancy
cannot safely be eliminated by moving the computation of “a+b" to its preceding nodes,
because this may introduce a new computation on a path leaving node 2 on the right
branch. On the other hand, it can safely be eliminated after inserting a synthetic node 4
in the critical edge (2,3) as illustrated in Figure 15(b).

In this paper we thus assume that all edges in G* leading to a node with more than
one predecessor, except for edges leading to a node of N%, have been split by inserting a
synthetic node. Obviously, this simple transformation guarantees that all critical edges are
eliminated. Moreover, as in the sequential setting it simplifies the process of code motion
as computationally optimal programs can be obtained by moving all computations to
node entries (cf. [KRS1]).
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