Published in the Proceedings of the IFIP WG 10.3 Working Conference on “Parallel Architectures and Compilation Techniques”,
PAC1T"95, Limassol, Cyprus, June 1995, pages 168-177

Data Flow Analysis of Parallel Programs*

Jirgen Vollmer
Universitat Karlsruhe
Institut fur Programmstrukturen und Datenorganisation
D-76128 Karlsruhe

email: vollmer@ipd.info.uni-karlsruhe.de

Abstract

Data flow analysis is the prerequisite of performing opti-
mizations such as code motion of partial redundant expres-
stons on imperative sequential programs. To apply these
transformations to parallel imperative programs, the no-
tion of data flow must be extended to concurrent programs.
The additional parallel source language features are: shared
memory and nested parallel statements (PAR). The underly-
ing interleaving semantics of the concurrently-executed pro-
cesses result in the so-called state space explosion which on
first appearance prevents the computation of the meet over
all path solution needed for data flow analysis.

For the class of bit-vector data flow problems we can
show that for the computation of the meet over all path so-
lution, not all interleavings are needed. Based on that, we
can give simple data flow equations representing the data
flow effects of the PAR statement. The definition of a paral-
lel control flow graph leads to an efficient extension of Kill-
dal’s algorithm to compute the data flow of a concurrent
program. The time complexity is the same as for analyzing
a “comparable” sequential program.

Keywords: Data flow analysis, parallel languages.

1 Introduction and Motivation

The key tool for attacking the Grand Challenge Problems is
parallelism. Parallel hardware is becoming more available
and cheaper, but to program these devices is still a difficult
task. Hence high-level programming languages are needed
which have enough expressive power to implement parallel
algorithms. But as usual with high-level languages, when
translating them to machine code, some inefficiencies are
introduced by the compiler. Therefore compilers have to
perform so-called optimizations which improve the program.
We may distinguish broadly between two kinds:

e transformations performed on the input language level
such as mapping of SIMD programs to MIMD ma-
chines, remowval of unnecessary synchronization and

*This work has been funded by the ESPRIT project COMPARE,
contract number 5399.

communication, clustering of processes, data placement
etc. and

e transformations performed on the machine language
level, such as common subexpression elimination, con-
stant folding, dead code elimination, code motion etc.

For the rest of this paper we have only the second kind
of optimizing transformations in mind.

Optimizing a program requires analyzing it, and this is
often done by solving data flow equations for the program.
Traditional data flow analysis (DFA) methods [10] are de-
signed for sequential programs. Hence they may fail when
applied to the control flow of parallel programs as shown in
[14]. We give another example showing the problems when
“low level” optimizations such as instruction scheduling are
performed on parallel programs.

1.1 The Problem

Data flow analysis is more or less the estimation of the effects
caused by program statements. This estimation is based
on two things: an abstraction of the information needed
as prerequisite for the optimizing transformation, and the
propagation of the information along the statements of the
source program. The information is usually represented by
the elements of a semi-lattice!. The effect of a single pro-
gram statement is then a function over these semi-lattice
values. One execution of a program (up to the point of con-
sideration) represents an execution path. The propagation
is modeled by applying these functions in the order given
by the statements of such an execution path. Since we are
looking for the “worst case information” (only this guar-
antees that the transformation is correct for all execution
paths leading to this program point) we have to consider
the Meet Over all Paths of these information. [11] formal-
ized this idea and gave an efficient algorithm to compute the
data flow information for all points of a program.

The data flow information of two statement sequences,
without any branches, executed concurrently, is given by
the meet of the information of all interleavings® of the two
sequences. It is clear that this may lead to a “state space ex-
plosion” [5], which makes it, on a very first view, intractable
to compute the data flow information implied by a PAR state-
ment.

1E.g. boolean values for “the information is present or not”.
2The topological sorting of the simple statements from both
sequences.

1.2 Contribution of this Work
Hence we have to ask:

e which data flow information is valid after the PAR state-
ment, and

e which information is valid before each statement in a
process body?

The main contributions of our paper are:

e The lattice-theoretic based data flow framework is ex-
tended to cope with parallel programs. The proposed
extension is valid only for the large class of one-bit
(also known as bit-vector) data flow problems. They
are based on a two-element semi-lattice.

e Simple bit-vector data flow equations are derived rep-
resenting the data flow effects of the PAR statement.

e The Parallel Control Flow Graph is defined and used as
a base for an extension of the well known and efficient
iterative data flow analysis algorithm.

Based on these results, data flow analysis of parallel pro-
grams is possible and efficient. Then traditional optimiza-
tions may be applied to these programs without any restric-
tion.

1.3 Related Work

Current approaches in analyzing the data flow of parallel
programs have either a restricted model of shared memory,
or even disallow it.

[17] investigates the data flow of communicating pro-
cesses, but these do not share memory: processes communi-
cate solely through synchronous channels. [19] describes an
efficient method of computing the Static Single Assignment
Form for explicitly parallel programs with wait clauses. The
parallel sections must be data-independent, except where ex-
plicit synchronization is used. The same is true for [20, 26]
who introduce a Parallel Control Flow Graph and the Par-
allel Precedence Graph which may form the basis of concrete
optimizing algorithms.

[6] presents data flow equations for parallel programs,
both with and without synchronization. But this work is
restricted to PCF FORTRAN programs, which means that
access to shared variables is done only at synchronization
points. For process start and process end a copy in/copy out
semantics is assumed. An intuitive but not formal derivation
of the data flow equations is given, which solve only the
reaching definition problem.

[4] extends abstract interpretation to cope with commu-
nicating sequential processes. The problem there is that
the resulting “state space” explodes. [3] applies abstract in-
terpretation to analysis of parallel programs, but bases the
semantics on a labeled transition system. [5] attacks this
problem using the stubborn set theory [21] which decreases
the state set using some heuristics. Hence the analysis is
accurate for some examples, and less accurate for others.

[23] presents the basic idea of how the number of inter-
leavings may be reduced; the parallel program is represented
by its structure tree. [25] uses ideas of this report to prove
the Hierarchical Coincidence Theorem which is based on a
functional representation [18] of the problem. The full ver-
sion of this paper is available as [24].

2 Machine Model

We assume that other phases of the compiler have done
the more “high-level” transformations already, and hence
our investigation is based on an imperative language with
explicit control flow parallelism, dynamic process creation,
and shared memory. As a computing model we assume a
MIMD (multiple instruction, multiple data) system, where
each process is executed on a separate logical processor.®
Each processor runs independently of each other and has
its own set of registers, which are invisible for other proces-
sors. All processors access a shared memory. The access
to a single memory cell is atomic, i.e. at a given time only
one process may read or write a given cell. We assume an
interleaving semantics for the execution of the program with
respect to the memory accesses.

3 The Sample Language

A simple imperative language will be used in this paper,
which has loops, conditional statements, and a statement
to execute other statements in parallel (explicit control flow
parallelism). Replicators allow dynamic process creation,
and processes share memory.

The PAR statement executes all processes specified by
ProcessBody in parallel and independently. The process ex-
ecuting a PAR statement® is suspended until all child pro-
cesses have terminated. A ProcessBody is a list of state-
ments, which may be replicated. That is: max(UpBound -
LowBound + 1, 0) processes are forked which all execute
the statements following the replicator. Each replicated
process gets its private copy of the replicator variable var,
which has in each replicated process a unique value in the
range [LowBound .. UpBound]. Replicated processes are
also called asynchronous for-all loops in other languages.
All variables can be accessed in each process. No automatic
synchronization is done for the access.

Stmt ::= PAR ProcessBody//"|" END.
ProcessBody ::= [Replicator] Stmt//";".
Replicator ::= "["var":"LowBound TO UpBound"]".
LowBound ;= Expr.

UpBound ::= Expr.

Expr = usual expressions.

X//Y is a list of X’s separated by a Y. [X] stands for an
optional X part.

4 Lattice-Theoretic Background of Data Flow Analysis

This section gives the lattice-theoretic background of data
flow analysis and follows [9]. It may be skipped by the reader
familiar with the notation.

The source program under consideration is represented
as a (sequential) control flow graph®:

Definition 1 A control flow graph is a triple

G = (N,E,no), where N is a finite set of nodes (which
contains a list of simple statements, such as assignments).
E C N x N s a set of ordered edges between these nodes
and no the unique initial node.

3A processor may be implemented via a time sharing system.
4PAR statements may be nested.
5Section 8 defines the parallel version of a control flow graph.

A path from ni to n is a sequence of nodes
ni,na,. .., Nk, such that for 1 <i <k all edges (ni,niy1) €
E. Such a path has length k.

For a node n pred[n](succ[n]) is the set of predecessors
(successors) defined as: pred[n] = {n’' : (n',n) € E}, and
succ[n] = {n' : (n,n) € E}.

All nodes of a control flow graph are reachable from the
initial node, i.e. there is a path from no to each node n.
path[n] is the set of all paths from the initial node to n.
pathln) is the set of paths from no up to all predecessors of
n.

The data flow information is represented as a semi-
lattice:

Definition 2 A semi-lattice (L, M) is a set L with a binary
meet operation M such that for all a,b,c € L the following
holds:

alla = a Idempotent
allb = bMNa Commutative
ann(bMNe) = (aNb)Mc Associative

For two elements a,b € L, we define:

aCb < allb=a
aCb & alb=aanda#b
adb & allb=0b
adb < alb=banda#b

(L, M) has a zero-element L (bottom), if Ve € L : ML =
L and a one-element T (top), if Ve € L:x M T =xz. From
now on we assume that (L,M) has a zero-element, but not
necessary a one-element. We can extend the I operation:

n
(Wzi:zlﬂzgﬂn.ﬂwnwﬁh[w==T
i=1 z€P

A sequence of elements x1,z2,...,xn of L is called a
chain, if V1 <4 < n: x; Axit1. (L,MN) is called bounded
if for all x € L there is a constant b, such that each chain
starting with x has length at most by. If (L,M) is bounded,
we can define for each countably infinite set S of elements
of L: |_|z€S r = limy, oo |_|?:1 x;. Since S 1s bounded, there

1s a number m with ersx ="

i=1%i
How a single program statement transforms, by its sym-
bolic execution, the data flow information valid before its

execution, is described by a transfer function:

Definition 3 Let (L,M) be a bounded semi-lattice. A set
F of functions on L is called an monotone function space
associated with L, if the conditions [M1] — [M4] are satisfied.
If also [M5] is valid, it is called a distributive function space
associated with L.
[M1] All functions f € F are monotone:
Ve,y € L: f(xNy)Cf(z) M f(y). This is equivalent
to: Va,y € L: aCy = f(z)Cf(y).
[M2] There is an identity function id € F with:
Ve € L:id(z) = x.
[M3] F closed under composition: Vf,g€ F: fog€ F.
[MA4] L is the closure of { L} with respect to the M operation
and application of functions in F'.
[M5] All functions are distributive:
Vo,y € L: flxMy) = f(z) N f(y).

A monotone data flow framework is defined as:

Definition 4 A monotone data flow framework is a triple
D = (L,M, F) where (L,N) is a bounded semi-lattice and F
is a monotone function space associated with L. An instance
of a monotone data flow framework is a pair I = (G, M)
where G = (N, E,no) is a control flow graph and M : N —
F is a labeling which maps each node from N onto a function
of F.

If F is a distributive function space, D is called a dis-
tributive data flow framework.

The “maximal (or worst case) information reaching a
program statement” is given by the following

Definition 5

[£
)

pEpath[n

1s called the meet over all path and represents the “mazimal
(or worst case) information reaching a node n of the pro-
gram”. fp is the transfer function of the path p (see below).

5 Properties of Some DFA Frameworks

First we Bgive some properties of bit-vector data flow frame-
works D? which is then generalized to D°. At the end of this
section then we apply these results to the transfer functions
of statements and statement sequences.

5.1 Properties of the Boolean Semi-Lattice

Since we restrict our investigation to the class of bit-vector
data flow problems, we give some general results for the
boolean semi-lattice:

Definition 6 The data flow information of an entity is a
value of the set B (Bool) B = {T,Ll}. For a given binary
meet operation M, LT must hold.

Observation 1: Obviously there are only two different bi-
nary operations which can be the meet operation of a semi-
lattice: A (boolean and) and V (boolean or)®. They are given
as shown in Table 1.

Mm=A Mnm=v
T = TRUE T = FALSE
allb a b aNb a b aVb
T ||TRUE TRUE | TRUE |[FALSE FALSE|FALSE
TRUE FALSE|FALSE||[FALSE TRUE | TRUE
1 ||[FALSE TRUE |FALSE|| TRUE FALSE| TRUE
1 ||[FALSE FALSE|FALSE|| TRUE TRUE | TRUE

FEs
e
'7

Table 1: The boolean meet operations.

Observation 2: There are only four functions B — B: the
two constant functions, the identity, and negation.

use u(T) =T uwl) =T
modify m(T) =1 m(l) =1
identity id(z) ==

negation T =1 T =T

SThe other possible 14 binary operations over B do not have the
required properties, even if some may have an interesting interpreta-
tion such as zor: the data flow information is valid, if it is valid in
exact one path.

Obviously, the negation function is not monotone and not
distributive. The other three are both monotone and dis-
tributive. Often, the constant functions are interpreted, re-
spectively as use, which generates or uses some information,
and modify, which modifies or invalidates it.
We finish this section with:

Observation 3: For any two-element semi-lattice (B,1),
there is exactly one monotone function space FB =def
{u,m,id} associated with B”. It is also distributive. D®¥ =
(B,1, F5) is called the one bit data flow analysis framework.
There are only two interpretations of the meet operation:
the boolean A and V operation, respectively. Their DFA in-
terpretation is: the information valid before a node n must
be valid on all (A) (at least one (V)) path reaching n.

5.2 Properties of the Function Space F°

A slight generalization of the D® DFA framework is D¢, for
which the following lemma obviously holds:

Lemma 1 Let (C,M) be a bounded semi-lattice, and F€ a
set of functions C — C, such that F¢ contains only the iden-
tity function id and for each element ¢ of C its constant
function const. with Y& € C : conste(x) = c. Then FC is a
distributive function space, and the corresponding constant
data flow framework D is distributive.

We consider now “composition chains” of functions f, o
frn—10---0 fi(x) and show some properties. The follow-
ing lemmata helps us to compute the data flow information
which is valid after a PAR statement: if for such a compo-
sition chain a predicate P holds for all € C, then there
is a function f; in it, such that P holds for all z, and all
“following” f;,j > ¢ do not invalidate the predicate.

Lemma 2 Let fi, -, f. € FC and P a predicate over C.
Vo € C: Pfpo fno10-0 fi(x)]
uff

1 <i<n:VYeel: Pfi(z)] and
Vi< j<n:VxeCl:Pfi(fi(x))]

The lemma can be proved using induction over the num-
ber n of functions in the composition chain. The next lemma
is a corollary of the previous one:

Lemma 3 Let f1, -+, fn € FC. Then: 31 <i<n:Vz €
C:fno--ofi(z)=fi(z) andVi<j<mn:f;=id

The next lemmata state that under some circumstances
the order of the functions of a composition chain may be
changed and still return the same value.

Lemma 4 Let fi,..., fn eFC. FromI<i<n:Vrel:
frno faci...0 fi(x) = fi(x), it follows that for an arbitrary
permutation (ki,...,ki—1) of the numbers 1,...,i—1 holds:

.fﬂo.fﬂ—lo"'ofl(x) = fnofn—lo'".fio.fki_1ofki_2o.fk1(z)

Proof (Lemma 4) If f; is a constant function, it returns
the same result for all arguments. Hence the order of the
functions which form the argument of f; is not important.
If f; is the identity function, all other functions must also be
the identity function, otherwise fr o fr—1...0 fi(z) = fi(x)
would not hold for all z. m

"Note: To be a monotone function space associated with B, all
three functions are needed.

The following lemmata state some properties of the value
of composition chains. They answer the question which in-
formation is valid before a statement inside a PAR statement.

Lemma 5 Let f,g € FC. Then for arbitrary x € C:
N f(x) Ng(f(z)) =2 f(x) Ng(x)

Proof (Lemma 5) If g = const. then: M f(z)Ng(f(x)) =
z M f(z)Ng(z).

(§fg =1id then: z N f(z)Ng(f(x)) =zNf(x) =zNf(z)N
g(z). m

Using induction over the number n of functions in the
composition chain we can conclude:

Lemma 6 Let fi,...,fn € F¢. Then for arbitrary x € C:
$|_|f1($) I f2 Of]_($) m ... Tl fnofnfl...0f1($):
M fi(z) N fo(z) ... 1 fr(x)

5.3 Properties of Statement Sequences and Composition
Chains

From now on, we consider only D°. We now connect the
functions to a statement sequence, which represents an exe-
cution path. Then we state properties of the function com-
position chains, if two (or more) statement sequences are
executed in parallel. This is modeled by considering the set
of topological sortings of the statements contained in the
sequences.

Definition 7 Let si,...,s, be simple statements, such
as asstgnments, which are ezecuted in the order p =
(s15...;8n). Let fs, € FC be the transfer function connected

to the statement s;. fp(x) =def fo, © fs,,_, ©...0 fs; (@)
Definition 8 Let s,...,s), and s{,...,s", be simple
statements, which are evecuted in the order p' = (s;...;s):)
and p" = (sY;...;50.,), respectively. TopSorts(p’,p") is the
set of statement sequences which result from a topological
sorting of the two sequences p' and p”. For two statements
s, 87 no order is defined, and s must be executed before s,
(also for the statements s).

Lemma 7 Let s1,...,s,, and si,..., s;{,,, be sinllple stalte—

ments, which are ezecuted in the order p' = (si;...;8,/)

and p" = (s{;...;8".), and f,r, for € FC the functions cor-
i J

responding to the statements s and s}, respectively. The
following holds:

fo(w) = Tt (z)n Torrp ()

p€ETopSorts(p’,p'")

Where p;q is the concatenation of two statement sequences
p and q.

Proof (Lemma 7) We prove this lemma in several steps:

1. Let p = (s1;...;8,) € TopSorts(p’,p"). With lemma 3
we have a 1 < i < n where f,(z) = fi(z)® and Vi <
j <mn: f; =id. If there are several such i, we use the
largest one. Now s;, the statement determining the
value of the path p, may be contained either in p’ or

11
p .

8f,- is an abbreviation of f,.

2. The set TopSorts(p’,p’") can be split into two disjoint
subsets seq’ and seq”, where:
seq' =qey {g € TopSorts(p',p") | Yo : fo(z) =
fi(z) and s; € p'}, i.e. seq’ contains all those paths,
whose value is determined only by statements con-
tained in p’. seq”’ is defined analogously.

Since TopSorts(p’,p") = seq’ Useq”, it follows that

pETopSorts(p’ ,p”)fp(x) = HpEseq’fp(w) l_ll_lpEseq”fp (I)
3. Proposition: If s; € p”’, then for all x:

fo(@) = fpripr (2).

Proof: The proposition is proved, by reordering the

sequence p stepwise: The statements s, , sg, € p with

1 < ki,k2 < @ may be reordered in a way that all

statements sy, € p’ are placed before s, € p'’ and still

fulfill the order constraints of p’ and p”, respectively.

Lemma 4 guarantees that the value of this reordered

sequence is still equal to fp(x).

The instructions sy € p’ with k > ¢ may also be placed
before s;, since fr = id.

The statements s; € p” with & > ¢ need not be re-
ordered.

Hence if s; € p” then fy(z) = fp - (z). Analogously,
if s; € p’ the folz) = fprr;p/ ().

4. Now the statement sequences from seq’ and seq”
may be reordered as shown above, while not chang-
ing their value. Hence [. ... fo(¥) = fprp () and

|_|peseq” fo(z) = foripr (x). And so:
p€ETopSorts(p’,p'") fp ($) = fP”:P’ ($) r fP’ ip!! ($)

6 Data Flow Analysis of the PAR Statement

We now solve the data flow analysis problem for the PAR
statement in two steps:

1. which information is valid before each statement in a
process body, and

2. which data flow information is valid after the PAR state-
ment?

But before doing this, we need some more definitions.

6.1 Statement Traces Generated by the PAR Statement

If the maximum (worst case) data flow information of some
statements is given as the meet over all paths, the question
arises: how can we compute all paths of a parallel program?

We now consider statement traces instead of paths in the
control flow graph; this simplifies the presentation of the
next results.

Definition 9 A statement trace or statement execution se-
quence s a list of simple statements in the order they are
ezecuted by a single run of a program. The set seq[S] is the
set of all traces generated by statement S. s € p € seq[S]
means that s is a simple statement contained in sequence q.

It is well known how the set of traces is constructed for
sequential programs:

e For the concatenation of statements S1; S2° the traces
produced from S; and S» are concatenated.

9Capital letters S denote composite statements, whereas small let-
ters s denote simple ones.

e For an IF statement, the traces generated by the THEN
and ELSE parts are united.

e For loops, all n-fold concatenations of the traces pro-
duced by the loop body are united.

Since we assumed an interleaving semantics for the exe-
cution of the statements of our PAR statement, it is obvious
that the topological sorting of the traces produced by the
process bodies, determines all traces of the PAR statement.

Definition 10 For a given trace p the set prefixes(p) is the
set of all prefites of p. It includes the empty trace and
the entire trace p. prefixes(P) is the extension to a set
of traces P, so that it contains all prefizes of all traces of
p € P. For a statement S, prefixes[S] is the abbreviation of
prefixes(seq[S]).

Definition 7 is now extended for arbitrary (composite)
statements:

Definition 11 Let S,Si1,...,S, be arbitrary (composite)
staterents: fs(x) =qef |_|p€seq[5] fo(z).

o...0fs, () is the func-
tion corresponding to the statement sequence Si;...;Sn.

an obvious lemma is:

Lemma 8 Let Si,...,S, be arbitrary statements and let be
S = S1;...;8.. Then for distributive functions f € F:
fs1:825..35. (®) = fs(x), while for monotone f € F, only
f515835...58. () E fs () holds.

Definition 12 Let s be a statement inside a (nested) PAR
statement. sibl[s] is the set of all simple statements which
could possibly be executed in parallel to s. If s is part of a
replicated process body, all statements of this process body
are also contained in sibl[s] .

Note that the property s’ € sibl[s] of s’ is a purely syn-
tactical one, which can easily be determined from the source
program.

6.2 Which Data Flow Information Reaches a Statement

Let s be a statement inside a PAR statement. By defini-
tion the information valid before s is given by the meet
over all traces reaching s. To answer the question which
these traces are, let us examine the following example!?:
PAR s | s1;82;...;8n END. s may now be the first state-
ment executed in an interleaving produced by this PAR state-
ment. On the other hand, s; may be executed before s in
another interleaving, or si;ss are executed before s, etc.
Hence the set of statements executed before s is given by
prefixes((si;...; sn)). Using lemma 6 we can conclude that:

|_|p€preﬁxes((sl;...;57,,>) fp(iﬂ) = zMN |—|?:1 fsi (iﬂ) If the
process body S of PAR s | S END which is executed in
parallel to s produces more than one execution sequence,
the set of execution sequences reaching s is given by:
Upeseq[S] prefixes(p), and hence: Hpepreﬁxes(seq[S]) fo(z) =
z Ml |_|t ig, a statement from s fi(x). .

The fact that there may be statements, which are al-
ways executed before s, does not influence our considera-
tions, since the argument x of the function f; reflects the

1ONote that in these traces some statement within the body of the
PAR statement may not be included, since they are executed “after”
S.

information reaching s, if no parallel statements are exe-
cuted before s.

Since PAR statements may be nested, the following theo-
rem is a consequence of the above:

Theorem 1 Let s be a simple statement in a program, and
sibl[s] the set of simple statements possibly exzecuted in par-

allel to s. Then for D¢ data flow problems, the following
information is valid before s:

z |_| fe(z),

tesibl[s]
where x is the information valid before the PAR statement.

If we use the following definition, we can restate the the-
orem so that it is easier to use as a base for an implementa-
tion.

Definition 13 For statement s, we define in’[s] as the in-
formation reaching s on a “sequential” trace from the pro-
gram entry. That is, none of siblings of s are executed before
s. And let in”[s] be the information reaching s if all possible
trace are considered.

If a function f; € F¢,t € sibl[s] is a constant function,
then the value of f;(z) is independent of z: fi(z) = f:.
Otherwise f; is the identity, and fi(z) = x. Then in'[s] is
simply the value of z, and the Theorem 1 can be restated
as:

in'l[s] = in'[s] M |_| ft (1)

tesibl[s]

6.3 Which Information is Valid After the PAR Statement

Lemma 7 is the cornerstone for the following theorems. Af-
ter extending it to sets of paths we obtain:

Theorem 2 For the D¢ data flow problems and the
PAR S; | Sz END statement the following holds:

f@ =[]

pEseq[PAR Sy | S END] pEseq[S1;Sz]

Lon [f@

pEseq[S2;S1]

To extend this theorem for PAR statements with more
than two process bodies, we define:

Definition 14 The set of simple permutations s_perm of
the numbers 1,...,n is given by: s_perm(1l,n) =gc¢
{(1,2,...,n—=1,n),{n,2,...,n—1,1),

(1,n,3,...,m—1,2),...,(1,2,3,...,n,n—1)}. That is, the
it" number is exchanged with the last number in the sequence
(1,2,...,n). 7= (i1,i2,...,in) denotes an element of this
set. Note that s_.perm(1,n) has only n elements.

If we have a closer look at the proof of lemma 7, we
see that the order of the statements si, with k£ < ¢ has no
influence on that result. Hence we have the following lemma:

Lemma 9 Let p,...
statements. Then:

,Pn Statement sequences of simple

fo(z) =

p€TopSorts(py,...,Pn)

fPil;---;Pin ()

ve€s_perm(1l,n)

Note that any other permutation would serve, as long as
each statement sequence appears at least once at the end.
Hence we have the following theorem:

Theorem 3 For the D¢ data flow problems and the
PAR Si | ... | Sn END statement:

[] fo@) =[]

pEseq[PAR Sy | ... | Sy END] 7€s_perm(l,n)

fsi1§---;sin ().

It is easy to see that the result is not changed by
a replicated process body [var := lwb TO upb] S with
upb - lwb + 1 > O, since for the result only S is impor-
tant. If upb - lwb + 1 > 0, then it may happen that S is
never executed, and the theorem should be adjusted accord-
ingly. We will see in the implementation section 8, how this
could easily be done.

7 Bit-Vector Implementation

From now on, we consider only the D® data flow analysis
framework.

Until now we considered only one program entity, such
as a single program variable or a single expression. When
implementing data flow analysis, usually all entities are con-
sidered at the same time. Hence we are dealing with sets
of informations, valid at a program point. Each entity is
coded by a number 1...|entities|. For the class of one-bit
data flow problems D? there is a quite efficient implemen-
tation of sets: the bit-vector.

Definition 15 A bit-vector is the characteristic function
vec of a finite set of of object numbers 1...n = |entities|.
vec : {1...n} — {TRUE,FALSE} with 1 < n. Usually
vec(z) is denoted as vec[i].

The set operations U,N, are defined for bit-vectors, by
element wise application of the boolean operations V,A,
The set difference is defined by a —b =4er aNb.

The empty set D is represented by the bit-vector, in which
all values are FALSE.

Usually for each statement and basic block the following
four sets are defined [1]: gen, kill, in and out. gen (kill) is
the set of information generated (invalidated) by this state-
ment/basic block. in is the set of information valid im-
mediately before execution of this statement and out the
information valid immediately after that point.

As seen before, the M operation is either set union or
set intersection. The DFA problems using set union (inter-
section) as meet operations are called may problems (must
problems), since the information must reach a given program
point on at least one (on all) paths leading to that point.

We define now the four sets in terms of the transfer func-
tions. Each statement s has a separate transfer function for
each entity e, denoted by f¢.

Definition 16 Let s be a statement,

gen [e] = TRUE iff f& =u (use),

kill;[e] = TRUE iff f§ = m (modify),

ins[e] = TRUE f ﬂpepath[s) fo(L)=T and

outs[e] = TRUE iff |_|p€path[s] L) =T.
Obviously: gen, Nkilly = 0

We will first formulate the result of Theorem 1 in the
form of Equation 1 using the DFA sets. Note that we are
now using D?:

In the equation inll;[e] = inis[e] M ﬂteSibl[s] fi, all fi
are constant functions. The right hand side is T, iff both
parts of it evaluate to T. The following equivalences hold:

resiblls] fi=TeVvtesibls]: ff=T &

At € sibl[s] : ff = L& A,y 860 [e] = TRUE &

\/teSibl[s] kill;[e] = FALSE.

We now distinguish:

MN=A; T=TRUE
|_|t6sib1[s] fi =T e Nicgvps i = TRUE &
\/tESibl[S] kill;[e] = TRUE

M=V; T =FALSE
|_|t€sib1[s] fi=Te Vtesibl[s] fi =FALSE &
/\tesibl[s] gen,[e] = FALSE <
VteSibl[S] gen, [e] = FALSE &
\/teSibl[S] gen,[e] = TRUE.

And we can state the following theorem:

Theorem 4 The information of a one-bit DFA problem
reaching a statement s can be computed by:

in'y — UtESibl[s] kill, for nN=A
Ll with in'y, = T = TRUE
s in‘, U UteSibl[S] gen, for M=V
with in's; = T = FALSE

(so is the first statement of the program,).

The next step is the adaptation of Theorem 3. Before
doing so, we restate the equations for in and out in the
sequential case, as they may be found e.g. in [1]:

For a simple statement the relation is given by:

outs = gen, Uin, — kill, (2)
For sequential composition of statements s = s1; sa:

outs = Outg U out1 — killz (3)

For branches in a sequential program:

ing, = ﬂpepred[sloutp (1)
outs = gen, Uing —Kkills

Using these equations we can compute the right hand side of
the equation from Theorem 3: I_lres_perm(l,n) fsiyissi, (@)
We again have to distinguish between may and must prob-
lems. Hence the following theorem can be given:

Theorem 5 The information outs of a one-bit DFA prob-
lem valid after the PAR Sy | ... | Sn END statement S can
be computed as:

(U em,) — (UL, Kill)) U (s — U7 ki)
_ form=A
outs=

" gen, U (ins — |JI, Kkilly) forn=v

10The symbol Xs; is abbreviated to X;.

where in’s s the information valid before the PAR statement,
and gen; and kill; are the sets corresponding to the process
bodies S;.

Now we have to determine which information is gener-
ated and invalidated by a PAR statement as a whole. Again
we start with the sequential composition of statements (fol-
lowing [1]): For S = S1;S> we have:

geng = gen, Ugen,; —Kkilly (5)
kills = killp Ukill; — gen,

Hence we can follow the same arguments as for outpar,
with the simplification that the term in —(killU. . .) does not
exist. We note here that if the “In-Out-problem'*” is a may-
problem, then the “Gen-Problem!?” is a may-problem too,
while the corresponding “Kill-problem” is a must-problem,
and vice versa, if the In-Out-problem is a must-problem. So
the next theorem can be stated:

Theorem 6 The information of a one-bit DFA problem
generated and invalidated by a
PAR Si | ... | Sn END statement S can be computed as:

(Uee) - (G

kills = U kill;
=1

n
Jsen
i=1

kills = (O killi> - (O geni>
i=1 i=1

Having all these theorems, we see that we have avoided
the state-space explosion problem.

These results are given for an “isolated” PAR statement.
The next section will put them in the context of a parallel
control flow graph and we will see how this gives us an ele-
gant algorithm for computing the data flow information of
a parallel program.

In-Out-problem M = A : geng

In-Out-problem M = V : geng

8 The Parallel Control Flow Graph

The following explanation is based on our implementation of
the parallel language Modula-P [22] developed in the COM-
PARE project. To express parallelism in the intermediate
language CCMIR-P'® we define some additional CCMIR,
statements and define a parallel control flow graph (PCFG).

Looking at the results of this theory, we observe that
the PAR statement and its processes are treated by it as
a single statement with a complex behavior. The idea for
integrating the analysis of a PAR statement is to treat it like
other CCMIR statements such as assignment or procedure

H'Which information is valid before/after a statement.

2Which information is generated by the statement.

13 Common COMPARE Medium Intermediate Representation, Par-
allel extension; the intermediate language of the COMPARE compilers.

REPEAT ..;
IF ..
THEN
Xi=..;
PAR
..; PAR Bodyla — Bodylb END; .;
— Body2 — Body3
END
p(-);z:=1f(.);
PAR Body4a — Body4b END;
ELSE ..
END;
UNTIL ..
Table 2: A program fragment with nested PAR’s.

call, except that it has a more complex DFA behavior. The
DFA effects of the PAR statement are determined solely by
its process bodies.

The central idea of our parallel control flow graph
(PCFG) is that it is a forest of disjoint CFG’s. Each pro-
cess body and procedure body constitutes a separate CFG.
Since jumps into or out of process bodies are forbidden in
the source language, there are no jump edges connecting the
CFG’s.

To form a PCFG of a procedure we connect these sep-
arate CFG’s by adding parallel edges between the CFG of
a process body and the mirParallel statement containing
this process body.

For the program fragment shown in Table 2 the PCFG
is given in Figure 1.

After parsing a source program, we obtain a list of all ba-
sic blocks, constituting an entire procedure. There is no spe-
cific order in this list. From that, we compute for each basic
block the list of predecessors and successors (cf. [1]). Each
basic block has zero, one or two successors. It has none, if it
has as its last statement the EndProcedure or EndProcess
statement. It has omne, if the last statement is a mirGoto,
and two if this is a mirIf statement. Entry basic blocks are
marked by the BeginProcedure and BeginProcess CCMIR
instructions: their basic blocks have no predecessors. To
find the roots of the CFG’s we simply scan the procedure’s
list of all basic blocks for basic blocks having no predeces-
Sors.

If a replicator specifies that no process should be created,
then we draw an extra jump edge from the process body
entry to its exit. This solves the problems mentioned in the
note to Theorem 3.

Our definition of a PCFG differs from the one given in
[26] in the way that their PCFG has two kinds of nodes:
“ordinary” basic blocks and super nodes (or parallel blocks).
Such a super node represents the entire process body.

9 Solving the Data Flow Equations of Concurrent Pro-
grams

Let’s assume we do not have nested PAR statements. Then
we must analyze a program in the following order:

1. Compute gen and killinformation for all process bodies
and the mirParallel statement itself.

2. Compute gen and kill information for all statements of
the procedure’s CFG.

3. Compute in and out for all statements of the state-
ments of the procedure’s CFG.

Bodyla Bodylb

The dashed lines are parallel edges connecting the separate CFG’s
of the process bodies to their mirParallel statement. The grey
boxes are CFG’s of the process bodies. The other boxes are part
of the procedure body’s CFG.

Figure 1: A PCFG for the program fragment of Table 2.

4. Since we know the exact information reaching the
mirParallel statement, we can compute the in and
out information of the valid at the statements of
the process bodies: the information reaching the
mirParallel statement reaches the entry of each pro-
cess body.

Now it is obvious how to deal with nested PAR statements:

1. Visit the deeply-nested process bodies first and com-
pute their gen and k:ill information. This corresponds
to a depth-first traversal of the PCFG along the par-
allel edges. This is called inside-out computation of
Gen/Kill.

2. Compute gen and kill of all other statements of the
procedure’s CFG.

3. Compute in and out for all statements of the proce-
dure’s CFG.

4. Visit the mirParallel statements from outside-in (the
reverse order of inside-out) and compute in and out of
the process bodies. Outside-in is the top-down traver-
sal of the PCFG along the parallel edges.

This kind of computation of the data flow information
is a mixture of the structural [2], [1, page 611] (for the ef-
fect of the mirParallel statement) and iterative (all other
statements) method. A similar idea has been presented for
DFA of sequential problems by [8].

The computation of the in and out information must be
done using an iterative algorithm [11, 1]. At a first glance
the same seems to be true for the computation of gen and
kill'*. But this iterative approach for gen and kill solves a
broader problem: it computes for each basic block b the set

14Note: We have to compute the gen and kill info for a set of basic
blocks. In the sequential DFA, this information is not needed.

of gen and kill information reaching b. But we need only
the gen and kill information which is valid at the end of
a process body. We can therefore use a simpler algorithm
which combines the computation of the local gen and kill
with the computation of the gen and kill of a set of basic
blocks. We visit the basic blocks in the reverse depth first
order, which guarantees that at the end of the process we
have the same result than using the iterative method.

10 Complexity of this DFA Algorithm

To estimate the complexity of this algorithm, we use as com-
plexity measure the number of visits of a basic block during
the iterative computation of the DFA information. A “com-
parable” sequential program is one where the PAR statement
and its process bodies are executed sequentially.

For the computation of the gen and kill sets, we have
to visit each basic block once, both in the sequential and
parallel case.

During the computation of in and out we apply the iter-
ative algorithm several times to different (and disjoint) sets
of basic blocks: first, we compute the DFA information for
the basic blocks of the procedure’s CFG. Second, we com-
pute in and out for the sets of basic blocks corresponding
to process bodies. The process bodies are considered in the
outstde-in order of the PAR statement.

The number of iterations needed to compute the DFA
information is determined by the loop nested-ness [7] of the
source program.

Since we don’t have jump edges between basic blocks of
different process bodies, we are always computing the DFA
information of disjoint sets of basic blocks. Hence the loop
nested-ness is the same for the parallel and the comparable
sequential program. Hence the overall number of basic block
visits is equal in the parallel and the comparable sequential
program.

As a result the data flow analysis of a parallel program
has the same complexity as a comparable sequential one.

11 Current and Future Work

Currently the algorithm of [12] for elimination of partial re-
dundancies is implemented in the COMPARE compiler for the
source language Modula-P [22] which is an parallel extension
of Modula-2.

12 Conclusion

This work shows that data flow analysis of parallel programs
is possible, and can be done as efficiently as for sequential
programs. The novelty is that there is no restriction in the
kind shared memory access, nor in the “accuracy” of the
resulting DFA information. Hence it is now possible to apply
optimizing transformations, which are well known from the
sequential context.

To show this, we proved some nice properties of the semi-
lattice based data flow frameworks D¢ and D?, which al-
lowed us to reduce the number of interleavings needed for the
computation of the meet over all paths solution of the DFA
problem. Then we extended these results to bit-vectors, and
obtained simple set equations, computing the DFA informa-
tion valid inside and after a PAR statement. Based on that
we gave a simple algorithm to compute the DFA information
valid at all program points. This algorithm is a slight variant

of the usual iterative DFA algorithm, but the basic blocks
are visited in a special order: inside-out and outside-in of
the nesting structure of the PAR statement.

Acknowledgments

I want to express many thanks for discussions with Bernhard
Steffen and Jens Knoop, both of the University of Passau,
and with Helmut Emmelmann.

References

[1] A.V. Aho, R. Sethi, J. D. Ullman. Compilers: Princi-
ples, Techniques and Tools. Addison-Wesley, 1986.

[2] W.A. Babich, M. Jazayeri. The method of attributes
for data flow analysis. Acta Informatica, 10:345-272,
1978.

[3] J.H. Chow, W.L. Harrison III. Compile-time analysis
of parallel programs that share memory. In 19. ACM
SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, pages 130-141, 1992.

[4] P. Cousot, R. Cousot. Semantic analysis of commu-
nicating sequential processes. In Automata, Languages
and Programming, 7. Colloquium, LNCS' , Volume 85,
pp 119-133, 1990.

[6] J.H. Cow, W.L. Harrison III. State space reduction in
abstract interpretation of parallel programs. In Proceed-
ings of the 1994 International Conference on Computer
Languages ICCL’94, pages 277-288. IEEE, May 1994.

[6] D. Grunwald, H. Srinivasan. Data flow equations of
explicitly parallel programs. In PPoPP 93. ACM SIG-
PLAN NOTICES, 1993.

[7] M.S. Hecht, J.D. Ullmann. A simple algorithm for
global data flow analysis problems. SIAM, 4(4):519-
532, Dec. 1975.

[8] S. Horwitz, A. Demers, T. Teitelbaum. An efficient
general iterative algorithm for data-flow analysis. Acta
Informatica, 24(6):679-694, 1987.

[9] J.B. Kam, J.D. Ullmann. Monotone data flow analysis
frameworks. Acta Informatica, 7:305-317, 1977.

[10] K. Kennedy. A survey of data flow analysis techniques.
In [15], pages 5-54.

[11] G.A. Kildall. A unified approach to global program op-
timization. In ACM Symposium on Principles of Pro-
gramming Languages, pages 194-206, October 1973.

[12] J. Knoop, O. Riithing, B. Steffen. Optimal code mo-
tion: Theory and practice. ACM Transactions on Pro-
gramming Languages and Systems, 16(4):1177-1155,
July 1994.

[13] L. Lamport. How to make a multiprocessor com-
puter that correctly executes multi process programs.
IEEE Transactions on Computers, c-28(9):690-691,
Sep. 1979.

[14] S.P. Midkiff, D.A. Padua. Issues in the optimization
of parallel programs. In Proceedings of the 1990 Inter-
national Conference on Parallel Processing, pages 105—
113, Volume II; August 1990.

15Lecture Notes in Computer Science, Springer

Idc 1, r0 time t1 to t3 tq
1‘: b6 rl Processory: | ldc 1, r0; 1d b, rl; (71 = 0) str0,a; cmprl,0; .| eriticaly
s r0, a
cmp rlz 0 Processors: | ldc 1, r0; 1d a, rl; (rf = 0) str0,b; cmprl,0; .| criticaly
jeq then; 3b

3a Table 3: Code and execution of reordered code

[15] S.S. Muchnick, N.D. Jones, editors. Program Flow

Analysis. Prentice-Hall, Inc., 1981.

R.H.B. Netzer, B.P. Miller. What are race condi-
tions? some issues and formalizations. ACM Letters
on Programming Languages and Systems, 1(1):74-88,
Mar. 1992.

J.H. Reif. Data flow analysis of distributed communi-
cating processes. Tech. Report TR-12-83, Harvard Uni.,
Center for Research in Computing Technology, 1984.

[16]

[17]

M. Sharir, A. Pneuli. Two approaches to interprocedu-
ral data flow analysis. In [15], pages 189-234.

H. Srinivasan, D. Grunwald. An efficient construction
of parallel static single assignment form for structured
parallel programs. Tech. Report CU-CS-564-91, Uni. of
Colorado at Boulder, Dep. of Computer Science, 1991.

20] H. Srinivasan, M. Wolfe. Analysing programs with ex-
ysimng g
plicit parallelism. In Languages and Compilers for Par-

allel Computing, LNCS, Volume 589, 1991.

A. Valmari. Stubborn sets for reduced state space gen-
eration. In Advances in Petri Nets 1990, LNCS, Volume
483, pages 491-515, 1990.

J. Vollmer, R. Hoffart. Modula-P, a language for par-
allel programming: Definition and implementation on
a transputer network. In Proceedings of the 1992 Inter-
national Conference on Computer Languages ICCL’92,
pages b4—-64. IEEE, April 1992.

J. Vollmer. Dataflow equations for parallel programs
that share memory. Tech. Report 2.11.1 of the ESPRIT
Project COMPARE, Universidt Karlsruhe, Jan. 1994.

J. Vollmer. Data flow analysis of parallel programs.
Interner Bericht 19/95, Universitét Karlsruhe, Fakultét
fiir Informatik, March 1995.

J. Vollmer, J. Knoop, B. Steffen. Parallelism for
free: Efficient and optimal bit-vector analysis for par-
allel programs. Technical Report MIP-9409, Univer-
sitat Passau, Fakultat fiir Mathematik und Informatik,
Aug. 1994.

M. Wolfe, H. Srinivasan. Data structures for optimizing
programs with explicit parallelism. In [27], pp. 139-156.

H. Zima, editor. Parallel Computing, 1. Int. ACPC
Conference Salzburg, Austria, LNCS Volume 591, 1991.

[21]

22]

[23]

24]

[25]

[26]

[27]

A What Might Go Wrong: An Example

This section shows the potential problems, when applying
sequential data flow analysis to an explicitly parallel pro-
gram. And more that running an instruction scheduler may
cause a wrong execution of a parallel program. The small
program®® given in Table 4 executes the processes P, and P»
in parallel. It is intuitively clear that criticali and criticals
are never executed at the same time.

16[13] presents this problem concerning the design of parallel

computers.

10

On a first glance this program has a race condition [16],
(both processes read and write the shared variables, without
some kind of explicit synchronization) but this race condi-
tion is an intended one: The variables a and b are used to
implement a simple synchronization scheme. Extensive work
has been done on analyzing parallel programs for potential
races but little work has been done to optimize them.

a:=0;b:=0;
PAR
(Pr1) (P2)
a:=1; b:=1;
IFb=0 IFa=0
THEN criticaly; | THEN criticalo;
a:=0; b := 0;

ELSE else; ELSE elses
END END

END

Table 4: Part of process synchronization code

A simple-minded optimizer could perform the following
“optimizations” (which would be correct in sequential con-
texts):

e Propagate a=0 and b=0 to IF a=0 and IF b=0 respec-
tively.

e Then the expressions could be statically evaluated to
TRUE.

e Dead code elimination removes the IF and ELSE parts.

And as consequence, both, criticaly and critical> would
be executed.

But even without traditional optimizations performed
by the compiler, things might go wrong during instruction
scheduling: The non-optimized code of process body P on
a typical RISC processor is given in Table 5. The instruc-
tion scheduler could now decide to reorder the instructions,
e.g. to insert another instruction between a register load
and an immediately following register use instruction (e.g.
ldc 1,r0; st r0,a) which results in the code for P, shown
in Table 3a. In this case, it may happen that critical; and
criticalzy are both executed, as shown in Table 3b.

Idc 1,10 Load constant 1 into register r0.
st r0, a Store r0 in memory at address a.
1d b, rl | Load content of memory b.

cmp rl,0 Compare register with constant.
jeq then; | Conditional branch to then;.
code of elsey

Table 5: Non-optimized code for Process P;

Even worse, some processors, such as the DEC Alpha, are
able to reorder the memory accesses to different addresses to
some degree. Hence, even the unchanged code could give the
wrong result. To avoid this situation, the DEC Alpha offers a
memory barrier instruction, which delays the processor until
all pending memory requests are fulfilled. In our example
this instructions must follow every memory access, which
results in a significant slow-down of the program.

