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Abstract

Code motion is well�known as a powerful technique for the optimization of sequential
programs� It improves the run�time e�ciency by avoiding unnecessary recomputations of
values� and it is even possible to obtain computationally optimal results� i�e�� results where
no program path can be improved any further by means of semantics preserving code mo�
tion� In this paper we present a code motion algorithm that for the �rst time achieves this
optimality result for parallel programs� Fundamental is the framework of �KSV�� showing
how to perform optimal bitvector analyses for parallel programs as easily and as e�ciently
as for sequential ones� Moreover� the analyses can easily be adapted from their sequential
counterparts� This is demonstrated here by constructing a computationally optimal code
motion algorithm for parallel programs by systematically extending its counterpart for
sequential programs� the busy code motion transformation of �KRS�� KRS���
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� Motivation

Parallel languages are of growing interest� as they are more and more supported by modern
hardware environments� However� despite their importance �SHW� SW� WS�� there is
currently very little work on classical analyses and optimizations for parallel programs� In
fact� classical optimization and parallelization are often considered to exclude each other
because naive adaptations of the sequential optimization methods fail �MP�� and their
straightforward correct adaptations have unacceptable costs caused by the interleavings
which manifest the possible executions of a parallel program�

Thus� either heuristics are proposed to avoid the consideration of all the interleavings
�McD�� or restricted situations are considered� which do not require to consider the inter�
leavings at all �GS��� Completely di�erent are approaches that are based on state space
reductions as proposed in �DBDS� CH�� CH�� GW� Va�� This allows general synchroniza�
tion mechanisms� but still requires the investigation of an appropriately reduced version
of the global state space which is often still unmanageable�

In �KSV�� KSV��� however� we have recently shown that for the large class of bitvector
problems� which are most relevant in practice� there is an elegant way out of this dilemma�
We have shown how to construct for unidirectional bitvector problems analysis algorithms
for parallel programs with shared memory and interleaving semantics that

�� optimally cover the phenomenon of interference

�� are as e�cient as their sequential counterparts and

�� easy to implement�

The key for this result was the observation that during unidirectional bitvector analyses
the di�erent interleavings of the executions of parallel components need not be considered�
although they are semantically di�erent� As a consequence� all the well�known bitvec�
tor algorithms for liveness� availability� very business� reaching de�nitions� de�nition�use
chains �cf� �He� can easily be adapted for parallel programs at almost no cost on the
runtime and the implementation side�

In this paper we exploit this for the construction of a code motion algorithm for
parallel programs which for the �rst time achieves computationally optimal placements
of computations for this setting� Intuitively� this means that in the program resulting
from our algorithm there is no program path� on which the number of computations
can be reduced any more by means of semantics preserving code motion� Moreover� this
algorithm is as e�cient as its sequential counterpart� the busy code motion transformation
of �KRS�� KRS��� The power of the new algorithm is illustrated in Figure �� where the
components of parallel statements are separated by parallels� In this example� which is
discussed in full detail in Section ���� our algorithm is unique to obtain the optimization
result of Figure �� It eliminates the partially redundant computations of a � b at the
nodes �� ��� ��� �	� �
� �	� �
� �
 by moving them to the nodes �� �� and ��� but
it does not touch the partially redundant computations of a � b at the nodes 	 and ���
which cannot safely be eliminated�

�In �GS� e�g�� this is achieved by requiring data independence of the parallel components according to
the PCF FORTRAN standard�
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Figure �� The Motivating Example� The Parallel Argument Program G�

Structure of the Paper

In Section � we recall the framework of �KSV�� for unidirectional bitvector analyses of
parallel programs� Based on this framework� we subsequently develop our algorithm for
the computationally optimal placement of computations in parallel programs in Section
�� Section 	� �nally� contains our conclusions� and the Appendix presents the detailed
generic algorithm of �KSV�� for unidirectional bitvector analyses of parallel programs�

� The Parallel Setting

We consider a parallel imperative programming language with interleaving semantics�
Parallelism is syntactically expressed by means of a par statement whose components are
assumed to be executed in parallel on a shared memory� As usual� we assume that there
are neither jumps leading into a component of a par statement from outside nor vice
versa� This setup already introduces the phenomena of interference and synchronization�
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Figure �� The Computationally Optimal Result of the BCMPP �Transformation

and allows us to concentrate on the central features of our approach� which� however�
is not limited to this setting� For example� a replicator statement allowing a dynamical
process creation can be integrated along the lines of �CH�� Vo�� Vo���

��� Parallel Flow Graphs

Similarly to �SHW� and �GS�� we represent a parallel program by a nondeterministic
parallel �ow graph G� � �N�� E�� s�� e� with node set N� and edge set E� as illustrated
in Figure �� Except for subgraphs representing par statements a parallel �ow graph is a
nondeterministic �ow graph as for the representation of a sequential program �cf� �He��
Thus� nodes n � N� represent the statements� edges �m�n � E� the nondeterministic
branching structure of the procedure under consideration� and s� and e� denote the
distinct start node and end node� which are assumed to represent the empty statement
skip and to possess no predecessors and successors� respectively�

A par statement and each of its components are also considered parallel �ow graphs�

�



The graph Gpar representing a complete par statement arises from linking its compo�
nent graphs by means of a ParBegin and a ParEnd node which have the start nodes
and the end nodes of the component graphs as their only successors and predecessors�
respectively� The ParBegin node and the ParEnd node are the unique start node and end
node of Gpar� and are assumed to represent the empty statement skip� They form the
entry and the exit to program regions whose subgraph components are assumed to be
executed in parallel� and thus make the synchronization points in the program explicit�
For clarity we represent ParBegin and ParEnd nodes by ellipses and additionally separate
the corresponding component graphs by two parallels as shown in Figure ��

Moreover� predG��n�df fm j �m�n � E� g and succG��n�df fm j �n�m � E� g
denote the set of all immediate predecessors and successors of a node n � N�� respectively�
A sequence �n�� � � � � nq of nodes such that �nj� nj�� � E� for j � f�� � � � � q � �g is
called a �nite path of G�� Given a �nite path p� �p denotes the length of p� Moreover�
PG��m�n� denotes the set of all �nite paths from m to n� and PG��m�n� the set of
all �nite paths from m to a predecessor of n� As usual� we assume that every node
n � N� lies on a �nite path from s� to e�� It is worth noting that not all �nite paths
of G� represent a proper program execution� This is taken into account by restricting to
parallel paths� which are introduced in De�nition ��� below�

Additionally� GP�G� denotes the set of all subgraphs of G� representing a par state�
ment� In particular�

Gmax
P �G��df fG � GP�G� j �G� � GP�G�� G � G��G � G� g

and
Gmin
P �G��df fG � GP�G� j �G� � GP�G�� G� � G�G� � G g

denote the set of maximal and minimal graphs of GP�G��� Moreover� every �ow graph
G � GP�G� is given a rank that is recursively de�ned by�

rank�G�df

�

 if G � Gmin

P �G�
maxf rank�G� jG� � GP�G� � G� � G g� � otherwise

For illustration see Figure � and Figure 	� which display the set of parallel subgraphs of
rank � and of rank 
 of the parallel �ow graph of Figure ��

Furthermore� for G� � GP�G�� GC�G� denotes the set of component �ow graphs
of G�� which we also consider parallel �ow graphs for notational convenience� Thus� all
subgraphs of G� referred to in the paper are considered parallel �ow graphs� but only
the subgraphs G � GP�G� represent parallel statements� It is worth noting that for
G � GP�G� every component �ow graph G� � GC�G and also G itself is a single�
entry�single�exit region of G��

Moreover� for G� � GP�G�� CpNodes�G��df N
�nfs�� e�g denotes the set of nodes of

its component �ow graphs�� Addititionally� we introduce the following abbreviations for
the sets of start nodes �i�e�� ParBegin nodes and end nodes �i�e�� ParEnd nodes of graphs
of GP�G��

�For parallel �ow graphs G and G� we de�ne� G � G� if and only if N � N � and E � E��
�We use the convention that the node set and the edge set� and the start node and the end node of a

�ow graph carry the same marking as the �ow graph itself� Hence� G and G� stand for the expanded
versions G 	 
N�E� s� e� and G� 	 
N �� E�� s�� e��� respectively�
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N�
N�df f start�G jG � GP�G� g and N�

X�df f end�G jG � GP�G� g

where start and end are functions� which map a �ow graph to its start node and end
node� respectively� Additionally� we need the function Nodes� which maps a �ow graph
to its node set� and two functions pfg and cfg� The �rst function� pfg� maps a node
n occurring in some �ow graph G� � GP�G� to the smallest �ow graph of GP�G�

�



containing n� and it maps the remaining nodes n of N� to G�� i�e��

pfg�n�df

� T
fG� � GP�G� jn � Nodes�G� g if n � Nodes�GP�G�

G� otherwise

Similarly� cfg maps a node n occurring in a component �ow graph of some graph G �
GP�G� to the smallest component �ow graph containing n� and it maps the remaining
nodes n of N� to G�� i�e��

cfg�n�df

� T
fG� � GC�GP�G� jn � Nodes�G� g if n � CpNodes�GP�G�

G� otherwise

Both pfg and cfg are well�de�ned� since par statements in a program are either unrelated
or properly nested�

Finally� for each parallel �ow graph G we de�ne an associated �sequentialized �ow
graph Gseq� which results from G by replacing all nodes belonging to a component �ow
graph of a graph G� � Gmax

P �G together with all edges starting or ending in such a
node by an edge leading from start�G� to end�G�� Note that Gseq is free of nested
parallel statements� all components of parallel statements are standard nondeterministic
sequential �ow graphs �cf� �He�� This is illustrated in Figure � and Figure �� which
show the sequentialized versions of the parallel �ow graphs of Figure � and Figure ��
respectively�

Interleaving Predecessors

For a sequential �ow graph G� the set of nodes that might dynamically precede a node n

is precisely given by the set of its static predecessors predG�n� For a parallel �ow graph�
however� the interleaving of statements of parallel components must be taken into account�
Here� nodes n occurring in a component of some par statement can dynamically be
preceded also by nodes� whose execution may be interleaved with that of n� For example�
in the program of Figure � the execution of node ��� whose only static predecessor is node
��� may be interleaved with the execution of the nodes ��� ��� ��� and ��� We denote
these �potentially parallel nodes as interleaving predecessors� The set of all interleaving
predecessors of a node n � N� is recursively de�ned by means of the function Pred Itlvg

G� �
N��P�N�� where P denotes the power set operator and mpe�pfg a function� which
maps a node n � N� to its minimal properly enclosing graph of GP�G� 	 fG�g�

Pred Itlvg
G� �n�df

������
�����


 if n � N�nCpNodes�GP�G�

CpNodes�mpe�pfg�nnNodes�cfg�n 	

Pred Itlvg
G� �start�cfg�start�mpe�pfg�n otherwise

where mpe�pfg is de�ned by�

mpe�pfg�n�df

���
��

pfg�start�cfg�n if n � N�
N 	N�

X

pfg�n otherwise

This is illustrated in Figure �� which shows the sets of static and interleaving prede�
cessors of the nodes �� and �� of Figure �� We have�

predG���� � f��g and Pred Itlvg
G� ��� � f�� � � � � ��g

�



G*
seq

x := a+b18

x := a+b

1

3 4

5

6

2

17

z := a+b

a := a+b19

20

21

40

39

38

37

Figure �� The Sequentialized Version G�
seq of G�

seq

G
11

21

22

23

33

34

35

36

37

Figure �� fGseq jG � GP�G� � rank�G � �g � fG��seqg

and
predG���� � f��g and Pred Itlvg

G� ��� � f��� � � � � ��� ��� ��g

�



x := a+b

1

3 4

5

6

y := a+b

z := a+b

a := a+b

y := a+b

a := ...

x := a+b

x := a+b

2

7

8

9

10

11

12

13

14

15

16

17

18

z := a+b

Nodes under Consideration Interleaving PredecessorsStatic Predecessors

y := a+b

a := a+b19

20

21

22

23

24

25

26

2728

29

30

31

32

33

34

35

36

37

38

39

40

Figure �� Static and Interleaving Predecessors

Program Paths of Parallel Programs

It is well�known that the interleaving semantics of a parallel imperative programming
language can be de�ned via a translation that reduces parallel programs to �much larger
nondeterministic programs� In this section� we recall the alternative view of �KSV�� to
characterize the node sequences constituting a parallel �program path� which in spirit
follows the de�nition of an interprocedural program path as proposed by Sharir and Pnueli
�SP�� They start by interpreting every branch statement purely nondeterministically�
which allows to simply use the de�nition of �nite path as introduced in Section ���� This
results in a superset of the set of all interprocedurally valid paths� which they then re�ne
by means of an additional consistency condition� In our case� we are forced to de�ne our
consistency condition on arbitrary node sequences� as the consideration of interleavings
invalidates the �rst step� Here� the following notion of well�formedness is important�
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De�nition �� �G�Well�Formedness�
Let G be a �parallel� �ow graph� and p�df �n�� � � � � nq be a sequence of nodes	 Then p

is G�well�formed if and only if


	 the projection p�Gseq
of p onto Gseq lies in PGseq

�start�Gseq� end�Gseq�

�	 for all node occurrences ni � N�
N of the sequence p there exists a j � fi��� � � � � qg

such that

�a� nj � N�
X�

�b� nj is the successor of ni on p�Gseq
and

�c� the sequence �ni��� � � � � nj�� is G��well�formed for all G� � GC�pfg�ni	

Now the set of parallel paths is de�ned as follows�

De�nition �� �Parallel Path�
Let G� � �N�� E�� s�� e� be a parallel �ow graph� and p�df �n�� � � � � nq be a sequence of
nodes of N�	 Then�


	 p is a parallel path from s� to e� if and only if p is G��well�formed	

�	 p is a parallel path from n� to nq if it is a subpath of some parallel path from s�

to e�	

PPG��m�n� denotes the set of all parallel paths from m to n� and PPG� �m�n� the set
of all parallel paths from m to a �static or interleaving� predecessor of n� de�ned by

PPG� �m�n��df f�n�� � � � � nq j �n�� � � � � nq� nq�� � PPG��m�n�g

��� Data Flow Analysis

Data �ow analysis �DFA� is the prerequisite of almost any performance improving pro�
gram transformation used by �optimizing compilers to generate e�cient object code �cf�
�He� MJ�� For imperative languages� DFA provides information about the program states
that may occur at some given program points during execution� Theoretically well�
founded are DFAs that are based on abstract interpretation �cf� �CC� Ma�� The point
of this approach is to replace the !full" semantics by a simpler more abstract version�
which is tailored to deal with a speci�c problem� In the sequential setting� the abstract
semantics is usually speci�ed by a local semantic functional � which gives abstract meaning
to every program statement in terms of a transformation function on a complete lattice
�C�u�v��� with least element � and greatest element � whose elements express the
DFA�information of interest�� In our framework this carries over to the parallel setting�
i�e�� as for a sequential program� a DFA for a parallel program is completely speci�ed by
means of a local semantic functional

�� �� � N�� �C �C

which gives abstract meaning to every node n of a parallel �ow graph G� in terms of a
function on a complette lattice C�

�In the following C will always denote a complete lattice�

�



In order to de�ne the solution of a DFA�problem� it is important that a local se�
mantic functional can easily be extended to cover also parallel paths� For every path
p� �n�� � � � � nq � PPG��m�n�� we de�ne�

�� p �� �df

�
IdC if p � �

�� �n�� � � � � nq �� � �� n� �� otherwise

where IdC denotes the identity on C� This extension is the key for de�ning the solution
of the parallel version of the meet over all paths �MOP � approach in the sense of Kam
and Ullman �KU�� which speci�es the intuitively desired solution of a DFA�problem� The
MOP �approach �in the parallel setting the PMOP �approach directly mimics possible
program executions in that it !meets" �intersects all informations belonging to a program
path reaching the program point under consideration�

The PMOP �Solution�

�n � N� � c� � C� PMOP �G���� 		
�n�c� �u f �� p ���c� j p � PPG��s�� n� g

Obviously� this directly re�ects our desires� but is in general not e�ective� However� as we
will see in the next section� for bitvector problems there exists an elegant and e�cient way
for computing the PMOP �solution by means of a �xed point computation� We therefore
recall the essentials of bitvector analyses allowing our e�cient �xed point approach�

��� Bitvector Analyses

Unidirectional bitvector problems are characterized by the simplicity of their local seman�
tic functional

�� �� � N�� �B�B

which speci�es the e�ect of a node n on a particular component of the bitvector �see
Section ��� for illustration� Here B is the lattice �f � ttg�u�v of Boolean truth values
with  v tt and the logical �and as meet operation u� or its dual counterpart with
tt v  and the logical �or as meet operation u�

Despite their simplicity� unidirectional bitvector problems are highly relevant in prac�
tice because of their broad scope of applications ranging from simple analyses like liveness�
availability� very business� reaching de�nitions� and de�nition�use chains to more sophis�
ticated and powerful program optimizations like code motion� strength reduction� partial
dead code elimination� and assignment motion�

Next we are going to show� how to optimize the e�ort for computing the PMOP �
solution of bitvector problems� This requires the consideration of the semantic domain
FB consisting of the monotonic Boolean functions B�B� Obviously� we have�

Proposition �� 
	 FB simply consists of the constant functions Const tt and Const� �
together with the identity IdB on B	

�	 FB� together with the pointwise ordering between functions� forms a complete lattice
with least element Const� and greatest element Const tt � which is closed under
function composition	

�




�	 All functions of FB are distributive	

The key to the e�cient computation of the �interleaving e�ect is based on the following
simple observation� which pinpoints the speci�c nature of a domain of functions that only
consists of constant functions and the identity on an arbitrary set M �

Lemma �� �Main�Lemma�
Let fi � FB�FB� � � i � q� q � IN � be functions from FB to FB	 Then we have�

� k � f�� � � � � qg� fq � � � � � f� � f� � fk � � j � fk � �� � � � � qg� fj � IdB

Interference

The relevance of Main Lemma ��	 for bitvector problems is that it restricts the way of
possible interference within a parallel program� each possible interference is due to a single
statement within a parallel component� Combining this observation with the fact that for
m � Pred Itlvg

G� �n� there exists a parallel path leading to n whose last step requires the
execution of m� we obtain that the potential of interference� which in general would be
given in terms of paths� is fully characterized by the set Pred Itlvg

G� �n� In fact� considering
the computation of universal properties that are described by maximal �xed points �the
computation of minimal �xed points requires the dual argument� the obvious existence of
a path to n that does not require the execution of any statement of Pred Itlvg

G� �n implies
that the only e�ect of interference is �destruction � This is re�ected in the de�nition of
the following predicate�

NonDestructed � N��B de�ned by

�n � N�� NonDestructed�n�df

V
f �� m ���tt j m � Pred Itlvg

G� �n g

Intuitively� NonDestructed�n � tt indicates that no node of a parallel component de�
stroys the property under consideration� i�e� �� m �� �� Const� for all m � Pred Itlvg

G� �n�
Note that only the constant function given by the precomputed value of this predicate
is used in De�nition ��� to model interference� and in fact� Theorem ��� guarantees that
this modelling is su�cient� Obviously� this predicate is easily and e�ciently computable�
Algorithm A�� computes it as a side result�

Synchronization

Besides taking care of possible interference� we also need to take care of the synchro�
nization required by nodes in N�

X � in order to leave a parallel statement� all parallel
components are required to terminate� The information that is necessary to model this
e�ect can be computed by a hierarchical algorithm that only considers purely sequential
programs� The central idea coincides with that of interprocedural analysis �KS�� we need
to compute the e�ect of complete subgraphs� or in this case of complete parallel com�
ponents� This information is computed in an �innermost fashion and then propagated
to the next surrounding parallel statement� The complete three�step procedure is given
below�

�� Terminate� if G does not contain any parallel statement� Otherwise� select succes�
sively all maximal �ow graphs G� occurring in a graph of GP�G that do not contain
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any parallel statement� and determine the e�ect ��� G� ��� of this �purely sequential
graph according to the equational system�

��� n ��� �

�
IdC if n� start�G�
uf�� m ��� � ��� m ��� jm � predG�ng otherwise

�� Compute the e�ect ��� G�� ���� of the innermost parallel statements G�� of G by

��� G�� ���� �

���
��

Const� if �G� � GC�G��� ��� end�G� ��� �Const�
IdB if �G� � GC�G��� ��� end�G� ��� � IdB
Const tt otherwise

�� Transform G by replacing all innermost parallel statements G�� � �N ��� E ��� s��� e��
by �fs��� e��g� f�s��� e��g� s��� e��� and replace the local semantics of s�� and e�� by
IdB uuf �� n �� j n � N ��g and ��� G�� ����� respectively� Continue with step ��

In essence� this three�step algorithm is a straightforward hierarchical adaptation of the
functional version of the maximal �xed point �MFP � approach in the sense of Kam and
Ullman �KU� to the parallel setting �cf� �SP�� Details can be found in �KSV��� Here
we only consider the second step realizing the synchronization at nodes in N�

X in more
detail� Central is the following lemma� which can be proved by means of Main Lemma
��	�

Lemma �� The PMOP �solution of a parallel �ow graph G that only consists of purely
sequential parallel components G�� � � � � Gk is given by�

PMOP �G��� 		
�end�G �

���
��

Const� if � � � i � k� ��� end�Gi ��� �Const�
IdB if � � � i � k� ��� end�Gi ��� � IdB
Const tt otherwise

The point here is that a single statement is responsible for the entire e�ect of a path� Thus�
the e�ect of each complete path through a parallel statement is already given by some path
through one of the parallel components �the one containing the vital statement� Thus�
in order to model the e�ect �or PMOP �solution of a parallel statement� it is su�cient to
combine the e�ects of all paths local to the components� By means of this fact� which is
formalized in Lemma ���� we can prove �cf� �KSV���

Theorem �� �The Hierarchical Coincidence Theorem�
Let G � GP�G� be a parallel �ow graph� and �� �� � N��FB a local semantic functional	
Then we have�

PMOP �G��� 		
�end�G � ��� G ����

After this hierarchical preprocess the following equation system is the key for character�
izing the PMOP �solution of a unidirectional bitvector problem algorithmically�

�Note that the local semantic functional �� ��
�

of G� is known� whenever this step is executed�
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De�nition �� The functional ��� ��� � N��FB is de�ned as the greatest solution of the
equation system given by�

��� n ��� �

��������
�������

IdB if n� s�

��� pfg�n ���� � ��� start�pfg�n ��� u ConstNonDestructed�n
 if n � N�
X

uf �� m �� � ��� m ��� jm � predG��ng u ConstNonDestructed�n
 otherwise

In analogy to the MFP �solution of Kam and Ullman �KU� for the sequential setting� we
can now de�ne the PMFPBV �solution of unidirectional bitvector problems for the parallel
setting�

The PMFPBV �Solution�

PMFPBV �G���� 		
 � N��FB de�ned by �n � N� � b � B� PMFPBV �G���� 		
�n�b � ��� n ����b

As for the sequential setting� the practical relevance of the PMFPBV �solution stems from
the fact that it can e�ciently be computed �a generic Algorithm A�� is given in Appendix
A� Moreover� it coincides with the desired PMOP �solution �cf� �KSV���

Theorem �	 �The Parallel Bitvector Coincidence Theorem�
Let G� � �N�� E�� s�� e� be a parallel �ow graph� and �� �� � N��FB a local semantic
functional	 Then we have that the PMOP �solution and the PMFPBV �solution coincide�
i	e	�

�n � N�� PMOP �G���� 		
�n �PMFPBV �G���� 		
�n

� Optimal Code Motion

In this section we demonstrate the practicality and elegance of the framework of Section �
by constructing a code motion algorithm for parallel programs� which places the compu�
tations of a parallel program computationally optimally� This algorithm� which is unique
in achieving this optimality result� evolves from extending the busy code motion �BCM�
transformation of �KRS�� KRS�� to the parallel setting�

Intuitively� code motion improves the e�ciency of a program by avoiding unnecessary
recomputations of values at runtime� This is achieved by replacing the original computa�
tions of a program by temporaries that are initialized at suitable program points� In order
to preserve the semantics of the argument program� code motion must be admissible� i�e��
it must be correct and safe� Intuitively� �correct means that the temporaries are properly
initialized� i�e�� they always represent the same value as the computation they replace�
�safe means that no computations of new values on paths are introduced� For sequential
programs it is well�known that under these requirements computationally optimal results
can be obtained� i�e�� results where the number of computations on each program path
cannot be reduced anymore by means of admissible code motion� The central idea to ob�
tain computational optimality is to place computations as early as possible in a program�
while maintaining admissibility �cf� �Dh�� Dh�� DS�� DS�� DRZ� KRS�� KRS�� MR�� As
we are going to show here� the same strategy applies to parallel programs �cf� Theorem
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���� Moreover� the transformation we develop has the same simple structure as its under�
lying algorithm for sequential programs� Like the BCM �transformation� it is composed
of only two uni�directional bitvector data �ow analyses�

Local Predicates

The de�nition of the BCMPP �transformation is based on two local predicates Transp and
Comp de�ned for every node n � N�� Intuitively� they indicate whether t is modi�ed
or computed by the assignment of node n� respectively��

� Transp �n� n is transparent for t� i�e�� n does not modify an operand of t�

� Comp �n� n is a computation of t� i�e�� n contains an occurrence of t�

�Recursive� assignments� Assignments whose left hand side variable occurs in its right
hand side term t use and modify t� a property� which cannot be distinguished from a
simple use in our abstract domain� While this distinction is unnecessary in the sequential
setting� it is vital in the parallel setting because of interference� We therefore consider
recursive assignments x �� t in parallel statements implicitely as being decomposed into
sequences xt �� t� x �� xt� where xt is a new variable� rather than changing the argument
program� this implicit decomposition is realized by associating two semantic functions with
recursive assignments �in parallel components �cf� Section ����

Conventions

In order to obtain concise notations we introduce the following abbreviations� Given
a parallel path p� �n�� � � � � nq of G� and an index � � i � �p� pi denotes the i�
th component of p� Additionally� p�i� j� and p�i� j� � i� j � �p� denote the subpaths
�ni� � � � � nj and �ni� � � � � nj�� of p� respectively� Moreover� if Predicate is a predicate
de�ned on nodes and p is a path� we de�ne�

� Predicate��p �� df � � � i � �p� Predicate�pi

� Predicate��p �� df � � � i � �p� Predicate�pi

Note that the formulas �Predicate��p and �Predicate��p are then abbreviations of the
formulas � � � i � �p� �Predicate�pi and � � � i � �p� �Predicate�pi� respectively�

��� Code Motion

Intuitively� a code motion transformation CM for a �xed program term t is characterized
by the following three�step procedure� �� Declare a new temporary h in the program
G� under consideration� �� insert assignments of the form h �� t at some nodes in G��
and �� replace some of the original computations of t in G� by h�

As the declaration of the temporary is common to all code motion transformations�
a code motion transformation CM is completely speci�ed by two predicates InsertCM
and ReplaceCM � which denote the set of program points where an initialization must be

�In �MR� the predicate Comp is called Antloc�
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inserted and an original computation must be replaced� Without loss of generality� we
assume that ReplaceCM implies Comp � In the following we denote the set of all code
motion transformations with respect to t by CM� Moreover� as in �KRS�� we assume that
all edges leading to a node outside N�

X with more than one predecessor has been split by
inserting a synthetic node� Edge splitting is typical for code motion transformations �cf�
�Dh�� Dh�� DS�� KRS�� KRS�� in order avoid the blocking of the code motion process
by critical edges as illustrated in Appendix B�

��� Admissible Code Motion

As mentioned already� an admissible code motion transformation CM preserves the se�
mantics of the argument program� which requires that CM is safe and correct � �Safe 
means that on no program path the computation of a new value is introduced by inserting
a computation of t� �correct means that every replacement of an original computation
of t by h is proper � i�e�� that h always represents the same value as t� Formally� two
computations of t represent the same value on a path if and only if no operand of t

is modi�ed between them� This is re�ected in the following de�nition� which de�nes
when inserting and replacing a computation of t is safe and correct in a node n � N��
respectively�

De�nition �� �Safety and Correctness�
For all nodes n � N� we de�ne�


	 Safe�n ��df Up�Safe�n � Down�Safe�n� where

�a� Up�Safe�n ��df

� p � PPG��s�� n� � i � �p� Comp �pi�Transp
�� p�i� �p� 

�b� Down�Safe�n ��df

�m � fng	Pred Itlvg
G� �n � p � PPG��m� e�� � i � �p� Comp �pi�Transp

�� p��� i� 

�	 Let CM � CM	 Then�
CorrectCM �n ��df � p � PPG��s�� n� � i � �p� InsertCM �pi �Transp

�� p�i� �p� 

The predicate for safety is the disjunction of the predicates for up�safety and down�safety�
Intuitively� a node n is up�safe at its entry� if on every program path starting in the start
node s� reaching n there is a computation of t which is not followed by a modi�cation
of t� Analogously� a node n is down�safe at its entry� if on every program path starting in
n or in a node whose execution may be interleaved with that of n� reaching the end node
e� there is a computation of t� which is not preceded by a modi�cation of t� Intuitively�
the replacement of a computation of t by h is correct at a node n� if h and t represent
the same value at n� i�e�� if every path from s� to n goes through an initialization site
of h which is not followed by a modi�cation of t�

The predicates for safety and correctness are important because they directly induce
the class of admissible code motion transformations which are guaranteed to preserve the
semantics of the argument program�

�Up�safety and down�safety are often called availability and anticipability � respectively 
cf� �MR���
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De�nition �� �Admissible Code Motion�
A code motion transformation CM � CM is admissible if and only if for each n � N�

the following two conditions hold�


	 InsertCM �n � Safe�n

�	 ReplaceCM �n � CorrectCM �n

We denote the set of all admissible code motion transformations by CMAdm 	

��� Computationally Optimal Code Motion

A code motion transformation CM � CMAdm is computationally better � than a code
motion transformation CM � � CMAdm if and only if

� p � PPG��s�� e��� Comp� �pCM  � Comp� �pCM �

where Comp� �pCM  denotes the number of computations of t on path p after applying
the code motion transformation CM � i�e��

Comp� �pCM �df j fi j InsertCM �pig j � j fi jComp �pi��ReplaceCM �pig j

Analogously to the sequential case� we can now de�ne�

De�nition �� �Computationally Optimal Code Motion�
An admissible code motion transformation CM � CMAdm is computationally optimal if
and only if it is computationally better than any other admissible code motion transfor�
mation	 We denote the set of all computationally optimal code motion transformations
by CMCmpOpt 	

Next we are going to specify the BCMPP �transformation� a computationally optimal code
motion transformation for parallel programs� This transformation evolves directly from its
sequential counterpart� the busy code motion transformation of �KRS�� KRS��� Central is
the notion of �earliest safe program points� which are required for the as�early�as�possible
placing strategy realized by this transformation�

De�nition �� �Earliestness�
A node n � N� is earliest� if it satis�es the predicate Earliest de�ned by

Earliest �n�df Down�Safe�n� �Up�Safe�n �

����
���

tt if n� s�

W
m�predG� �n


��Transp �m�Safe�m otherwise

�Note that this relation is re�exive� In fact� computationally at least as good would be the more precise
but uglier term�
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Intuitively� n is earliest �for t� if it is

� down�safe� i�e�� if the value of t is computed on every continuation of a program
execution leaving n and reaching the end node�

� not up�safe� i�e�� if the value of t is not already available at n� and if it is

� either the start node s�� or if the placement of t in some of n s predecessors
would not be safe �it would introduce a new value on some path or would not be
transparent due to a modi�cation of one of t s operands �a computation there would
not yield the same value as in n�

The BCMPP �Transformation

Table � now shows the speci�cation of the BCMPP �transformation�

� �n � N�� InsertBCMPP
�n�df Earliest �n

� �n � N�� ReplaceBCMPP
�n�df Comp �n � Safe�n

Table �� The BCMPP �Transformation

Intuitively� the BCMPP �transformation moves computations as far as possible in the oppo�
site direction of the control �ow while maintaining admissibility� Thus� like its sequential
counterpart� also the BCMPP �transformation realizes the as�early�as�possible strategy for
placing the computations in a program�

Following the lines of �KRS�� KRS�� we can prove the main result of this section�

Theorem �� �BCMPP�Optimality Theorem�
The BCMPP �transformation is computationally optimal� i	e	� BCMPP � CMCmpOpt 	

��� The Impact of Synchronization and Interference

In the sequential setting earliestness and the replacement condition for a node n are
equivalently de�ned by �cf� �KRS��

Safe�n �

����
���

tt if n� s�

W
m�predG� �n


��Transp �m� Safe�m otherwise
��

and
Comp �n ��

In the parallel setting� however� these equivalences do not hold� The synchronization on
leaving parallel statements necessitates the re�nement of the earliestness de�nition� and
the interference between parallel components requires the strengthening of the replace�
ment condition�

Earliestness� Condition �� re�ects two constraints that must intuitively be satis�ed by
an earliest admissible placement�
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� A temporary should at most be initialized at program sites where �i it does not
introduce the computation of a new value� and where �ii an �earlier placement is
hindered by some predecessor�

In the sequential setting the formulation of the safety requirement and the disjunction
over properties of the predecessors can be strengthened to down�safety and a conjunction
over those properties without a�ecting the meaning of the overall property�

Down�Safe�n �
�

m�predG��n


��Transp �m� Safe�m ��

While the second strengthening is essentially a consequence of some edge splitting� which
is typical for code motion transformations �cf� Appendix B� the �rst strengthening re�ects
an additional constraint that must intuitively be satis�ed by a computationally optimal
placement�

� A temporary should at most be initialized at program sites where �iii the value un�
der consideration is not available� but �iv required on every program continuation�

Remembering that up�safety means availability of the considered value� earliest program
points should never be up�safe� In fact� this requirement is an absolute must for a com�
putationally optimal placement� and it is naturally implied in the sequential case�

Unfortunately� in the parallel �ow graph setting these strengthenings have a semantical
impact� because of the synchronization that takes place at the nodes of N�

X � This can be
illustrated by means of node �� and node �� in Figure �	�

Node �� is safe �even up�safe� and has a predecessor that is not safe �node ��� Thus
it satis�es the weakest formulation of earliest� However� node �� is not down�safe and it
has a predecessor� which is safe and transparent �node ��� Thus it does not satisfy any of
the strengthened versions� Node �� illustrates that the condition on up�safety for earliest
program points must explicitly be stated for the parallel setting� Though this node is
down�safe and one of its predecessors �node �� violates safety� it is up�safe� The point
here is that a single component of a parallel statement is already su�cient to establish
up�safety �availability at its synchronization node� Thus the value of a � b is available
at node �� and therefore� it cannot be the initialization site of a computationally optimal
placement�

Replacement� Also the de�nition of the replacement predicate is more intricate in the
parallel setting� where it does not su�ce to simply use Comp �n �cf� condition ��� In
the sequential setting the predicate Comp implies the predicate Down�Safe and thus the
predicate Safe� As a consequence all paths reaching a node satisfying Comp are guaran�
teed to go through an �earliest program point with an initialization of the corresponding
temporary that is not followed by a modi�cation of one of the operands of the computation
under consideration� Unfortunately� this does not work for nodes of parallel statements�
because of interference� See nodes 	 and �� of Figure � for illustration� Though every
program execution reaching node 	 or node �� goes through the initialization site of h
at node �� there are some program executions where this initialization is followed by the
modi�cation of a in node �� before the execution under consideration reaches the use
sites at node 	 and ��� In other words� for nodes n occurring in a parallel statement the
implication Comp �n � Down�Safe�n is invalid� whenever an interleaving predecessor
of n modi�es the computation under consideration�
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��� Computing Up�Safety and Down�Safety

In order to complete the presentation of the BCMPP �transformation� it is su�cient to
specify the local semantic functionals �� ��us and �� ��ds for up�safety and down�safety� The
DFA�algorithms they induce compute the set of up�safe and down�safe program points of
a given argument program� respectively� The functionality of �� ��us and �� ��ds is given by

�� ��us� �� ��ds � N�� �B�B

and they are de�ned as follows��

�n � N�� �� n ��us�df

���
��

Const tt if Transp �n � Comp �n
IdB if Transp �n � �Comp �n
Const� otherwise

�n � N�� �� n ��ds�df

���
��

Const tt if Comp �n
IdB if �Comp �n � Transp �n
Const� otherwise

In the literature these de�nitions are usually given in the following equivalent form�

�n � N� � b � B� �� n ��us�b � �b � Comp �n � Transp �n

and
�n � N� � b � B� �� n ��ds�b �Comp �n � �Transp �n � b

Remember that our implicit decomposition associates recursive assignments in parallel
statements with two local semantic functions� as illustrated in Figures � and ���

��� Discussing the Motivating Example

In this section we discuss the BCMPP �transformation by means of the motivating example
of Figure �� First� we illustrate the hierarchical preprocesses for computing the sets of up�
safe and down�safe program points� Subsequently� we illustrate the induced sets of earliest
program points and of safe program points containing an original computation� which �x
the insertion and the replacement points of the BCMPP �transformation� respectively�

The Hierarchical Preprocesses for Up�Safety and Down�Safety

Figures �� �� and �
 illustrate the hierarchical preprocess computing the semantics of
the subgraphs G � GP�G� for the predicate up�safe� Figure � shows the �ow graph
of Figure � enhanced with the local semantic functions for up�safety with respect to the
computation a � b� The hierarchical preprocess computes in the �rst step the semantics
of all par statements of rank 
 of G� as illustrated in Figure �� These results are then
used for computing the semantics of the single par statement of rank � of G�� which is
shown in Figure �
�

Subsequently� Figures ��� ��� and �� illustrate the hierarchical preprocess of the down�
safety analysis�

	Note that up�safety requires a forward analysis of the argument program� whereas down�safety re�
quires a backward analysis�
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Figure �� G� with the Local Semantic Functional for Up�Safety �� ��us wrt a � b

The E�ect of the BCMPP�Transformation

After the hierarchical preprocesses for computing the semantics of all subgraphs G �
GP�G� with respect to up�safety and down�safety� the PMFPBV �solution for both prop�
erties can be computed essentially as in the sequential case� It is worth noting here that
both the preprocesses and the subsequent analyses for up�safety and down�safety are in�
dependent of each other� Thus� they can be computed in parallel in order to further speed
up the complete analysis process� Figure �	 displays the result of computing the set of
up�safe and down�safe program points based on the results of the preprocesses� Moreover�
it shows the set of earliest program points� where a temporary h must be initialized with
the value of a� b� and the set of program points� where an original computation of a� b

must be replaced� This results in the promised program of Figure �� for which it is easy
to check that it is indeed computationally optimal�
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� Conclusions

In �KSV�� we have recently shown how to perform unidirectional bitvector analyses for
parallel programs as e�ciently as for sequential ones� Moreover� the analyses can easily
be adapted from their sequential counterparts� This is highly relevant in practice because
there is a broad variety of powerful classical program optimizations like code motion
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�DS�� DRZ� KRS�� KRS��� strength reduction �KRS��� partial dead code elimination
�KRS	�� and assignment motion �KRS��� which only require bitvector analyses of this
type� All these techniques can now be adapted for parallel programs at almost no cost
on the runtime and the implementation side� In this paper we demonstrated this by
extending the busy code motion transformation of �KRS�� KRS�� to the parallel setting�
which led to a computationally optimal code motion algorithm for parallel programs� The
algorithm is implemented on the Fixpoint Analysis Machine of �SCKKM�� Moreover� the
�lazy variant �cf� �KRS�� KRS�� of this algorithm is implemented in the ESPRIT project
COMPARE #���� �Vo�� Vo���
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A Computing the PMFPBV �Solution

Algorithm A� �Computing the PMFPBV �Solution�

Input� A parallel �ow graph G� � �N�� E�� s�� e�� a local semantic functional �� �� �
N��FB� a function finit � FB and a Boolean value binit � B� where finit and binit
re�ect the assumptions on the context in which the procedure under consideration is called	
Usually� finit and binit are given by IdB and  � respectively	

Output� An annotation of G� with functions ��� G ���� � FB� G � GP�G�� representing
the semantic functions computed in step � of the three�step procedure of Section �	�� and
with functions ��� n ��� � FB� n � N�� representing the greatest solution of the equation
system of De�nition �	�	 In fact� after the termination of the algorithm the functional
��� ��� satis�es�

�n � N�� ��� n ��� �PMFPBV �G���� 		
�n �PMOP �G���� 		
�n

Remark� The global variables ��� G ����� G �
S
fGC�G� jG� � GP�G� g� each of which

is storing a function of FB� are used for storing the global eects of component graphs
of graphs G� � GP�G� during the hierarchical computation of the PMFPBV �solution	
The global variables harmful�Gseq� G �

S
f GC�G� jG� � GP�G� g� store whether G

contains a node n with �� n �� �Const� 	 These variables are used to compute the value of
the predicate NonDestructed of Section �	�	
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BEGIN
� Synchronization� Computing ��� G ���� for all G � GP�G� �
GLOBEFF�G�� �� ���

� Interleaving� Computing the PMFPBV �Solution ��� n ��� for all n � N� �
PMFPBV �G�� �� ��� finit� binit

END�

where

PROCEDURE GLOBEFF �G � �N�E� s� e � ParallelF lowGraph�
�� �� � N�FB � LocalSemanticFunctional�

VAR i � integer �
BEGIN

FOR i �� 
 TO rank�G DO
FORALL G� � fG�� jG�� � GP�G � rank�G�� � i g DO
FORALL G�� � fG���

seq jG
��� � GC�G�g where G�� � �N ��� E ��� s��� e�� DO

LET �n � N ��� �� n ���� �

���
��

IdB u Const� �G�GC�pfg�n

� �harmful � �G
 if n � N�
N

��� pfg�n ���� if n � N�
X

�� n �� otherwise
BEGIN

harmful�G�� �� � j fn � N �� j �� n ���� � Const� g j � � �
MFP�G��� �� ����� IdB�
��� G�� ���� �� ��� end�G�� ���

END
OD�

��� G� ���� ��

���
��

Const� if �G�� � GC�G�� ��� end�G��
seq ��� �Const�

IdB if �G�� � GC�G�� ��� end�G��
seq ��� � IdB

Const tt otherwise
OD

OD
END�

PROCEDURE PMFPBV �G � �N�E� s� e � ParallelF lowGraph�
�� �� � N�FB � LocalSemanticFunctional�
fstart � FB�
harmful � B�

VAR f � FB�
BEGIN

IF harmful THEN FORALL n � N DO ��� n ��� �� Const� OD
ELSE

� Initialization of the annotation arrays ��� ��� and the variable workset �
FORALL n � Nodes�Gseqnfsg DO ��� n ��� �� Const tt OD�
��� s ��� �� fstart�
workset �� fn � Nodes�Gseq j n � N�

N 	 fsg � �� n �� �Const� g�

��



� Iterative �xed point computation �
WHILE workset �� 
 DO
LET n � workset
BEGIN

workset �� worksetnfn g�
IF n � NnN�

N

THEN
f �� �� n �� � ��� n ����
FORALL m � succG�n DO
IF ��� m ��� � f THEN ��� m ��� �� f �workset �� workset 	fm gFI

OD
ELSE
FORALL G� � GC�pfg�n DO

PMFPBV �G�� �� ��� ��� n ����
P

G���GC�pfg�n

nfG�g
harmful�G��  OD�

f �� ��� pfg�n ���� � ��� n ����
IF ��� end�pfg�n ��� � f

THEN
��� end�pfg�n ��� �� f �
workset �� workset 	f end�pfg�n g FI

FI
END

OD
FI

END�

PROCEDURE MFP �G � �N�E� s� e � SequentialF lowGraph�
�� �� � N�FB � LocalSemanticFunctional�
fstart � FB�

VAR f � FB�
BEGIN

� Initialization of the annotation array gtr and the variable workset �
FORALL n � Nnfsg DO ��� n ��� �� Const tt OD�
��� s ��� �� fstart�
workset �� fn jn� s � �� n �� �Const� g�

� Iterative �xed point computation �
WHILE workset �� 
 DO
LET n � workset
BEGIN

workset �� worksetnfn g�
f �� �� n �� � ��� n ����
FORALL m � succG�n DO
IF ��� m ��� � f THEN ��� m ��� �� f �workset �� workset 	fm gFI OD

END
OD

END�
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Let ��� n ���alg� n � N�� denote the �nal values of the corresponding variables after the
termination of Algorithm A��� and ��� n ���� n � N�� the greatest solution of the equation
system of De�nition ���� then we have�

Theorem A� �n � N�� ��� n ���alg � ��� n ���

B Critical Edges

It is well�known that in order to exploit the full power of code motion� critical edges�
i�e�� edges leading from nodes with more than one successor to nodes with more than one
predecessor must be removed in the argument �ow graph as it is illustrated by the simple
example of Figure ���

x := a+b

b)a)

h := a+b

:= a+bh

hy :=

x := h

y := a+b 33

1 2 1 2
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Figure ��� Critical Edges

Note that in Figure ���a the computation of !a�b" at node � is partially redundant
with respect to the computation of !a� b" at node �� However� this partial redundancy
cannot safely be eliminated by moving the computation of !a�b" to its preceding nodes�
because this may introduce a new computation on a path leaving node � on the right
branch� On the other hand� it can safely be eliminated after inserting a synthetic node �
in the critical edge ��� � as illustrated in Figure ���b�

In this paper we thus assume that all edges in G� leading to a node with more than
one predecessor� except for edges leading to a node of N�

X � have been split by inserting a
synthetic node� Obviously� this simple transformation guarantees that all critical edges are
eliminated� Moreover� as in the sequential setting it simpli�es the process of code motion
as computationally optimal programs can be obtained by moving all computations to
node entries �cf� �KRS���
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