Simulations between alternating CA, alternating
TM and circuit families*

Frank Reischle and Thomas Worsch
Fakultat fiir Informatik, Universitat Karlsruhe

Abstract

Variants of cellular automata consisting of alternating instead of
deterministic finite automata are investigated, so-called uniform al-
ternating CA (AcA) and two types of nonuniform AcA. The former
two have been considered by Matamala (1997). It is shown that the
nonuniform ACA are time equivalent. The main contributions are fast
simulations of ACA by uniform circuit families and vice versa. It is
shown that nonuniform AcCA are time equivalent to circuit families
with unbounded fan-in, and that uniform ACA are time equivalent to
circuit families with constant fan-in. Hence uniform AcCA and alter-
nating TM are time equivalent, too, solving a problem left open by
Matamala. The results also give some evidence that a linear time
simulation of nonuniform AcA by ATM is “unlikely” to exist.

1 Introduction

The standard model of deterministic cellular automata (CA) has been gen-
eralized in several directions, e.g. nondeterministic CA or stochastic CA.
Recently they have also been extended using the concept of alternation [1].
First results have been obtained by Krithivasan and Mahajan [2]. They
are considering a rather restricted model, one would call a special type of
uniform ACA (UAcCA), using the terminology of Matamala [3].

Besides uniform ACA he considers so-called weak AcA (WACA) and one
variant of nonuniform ACA (denoted IV-AcCA in this paper). In [3] it is
shown that UACA and WACA are time equivalent (i.e. they can simulate
each other with only constant slowdown), that these models can simulate

*This is technical report 9/98 of the Department of Informatics, University of Karls-
ruhe. It is also available at http://liinwww.ira.uka.de/ worsch/papers/.

alternating Turing machines (ATM) with constant slowdown, and that these
models can be simulated by 3¥—AcCA with constant slowdown.

The rest of the paper is organized as follows: In Section 2 some basic
notation is introduced as well as some concepts which are common to all
alternating devices. In Section 3 two variants of nonuniform AcA (3IV-Aca
and V3-AcA) are considered. We prove that these models can simulate each
other with only constant slowdown. Section 4 is devoted to uniform AcCA
(UAcA), weak AcA (WAcCA) and alternating Tm (ATM). We show that
they are all time equivalent, solving a problem left open in [3]. In Section 5
relations between uniform resp. nonuniform ACA and circuit families with
bounded fan-in resp. unbounded fan-in are investigated. Therefore the ques-
tion whether nonuniform ACA are time equivalent to ATM is related to the
corresponding problem for circuit families with (un-)bounded fan-in, giving
some indication that nonuniform ACA may be somewhat more powerful than
ArMm.

2 Basic notions

In this paper we are only dealing with one-dimensional cellular automata
(CA) with von Neumann neighborhood N of radius 1. Thus a deterministic
CaA is specified by a set of states Q and a local transition function® 6 : QN —
Q specifying for each local configuration | : N — @ the new state d(I) of the
central cell. A (global) configuration is a mapping ¢ : Z — Q. The state of
cell ¢ in c is denoted ¢; and the local configuration “observed” by cell 7 in its
neighborhood is denoted ¢;ony : N — Q : n +— ¢;4p. For a configuration ¢
denote by ¢V the mapping ¢V : Z — QV : i — ¢;;n. For a subset T C Z we
write ¢ Fpg ¢ iff i € T = ¢} = §(c) (where we have written ¢} instead
of ¢V (i)). The relation c bz 5 ¢’ is abbreviated to ¢ -5 ¢’ and describes one
step of a deterministic CA according to the local rule 4.

Of course the usual definition of deterministic CA is captured by the
above seemingly unnecessarily complicated formalism. The reason for intro-
ducing it is, that it will turn out to be useful for the definition of alternating
CA.

For all types of alternating CA it is assumed that the set of states @ =
Q3 U Qv is partitioned into existential states q € Q3 and universal states
q € Qy. The local transition function is now of the form v : QN — 29,
specifying a subset v(l) of possible new states for a cell observing [in its
neighborhood. A configuration is defined as for deterministic CA.

1 B4 denotes the set of all mappings from A to B.

For the recognition of formal languages an input alphabet A C Q and a
set F' C Q of accepting final states has to be specified, as well as a quiescent
state O. For the quiescent local configuration g : n — O the local function
has to satisfy v(ln) = {O}. In the initial configuration c, for an input
w = xy---x, € AT of length n > 1 cell ¢ holds input symbol z; (for
1 <i < n) and all other cells are in state 0. A configuration c is accepting
iff ¢c; € F.

The recognition of formal languages by alternating devices is usually
defined using the notion of a computation tree. Its nodes are configurations
and the root is always an initial configuration. In general there are several
computation trees with the same root. A computation tree is accepting iff
all of its leaves are accepting configurations. A word w is accepted if there
is an accepting computation tree with ¢, as root.

A word w is accepted in time ¢ if there is an accepting computation tree
of height < t with ¢, as root. For ACA we say that w is accepted in space s
if every configuration in this tree contains at most s cells in a non-quiescent
state.

Two machines (be it CA, TM, ...) are called equivalent iff they recognize
the same language. They are called time equivalent iff they are equivalent
and their time? complexities only differ by a constant factor.

The main differences between the various types of alternating CA lie
in the definitions of which trees are legal computation trees. This topic is
treated separately in the following sections.

3 Nonuniform alternating CA

First we define two types of nonuniform cellular automata, denoted as
dv—AcA and V3-AcA. While 3V-AcCA are considered in [3] the V3-Aca
are equally natural to look at.

For a configuration clet 3(¢c) ={i € Z | ¢; € Q3} and V(c) ={i € Z | ¢; €
Qv}. Let ¢ and & be two mappings Z — QUQ" and T C Z a subset of cells.
We write ¢ b7, ¢ if i¢ T = ¢ =¢, andi € T = ¢ € QN A&, € v(§).
Sometimes 7' is called the subset of active cells.

Using subsets C, C', existential and universal “substeps” are now defined
as follows: ¢ FY. C' iff C' = {¢ | étr, &} and C F3 C'" iff |C| = |C'| and
for each ¢ € C there is a & € C' such that eF7,, €.

The one-step relation for 3¥—AcA is now defined as ¢ F77 C" iff there is

ZFor Aca and TM this means the number of steps, for circuit families their depth.

a ¢, such that? ¢V lzg(c) c lzg(c) C'. For V3-AcA we use ¢ E"3 C iff there is a

set C, such that ¢V |=§(C) C IZg(C) C'. One should note that for both substeps
the subset of cells which are active are defined via the original configuration
c.

A tree of configurations is a computation tree for an dV-AcA iff for
each non-leaf node c the set Succ(c) of its successors in the tree satisfies
¢ F?7 Succ(c). Analogously for Y3-AcA all non-leaves ¢ have to satisfy

¢ E¥3 Succ(c).

Lemma 3.1 For each IV-ACA there is a time equivalent one such that all
configurations occuring in any computation tree are such that either all non-
quiescent states are existential or they are all universal. The same holds for

ViI-ACA.

Proof. The proof is only given for 3V—ACA with von Neumann neighborhood
N ={-1,0,1}. (The proofs for other neighborhoods and for V3-AcCA can
be done analogously). Let @ denote the set of states of an IV-Aca M. We
construct another 3V-AcA M’ with state set @', the same input alphabet A
and the same quiescent state O, which uses one full step (called an existential
step) to simulate an existential substep and a subsequent full step (called a
universal step) to simulate the subsequent universal substep of a step of M.

Without loss of generality assume that a cell will never enter the quies-
cent state if it is not already in it.

The simulation of an existential substep (resp. a universal substep) is
indicated by a special flag (E resp. U) which is stored additionally in each
non-quiescent cell of M'. The state set of M' is Q' = AU{O} U ({E, U} x
Q) U ({U} x Q).

For z,y,z € Q the states (U,y),(U,zyz) € Q' are universal. States
(E,y) € Q" are chosen to be existential as well as all states in A, because the
first step of M’ will be an existential one. By convention O is existential,
too (although it doesn’t matter). The set of accepting final states for M’ is
F' = FU({E} x F), where F is the set of accepting final states for M.

It remains to define the transition function v’ of M’ (in terms of v of M).
This will be done in such a way that for an arbitrary configuration of M’
which occurs during a computation starting with some initial configuration
¢y the flags of all non-quiescent cells are either all E or they are all U; hence
in each such configuration either all non-quiescent states are existential or
they are all universal.

*We are identifying = and {z} here.

For z,y,2 € Q and 2',y',2" € @', using V'(2',y',2') as a shorthand
notation* define:

V(B) B (E2) = { 0 EEv o) e s

Vl(xl’(va)’zl) = {(an)}
V(2! (U,yz),2') = {(E,9)]§€v(zy2)}

Furthermore a cell in state © € A acts as if it were in state (E, z). A cell in
state (E, z) (or acting as such because it is in state € A) treats a neighbor
in state y € AU {0} as if that were in state (E,y). Analogously a cell in
state (U, z) treats a neighbor in state O as if that were in state (U, y).

For a cell in state O we choose v/ as follows: If it sees a neighbor with
flag E it essentially acts like a cell in state (E, 0) applying the above defined
rule. But there is one exception. If according to v one of the new states is
again O, then v/ does not prescribe (U,O) as the corresponding new state,
but simply O. This ensured that the space complexity of M’ is the same as
that of M. If a cell in state O sees a neighbor with flag U it does nothing.
i.e. remains in the quiescent state.

For all other local configurations ' can be defined arbitrarily because
they will never occur in configurations belonging to simulations of M.

In an existential step cells storing a universal state of M only collect the
states of their neighbors and alter their flag, resulting in a state (U, zyz).
Cells in a state (U,y) “did their work” during the previous existential step
and do nothing except changing their flag during a universal step. In the
other cases the cells of M’ work as they would in C and alter their flag.

Now that M’ is defined, we are going to prove that it works as it should.
Denote by E ® C the set of configurations of M’ which is obtained from the
set C' of configurations of M by adding the E flag in every non-quiescent cell
in every configuration, analogously for U ® C, and in the cases of “c instead
of C”.

Suppose M makes one JV-step ¢V |=§(o € l=§(0 C. First we will show,

that for M’ holds: E® cF" U eE"E®C.

For the simulation of the existential substep because of the definition of
' and since I(E ® ¢) = Z for M’ one gets (E ® ¢)V hg(E@)c) U ® ¢. Since
V(E ® c¢) = 0 furthermore U® ¢ lzg(E@)c) U ® ¢ holds. That is, M’ simulates
the existential substep of M by the full step E® ¢ F¥" U®G.

“for v' (1) where [satisfies I(—1) = z’, 1(0) = ¢’ and I(1) = 2’

The considerations for the simulations of the universal substep ¢ hg(c) C
of M are slightly more complicated. It has been defined above that quiescent
cells observing neighbors in states (U,y) stay in state 0. Hence during
the existential substep of M’ starting with configuration U ® ¢ “nothing
interesting happens”. This means that there is only one & : Z — Q U Q3
with (U® ¢)N lzg(mé) ¢, and it satisfies ¢, = 0 if & = D and ¢, = (U &)
otherwise. The latter happens for the cells in V(U ® ¢) which are exactly the
non-quiescent cells of U ® ¢.

It remains to be shown that the ¢ satisfying & l=§(¢ are exactly

U®c)
the E® ¢ for ¢ € C. It is clear that the flag of each non-quiescent state
has to be E. To see that ¢ Fy(uge) E ® € holds, consider for an arbitrary
non-quiescent cell 7 the cases whether it was in an existential or a universal
state in configuration ¢ separately:

1. ¢; € Q3, i.e. (U®¢); = (U,¢): According to the definition of v’ only the
flag is toggled in cell ¢, and hence (E® ¢); = (E, ¢) for any ¢ € C.

2. ¢ € Qy, i.e. (U® E)i = (Uaci—lcici-i-l): In M ¢ € V,(Ci—lcici-i-l) holds,
and this is exactly what is enforced by v/ for M’.

On the other hand it should be clear that because of the definition of v/
whenever ¢ Fyyge E ® ¢, then ¢ € C.

Thus for M’ holds U® ¢ 77 E ® C and therefore every M-step ¢ £V €
can be simulated by 2 M'-steps

EQcEF"UReE"E®C.

Conversely, for 2 steps of M' starting in a configuration of the form E ® ¢,
there has to be a ¢ such that

ERcF"UgcF"ER®RC.
It is then not difficult to see that this implies that for M one has
CN ':g(c) C 'Zg(c) é lLe. c 'ZHV Cy .

Hence, given an input word, for every accepting computation tree for M of
height h there is one for M’ of height 2h and vice versa. n

Essentially the same argument as above leads to the following result:

Theorem 3.2 For all time bounds t and space bounds s holds:

dv-AcA-TIME-SPACE(O(t), s) = V3-AcA-TIME-SPACE(O(¢), s) .

4 Uniform ACA versus bounded fan-in circuits

Uniform AcCA have been defined in [3] as follows. A deterministic transition
function § : QY — Q is said to be compatible with a nondeterministic
transition function v : Qv — 29, written as § € v for short, iff for all € Q™
d(1) € v(l). A configuration c of a UACA is called existential (resp. universal)
iff ¢1 is existential (resp. universal). A tree of configurations is a computation
tree for a UAcA iff each existential configuration ¢ has exactly one successor
¢’ such that ¢ 5 ¢’ for some § € v and for each universal configuration ¢
the set of successors is Succ(c) = {¢’ | thereisa § € v: ¢ ks ¢'}. Hence the
main difference to nonuniform ACA is that if in a configuration ¢ the same
local configuration occurs several times, in a UACA all cells observing it will
enter the same new state, while in a nonuniform ACA they don’t have to.

For completeness we mention the so-called weak AcA (WAcA). They
are “essentially” CA with deterministic cells with the exception of one cell,
say cell 1, which is an alternating one. WACA are time equivalent to UACA
(3].

One of the main contributions of this paper are results concerning the
relations between alternating CA and uniform circuit families (UCIR). In this
section UACA will be shown to be time equivalent to UCIR with bounded
fan-in gates. As a corollary one also gets the time equivalence of UACA and
ATM, solving a problem left open in [3]. In order to have the same set of
input symbols for all models, we restrict ourselves to the input alphabet
A ={0,1} below.

A circuit family with bounded fan-in consists of a circuit C,, with n
inputs and one output for each integer n > 1, such that each C), consists
of —-gates (having one entry®) and A- and V-gates with two entries. It
is sometimes convenient to assume that there are “gates” producing the
constants 0 (resp. 1) as output. Such devices obviously can be built from
the —-, A- and V-gates using one input bit. Furthermore we assume that the
n input bits are provided at the exits of “input gates” (having no entries)
and that the result of the circuit is available at the exit of an “output gate”
(having one entry and doing nothing).

The size of a circuit is the total number of entries of all gates. For
circuits with bounded fan-in this differs from the number of gates only by
a constant factor (which we will ignore throughout the paper) and has the
advantage that it actually is the definition used for circuits with unbounded

®Sometimes we don’t use the word input to avoid confusions with the inputs of the
circuit, and analogously for “exit” instead of output of a gate.

fan-in gates (see next section). The depth of a circuit is the length of the
longest path from an input to the output. These notions are generalized to
circuit families in the obvious way.

An important topic in the definition of UCIR is a concept also called
uniformity (which has nothing to do with the uniformity condition for AcA).
Different versions are used in the literature; see [5] for an overview. In
this paper we will use the following (which is also applicable to UCIR with
unbounded fan-in): To the gates of each circuit C, numbers v of length
O(log size(Cy,)) have to be assigned such there is a deterministic TM which
on input of (n,v,7) can compute the type of gate v, its number e of entries
and for ¢ < e the number v' of the gate providing the input for the i-th
entry of v, using space complexity O(logsize(C,)). Note that from this also
follows the possibility to compute the number v, of the output gate of a
circuit using the same space complexity (by simply checking all numbers v
one after the other until the one with the correct type is found).

Lemma 4.1 For functionst > n and s > n which can be computed in space

O(s):
UACA-TIME-SPACE(O(t), O(s)) C Ucir-DepTH-S1ZE(O(t), 2°())

Proof. Let C be an UACA with input alphabet A = {0, 1}, state set @ and
transition function v. For each input size n a circuit C,, will be constructed
which accepts an input word w of length n, if and only if C accepts w.

The circuit consists of an “upper” and a “lower” part (the flow of in-
formation in the circuit is from the top to the bottom). The upper part
of the circuit is similar to the construction for the proof of [5, Theorem 3].
It checks for all w € A™ whether C' accepts w in time ¢(n) or not: For all
1 < ¢ < t(n) and all configurations ¢ of C' occupying space s(n) or less
— there are 206(") such configurations — the circuit contains a gate labeled
(i,c). Imagine the gates being arranged in ¢(n) levels with the first index
decreasing from the top to the bottom. Furthermore there is a zero level
with 2" gates labeled (0, c,) (where the ¢, are the initial configurations of
C.

The type of a gate is A (resp. V) if the configuration is universal (resp.
existential). The entries of gate (7,c¢) are connected to the exits of all gates
(1 + 1,¢') such that ¢ is a successor configuration of ¢. In general there are
more than two successors of a configuration ¢, but for the UACA there are not
more than K := |Q|(|Q|‘N‘), i.e. a constant number. So the “gates” described
above can be implemented as binary trees of height < [Id(K)| consisting

Figure 1: For each b € {0,1}" there is a gate (0, ¢p) and a comparator circuit
K whose i-th entry is negated < b; = 0.

of ordinary gates with in-degree 2. Thus the overall depth of the circuit
is increased only by a constant factor®. As the circuit is constructed from
lower levels to higher levels a gate labeled with an accepting configuration is
replaced by a constant 1 and gates labeled with a configuration using more
than s(n) space and gates on a hypothetic level ¢(n) + 1 are replaced by
a constant 0. Now the following can be shown by induction (cf. [5]): the
output of a gate (0, ¢,) is 1 iff there is an accepting tree for C on w of height
< t(n).

The “lower part” of C, uses the input bits wi,...,w, to select the
proper gate (0,c,) whose output becomes the output of the whole circuit
(see Figure 1): To this end there are 2" “comparators” K} each comparing
w = wy - - - Wy to one of the constant bit patterns b = by --- b, € A™ produc-
ing a 1 as output iff w = b. The outputs of K} and the gate labeled (0, ¢p)
are fed to an A-gate. The outputs of these 2" A-gates are fed to a tree of
V-gates (with height 1d(2") = n). The root of this tree is the output of the
circuit and the following holds: The output of the constructed circuit is 1
iff C accepts w in time < t(n).

The depth of the circuit is at most [Id(K)]-(¢t(n)+1)+[ld(n)]+14+n €
O(t(n)). The size of the circuit is dominated by the size of its upper part
which is 2005() . (¢(n) +1). Since t(n) < 205(™) the overall size is 20(s(%)).

In order to prove that this circuit family is uniform, we describe a deter-
ministic TM M’ that constructs the circuit C, (in the sense stated above)

Sthat only depends on the Aca C and not on the length of the input.

using space O(logsize(Cy)) = O(s(n)). Hence M’ is allowed to store a con-
stant number of gate labels (7, c) on its tape. The interesting point is how
M’ determines the labels (i +1,¢) of the gates which provide an input for a
given gate (i,c). Suppose that {6 | 6 € v} = {01,...,6z}. We may assume
that each gate in the “upper” part has exactly K entries (although it may
happen that d; # d;, but ¢ 5, ¢’ and ¢ s, ¢ lead to the same successor con-
figuration); our construction still works if a gate gets the same input from
the same gate on different entries. M’ can determine the label (i +1,¢') of
the gate connected to its j-th entry by increasing the first index and apply-
ing d; to the cells of ¢ in the bounds given by s. By looking at ¢; M’ can
determine the type of a gate (i,c) and if it has to replaced by a constant
1. Due to the assumptions made to ¢t and s, M’ can also determine when a
gate must be replaced by a constant 0.]

Note that the assumption ¢(n) > n is no real restriction because a UACA
needs at least n steps until every input symbol might have had an influence
on the state of the origin cell.

Since it is known [5], that for ¢ and s which can be linearly approxi-
mated”:

UciR-DEPTH-S1ZE(O(t), 2°()) C ATM-T1ME-SPACE(O(t), O(s))
together with [3]
ATM-TIME-SPACE(O(t), O(s)) € UACA-TIME-SPACE(O(t), O(s)) ,
one also gets the opposite inclusion as in Lemma 4.1 and therefore:
Theorem 4.2 For t(n) > n which can be linearly approzimated holds:

UacA-TIME(O(t)) = ArM-TIME(O(t)) = UcCIR-DEPTH(O(?)) .

5 Nonuniform ACA and circuits

In the previous section uniform ACA have been shown to be time equiva-
lent to circuit families with bounded fan-in. In the following an analogous
relation between nonuniform ACA and circuit families with unbounded fan-
in gates will be established. AcA will also be compared to circuits with
bounded fan-in gates and ATM.

"Le. there is a £, t < € O(t), (resp. §) which is time constructible.

10

In a circuit with unbounded fan-in (UBUCIR) A- and V-gates are al-
lowed with an arbitrary number of entries. The uniformity condition used
is exactly the same as for circuits with bounded fan-in above.

The proof in section 4 cannot be applied unchanged to nonuniform Aca
because unlike for UACA the number of successors of a configuration of a
nonuniform AcA (3V—AcA or V3-AcCA) cannot be bounded by a constant®.
This leads to the idea to compare nonuniform ACA with uniform circuit
families with unbounded fan-in gates.

Lemma 5.1 For functionst > n and s > n which can be computed in space

O(s):
Iv—-Aca-TME-SPACE(O(t), O(s)) € UBUcIR-DEPTH-SI1ZE(O(t), 2°(*))

Proof. Recall the proof of Lemma 4.1. Here, a similar construction is used,
but there are the following changes: A gate labeled (7,c) in the upper part
of the circuit now is replaced by a tree of height 2 of gates with unbounded
fan-in (see Figure 2). The root of the tree is a VV gate whose entries are
connected to intermediate A nodes which correspond to the ¢ such that
cN hg(¢ C The entries of these intermediate gates in turn are connected to

the exits of the gates (i +1,¢), for all ¢ € C’, where ¢ |=§(c) C.

Figure 2: The “gate” (i,c) is implemented by one V-gate and an A-gate for

each ¢; with v hg(c) Cj.

Gates labeled with accepting configurations are replaced by a constant 1
and gates labeled by a configuration using more than space s(n) or gates on
level t(n) + 1 are replaced by 0. It can be shown by induction on the level
i that a gate (¢,c¢) produces a 1 as output if and only if ¢ is the root of an

It depends on the number of cells in a configuration that are in a universal state
observing a local configuration which allows at least two new states, i.e. |Succ(c)| depends
on the space complexity and in general cannot be bounded by a constant.

11

accepting computation tree of height < ¢(n) — ¢ of the 3V—AcCA. Therefore
the output of a gate labeled (0, c,,) is 1 iff the IV—ACA accepts w.

The comparators selecting the output of the proper gate (0,¢,) can
be implemented using a single A-gate with fan-in 2n, making use of input
symbols and their negations. Likewise the outputs of these A-gates are fed
to a single V-gate with fan-in 2" whose exit is the output of the circuit.

The depth of the circuit C,, with n inputs is 2(¢(n) + 1) + 2 = O(¢(n)).
The circuit contains up to 2°6() . (¢(n)+1) = 206() v_gates and 2°(:(?).
20(s(m) . (t(n) + 1) = 206(™) A-gates. That is, the maximum fan-in of one
gate is bounded by 2°9((") and therefore the size of the circuit is bounded
by 20(s() . 20(s(n)) — 20(s(n))

In order to show the uniformity of the circuit family, i.e. that the cir-
cuit Cy, can be constructed by a T™m M’ using space O(s(n)), the following
numbering of gates will be used: For each (i,c) the corresponding V-gate
is labeled (4,c,V) and the intermediate A-gates are labeled (7,¢;,A). Sup-
pose the gate that is connected to the j-th entry of gate (i,¢, V) has to be
determined. For each existential state cg in the configuration ¢, M' stores
the set v(cgyn) of possible successor states on its tape. This requires at
most |Q] - s(n) additional storage. Now M’ picks from each of these sets
an appropiate successor state to build a configuration ¢; and thus to obtain
the label (4,¢;,A\) of the gate in question. Using a similar technique, the
gate (i + 1,¢/,V) that is connected to the j-th entry of an A-gate can be
determined. [

If in the above construction gates with large fan-in are replaced by trees of

gates with fan-in 2 one gets the following result.

Lemma 5.2 For functionst and s satisfying the requirements of Lemma 5.1
holds:

3V-AcA-TIME-SPACE(O(t), O(s))
V-Aca-TiME(O(t))

C Ucir DEPTH S1zE(O(st),2°0))
C Ucir-DepPTH(O(t?))

Proof. First, the same construction as above is used. Then, each gate with
a fan-in f > 2 is replaced by a tree of height [Id(f)]| of gates with fan-in
2. The maximum fan-in cannot exceed the number of gates in the UBUCIR-
circuit? and the constructed circuits contain 2°((™) . (¢(n) 4+ 1) gates, where
20(s() is the number of possible configurations occupying space O(s(n))).

®Note, that its size is > its depth which in turn is > the time complexity of the Aca
which is > n.

12

Since t < 200(®) (see [1] for a similar result for ATm), the number of gates
and thus the maximum fan-in is bounded by 2°((") . Therefore the depth
of the UCIR-circuit is bounded by s(n)t(n) which is O(¢2(n)). L]

From Lemma 5.2 and the known relations between UCIR and ATM [5, The-
orem 3| also follows the fact stated in Lemma 5.3 below which is Theorem 1
in [3].

In our opinion the proof of the latter needs some modification. First we
describe a nonuniform ACA as a counterexample for which the proof fails
and then the corrected proof of a direct simulation of nonuniform AcCA by
ATM is shown.

Consider an 3V—-AcA C being in the following configuration (with 7 non-
quiescent cells)

[Olz]z]z]u]z]z]=]0]

where O, z and « are existential states and v is a universal state. Suppose
the transition function of C is defined by (-, z, -) — {z}, (2, z, 2) — {21, 22},
(z,u,2) — {u1,u2}, (,0,) — {0}, ... (other values are not of interest for
our example).

We will now consider one possible configuration tree of the simulating
ATM M (as described in [3, Theorem 1]) and have a look at the part of
this tree (depicted in Figure 3) that simulates the step of C starting in the
configuration shown above.

The point is that the simulation by M can produce successor configu-
rations which differ in a cell that was in an existential state (like the 3rd
cell from the left in the configurations in the bottom row of Figure 3). This
however is impossible for a 3V—ACA by definition. Therefore one could con-
struct a 3V—AcA C such that the “simulating” ATM M recognizes a language
L(M) # L(C).

The corrected simulation of nonuniform ACA by ATM is shown next. The
same basic idea is used, but the main difference is that the updates of cells
in an existential state and cells in an universal state are done in separate
phases of the simulation.

Lemma 5.3 For all time bounds t and space bounds s holds:
3V-AcA-TIME-SPACE(t,s) C ATM-TIME-SPACE(O(t?),0(s))

Proof. Let C be a dV—AcCA with state set () = Q3 U Qv, input alphabet A,
von Neumann neighborhood of radius 1 and the transition function v. In the

13

1
Blzlz]z|w =]z]=]0]

: state (u, H)

Ly
Olz|z|z|(z,%) z |21z |0
Oizlxz| 2

¥ ¥
Olz|x|z(u,x*)z 21|z |0 Olz|z|z(ugx*)z |21z |0
0z Ulz|x
! !
i ! i
EIEGE O EACEIE] EERE R ECEIE]

Figure 3: Simulation of one step of C' by M. The arrows point at the current
head positions. The states of M are not shown, except for the configuration
where the universal branching occurs.

following an ATM M with one work tape will be described that simulates
one step of C' within O(s(n)) steps. For this purpose states from @ are
stored as symbols on the tape of M.

The simulation of one step is done in 3 phases. In each phase M moves its
head across the tape segment with all squares storing non-quiescent states.
In the first phase M copies the contents of each field in this segment to
the right neighboring square. In this phase the ATM works exclusively in a
deterministic fashion. In the second phase M moves its head in the opposite
direction over the interesting tape segment. Whenever M reads a symbol
that represents an existential state the ATM enters an existential state and
carries out the transition according to v. All other symbols are copied into
the left neighbor square. In the third phase M carries out the transitions for
all universal states with itself being in an universal state. When a symbol
that represents an accepting state of C' is written by M in the second or
third phase into the square with index 1 (this square therefore has to be
marked with a special symbol at the beginning of the computation), M
enters an accepting state. The simulation of the following step of C' works
analogously with all directions of head movements reversed.

Hence, the squares of M’s tape must store up to 3 states from) and a
marker in square 1. The state set of M must contain (), a flag that shows

14

in which phase it is at the moment, a flag that shows the current direction
of head movement and a special accepting state.

The space complexity of M is s+ 2 and the time complexity is ¢- O(s) =
O(#?).]

We are now going to prove a kind of reverse result compared to Lemma 5.1,
thus establishing a close relation between nonuniform ACA and circuit fam-
ilies with unbounded fan-in (satisfying certain conditions).

Lemma 5.4 Lett > n and s > n be functions which can be computed in
space O(s) and which satisfy t € Q(s). Then it holds:

UBUcIR-DEPTH-S1ZE(O(t), 2°()) C 3v-ACcA-TIME-SPACE(O(t), O(s))

Proof. Let C,, be the circuit with n inputs, having depth O(t) and size
20(s) We have to construct an IV—ACA accepting the same w € A" as Cy,
satisfying the time and space bounds O(¢) and O(s). The construction is
modeled on the one in the proof for the analogous simulation of UCIR by
ATM [5, Theorem 4]. It essentially relies on a procedure value with two
integer parameters v and 7. Its task is to accept, if the i-th entry of gate v
will get a 1 as input. In order to “simulate” a circuit for an input w, value
is called with the number v, of the output gate of the circuit (see the fourth
paragraph of the introductory remarks of Section 4) and 1 (as the number
of its only entry).

Before considering a detailed implementation of value for ACA consider
the following “high level” description sequentially executing two steps A)
and B) for given input parameters v and i:

A) universally do in parallel:

1) v' < guess existentially the number of a gate

2) 7' « guess existentially the type of v’

15

B) universally do in parallel:

1) check that during guess in A1) above all participating cells guessed
that they should do something existentially

2) do sequentially:
21) check that the output of v’ is the i-th input of v
22) check that v’ is of type 7'

3) depending on the type 7’ do one of the following:

31) for input gates: check that the corresponding input bit is 1
32) if ' = V: sequentially do
a) i’ + guess existentially a number
b) universally do in parallel
i) check that value(v’,i') is 1
ii) check that during guess in B32a) above all cells
guessed that they should do something existentially
33) if 7' = A: (analogously to 7’ = V)
a) i’ + guess universally a number (i.e. check all numbers)
b) universally do in parallel
i) check that value(v’,i') is 1
ii) check that during guess in B33a) above all cells
guessed that they should do something universally

The crucial point of the construction is to make sure that an ACA needs only
a constant number of steps between the start of value and the recursive calls
to value happening inside. For this to be true, some numbers (v, i') have
to be guessed in constant time, although they consist of & = logsize(C,)
bits. Furthermore the passing of parameters to the recursion must be done
quickly.

This is achieved by using k subsequent cells, each of which guesses one
bit. But there is a further complication. Sometimes a number has to be
guessed existentially, e.g. in B32a), but in B33a) numbers have to be
guessed universally. The information which is the case is present at some
cell, but it cannot be provided to all k£ guessing cells in constant time. The
solution is as follows: Guessing is done in two steps. In the first one, each of
the k cells guesses whether the number guessing has to be done existentially
or universally, sets a flag indicating its choice and enters an existential or
universal state accordingly. In the second step each cell guesses a bit. After-
wards, see B32bii) (resp. B33bii)), it is verified that all cells have correctly

16

guessed that an existential (resp. universal) guess was needed. This can be
done in k steps by sending 7’ to the guessing cells.

This way the next recursion level is always called after a constant num-
ber of steps, and the time for verification only contributes a summand of
log size(Cy) € O(s) to the overall execution time. All other considerations
are analogous to the proof in [5].]

As a corollary one obtains:

Theorem 5.5 For functions t and s satisfying the requirements of Lem-
mata 5.1 and 5.4 holds:

Iv—-AcA-TME-SPACE(O(t), O(s)) = UBUCIR-DEPTH-S1ZE(O(t), 200)) .

It is not known whether UBUCIR of depth O(d) can be simulated by UCIR
of depth O(d). The general expectation seems to be that this is not possible.
Therefore Lemma 5.4 together with Theorem 4.2 can be taken as an indica-
tion, that a linear-time simulation of nonuniform ACA by ATM is “unlikely”
to exist.

Furthermore one should note that in the comparisons of UBUCIR and
ATM (instead of AcA) the depth of the circuits usually corresponds to num-
ber of alternations (and not to the time of the ATM; see [4, Theorem 7.3.7]):

Theorem 5.6 If the s and t are > log and constructible in time O(s):
UBUcIrR DEPTH-S1ZE(O(t),2°()) = ATM-ALTER-SPACE(O(t), O(s)) .

To put it the other way round, because of Theorem 5.5 alternation depth of
ATM is linearly related to the time of ACA:

Corollary 5.7 If the functions s and t satisfy the prerequisites of Theo-
rems 5.5 and 5.6:

IV—AcA-TIME-SPACE(O(t), O(s)) = ATM-ALTER-SPACE(O(t), O(s)) .

6 Conclusions

The results obtained above together with those proved in [3] lead to the
relatively simple situation depicted in Figure 4. An arrow from A to B with
a label O(f(t)) indicates that each machine of type A with time complexity
t can be simulated by a machine of type B with time complexity O(f(¢)).
Thick lines indicate results obtained in this paper.

17

O(t) O(t)

Vi-AcA~<~————JV-AcaA~<~———>UBUCIR

O(t O(t?) O(t?)

UacA —=—— UcCIrR

Waca 0] 0] 0] ATMm

Figure 4: Simulations between different AcA, UCIR and ATM

Thus, as long as some standard constructibility requirements are ful-
filled, uniform ACA correspond to circuit families with bounded fan-in and
nonuniform ACA correspond to circuit families with unbounded fan-in.

Ca

are usually defined in such a way that it takes n steps before each input
symbol could possibly have an influence on the outcome of the computation.
Therefore the above results only hold for time complexities £ > n. On
the other hand for uniform circuit families there is usually some interest
in sublinear, e.g. polylogarithmic depths. It is therefore natural to look
at modifications of (A)CA which allow sublinear computation times and
to extend the results presented in this paper to a wider range of resource
bounds. This will be done in a forthcoming paper.

References

[1] Ashok K. Chandra, Dexter C. Kozen, and Larry J. Stockmeyer. Alter-
nation. Journal of the ACM, 28(1):114-133, 1981.

[2] Kamala Krithivasan and Meena Mahajan. Nondeterministic, probabilis-
tic and alternating computations on cellular array models. Theoretical
Computer Science, 143(1):23-49, May 1995.

[3] Martin Matamala. Alternation on cellular automata. Theoretical Com-
puter Science, 180(1-2):229-241, 1997.

[4] Karl Ridiger Reischuk. Einfirung in die Komplezitatstheorie. B.G.
Teubner, Stuttgart, 1990.

[6] Walter L. Ruzzo. On uniform circuit complexity. Journal of Computer
and System Sciences, 22(3):365-383, 1981.

18

