
Published in the Proceedings of the IFIP WG ���� Working Conference on �Parallel Architectures and Compilation Techniques��
PACT	
�� Limassol� Cyprus� June ����� pages �����		

Data Flow Analysis of Parallel Programs�

J�urgen Vollmer

Universit�at Karlsruhe

Institut f�ur Programmstrukturen und Datenorganisation

D������ Karlsruhe

email	 vollmer�ipd�info�uni�karlsruhe�de

Abstract

Data �ow analysis is the prerequisite of performing opti�
mizations such as code motion of partial redundant expres�
sions on imperative sequential programs� To apply these
transformations to parallel imperative programs� the no�
tion of data �ow must be extended to concurrent programs�
The additional parallel source language features are� shared
memory and nested parallel statements �PAR�� The underly�
ing interleaving semantics of the concurrently�executed pro�
cesses result in the so�called state space explosion which on
	rst appearance prevents the computation of the meet over
all path solution needed for data �ow analysis�

For the class of bit�vector data �ow problems we can
show that for the computation of the meet over all path so�
lution� not all interleavings are needed� Based on that� we
can give simple data �ow equations representing the data
�ow e
ects of the PAR statement� The de	nition of a paral�
lel control �ow graph leads to an e�cient extension of Kill�
dal�s algorithm to compute the data �ow of a concurrent
program� The time complexity is the same as for analyzing
a comparable� sequential program�

Keywords� Data �ow analysis� parallel languages�

� Introduction and Motivation

The key tool for attacking the Grand Challenge Problems is
parallelism� Parallel hardware is becoming more available
and cheaper� but to program these devices is still a di�cult
task� Hence high�level programming languages are needed
which have enough expressive power to implement parallel
algorithms� But as usual with high�level languages� when
translating them to machine code� some ine�ciencies are
introduced by the compiler� Therefore compilers have to
perform so�called optimizations which improve the program�
We may distinguish broadly between two kinds�

� transformations performed on the input language level
such as mapping of SIMD programs to MIMD ma�
chines� removal of unnecessary synchronization and

�This work has been funded by the ESPRIT project Compare�
contract number �����

communication� clustering of processes� data placement
etc� and

� transformations performed on the machine language
level� such as common subexpression elimination� con�
stant folding� dead code elimination� code motion etc�

For the rest of this paper we have only the second kind
of optimizing transformations in mind�

Optimizing a program requires analyzing it� and this is
often done by solving data �ow equations for the program�
Traditional data �ow analysis �DFA� methods ���� are de�
signed for sequential programs� Hence they may fail when
applied to the control �ow of parallel programs as shown in
����� We give another example showing the problems when
low level� optimizations such as instruction scheduling are
performed on parallel programs�

��� The Problem

Data �ow analysis is more or less the estimation of the e
ects
caused by program statements� This estimation is based
on two things� an abstraction of the information needed
as prerequisite for the optimizing transformation� and the
propagation of the information along the statements of the
source program� The information is usually represented by
the elements of a semi�lattice�� The e
ect of a single pro�
gram statement is then a function over these semi�lattice
values� One execution of a program �up to the point of con�
sideration� represents an execution path� The propagation
is modeled by applying these functions in the order given
by the statements of such an execution path� Since we are
looking for the worst case information� �only this guar�
antees that the transformation is correct for all execution
paths leading to this program point� we have to consider
the Meet Over all Paths of these information� ���� formal�
ized this idea and gave an e�cient algorithm to compute the
data �ow information for all points of a program�

The data �ow information of two statement sequences�
without any branches� executed concurrently� is given by
the meet of the information of all interleavings� of the two
sequences� It is clear that this may lead to a state space ex�
plosion� ���� which makes it� on a very 	rst view� intractable
to compute the data �ow information implied by a PAR state�
ment�

�E�g� boolean values for �the information is present or not��
�The topological sorting of the simple statements from both

sequences�

��� Contribution of this Work

Hence we have to ask�

� which data �ow information is valid after the PAR state�
ment� and

� which information is valid before each statement in a
process body�

The main contributions of our paper are�

� The lattice�theoretic based data �ow framework is ex�
tended to cope with parallel programs� The proposed
extension is valid only for the large class of one�bit
�also known as bit�vector� data �ow problems� They
are based on a two�element semi�lattice�

� Simple bit�vector data �ow equations are derived rep�
resenting the data �ow e
ects of the PAR statement�

� The Parallel Control Flow Graph is de	ned and used as
a base for an extension of the well known and e�cient
iterative data �ow analysis algorithm�

Based on these results� data �ow analysis of parallel pro�
grams is possible and e�cient� Then traditional optimiza�
tions may be applied to these programs without any restric�
tion�

��� Related Work

Current approaches in analyzing the data �ow of parallel
programs have either a restricted model of shared memory�
or even disallow it�

���� investigates the data �ow of communicating pro�
cesses� but these do not share memory� processes communi�
cate solely through synchronous channels� ���� describes an
e�cient method of computing the Static Single Assignment
Form for explicitly parallel programs with wait clauses� The
parallel sections must be data�independent� except where ex�
plicit synchronization is used� The same is true for ���� ���
who introduce a Parallel Control Flow Graph and the Par�
allel Precedence Graph which may form the basis of concrete
optimizing algorithms�

��� presents data �ow equations for parallel programs�
both with and without synchronization� But this work is
restricted to PCF FORTRAN programs� which means that
access to shared variables is done only at synchronization
points� For process start and process end a copy in�copy out
semantics is assumed� An intuitive but not formal derivation
of the data �ow equations is given� which solve only the
reaching de�nition problem�

��� extends abstract interpretation to cope with commu�
nicating sequential processes� The problem there is that
the resulting state space� explodes� ��� applies abstract in�
terpretation to analysis of parallel programs� but bases the
semantics on a labeled transition system� ��� attacks this
problem using the stubborn set theory ���� which decreases
the state set using some heuristics� Hence the analysis is
accurate for some examples� and less accurate for others�

���� presents the basic idea of how the number of inter�
leavings may be reduced� the parallel program is represented
by its structure tree� ���� uses ideas of this report to prove
the Hierarchical Coincidence Theorem which is based on a
functional representation ���� of the problem� The full ver�
sion of this paper is available as �����

� Machine Model

We assume that other phases of the compiler have done
the more high�level� transformations already� and hence
our investigation is based on an imperative language with
explicit control �ow parallelism� dynamic process creation�
and shared memory� As a computing model we assume a
MIMD �multiple instruction� multiple data� system� where
each process is executed on a separate logical processor��

Each processor runs independently of each other and has
its own set of registers� which are invisible for other proces�
sors� All processors access a shared memory� The access
to a single memory cell is atomic� i�e� at a given time only
one process may read or write a given cell� We assume an
interleaving semantics for the execution of the program with
respect to the memory accesses�

� The Sample Language

A simple imperative language will be used in this paper�
which has loops� conditional statements� and a statement
to execute other statements in parallel �explicit control �ow
parallelism�� Replicators allow dynamic process creation�
and processes share memory�

The PAR statement executes all processes speci	ed by
ProcessBody in parallel and independently� The process ex�
ecuting a PAR statement� is suspended until all child pro�
cesses have terminated� A ProcessBody is a list of state�
ments� which may be replicated� That is� max�UpBound �
LowBound � �� �� processes are forked which all execute
the statements following the replicator� Each replicated
process gets its private copy of the replicator variable var�
which has in each replicated process a unique value in the
range 	LowBound

 UpBound�� Replicated processes are
also called asynchronous for�all loops in other languages�
All variables can be accessed in each process� No automatic
synchronization is done for the access�

Stmt ��� PAR ProcessBody��� END

ProcessBody ��� 	Replicator� Stmt���

Replicator ��� 	var�LowBound TO UpBound�

LowBound ��� Expr

UpBound ��� Expr

Expr ��� usual expressions�

X��Y is a list of X�s separated by a Y� 	X� stands for an
optional X part�

� Lattice�Theoretic Background of Data Flow Analysis

This section gives the lattice�theoretic background of data
�ow analysis and follows ���� It may be skipped by the reader
familiar with the notation�

The source program under consideration is represented
as a �sequential� control �ow graph��

De�nition � A control �ow graph is a triple
G � �N�E� n��� where N is a �nite set of nodes �which
contains a list of simple statements� such as assignments��
E � N � N is a set of ordered edges between these nodes
and n� the unique initial node�

�A processor may be implemented via a time sharing system�
�
PAR statements may be nested�

�Section 	 de
nes the parallel version of a control �ow graph�

�

A path from n� to nk is a sequence of nodes
n�� n�� � � � � nk� such that for � � i � k all edges �ni� ni��� �
E� Such a path has length k�

For a node n pred�n��succ�n�� is the set of predecessors
�successors� de�ned as	 pred�n� � fn� � �n�� n� � Eg� and
succ�n� � fn� � �n� n�� � Eg�

All nodes of a control �ow graph are reachable from the
initial node� i�e� there is a path from n� to each node n�
path�n� is the set of all paths from the initial node to n�
path�n� is the set of paths from n� up to all predecessors of
n�

The data �ow information is represented as a semi�
lattice�

De�nition � A semi�lattice �L�u� is a set L with a binary
meet operation u such that for all a� b� c � L the following
holds	

a u a � a Idempotent
a u b � b u a Commutative

a u �b u c� � �a u b� u c Associative

For two elements a� b � L� we de�ne	

a b � a u b � a
a b � a u b � a and a �� b
a b � a u b � b
a b � a u b � b and a �� b

�L�u� has a zero�element � �bottom�� if 	x � L � xu� �
� and a one�element
 �top�� if 	x � L � x u
 � x� From
now on we assume that �L�u� has a zero�element� but not
necessary a one�element� We can extend the u operation	

n

i��

xi � x� u x� u � � � u xn with

x��

�

A sequence of elements x�� x�� � � � � xn of L is called a
chain� if 	� � i � n � xi xi��� �L�u� is called bounded
if for all x � L there is a constant bx such that each chain
starting with x has length at most bx� If �L�u� is bounded�
we can de�ne for each countably in�nite set S of elements
of L	

x�S
x � limn��

n

i��
xi� Since S is bounded� there

is a number m with
x�S

x �
m

i��
xi

How a single program statement transforms� by its sym�
bolic execution� the data �ow information valid before its
execution� is described by a transfer function�

De�nition � Let �L�u� be a bounded semi�lattice� A set
F of functions on L is called an monotone function space
associated with L� if the conditions
M��
M�� are satis�ed�
If also
M�� is valid� it is called a distributive function space
associated with L�

�M�� All functions f � F are monotone	
	x� y � L � f�x u y� f�x� u f�y�� This is equivalent
to	 	x� y � L � x y � f�x� f�y��

�M�� There is an identity function id � F with	
	x � L � id�x� � x�

�M�� F closed under composition	 	f� g � F � f � g � F �
�M�� L is the closure of f�g with respect to the u operation

and application of functions in F �
�M	� All functions are distributive	

	x� y � L � f�x u y� � f�x� u f�y��

A monotone data �ow framework is de	ned as�

De�nition � A monotone data �ow framework is a triple
D � �L�u� F � where �L�u� is a bounded semi�lattice and F
is a monotone function space associated with L� An instance
of a monotone data �ow framework is a pair I � �G�M�
where G � �N�E� n�� is a control �ow graph and M � N
F is a labeling which maps each node from N onto a function
of F �

If F is a distributive function space� D is called a dis�
tributive data �ow framework�

The maximal �or worst case� information reaching a
program statement� is given by the following

De�nition 	

p�path	n

fp���

is called the meet over all path and represents the �maximal
�or worst case� information reaching a node n of the pro�
gram�� fp is the transfer function of the path p �see below��

� Properties of Some DFA Frameworks

First we give some properties of bit�vector data �ow frame�
works DB which is then generalized to DC� At the end of this
section then we apply these results to the transfer functions
of statements and statement sequences�

��� Properties of the Boolean Semi�Lattice

Since we restrict our investigation to the class of bit�vector
data �ow problems� we give some general results for the
boolean semi�lattice�

De�nition
 The data �ow information of an entity is a
value of the set B �Bool� B � f
��g� For a given binary
meet operation u� �
 must hold�

Observation �� Obviously there are only two di
erent bi�
nary operations which can be the meet operation of a semi�
lattice� � �boolean and� and � �boolean or��� They are given
as shown in Table ��

u � � u � �

� � TRUE � � FALSE
a b a u b a b a � b a b a � b

� � � TRUE TRUE TRUE FALSE FALSE FALSE
� � � TRUE FALSE FALSE FALSE TRUE TRUE
� � � FALSE TRUE FALSE TRUE FALSE TRUE
� � � FALSE FALSE FALSE TRUE TRUE TRUE

Table �� The boolean meet operations�

Observation �� There are only four functions B B� the
two constant functions� the identity� and negation�

use u�
� �
 u��� �

modify m�
� � � m��� � �
identity id�x� � x

negation
 � � � �

�The other possible � binary operations over B do not have the
required properties� even if some may have an interesting interpreta�
tion such as xor� the data �ow information is valid� if it is valid in
exact one path�

�

Obviously� the negation function is not monotone and not
distributive� The other three are both monotone and dis�
tributive� Often� the constant functions are interpreted� re�
spectively as use� which generates or uses some information�
and modify� which modi	es or invalidates it�

We 	nish this section with�
Observation �� For any two�element semi�lattice �B�u��
there is exactly one monotone function space FB �def

fu�m� idg associated with B�� It is also distributive� DB �
�B�u�FB� is called the one bit data �ow analysis framework�
There are only two interpretations of the meet operation�
the boolean � and � operation� respectively� Their DFA in�
terpretation is� the information valid before a node n must
be valid on all ��� �at least one ���� path reaching n�

��� Properties of the Function Space FC

A slight generalization of the DB DFA framework is DC � for
which the following lemma obviously holds�

Lemma � Let �C�u� be a bounded semi�lattice� and FC a
set of functions C C� such that FC contains only the iden�
tity function id and for each element c of C its constant
function constc with 	x � C � constc�x� � c� Then FC is a
distributive function space� and the corresponding constant
data �ow framework DC is distributive�

We consider now composition chains� of functions fn �
fn�� � � � � � f��x� and show some properties� The follow�
ing lemmata helps us to compute the data �ow information
which is valid after a PAR statement� if for such a compo�
sition chain a predicate P holds for all x � C� then there
is a function fi in it� such that P holds for all x� and all
following� fj � j � i do not invalidate the predicate�

Lemma � Let f�� � � � � fn � F
C and P a predicate over C�

	x � C � P �fn � fn�� � � � � � f��x��
i�

�� � i � n � 	x � C � P �fi�x�� and
	i � j � n � 	x � C � P �fj�fi�x���

The lemma can be proved using induction over the num�
ber n of functions in the composition chain� The next lemma
is a corollary of the previous one�

Lemma � Let f�� � � � � fn � FC� Then	 �� � i � n � 	x �
C � fn � � � � � f��x� � fi�x� and 	i � j � n � fj � id

The next lemmata state that under some circumstances
the order of the functions of a composition chain may be
changed and still return the same value�

Lemma � Let f�� � � � � fn � F
C� From �� � i � n � 	x � C �

fn � fn�� � � � � f��x� � fi�x�� it follows that for an arbitrary
permutation �k�� � � � � ki��� of the numbers �� � � � � i� � holds	

fn �fn�� � � � ��f��x� � fn �fn�� � � � � fi �fki��
�fki��

�fk� �x�

Proof �Lemma �� If fi is a constant function� it returns
the same result for all arguments� Hence the order of the
functions which form the argument of fi is not important�
If fi is the identity function� all other functions must also be
the identity function� otherwise fn � fn�� � � � � f��x� � fi�x�
would not hold for all x�

�Note� To be a monotone function space associated with B� all
three functions are needed�

The following lemmata state some properties of the value
of composition chains� They answer the question which in�
formation is valid before a statement inside a PAR statement�

Lemma 	 Let f� g � FC� Then for arbitrary x � C	

x u f�x� u g�f�x�� � x u f�x� u g�x�

Proof �Lemma 	� If g � constc then� xuf�x�ug�f�x�� �
x u f�x� u g�x��

If g � id then� xuf�x�ug�f�x�� � xuf�x� � xuf�x�u
g�x��

Using induction over the number n of functions in the
composition chain we can conclude�

Lemma
 Let f�� � � � � fn � FC� Then for arbitrary x � C	
xu f��x� u f� � f��x� u � � � u fn � fn�� � � � � f��x� �

x u f��x� u f��x� u � � � u fn�x�

��� Properties of Statement Sequences and Composition
Chains

From now on� we consider only DC� We now connect the
functions to a statement sequence� which represents an exe�
cution path� Then we state properties of the function com�
position chains� if two �or more� statement sequences are
executed in parallel� This is modeled by considering the set
of topological sortings of the statements contained in the
sequences�

De�nition Let s�� � � � � sn be simple statements� such
as assignments� which are executed in the order p �
hs�� � � � � sni� Let fsi � F

C be the transfer function connected
to the statement si� fp�x� �def fsn � fsn��

� � � � � fs��x�

De�nition � Let s��� � � � � s
�
n� and s��� � � � � � s

��
n�� be simple

statements� which are executed in the order p� � hs��� � � � � s
�
n�i

and p�� � hs��� � � � � � s
��
n��i� respectively� TopSorts�p�� p��� is the

set of statement sequences which result from a topological
sorting of the two sequences p� and p��� For two statements
s�i� s

��
j no order is de�ned� and s�i must be executed before s�i��

�also for the statements s��j ��

Lemma Let s��� � � � � s
�
n� and s��� � � � � � s

��
n�� be simple state�

ments� which are executed in the order p� � hs��� � � � � s
�
n�i

and p�� � hs��� � � � � � s
��
n��i� and fs�

i
� fs��

j
� FC the functions cor�

responding to the statements s�i and s��j � respectively� The
following holds	

p�TopSortsp��p��

fp�x� � fp��p���x� u fp���p��x�

Where p� q is the concatenation of two statement sequences
p and q�

Proof �Lemma � We prove this lemma in several steps�

�� Let p � hs�� � � � � sni � TopSorts�p�� p���� With lemma �
we have a � � i � n where fp�x� � fi�x�

� and 	i �
j � n � fj � id� If there are several such i� we use the
largest one� Now si� the statement determining the
value of the path p� may be contained either in p� or
p���

�fi is an abbreviation of fsi �

�

�� The set TopSorts�p�� p��� can be split into two disjoint
subsets seq� and seq��� where�
seq� �def fq � TopSorts�p�� p��� j 	x � fq�x� �
fi�x� and si � p�g� i�e� seq� contains all those paths�
whose value is determined only by statements con�
tained in p�� seq�� is de	ned analogously�

Since TopSorts�p�� p��� � seq� � seq��� it follows that

p�TopSortsp��p��

fp�x� � p�seq�

fp�x�u p�seq��
fp�x��

�� Proposition� If si � p��� then for all x�

fp�x� � fp��p���x��

Proof� The proposition is proved� by reordering the
sequence p stepwise� The statements sk� � sk� � p with
� � k�� k� � i may be reordered in a way that all
statements sk� � p� are placed before sk� � p�� and still
ful	ll the order constraints of p� and p��� respectively�
Lemma � guarantees that the value of this reordered
sequence is still equal to fp�x��

The instructions sk � p� with k � i may also be placed
before si� since fk � id�

The statements sk � p�� with k � i need not be re�
ordered�

Hence if si � p�� then fp�x� � fp��p���x�� Analogously�
if si � p� the fp�x� � fp���p��x��

�� Now the statement sequences from seq� and seq��

may be reordered as shown above� while not chang�
ing their value� Hence

p�seq�
fp�x� � fp���p��x� and

p�seq��
fp�x� � fp��p���x�� And so�

p�TopSortsp��p��

fp�x� � fp���p��x� u fp��p���x��

	 Data Flow Analysis of the PAR Statement

We now solve the data �ow analysis problem for the PAR
statement in two steps�

�� which information is valid before each statement in a
process body� and

�� which data �ow information is valid after the PAR state�
ment�

But before doing this� we need some more de	nitions�

	�� Statement Traces Generated by the PAR Statement

If the maximum �worst case� data �ow information of some
statements is given as the meet over all paths� the question
arises� how can we compute all paths of a parallel program�

We now consider statement traces instead of paths in the
control �ow graph� this simpli	es the presentation of the
next results�

De�nition � A statement trace or statement execution se�
quence is a list of simple statements in the order they are
executed by a single run of a program� The set seq�S� is the
set of all traces generated by statement S� s � p � seq�S�
means that s is a simple statement contained in sequence q�

It is well known how the set of traces is constructed for
sequential programs�

� For the concatenation of statements S��S�
� the traces

produced from S� and S� are concatenated�

	Capital letters S denote composite statements� whereas small let�
ters s denote simple ones�

� For an IF statement� the traces generated by the THEN
and ELSE parts are united�

� For loops� all n�fold concatenations of the traces pro�
duced by the loop body are united�

Since we assumed an interleaving semantics for the exe�
cution of the statements of our PAR statement� it is obvious
that the topological sorting of the traces produced by the
process bodies� determines all traces of the PAR statement�

De�nition �� For a given trace p the set pre	xes�p� is the
set of all pre�xes of p� It includes the empty trace and
the entire trace p� pre	xes�P � is the extension to a set
of traces P � so that it contains all pre�xes of all traces of
p � P � For a statement S� pre	xes�S� is the abbreviation of
pre	xes�seq�S���

De	nition � is now extended for arbitrary �composite�
statements�

De�nition �� Let S� S�� � � � � Sn be arbitrary �composite�
statements	 fS�x� �def p�seq	S�

fp�x��

fS��S������Sn�x� �def fSn � fSn��
� � � � � fS��x� is the func�

tion corresponding to the statement sequence S�� � � � �Sn�

an obvious lemma is�

Lemma � Let S�� � � � � Sn be arbitrary statements and let be
S � S�� � � � �Sn� Then for distributive functions f � F 	
fS��S������Sn�x� � fS�x�� while for monotone f � F � only
fS��S������Sn�x� fS�x� holds�

De�nition �� Let s be a statement inside a �nested� PAR
statement� sibl�s� is the set of all simple statements which
could possibly be executed in parallel to s� If s is part of a
replicated process body� all statements of this process body
are also contained in sibl�s� �

Note that the property s� � sibl�s� of s� is a purely syn�
tactical one� which can easily be determined from the source
program�

	�� Which Data Flow Information Reaches a Statement

Let s be a statement inside a PAR statement� By de	ni�
tion the information valid before s is given by the meet
over all traces reaching s� To answer the question which
these traces are� let us examine the following example���
PAR s j s�� s�� � � � � sn END� s may now be the 	rst state�
ment executed in an interleaving produced by this PAR state�
ment� On the other hand� s� may be executed before s in
another interleaving� or s�� s� are executed before s� etc�
Hence the set of statements executed before s is given by
pre	xes�hs�� � � � � sni�� Using lemma � we can conclude that�

p�pre�xeshs������sni

fp�x� � x u

n

i��
fsi�x�� If the

process body S of PAR s j S END which is executed in
parallel to s produces more than one execution sequence�
the set of execution sequences reaching s is given by�S

p�seq	S�
pre	xes�p�� and hence�

p�pre�xesseq	S�

fp�x� �

x u
t is a statement from S

ft�x��
The fact that there may be statements� which are al�

ways executed before s� does not in�uence our considera�
tions� since the argument x of the function fs re�ects the

�
Note that in these traces some statement within the body of the
PAR statement may not be included� since they are executed �after�
s�

�

information reaching s� if no parallel statements are exe�
cuted before s�

Since PAR statements may be nested� the following theo�
rem is a consequence of the above�

Theorem � Let s be a simple statement in a program� and
sibl�s� the set of simple statements possibly executed in par�
allel to s� Then for DC data �ow problems� the following
information is valid before s	

x u
t�sibl	s�

ft�x��

where x is the information valid before the PAR statement�

If we use the following de	nition� we can restate the the�
orem so that it is easier to use as a base for an implementa�
tion�

De�nition �� For statement s� we de�ne in��s� as the in�
formation reaching s on a �sequential� trace from the pro�
gram entry� That is� none of siblings of s are executed before
s� And let ink�s� be the information reaching s if all possible
trace are considered�

If a function ft � FC � t � sibl�s� is a constant function�
then the value of ft�x� is independent of x� ft�x� � ft�
Otherwise ft is the identity� and ft�x� � x� Then in��s� is
simply the value of x� and the Theorem � can be restated
as�

ink�s� � in��s� u

t�sibl	s�

ft ���

	�� Which Information is Valid After the PAR Statement

Lemma � is the cornerstone for the following theorems� Af�
ter extending it to sets of paths we obtain�

Theorem � For the DC data �ow problems and the
PAR S� j S� END statement the following holds	

p�seq	PAR S� j S� END�

fp�x� �

p�seq	S��S��

fp�x� u

p�seq	S��S��

fp�x�

To extend this theorem for PAR statements with more
than two process bodies� we de	ne�

De�nition �� The set of simple permutations s perm of
the numbers �� � � � � n is given by	 s perm��� n� �def

fh�� �� � � � � n� �� ni� hn� �� � � � � n� �� �i�
h�� n� �� � � � � n��� �i� � � � � h�� �� �� � � � � n� n��ig� That is� the
ith number is exchanged with the last number in the sequence
h�� �� � � � � ni� �� � hi�� i�� � � � � ini denotes an element of this
set� Note that s perm��� n� has only n elements�

If we have a closer look at the proof of lemma �� we
see that the order of the statements sk� with k � i has no
in�uence on that result� Hence we have the following lemma�

Lemma � Let p�� � � � � pn statement sequences of simple
statements� Then	

p�TopSortsp������pn

fp�x� �

���s perm��n

fpi� �����pin �x�

Note that any other permutation would serve� as long as
each statement sequence appears at least once at the end�
Hence we have the following theorem�

Theorem � For the DC data �ow problems and the
PAR S� j � � � j Sn END statement	

p�seq	PAR S� j ��� j Sn END�

fp�x� �

���s perm��n

fSi� �����Sin �x��

It is easy to see that the result is not changed by
a replicated process body 	var �� lwb TO upb� S with
upb � lwb � � � �� since for the result only S is impor�
tant� If upb � lwb � � � �� then it may happen that S is
never executed� and the theorem should be adjusted accord�
ingly� We will see in the implementation section �� how this
could easily be done�

 Bit�Vector Implementation

From now on� we consider only the DB data �ow analysis
framework�

Until now we considered only one program entity� such
as a single program variable or a single expression� When
implementing data �ow analysis� usually all entities are con�
sidered at the same time� Hence we are dealing with sets
of informations� valid at a program point� Each entity is
coded by a number � � � � j entities j� For the class of one�bit
data �ow problems DB there is a quite e�cient implemen�
tation of sets� the bit�vector�

De�nition �	 A bit�vector is the characteristic function
vec of a �nite set of of object numbers � � � � n � j entities j�
vec � f� � � � ng fTRUE�FALSEg with � � n� Usually
vec�i� is denoted as vec�i��

The set operations ���� are de�ned for bit�vectors� by
element wise application of the boolean operations ���� �
The set di�erence is de�ned by a� b �def a � b�

The empty set � is represented by the bit�vector� in which
all values are FALSE�

Usually for each statement and basic block the following
four sets are de	ned ���� gen� kill� in and out� gen �kill� is
the set of information generated �invalidated� by this state�
ment�basic block� in is the set of information valid im�
mediately before execution of this statement and out the
information valid immediately after that point�

As seen before� the u operation is either set union or
set intersection� The DFA problems using set union �inter�
section� as meet operations are called may problems �must
problems�� since the information must reach a given program
point on at least one �on all� paths leading to that point�

We de	ne now the four sets in terms of the transfer func�
tions� Each statement s has a separate transfer function for
each entity e� denoted by fes �

De�nition �
 Let s be a statement�
gens�e� � TRUE i� fes � u �use��
kills�e� � TRUE i� fes � m �modify��
ins�e� � TRUE i�

p�path	s

fep ��� �
 and

outs�e� � TRUE i�
p�path	s�

fep ��� �
�

Obviously	 gens � kills � �

�

We will 	rst formulate the result of Theorem � in the
form of Equation � using the DFA sets� Note that we are
now using DB�

In the equation inks�e� � in�s�e� u t�sibl	s�
fet � all ft

are constant functions� The right hand side is
� i
 both
parts of it evaluate to
� The following equivalences hold�

t�sibl	s�
fet �
� 	t � sibl�s� � fet �
 �

� �t � sibl�s� � fet � ��
V

t�sibl	s�
gens�e� � TRUE�W

t�sibl	s�
kills�e� � FALSE�

We now distinguish�

u � ��
 � TRUE

t�sibl	s�
fet �
 �

V
t�sibl	s�

fet � TRUE�W
t�sibl	s�

kills�e� � TRUE

u � ��
 � FALSE

t�sibl	s�
fet �
 �

W
t�sibl	s�

fet � FALSE�V
t�sibl	s�

gens�e� � FALSE�W
t�sibl	s�

gens�e� � FALSE�W
t�sibl	s�

gens�e� � TRUE�

And we can state the following theorem�

Theorem � The information of a one�bit DFA problem
reaching a statement s can be computed by	

inks �

���
��

in�s �
S

t�sibl	s�
killt for u � �

with in�s
 �
 � TRUE
in�s �

S
t�sibl	s�

gent for u � �

with in�s
 �
 � FALSE

�s� is the �rst statement of the program��

The next step is the adaptation of Theorem �� Before
doing so� we restate the equations for in and out in the
sequential case� as they may be found e�g� in ����
For a simple statement the relation is given by�

outs � gens � ins� kills ���

For sequential composition of statements s � s�� s��

outs � out� � out��kill� ���

For branches in a sequential program�

ins �
p�pred	s�

outp
outs � gens � ins�kills

���

Using these equations we can compute the right hand side of
the equation from Theorem ��

���s perm��n

fSi� �����Sin �x��

We again have to distinguish between may and must prob�
lems� Hence the following theorem can be given�

Theorem 	 The information outS of a one�bit DFA prob�
lem valid after the PAR S� j � � � j Sn END statement S can
be computed as	

outS�

���
��
��Sn

i��
geni

�
�
�Sn

i��
killi
��
�
�
in�S �

Sn

i��
killi
�

for u � �Sn

i��
geni �

�
in�S �

Sn

i��
killi
�

for u � �

�
The symbol Xsi
is abbreviated to Xi�

where in�S is the information valid before the PAR statement�
and geni and killi are the sets corresponding to the process
bodies Si�

Now we have to determine which information is gener�
ated and invalidated by a PAR statement as a whole� Again
we start with the sequential composition of statements �fol�
lowing ����� For S � S��S� we have�

genS � gen� � gen�� kill� ���

killS � kill� � kill�� gen�

Hence we can follow the same arguments as for outPAR�
with the simpli	cation that the term in��kill� � � �� does not
exist� We note here that if the In�Out�problem��� is a may�
problem� then the Gen�Problem��� is a may�problem too�
while the corresponding Kill�problem� is a must�problem�
and vice versa� if the In�Out�problem is a must�problem� So
the next theorem can be stated�

Theorem
 The information of a one�bit DFA problem
generated and invalidated by a
PAR S� j � � � j Sn END statement S can be computed as	

In�Out�problem u � � � genS �

�
n	
i��

geni

�

�
n	
i��

killi

killS �

n	
i��

killi

In�Out�problem u � � � genS �

n	
i��

geni

killS �

�
n	
i��

killi

�

�
n	
i��

geni

Having all these theorems� we see that we have avoided
the state�space explosion problem�

These results are given for an isolated� PAR statement�
The next section will put them in the context of a parallel
control �ow graph and we will see how this gives us an ele�
gant algorithm for computing the data �ow information of
a parallel program�

� The Parallel Control Flow Graph

The following explanation is based on our implementation of
the parallel language Modula�P ���� developed in the Com�
pare project� To express parallelism in the intermediate
language CCMIR�P�� we de	ne some additional CCMIR
statements and de	ne a parallel control �ow graph �PCFG��

Looking at the results of this theory� we observe that
the PAR statement and its processes are treated by it as
a single statement with a complex behavior� The idea for
integrating the analysis of a PAR statement is to treat it like
other CCMIR statements such as assignment or procedure

��Which information is valid before�after a statement�
��Which information is generated by the statement�
��Common Compare Medium Intermediate Representation� Par�

allel extension� the intermediate language of the Compare compilers�

�

REPEAT

�
IF

THEN
x�

�
PAR

� PAR Body�a � Body�b END�

�
� Body� � Body�

END
p �

�� z � f �

��
PAR Body�a � Body�b END�

ELSE

END�

UNTIL

Table �� A program fragment with nested PAR�s�

call� except that it has a more complex DFA behavior� The
DFA e
ects of the PAR statement are determined solely by
its process bodies�

The central idea of our parallel control �ow graph
�PCFG� is that it is a forest of disjoint CFG�s� Each pro�
cess body and procedure body constitutes a separate CFG�
Since jumps into or out of process bodies are forbidden in
the source language� there are no jump edges connecting the
CFG�s�

To form a PCFG of a procedure we connect these sep�
arate CFG�s by adding parallel edges between the CFG of
a process body and the mirParallel statement containing
this process body�

For the program fragment shown in Table � the PCFG
is given in Figure ��

After parsing a source program� we obtain a list of all ba�
sic blocks� constituting an entire procedure� There is no spe�
ci	c order in this list� From that� we compute for each basic
block the list of predecessors and successors �cf� ����� Each
basic block has zero� one or two successors� It has none� if it
has as its last statement the EndProcedure or EndProcess
statement� It has one� if the last statement is a mirGoto�
and two if this is a mirIf statement� Entry basic blocks are
marked by the BeginProcedure and BeginProcess CCMIR
instructions� their basic blocks have no predecessors� To
	nd the roots of the CFG�s we simply scan the procedure�s
list of all basic blocks for basic blocks having no predeces�
sors�

If a replicator speci	es that no process should be created�
then we draw an extra jump edge from the process body
entry to its exit� This solves the problems mentioned in the
note to Theorem ��

Our de	nition of a PCFG di
ers from the one given in
���� in the way that their PCFG has two kinds of nodes�
ordinary� basic blocks and super nodes �or parallel blocks��
Such a super node represents the entire process body�

� Solving the Data Flow Equations of Concurrent Pro�
grams

Let�s assume we do not have nested PAR statements� Then
we must analyze a program in the following order�

�� Compute gen and kill information for all process bodies
and the mirParallel statement itself�

�� Compute gen and kill information for all statements of
the procedure�s CFG�

�� Compute in and out for all statements of the state�
ments of the procedure�s CFG�

goto ...

Body 2 Body 3Body 1

Body 1a Body 1b

p (...):

x :=

z := f (...)

mirParallel

mirParallel

mirParallel

The dashed lines are parallel edges connecting the separate CFG�s
of the process bodies to their mirParallel statement
 The grey
boxes are CFG�s of the process bodies
 The other boxes are part
of the procedure body�s CFG

Figure �� A PCFG for the program fragment of Table ��

�� Since we know the exact information reaching the
mirParallel statement� we can compute the in and
out information of the valid at the statements of
the process bodies� the information reaching the
mirParallel statement reaches the entry of each pro�
cess body�

Now it is obvious how to deal with nested PAR statements�

�� Visit the deeply�nested process bodies 	rst and com�
pute their gen and kill information� This corresponds
to a depth�	rst traversal of the PCFG along the par�
allel edges� This is called inside�out computation of
Gen�Kill�

�� Compute gen and kill of all other statements of the
procedure�s CFG�

�� Compute in and out for all statements of the proce�
dure�s CFG�

�� Visit the mirParallel statements from outside�in �the
reverse order of inside�out� and compute in and out of
the process bodies� Outside�in is the top�down traver�
sal of the PCFG along the parallel edges�

This kind of computation of the data �ow information
is a mixture of the structural ���� ��� page ���� �for the ef�
fect of the mirParallel statement� and iterative �all other
statements� method� A similar idea has been presented for
DFA of sequential problems by ����

The computation of the in and out information must be
done using an iterative algorithm ���� ��� At a 	rst glance
the same seems to be true for the computation of gen and
kill��� But this iterative approach for gen and kill solves a
broader problem� it computes for each basic block b the set

��Note� We have to compute the gen and kill info for a set of basic
blocks� In the sequential DFA� this information is not needed�

�

of gen and kill information reaching b� But we need only
the gen and kill information which is valid at the end of
a process body� We can therefore use a simpler algorithm
which combines the computation of the local gen and kill
with the computation of the gen and kill of a set of basic
blocks� We visit the basic blocks in the reverse depth 	rst
order� which guarantees that at the end of the process we
have the same result than using the iterative method�

� Complexity of this DFA Algorithm

To estimate the complexity of this algorithm� we use as com�
plexity measure the number of visits of a basic block during
the iterative computation of the DFA information� A com�
parable� sequential program is one where the PAR statement
and its process bodies are executed sequentially�

For the computation of the gen and kill sets� we have
to visit each basic block once� both in the sequential and
parallel case�

During the computation of in and out we apply the iter�
ative algorithm several times to di
erent �and disjoint� sets
of basic blocks� 	rst� we compute the DFA information for
the basic blocks of the procedure�s CFG� Second� we com�
pute in and out for the sets of basic blocks corresponding
to process bodies� The process bodies are considered in the
outside�in order of the PAR statement�

The number of iterations needed to compute the DFA
information is determined by the loop nested�ness ��� of the
source program�

Since we don�t have jump edges between basic blocks of
di
erent process bodies� we are always computing the DFA
information of disjoint sets of basic blocks� Hence the loop
nested�ness is the same for the parallel and the comparable
sequential program� Hence the overall number of basic block
visits is equal in the parallel and the comparable sequential
program�

As a result the data �ow analysis of a parallel program
has the same complexity as a comparable sequential one�

�� Current and Future Work

Currently the algorithm of ���� for elimination of partial re�
dundancies is implemented in the Compare compiler for the
source language Modula�P ���� which is an parallel extension
of Modula���

�� Conclusion

This work shows that data �ow analysis of parallel programs
is possible� and can be done as e�ciently as for sequential
programs� The novelty is that there is no restriction in the
kind shared memory access� nor in the accuracy� of the
resulting DFA information� Hence it is now possible to apply
optimizing transformations� which are well known from the
sequential context�

To show this� we proved some nice properties of the semi�
lattice based data �ow frameworks DC and DB� which al�
lowed us to reduce the number of interleavings needed for the
computation of the meet over all paths solution of the DFA
problem� Then we extended these results to bit�vectors� and
obtained simple set equations� computing the DFA informa�
tion valid inside and after a PAR statement� Based on that
we gave a simple algorithm to compute the DFA information
valid at all program points� This algorithm is a slight variant

of the usual iterative DFA algorithm� but the basic blocks
are visited in a special order� inside�out and outside�in of
the nesting structure of the PAR statement�

Acknowledgments

I want to express many thanks for discussions with Bernhard
Ste
en and Jens Knoop� both of the University of Passau�
and with Helmut Emmelmann�

References

��� A�V� Aho� R� Sethi� J� D� Ullman� Compilers	 Princi�
ples� Techniques and Tools� Addison�Wesley� �����

��� W�A� Babich� M� Jazayeri� The method of attributes
for data �ow analysis� Acta Informatica� �����������
�����

��� J�H� Chow� W�L� Harrison III� Compile�time analysis
of parallel programs that share memory� In ��� ACM
SIGPLAN�SIGACT Symposium on Principles of Pro�
gramming Languages� pages �������� �����

��� P� Cousot� R� Cousot� Semantic analysis of commu�
nicating sequential processes� In Automata� Languages
and Programming� �� Colloquium� LNCS��� Volume ���
pp �������� �����

��� J�H� Cow� W�L� Harrison III� State space reduction in
abstract interpretation of parallel programs� In Proceed�
ings of the ���� International Conference on Computer
Languages ICCL���� pages �������� IEEE� May �����

��� D� Grunwald� H� Srinivasan� Data �ow equations of
explicitly parallel programs� In PPoPP ��� ACM SIG�
PLAN NOTICES� �����

��� M�S� Hecht� J�D� Ullmann� A simple algorithm for
global data �ow analysis problems� SIAM� ���������
���� Dec� �����

��� S� Horwitz� A� Demers� T� Teitelbaum� An e�cient
general iterative algorithm for data��ow analysis� Acta
Informatica� �������������� �����

��� J�B� Kam� J�D� Ullmann� Monotone data �ow analysis
frameworks� Acta Informatica� ���������� �����

���� K� Kennedy� A survey of data �ow analysis techniques�
In
���� pages �����

���� G�A� Kildall� A uni	ed approach to global program op�
timization� In ACM Symposium on Principles of Pro�
gramming Languages� pages �������� October �����

���� J� Knoop� O� R uthing� B� Ste
en� Optimal code mo�
tion� Theory and practice� ACM Transactions on Pro�
gramming Languages and Systems� ����������������
July �����

���� L� Lamport� How to make a multiprocessor com�
puter that correctly executes multi process programs�
IEEE Transactions on Computers� c���������������
Sep� �����

���� S�P� Midki
� D�A� Padua� Issues in the optimization
of parallel programs� In Proceedings of the ���� Inter�
national Conference on Parallel Processing� pages ����
���� Volume II� August �����

��Lecture Notes in Computer Science� Springer

�

ldc �� r�
ld b� r�
st r�� a
cmp r�� �
jeq then�

�a

time t� t� t� t� � � �

Processor�� ldc �� r�� ld b� r�� �r� �� st r�� a� cmp r�� �� � � � critical�

Processor�� ldc �� r�� ld a� r�� �r� �� st r�� b� cmp r�� �� � � � critical�
�b

Table �� Code and execution of reordered code

���� S�S� Muchnick� N�D� Jones� editors� Program Flow
Analysis� Prentice�Hall� Inc�� �����

���� R�H�B� Netzer� B�P� Miller� What are race condi�
tions� some issues and formalizations� ACM Letters
on Programming Languages and Systems� �����������
Mar� �����

���� J�H� Reif� Data �ow analysis of distributed communi�
cating processes� Tech� Report TR������� Harvard Uni��
Center for Research in Computing Technology� �����

���� M� Sharir� A� Pneuli� Two approaches to interprocedu�
ral data �ow analysis� In
���� pages ��������

���� H� Srinivasan� D� Grunwald� An e�cient construction
of parallel static single assignment form for structured
parallel programs� Tech� Report CU�CS�������� Uni� of
Colorado at Boulder� Dep� of Computer Science� �����

���� H� Srinivasan� M� Wolfe� Analysing programs with ex�
plicit parallelism� In Languages and Compilers for Par�
allel Computing� LNCS� Volume ���� �����

���� A� Valmari� Stubborn sets for reduced state space gen�
eration� InAdvances in Petri Nets ����� LNCS� Volume
���� pages �������� �����

���� J� Vollmer� R� Ho
art� Modula�P� a language for par�
allel programming� De	nition and implementation on
a transputer network� In Proceedings of the ���� Inter�
national Conference on Computer Languages ICCL����
pages ������ IEEE� April �����

���� J� Vollmer� Data�ow equations for parallel programs
that share memory� Tech� Report ������ of the ESPRIT
Project Compare� Universi at Karlsruhe� Jan� �����

���� J� Vollmer� Data �ow analysis of parallel programs�
Interner Bericht ������ Universit at Karlsruhe� Fakult at
f ur Informatik� March �����

���� J� Vollmer� J� Knoop� B� Ste
en� Parallelism for
free� E�cient and optimal bit�vector analysis for par�
allel programs� Technical Report MIP������ Univer�
sit at Passau� Fakult at f ur Mathematik und Informatik�
Aug� �����

���� M� Wolfe� H� Srinivasan� Data structures for optimizing
programs with explicit parallelism� In
���� pp� ��������

���� H� Zima� editor� Parallel Computing� �� Int� ACPC
Conference Salzburg� Austria� LNCS Volume ���� �����

A What Might Go Wrong� An Example

This section shows the potential problems� when applying
sequential data �ow analysis to an explicitly parallel pro�
gram� And more that running an instruction scheduler may
cause a wrong execution of a parallel program� The small
program�� given in Table � executes the processes P� and P�
in parallel� It is intuitively clear that critical� and critical�
are never executed at the same time�

����� presents this problem concerning the design of parallel
computers�

On a 	rst glance this program has a race condition �����
�both processes read and write the shared variables� without
some kind of explicit synchronization� but this race condi�
tion is an intended one� The variables a and b are used to
implement a simple synchronization scheme� Extensive work
has been done on analyzing parallel programs for potential
races but little work has been done to optimize them�

a � �� b � ��
PAR

�P�� �P��
a � �� b � ��
IF b � IF a �
THEN critical�� THEN critical��

a � �� b � ��
ELSE else� ELSE else�
END END

END

Table �� Part of process synchronization code

A simple�minded optimizer could perform the following
optimizations� �which would be correct in sequential con�
texts��

� Propagate a�� and b�� to IF a�� and IF b�� respec�
tively�

� Then the expressions could be statically evaluated to
TRUE�

� Dead code elimination removes the IF and ELSE parts�

And as consequence� both� critical� and critical� would
be executed�

But even without traditional optimizations performed
by the compiler� things might go wrong during instruction
scheduling� The non�optimized code of process body P� on
a typical RISC processor is given in Table �� The instruc�
tion scheduler could now decide to reorder the instructions�
e�g� to insert another instruction between a register load
and an immediately following register use instruction �e�g�
ldc ��r�� st r��a� which results in the code for P� shown
in Table �a� In this case� it may happen that critical� and
critical� are both executed� as shown in Table �b�

ldc �� r� Load constant � into register r�

st r�� a Store r� in memory at address a

ld b� r� Load content of memory b

cmp r�� � Compare register with constant

jeq then� Conditional branch to then�

code of else�

� � �

Table �� Non�optimized code for Process P�

Even worse� some processors� such as the DEC Alpha� are
able to reorder the memory accesses to di
erent addresses to
some degree� Hence� even the unchanged code could give the
wrong result� To avoid this situation� theDEC Alpha o
ers a
memory barrier instruction� which delays the processor until
all pending memory requests are ful	lled� In our example
this instructions must follow every memory access� which
results in a signi	cant slow�down of the program�

��

