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Abstract

Variants of cellular automata consisting of alternating instead of
deterministic �nite automata are investigated� so�called uniform al�
ternating Ca �Aca� and two types of nonuniform Aca� The former
two have been considered by Matamala ��		
�� It is shown that the
nonuniform Aca are time equivalent� The main contributions are fast
simulations of Aca by uniform circuit families and vice versa� It is
shown that nonuniform Aca are time equivalent to circuit families
with unbounded fan�in� and that uniform Aca are time equivalent to
circuit families with constant fan�in� Hence uniform Aca and alter�
nating Tm are time equivalent� too� solving a problem left open by
Matamala� The results also give some evidence that a linear time
simulation of nonuniform Aca by Atm is �unlikely� to exist�

� Introduction

The standard model of deterministic cellular automata �CA� has been gen�
eralized in several directions� e�g� nondeterministic CA or stochastic CA�
Recently they have also been extended using the concept of alternation ��	�
First results have been obtained by Krithivasan and Mahajan �
	� They
are considering a rather restricted model� one would call a special type of
uniform Aca �Uaca�� using the terminology of Matamala ��	�

Besides uniform Aca he considers so�called weak Aca �Waca� and one
variant of nonuniform Aca �denoted ���Aca in this paper�� In ��	 it is
shown that Uaca and Waca are time equivalent �i�e� they can simulate
each other with only constant slowdown�� that these models can simulate

�This is technical report ���� of the Department of Informatics� University of Karls�
ruhe� It is also available at http���liinwww�ira�uka�de��worsch�papers��

�



alternating Turing machines �Atm� with constant slowdown� and that these
models can be simulated by ���Aca with constant slowdown�

The rest of the paper is organized as follows� In Section 
 some basic
notation is introduced as well as some concepts which are common to all
alternating devices� In Section � two variants of nonuniform Aca ����Aca
and ���Aca� are considered� We prove that these models can simulate each
other with only constant slowdown� Section  is devoted to uniform Aca

�Uaca�� weak Aca �Waca� and alternating Tm �Atm�� We show that
they are all time equivalent� solving a problem left open in ��	� In Section �
relations between uniform resp� nonuniform Aca and circuit families with
bounded fan�in resp� unbounded fan�in are investigated� Therefore the ques�
tion whether nonuniform Aca are time equivalent to Atm is related to the
corresponding problem for circuit families with �un��bounded fan�in� giving
some indication that nonuniformAcamay be somewhat more powerful than
Atm�

� Basic notions

In this paper we are only dealing with one�dimensional cellular automata
�Ca� with von Neumann neighborhood N of radius �� Thus a deterministic
Ca is speci�ed by a set of states Q and a local transition function� � � QN �
Q specifying for each local con�guration l � N � Q the new state ��l� of the
central cell� A �global� con�guration is a mapping c � Z� Q� The state of
cell i in c is denoted ci and the local con�guration �observed� by cell i in its
neighborhood is denoted ci�N � N � Q � n �� ci�n� For a con�guration c
denote by cN the mapping cN � Z� QN � i �� ci�N � For a subset T � Z we
write c �T�� c

� i� i � T �� c�i � ��cNi � �where we have written cNi instead
of cN �i��� The relation c �Z�� c

� is abbreviated to c �� c
� and describes one

step of a deterministic Ca according to the local rule ��
Of course the usual de�nition of deterministic Ca is captured by the

above seemingly unnecessarily complicated formalism� The reason for intro�
ducing it is� that it will turn out to be useful for the de�nition of alternating
Ca�

For all types of alternating Ca it is assumed that the set of states Q �
Q� 	 Q� is partitioned into existential states q � Q� and universal states
q � Q�� The local transition function is now of the form � � QN � 
Q�
specifying a subset ��l� of possible new states for a cell observing l in its
neighborhood� A con�guration is de�ned as for deterministic Ca�

�BA denotes the set of all mappings from A to B�






For the recognition of formal languages an input alphabet A 
 Q and a
set F 
 Q of accepting �nal states has to be speci�ed� as well as a quiescent

state �� For the quiescent local con�guration l� � n �� � the local function
has to satisfy ��l�� � f�g� In the initial con�guration cw for an input
w � x� � � � xn � A� of length n � � cell i holds input symbol xi �for
�  i  n� and all other cells are in state �� A con�guration c is accepting
i� c� � F �

The recognition of formal languages by alternating devices is usually
de�ned using the notion of a computation tree� Its nodes are con�gurations
and the root is always an initial con�guration� In general there are several
computation trees with the same root� A computation tree is accepting i�
all of its leaves are accepting con�gurations� A word w is accepted if there
is an accepting computation tree with cw as root�

A word w is accepted in time t if there is an accepting computation tree
of height  t with cw as root� For Aca we say that w is accepted in space s
if every con�guration in this tree contains at most s cells in a non�quiescent
state�

Two machines �be itCa� Tm� � � � � are called equivalent i� they recognize
the same language� They are called time equivalent i� they are equivalent
and their time� complexities only di�er by a constant factor�

The main di�erences between the various types of alternating Ca lie
in the de�nitions of which trees are legal computation trees� This topic is
treated separately in the following sections�

� Nonuniform alternating CA

First we de�ne two types of nonuniform cellular automata� denoted as
���Aca and ���Aca� While ���Aca are considered in ��	 the ���Aca
are equally natural to look at�

For a con�guration c let ��c� � fi � Z j ci � Q�g and ��c� � fi � Z j ci �
Q�g� Let �c and �c� be two mappings Z� Q	QN and T 
 Z a subset of cells�
We write �c �T�� �c� i� i �� T �� �ci � �c�i and i � T �� �ci � QN � �c�i � ���ci��
Sometimes T is called the subset of active cells�

Using subsets �C� �C �� existential and universal �substeps� are now de�ned
as follows� �c ��T

�C � i� �C � � f�c� j �c �T�� �c�g and �C �
�
T

�C � i� j �Cj � j �C �j and
for each �c � �C there is a �c� � �C � such that �c �T�� �c��

The one�step relation for ���Aca is now de�ned as c ��� C � i� there is

�For Aca and Tm this means the number of steps� for circuit families their depth�
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a �c� such that� cN �
�
��c� �c �

�
��c� C

�� For ���Aca we use c ��� C i� there is a

set �C� such that cN �
�
��c�

�C �
�
��c� C

�� One should note that for both substeps
the subset of cells which are active are de�ned via the original con�guration
c�

A tree of con�gurations is a computation tree for an ���Aca i� for
each non�leaf node c the set Succ�c� of its successors in the tree satis�es
c �

�� Succ�c�� Analogously for ���Aca all non�leaves c have to satisfy
c ��� Succ�c��

Lemma ��� For each ���Aca there is a time equivalent one such that all

con�gurations occuring in any computation tree are such that either all non�

quiescent states are existential or they are all universal� The same holds for

���Aca�

Proof� The proof is only given for ���Aca with von Neumann neighborhood
N � f��� �� �g� �The proofs for other neighborhoods and for ���Aca can
be done analogously�� Let Q denote the set of states of an ���Aca M � We
construct another ���AcaM � with state set Q�� the same input alphabet A
and the same quiescent state �� which uses one full step �called an existential
step� to simulate an existential substep and a subsequent full step �called a
universal step� to simulate the subsequent universal substep of a step of M �

Without loss of generality assume that a cell will never enter the quies�
cent state if it is not already in it�

The simulation of an existential substep �resp� a universal substep� is
indicated by a special �ag �E resp� U� which is stored additionally in each
non�quiescent cell of M �� The state set of M � is Q� � A 	 f�g 	 �fE�Ug �
Q� 	 �fUg �Q���

For x� y� z � Q the states �U� y�� �U� xyz� � Q� are universal� States
�E� y� � Q� are chosen to be existential as well as all states in A� because the
�rst step of M � will be an existential one� By convention � is existential�
too �although it doesn�t matter�� The set of accepting �nal states for M � is
F � � F 	 �fEg � F �� where F is the set of accepting �nal states for M �

It remains to de�ne the transition function � � of M � �in terms of � ofM��
This will be done in such a way that for an arbitrary con�guration of M �

which occurs during a computation starting with some initial con�guration
cw the �ags of all non�quiescent cells are either all E or they are all U� hence
in each such con�guration either all non�quiescent states are existential or
they are all universal�

�We are identifying x and fxg here�





For x� y� z � Q and x�� y�� z� � Q�� using � ��x�� y�� z�� as a shorthand
notation� de�ne�

� ���E� x�� �E� y�� �E� z�� �

�
f�U� �y� j �y � ��x� y� z�g if y � Q�

f�U� xyz�g if y � Q�

� ��x�� �U� y�� z�� � f�E� y�g

� ��x�� �U� xyz�� z�� � f�E� �y� j �y � ��x� y� z�g

Furthermore a cell in state x � A acts as if it were in state �E� x�� A cell in
state �E� x� �or acting as such because it is in state x � A� treats a neighbor
in state y � A 	 f�g as if that were in state �E� y�� Analogously a cell in
state �U� x� treats a neighbor in state � as if that were in state �U� y��

For a cell in state � we choose � � as follows� If it sees a neighbor with
�ag E it essentially acts like a cell in state �E��� applying the above de�ned
rule� But there is one exception� If according to � one of the new states is
again �� then � � does not prescribe �U��� as the corresponding new state�
but simply �� This ensured that the space complexity of M � is the same as
that of M � If a cell in state � sees a neighbor with �ag U it does nothing�
i�e� remains in the quiescent state�

For all other local con�gurations � � can be de�ned arbitrarily because
they will never occur in con�gurations belonging to simulations of M �

In an existential step cells storing a universal state of M only collect the
states of their neighbors and alter their �ag� resulting in a state �U� xyz��
Cells in a state �U� y� �did their work� during the previous existential step
and do nothing except changing their �ag during a universal step� In the
other cases the cells of M � work as they would in C and alter their �ag�

Now that M � is de�ned� we are going to prove that it works as it should�
Denote by E�C the set of con�gurations of M � which is obtained from the
set C of con�gurations of M by adding the E �ag in every non�quiescent cell
in every con�guration� analogously for U �C� and in the cases of �c instead
of C��

Suppose M makes one ���step cN �
�
��c� �c ����c�

�C� First we will show�

that for M � holds� E� c ��� U� �c ��� E� �C�
For the simulation of the existential substep because of the de�nition of

� � and since ��E � c� � Z for M � one gets �E � c�N �
�
��E�c� U � �c� Since

��E� c� � � furthermore U� �c ����E�c� U� �c holds� That is� M � simulates

the existential substep of M by the full step E� c ��� U� �c�

�for ���l	 where l satis
es l���	 � x�� l�	 � y� and l��	 � z�
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The considerations for the simulations of the universal substep �c ����c�
�C

ofM are slightly more complicated� It has been de�ned above that quiescent
cells observing neighbors in states �U� y� stay in state �� Hence during
the existential substep of M � starting with con�guration U � �c �nothing
interesting happens�� This means that there is only one �c� � Z � Q 	 Q�

with �U� �c�N �
�
��U��c� �c

�� and it satis�es �c�i � � if �ci � � and �c�i � �U� �c�Ni
otherwise� The latter happens for the cells in ��U� �c� which are exactly the
non�quiescent cells of U� �c�

It remains to be shown that the �c satisfying �c� ����U��c� �c are exactly

the E � �c for �c � �C� It is clear that the �ag of each non�quiescent state
has to be E� To see that �c� ���U��c� E � �c holds� consider for an arbitrary
non�quiescent cell i the cases whether it was in an existential or a universal
state in con�guration c separately�

�� ci � Q�� i�e� �U� �c�i � �U� �ci�� According to the de�nition of � � only the
�ag is toggled in cell i� and hence �E� �c�i � �E� �ci� for any �c � �C�

�� ci � Q�� i�e� �U� �c�i � �U� ci��cici���� In M �ci � � ��ci��cici��� holds�
and this is exactly what is enforced by � � for M ��

On the other hand it should be clear that because of the de�nition of � �

whenever �c� ���U��c� E� �c� then �c � �C�

Thus for M � holds U� �c ��� E� �C and therefore every M �step c ��� �C
can be simulated by 
 M ��steps

E� c ��� U� �c ��� E� �C �

Conversely� for 
 steps of M � starting in a con�guration of the form E� c�
there has to be a �c such that

E� c ��� U� �c ��� E� �C �

It is then not di�cult to see that this implies that for M one has

cN �
�
��c� �c �

�
��c�

�C i�e� c ��� �C �

Hence� given an input word� for every accepting computation tree for M of
height h there is one forM � of height 
h and vice versa�

Essentially the same argument as above leads to the following result�

Theorem ��� For all time bounds t and space bounds s holds�

���Aca�Time�Space�O�t�� s� � ���Aca�Time�Space�O�t�� s� �
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� Uniform ACA versus bounded fan�in circuits

Uniform Aca have been de�ned in ��	 as follows� A deterministic transition
function � � QN � Q is said to be compatible with a nondeterministic
transition function � � QN � 
Q� written as � � � for short� i� for all l � QN �
��l� � ��l�� A con�guration c of aUaca is called existential �resp� universal�
i� c� is existential �resp� universal�� A tree of con�gurations is a computation
tree for a Uaca i� each existential con�guration c has exactly one successor
c� such that c �� c

� for some � � � and for each universal con�guration c
the set of successors is Succ�c� � fc� j there is a � � � � c �� c

�g� Hence the
main di�erence to nonuniform Aca is that if in a con�guration c the same
local con�guration occurs several times� in a Uaca all cells observing it will
enter the same new state� while in a nonuniform Aca they don�t have to�

For completeness we mention the so�called weak Aca �Waca�� They
are �essentially� Ca with deterministic cells with the exception of one cell�
say cell �� which is an alternating one� Waca are time equivalent to Uaca
��	�

One of the main contributions of this paper are results concerning the
relations between alternatingCa and uniform circuit families �Ucir�� In this
section Uaca will be shown to be time equivalent to Ucir with bounded
fan�in gates� As a corollary one also gets the time equivalence of Uaca and
Atm� solving a problem left open in ��	� In order to have the same set of
input symbols for all models� we restrict ourselves to the input alphabet
A � f�� �g below�

A circuit family with bounded fan�in consists of a circuit Cn with n
inputs and one output for each integer n � �� such that each Cn consists
of ��gates �having one entry	� and �� and ��gates with two entries� It
is sometimes convenient to assume that there are �gates� producing the
constants � �resp� �� as output� Such devices obviously can be built from
the ��� �� and ��gates using one input bit� Furthermore we assume that the
n input bits are provided at the exits of �input gates� �having no entries�
and that the result of the circuit is available at the exit of an �output gate�
�having one entry and doing nothing��

The size of a circuit is the total number of entries of all gates� For
circuits with bounded fan�in this di�ers from the number of gates only by
a constant factor �which we will ignore throughout the paper� and has the
advantage that it actually is the de�nition used for circuits with unbounded

�Sometimes we don�t use the word input to avoid confusions with the inputs of the
circuit� and analogously for �exit� instead of output of a gate�
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fan�in gates �see next section�� The depth of a circuit is the length of the
longest path from an input to the output� These notions are generalized to
circuit families in the obvious way�

An important topic in the de�nition of Ucir is a concept also called
uniformity �which has nothing to do with the uniformity condition for Aca��
Di�erent versions are used in the literature� see ��	 for an overview� In
this paper we will use the following �which is also applicable to Ucir with
unbounded fan�in�� To the gates of each circuit Cn numbers v of length
O�log size�Cn�� have to be assigned such there is a deterministic TM which
on input of �n� v� i� can compute the type of gate v� its number e of entries
and for i  e the number v� of the gate providing the input for the i�th
entry of v� using space complexity O�log size�Cn��� Note that from this also
follows the possibility to compute the number vo of the output gate of a
circuit using the same space complexity �by simply checking all numbers v
one after the other until the one with the correct type is found��

Lemma ��� For functions t � n and s � n which can be computed in space

O�s��

Uaca�Time�Space�O�t��O�s�� � Ucir�Depth�Size�O�t�� 
O�s��

Proof� Let C be an Uaca with input alphabet A � f�� �g� state set Q and
transition function �� For each input size n a circuit Cn will be constructed
which accepts an input word w of length n� if and only if C accepts w�

The circuit consists of an �upper� and a �lower� part �the �ow of in�
formation in the circuit is from the top to the bottom�� The upper part
of the circuit is similar to the construction for the proof of ��� Theorem �	�
It checks for all w � An whether C accepts w in time t�n� or not� For all
�  i  t�n� and all con�gurations c of C occupying space s�n� or less
� there are 
O�s�n�� such con�gurations � the circuit contains a gate labeled
�i� c�� Imagine the gates being arranged in t�n� levels with the �rst index
decreasing from the top to the bottom� Furthermore there is a zero level
with 
n gates labeled ��� cw� �where the cw are the initial con�gurations of
C�

The type of a gate is � �resp� �� if the con�guration is universal �resp�
existential�� The entries of gate �i� c� are connected to the exits of all gates
�i� �� c�� such that c� is a successor con�guration of c� In general there are
more than two successors of a con�guration c� but for theUaca there are not
more than K �� jQj�jQj

jNj�� i�e� a constant number� So the �gates� described
above can be implemented as binary trees of height  dld�K�e consisting
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Figure �� For each b � f�� �gn there is a gate ��� cb� and a comparator circuit
Kb whose i�th entry is negated � bi � ��

of ordinary gates with in�degree 
� Thus the overall depth of the circuit
is increased only by a constant factor
� As the circuit is constructed from
lower levels to higher levels a gate labeled with an accepting con�guration is
replaced by a constant � and gates labeled with a con�guration using more
than s�n� space and gates on a hypothetic level t�n� � � are replaced by
a constant �� Now the following can be shown by induction �cf� ��	�� the
output of a gate ��� cw� is � i� there is an accepting tree for C on w of height
 t�n��

The �lower part� of Cn uses the input bits w�� � � � � wn to select the
proper gate ��� cw� whose output becomes the output of the whole circuit
�see Figure ��� To this end there are 
n �comparators� Kb each comparing
w � w� � � �wn to one of the constant bit patterns b � b� � � � bn � An produc�
ing a � as output i� w � b� The outputs of Kb and the gate labeled ��� cb�
are fed to an ��gate� The outputs of these 
n ��gates are fed to a tree of
��gates �with height ld�
n� � n�� The root of this tree is the output of the
circuit and the following holds� The output of the constructed circuit is �
i� C accepts w in time  t�n��

The depth of the circuit is at most dld�K�e � �t�n�����dld�n�e���n �
O�t�n��� The size of the circuit is dominated by the size of its upper part
which is 
O�s�n�� � �t�n����� Since t�n�  
O�S�n��� the overall size is 
O�s�n���

In order to prove that this circuit family is uniform� we describe a deter�
ministic Tm M � that constructs the circuit Cn �in the sense stated above�

�that only depends on the Aca C and not on the length of the input�

!



using space O�log size�Cn�� � O�s�n��� Hence M � is allowed to store a con�
stant number of gate labels �i� c� on its tape� The interesting point is how
M � determines the labels �i��� c�� of the gates which provide an input for a
given gate �i� c�� Suppose that f� j � � �g � f��� � � � � � �Kg� We may assume

that each gate in the �upper� part has exactly �K entries �although it may
happen that �i �� �j � but c ��i c

� and c ��j c
� lead to the same successor con�

�guration�� our construction still works if a gate gets the same input from
the same gate on di�erent entries� M � can determine the label �i � �� c�� of
the gate connected to its j�th entry by increasing the �rst index and apply�
ing �j to the cells of c in the bounds given by s� By looking at c� M

� can
determine the type of a gate �i� c� and if it has to replaced by a constant
�� Due to the assumptions made to t and s� M � can also determine when a
gate must be replaced by a constant ��

Note that the assumption t�n� � n is no real restriction because a Uaca
needs at least n steps until every input symbol might have had an in�uence
on the state of the origin cell�

Since it is known ��	� that for t and s which can be linearly approxi�
mated��

Ucir�Depth�Size�O�t�� 
O�s�� � Atm�Time�Space�O�t��O�s��

together with ��	

Atm�Time�Space�O�t��O�s�� � Uaca�Time�Space�O�t��O�s�� �

one also gets the opposite inclusion as in Lemma �� and therefore�

Theorem ��� For t�n� � n which can be linearly approximated holds�

Uaca�Time�O�t�� � Atm�Time�O�t�� � Ucir�Depth�O�t�� �

� Nonuniform ACA and circuits

In the previous section uniform Aca have been shown to be time equiva�
lent to circuit families with bounded fan�in� In the following an analogous
relation between nonuniform Aca and circuit families with unbounded fan�
in gates will be established� Aca will also be compared to circuits with
bounded fan�in gates and Atm�

�I�e� there is a �t� t � �t � O�t	� �resp� �s	 which is time constructible�

��



In a circuit with unbounded fan�in �UbUcir� �� and ��gates are al�
lowed with an arbitrary number of entries� The uniformity condition used
is exactly the same as for circuits with bounded fan�in above�

The proof in section  cannot be applied unchanged to nonuniform Aca

because unlike for Uaca the number of successors of a con�guration of a
nonuniform Aca ����Aca or ���Aca� cannot be bounded by a constant�
This leads to the idea to compare nonuniform Aca with uniform circuit
families with unbounded fan�in gates�

Lemma 	�� For functions t � n and s � n which can be computed in space

O�s��

���Aca�Time�Space�O�t��O�s�� � UbUcir�Depth�Size�O�t�� 
O�s��

Proof� Recall the proof of Lemma ��� Here� a similar construction is used�
but there are the following changes� A gate labeled �i� c� in the upper part
of the circuit now is replaced by a tree of height 
 of gates with unbounded
fan�in �see Figure 
�� The root of the tree is a � gate whose entries are
connected to intermediate � nodes which correspond to the �c such that
cN �

�
��c� �c� The entries of these intermediate gates in turn are connected to

the exits of the gates �i� �� �c�� for all �c � �C� where �c ����c�
�C�

� �i� �c����

� � �

� �i� �cl���

� � �

� �i� c���

� � �

�i� c�

Figure 
� The �gate� �i� c� is implemented by one ��gate and an ��gate for
each �cj with cN �

�
��c� �cj�

Gates labeled with accepting con�gurations are replaced by a constant �
and gates labeled by a con�guration using more than space s�n� or gates on
level t�n� � � are replaced by �� It can be shown by induction on the level
i that a gate �i� c� produces a � as output if and only if c is the root of an

�It depends on the number of cells in a con
guration that are in a universal state
observing a local con
guration which allows at least two new states� i�e� jSucc�c	j depends
on the space complexity and in general cannot be bounded by a constant�
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accepting computation tree of height  t�n� � i of the ���Aca� Therefore
the output of a gate labeled ��� cw� is � i� the ���Aca accepts w�

The comparators selecting the output of the proper gate ��� cw� can
be implemented using a single ��gate with fan�in 
n� making use of input
symbols and their negations� Likewise the outputs of these ��gates are fed
to a single ��gate with fan�in 
n whose exit is the output of the circuit�

The depth of the circuit Cn with n inputs is 
�t�n� � �� � 
 � O�t�n���
The circuit contains up to 
O�s�n�� ��t�n���� � 
O�s�n�� ��gates and 
O�s�n�� �

O�s�n�� � �t�n� � �� � 
O�s�n�� ��gates� That is� the maximum fan�in of one
gate is bounded by 
O�s�n�� and therefore the size of the circuit is bounded
by 
O�s�n�� � 
O�s�n�� � 
O�s�n���

In order to show the uniformity of the circuit family� i�e� that the cir�
cuit Cn can be constructed by a Tm M � using space O�s�n��� the following
numbering of gates will be used� For each �i� c� the corresponding ��gate
is labeled �i� c��� and the intermediate ��gates are labeled �i� �cj ���� Sup�
pose the gate that is connected to the j�th entry of gate �i� c��� has to be
determined� For each existential state ck in the con�guration c� M � stores
the set ��ck�N � of possible successor states on its tape� This requires at
most jQj � s�n� additional storage� Now M � picks from each of these sets
an appropiate successor state to build a con�guration �cj and thus to obtain
the label �i� �cj ��� of the gate in question� Using a similar technique� the
gate �i � �� c���� that is connected to the j�th entry of an ��gate can be
determined�

If in the above construction gates with large fan�in are replaced by trees of
gates with fan�in 
 one gets the following result�

Lemma 	�� For functions t and s satisfying the requirements of Lemma 	�


holds�

���Aca�Time�Space�O�t��O�s�� � Ucir�Depth�Size�O�st�� 
O�s��

���Aca�Time�O�t�� � Ucir�Depth�O�t���

Proof� First� the same construction as above is used� Then� each gate with
a fan�in f � 
 is replaced by a tree of height dld�f�e of gates with fan�in

� The maximum fan�in cannot exceed the number of gates in the UbUcir�
circuit� and the constructed circuits contain 
O�s�n�� � �t�n���� gates� where

O�s�n�� is the number of possible con�gurations occupying space O�s�n����

	Note� that its size is � its depth which in turn is � the time complexity of the Aca
which is � n�
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Since t  
O�s�n�� �see ��	 for a similar result for Atm�� the number of gates
and thus the maximum fan�in is bounded by 
O�s�n��� Therefore the depth
of theUcir�circuit is bounded by s�n�t�n� which is O�t��n���

From Lemma ��
 and the known relations between Ucir and Atm ��� The�
orem �	 also follows the fact stated in Lemma ��� below which is Theorem �
in ��	�

In our opinion the proof of the latter needs some modi�cation� First we
describe a nonuniform Aca as a counterexample for which the proof fails
and then the corrected proof of a direct simulation of nonuniform Aca by
Atm is shown�

Consider an ���Aca C being in the following con�guration �with � non�
quiescent cells�

� z x z u z x z �

where �� z and x are existential states and u is a universal state� Suppose
the transition function of C is de�ned by � � z� � �� f�zg� �z� x� z� �� fx�� x�g�
�z� u� z� �� fu�� u�g� � ��� � �� f�g� � � � �other values are not of interest for
our example��

We will now consider one possible con�guration tree of the simulating
Atm M �as described in ��� Theorem �	� and have a look at the part of
this tree �depicted in Figure �� that simulates the step of C starting in the
con�guration shown above�

The point is that the simulation by M can produce successor con�gu�
rations which di�er in a cell that was in an existential state �like the �rd
cell from the left in the con�gurations in the bottom row of Figure ��� This
however is impossible for a ���Aca by de�nition� Therefore one could con�
struct a ���Aca C such that the �simulating�AtmM recognizes a language
L�M� �� L�C��

The corrected simulation of nonuniformAca by Atm is shown next� The
same basic idea is used� but the main di�erence is that the updates of cells
in an existential state and cells in an universal state are done in separate
phases of the simulation�

Lemma 	�� For all time bounds t and space bounds s holds�

���Aca�Time�Space�t� s� � Atm�Time�Space�O�t���O�s��

Proof� Let C be a ���Aca with state set Q � Q� 	Q�� input alphabet A�
von Neumann neighborhood of radius � and the transition function �� In the
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�
state �u�H�
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Figure �� Simulation of one step of C byM � The arrows point at the current
head positions� The states of M are not shown� except for the con�guration
where the universal branching occurs�

following an Atm M with one work tape will be described that simulates
one step of C within O�s�n�� steps� For this purpose states from Q are
stored as symbols on the tape of M �

The simulation of one step is done in � phases� In each phaseM moves its
head across the tape segment with all squares storing non�quiescent states�
In the �rst phase M copies the contents of each �eld in this segment to
the right neighboring square� In this phase the Atm works exclusively in a
deterministic fashion� In the second phase M moves its head in the opposite
direction over the interesting tape segment� Whenever M reads a symbol
that represents an existential state the Atm enters an existential state and
carries out the transition according to �� All other symbols are copied into
the left neighbor square� In the third phase M carries out the transitions for
all universal states with itself being in an universal state� When a symbol
that represents an accepting state of C is written by M in the second or
third phase into the square with index � �this square therefore has to be
marked with a special symbol at the beginning of the computation�� M
enters an accepting state� The simulation of the following step of C works
analogously with all directions of head movements reversed�

Hence� the squares of M �s tape must store up to � states from Q and a
marker in square �� The state set of M must contain Q� a �ag that shows
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in which phase it is at the moment� a �ag that shows the current direction
of head movement and a special accepting state�

The space complexity of M is s�
 and the time complexity is t �O�s� �
O�t���

We are now going to prove a kind of reverse result compared to Lemma ����
thus establishing a close relation between nonuniform Aca and circuit fam�
ilies with unbounded fan�in �satisfying certain conditions��

Lemma 	�� Let t � n and s � n be functions which can be computed in

space O�s� and which satisfy t � "�s�� Then it holds�

UbUcir�Depth�Size�O�t�� 
O�s�� � ���Aca�Time�Space�O�t��O�s��

Proof� Let Cn be the circuit with n inputs� having depth O�t� and size

O�s�� We have to construct an ���Aca accepting the same w � An as Cn�
satisfying the time and space bounds O�t� and O�s�� The construction is
modeled on the one in the proof for the analogous simulation of Ucir by
Atm ��� Theorem 	� It essentially relies on a procedure value with two
integer parameters v and i� Its task is to accept� if the i�th entry of gate v
will get a � as input� In order to �simulate� a circuit for an input w� value
is called with the number vo of the output gate of the circuit �see the fourth
paragraph of the introductory remarks of Section � and � �as the number
of its only entry��

Before considering a detailed implementation of value for Aca consider
the following �high level� description sequentially executing two steps A

and B
 for given input parameters v and i�

A
 universally do in parallel�

�
 v� � guess existentially the number of a gate

�
 � � � guess existentially the type of v�
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B
 universally do in parallel�

�
 check that during guess inA�
 above all participating cells guessed
that they should do something existentially

�
 do sequentially�

��
 check that the output of v� is the i�th input of v

��
 check that v� is of type � �

�
 depending on the type � � do one of the following�

��
 for input gates� check that the corresponding input bit is �

��
 if � � � �� sequentially do

a
 i� � guess existentially a number

b
 universally do in parallel

i
 check that value�v�� i�� is �

ii
 check that during guess in B��a
 above all cells
guessed that they should do something existentially

��
 if � � � �� �analogously to � � � ��

a
 i� � guess universally a number �i�e� check all numbers�

b
 universally do in parallel

i
 check that value�v�� i�� is �

ii
 check that during guess in B��a
 above all cells
guessed that they should do something universally

The crucial point of the construction is to make sure that an Aca needs only
a constant number of steps between the start of value and the recursive calls
to value happening inside� For this to be true� some numbers �v�� i�� have
to be guessed in constant time� although they consist of k � log size�Cn�
bits� Furthermore the passing of parameters to the recursion must be done
quickly�

This is achieved by using k subsequent cells� each of which guesses one
bit� But there is a further complication� Sometimes a number has to be
guessed existentially� e�g� in B��a
� but in B��a
 numbers have to be
guessed universally� The information which is the case is present at some
cell� but it cannot be provided to all k guessing cells in constant time� The
solution is as follows� Guessing is done in two steps� In the �rst one� each of
the k cells guesses whether the number guessing has to be done existentially
or universally� sets a �ag indicating its choice and enters an existential or
universal state accordingly� In the second step each cell guesses a bit� After�
wards� see B��bii
 �resp� B��bii
�� it is veri�ed that all cells have correctly
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guessed that an existential �resp� universal� guess was needed� This can be
done in k steps by sending � � to the guessing cells�

This way the next recursion level is always called after a constant num�
ber of steps� and the time for veri�cation only contributes a summand of
log size�Cn� � O�s� to the overall execution time� All other considerations
are analogous to the proof in ��	�

As a corollary one obtains�

Theorem 	�	 For functions t and s satisfying the requirements of Lem�

mata 	�
 and 	�� holds�

���Aca�Time�Space�O�t��O�s�� � UbUcir�Depth�Size�O�t�� 
O�s�� �

It is not known whether UbUcir of depth O�d� can be simulated by Ucir
of depth O�d�� The general expectation seems to be that this is not possible�
Therefore Lemma �� together with Theorem �
 can be taken as an indica�
tion� that a linear�time simulation of nonuniform Aca by Atm is �unlikely�
to exist�

Furthermore one should note that in the comparisons of UbUcir and
Atm �instead of Aca� the depth of the circuits usually corresponds to num�
ber of alternations �and not to the time of the Atm� see �� Theorem �����	��

Theorem 	�� If the s and t are � log and constructible in time O�s��

UbUcir�Depth�Size�O�t�� 
O�s�� � Atm�Alter�Space�O�t��O�s�� �

To put it the other way round� because of Theorem ��� alternation depth of
Atm is linearly related to the time of Aca�

Corollary 	�� If the functions s and t satisfy the prerequisites of Theo�

rems 	�	 and 	���

���Aca�Time�Space�O�t��O�s�� � Atm�Alter�Space�O�t��O�s�� �

� Conclusions

The results obtained above together with those proved in ��	 lead to the
relatively simple situation depicted in Figure � An arrow from A to B with
a label O�f�t�� indicates that each machine of type A with time complexity
t can be simulated by a machine of type B with time complexity O�f�t���
Thick lines indicate results obtained in this paper�
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Figure � Simulations between di�erent Aca� Ucir and Atm

Thus� as long as some standard constructibility requirements are ful�
�lled� uniform Aca correspond to circuit families with bounded fan�in and
nonuniform Aca correspond to circuit families with unbounded fan�in�
Ca

are usually de�ned in such a way that it takes n steps before each input
symbol could possibly have an in�uence on the outcome of the computation�
Therefore the above results only hold for time complexities t � n� On
the other hand for uniform circuit families there is usually some interest
in sublinear� e�g� polylogarithmic depths� It is therefore natural to look
at modi�cations of �A�Ca which allow sublinear computation times and
to extend the results presented in this paper to a wider range of resource
bounds� This will be done in a forthcoming paper�
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