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3.1 Introduction

In the last few years substantial progress has been achieved in micro-fabrication tech-

nology. It has become possible to fabricate in a controlled way metallic tunnel junctions
with capacitances in the range of C = 10�15F. In this case the charging energy asso-
ciated with a single-electron charge, EC � e2=2C, is of the order of 10�4eV, which
corresponds to a temperature scale EC=kB � 1K. This implies that electron transport
in the sub-Kelvin regime is strongly a�ected by charging e�ects. Similar properties

have been observed in semiconductor nanostructures, for instance in quantum dots
in 2-dimensional electron gases. The Coulomb energy in these systems can be char-
acterized by a capacitance which depends on the size of the dot and also may lie in
the range of 10�15F or less. Charging e�ects play a role in granular materials and
ultimately even in molecular systems. Here the capacitance may be as low as 10�18F,
making single-electron tunneling observable even at room temperatures. This opens

spectacular perspectives for future applications.
In this Chapter we will describe single-electron tunneling in the presence of charg-

ing e�ects. For de�niteness we will consider metallic systems with a large density of
quantum states, although the concepts described here are equally important for semi-
conductor or molecular systems. We will �rst study in Section 3.2 how the charging

energy depends on the number of electrons and on transport and gate voltages applied
to various parts of the system. The simplest model systems which demonstrate these

features are the so-called \single-electron box" and the \single-electron transistor".

We will then derive in Section 3.3 within perturbation theory the single-electron
tunneling rates. In low capacitance systems it is crucial to account for the change in the

charging energy associated with the tunneling process. A master-equation description
accounts for the large-scale features of the current-voltage characteristic of the single-

electron transistor. In the Coulomb-blockade regime, where single-electron tunneling is
suppressed, higher-order processes such as coherent \cotunneling" of electrons through

several junctions become observable.

The mesoscopic junction systems studied here are small such that charging e�ects

and higher-order quantum processes play a role. On the other hand, they are large

enough such that macroscopic current and voltage probes and sources can be coupled
to the system. This makes the mesoscopic system susceptible to the inuence of the

3
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electric circuit. It is therefore necessary to include in a complete description the ex-

ternal circuit and to investigate the inuence of the electrodynamic environment on

single-electron tunneling (Section 3.4).

We begin by studying tunnel junctions with two normal metal leads (NN). If part of

the system is superconducting further highly interesting e�ects are found (Section 3.5).

At subgap voltages the single-electron tunneling is suppressed. This makes higher-order

processes such as Andreev reection in normal-superconductor (NS) junctions the lead-

ing transport process. Furthermore, the energy of excitations created in one tunneling

process can be regained if in a later tunneling process two excitations recombine into

a Cooper pair. This leads to \parity e�ects", which distinguish between states with

even or odd electron number in the superconducting electron box. They also lead to

interesting structure in the I-V characteristics of superconducting (NSN or SSS) SET

transistors. The tunneling of Cooper pairs is inuenced by charging e�ects in a similar

way as that of single electrons. However, Cooper pairs can also tunnel coherently.

The charge and the phase di�erence in a Josephson junction are quantum mechanical
conjugate variables, and the junction is described by a macroscopic Hamiltonian. The

eigenstates in general are superpositions of di�erent charge states. Their properties
can be probed by tunneling of normal electrons. We discuss a model where in an NSS
transistor the Andreev reection in the NS junction is used as a spectroscopic tool to
detect the coherent Cooper-pair tunneling in the SS junction.

Many of the single-electron e�ects can be described within simple perturbation

theory. A necessary requirement is that the resistance of the tunnel barriers is high
compared with the quantum resistance RK = h=e2 = 25:81281::: k
. In order to de-
scribe junctions with lower tunnel resistance a more general formulation is required.
A systematic description of tunneling in systems with strong charging e�ects is pro-
vided by a path-integral approach. It is a generalization of the formulation developed

for dissipative quantum mechanics and reviewed Chapter 4 of this volume. We �rst
present (Section 3.6) the imaginary-time path-integral method, which is appropriate
for the description of equilibrium properties, e.g. the Josephson current through SNS
transistors or the inuence of charging on the proximity e�ect. On the other hand, we
will also present and analyze in a real-time approach the time evolution of the density

matrix (Section 3.7). In this approach we can describe systematically higher-order cor-
related tunneling processes, including \inelastic resonant tunneling". These processes

give rise to a renormalization of system parameters and to life-time broadening e�ects.

Single-electron e�ects have been studied now for more than a decade, and a large

number of papers have been devoted to this subject. Where available we quote review

articles and collections of papers, where further references can be found. The �rst
article to be mentioned is the one by Averin and Likharev [1], who developed the

perturbation theory of single-electron tunneling and described several applications for
current-biased junctions. Later it became clear that in most experiments voltage-

biased junctions or systems of junctions were used. Initial scepticism against the new

theoretical concepts was quickly overcome when experiments were successful. After an
early experiment by Fulton and Dolan, the important breakthroughs were achieved in

Delft by Mooij and Geerligs and in Saclay by Devoret, Est�eve and further members of
these groups. Their early work is well summarized in the book Single Charge Tunneling
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Fig. 3.1: (a) An overlap junction with an oxide layer, (b) schematic diagram for a tunnel junction.

[2], which contains review articles describing (i) the theory of single-electron tunneling

under the inuence of an electrodynamic environment by Ingold and Nazarov, (ii)

some higher-order tunneling processes by Averin and Nazarov, (iii) Coulomb-Blockade

e�ects in semiconducting nanostructures by van Houten, Beenakker and Staring, and

(iv) properties of junction arrays by Mooij and the author. A collection of research

articles was published simultaneously as a devoted issue of Zeitschrift f�ur Physik [3].

Although much of the theoretical work on single-electron tunneling included also
the e�ects of superconductivity, it took longer until the experimental situation became
clear. Parity e�ects related to the presence of a single excitation in a superconducting
island are a particular interesting example. In this context the experimental work of

the groups in Saclay and Harvard should be mentioned; the theory was advanced by
Averin and Nazarov, Glazman and Hekking, and others. The concepts have entered
modern textbooks like that of M. Tinkham [4]. A collection of articles representing the
state of 1994 is contained in the proceedings of the conferenceMesoscopic Superconduc-

tivity [5]. The path-integral formulation of tunneling in systems with strong charging

e�ects was developed in a collaboration of Ambegaokar, Eckern and the author [6] and
is summarized in the review article with Zaikin [7]. It has been applied to describe
several e�ects in mesoscopic superconductors in Refs. [8, 9]. A systematic descrip-
tion of tunneling beyond perturbation theory, incl. cotunneling and inelastic resonant
tunneling is presented in Ref. [10].

3.2 Charging energy and single-electron devices

In this Section we introduce the concept of a capacitive charging energy and describe

some of the circuits which show single-electron e�ects. We concentrate on metallic

systems with a large electron density of states. The number of electrons in an \island",

i.e. in a part of the system which is electrically isolated from the rest of the circuit,
is integer. It may change in discrete units by tunneling. On the other hand, we have
control variables, such as applied gate voltages, which change the polarization charge

on the capacitors in a continuous way. Many of the measurable consequences of the

single-electron e�ects depend on this interplay of discrete and continuous changes of

the charge. For a further review and extensions of the material covered here the article
by D. Est�eve in Ref. [2] is recommended.
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3.2.1 The energy scale

Modern lithographic techniques allow the fabrication of narrow metallic lines with

width down to several 10nm, as well as tunnel junctions in overlap regions of such

lines, as illustrated in Fig. 3.1. Junctions with an area S=(100nm)2 can be produced
reliably. The oxide layer is roughly d = 10�A thick, and the dielectric constant of
the oxide is � � 10. Using the classical expression for the capacitance we arrive
at C = �S=(4�d) � 10�15F. While it was not clear, a priori, whether the classical

expression for the capacitance can be applied at such small length scales, it has been
con�rmed by the experimental observation of charging e�ects. The Coulomb gaps (see
below) in the I-V characteristics are consistent with the simple estimate within a few
percent.

The capacitance introduces an energy scale, the charging energy corresponding to
a single-electron charge -e,

EC � e2

2C
; (3.1)

which characterizes all charging e�ects. It is of the order of EC � 10�4eV if the

capacitance is C = 10�15F, which corresponds to a temperature EC=kB � 1K. This
implies that in the sub-Kelvin regime the electronic states and transport properties are
signi�cantly a�ected by charging e�ects.

3.2.2 Single-electron box

We analyze now the charging energy of simple systems of tunnel junctions. It depends
on the electron number in various parts of the system and the applied voltages. The

�rst example is the single-electron box, shown schematically in Fig. 3.2. It consists

of a small metallic island, coupled via a tunnel junction with capacitance CJ to an

electrode and via a capacitor CG to a gate voltage source VG. For VG = 0 the lowest

energy state of the system is charge neutral. In this reference state the electrons on
the island compensate the charge of the ions; there are n = 0 excess electrons on the

island. If the gate voltage is turned on the number of excess electrons on the island

can change due to tunneling across the junction in discrete steps to n = �1;�2; :::.
While the total number of electrons on an island is integer, the charge is spatially

distributed and in general shifted relative to the positive background. If a voltage is
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Fig. 3.3: The charging energy of a single-electron box as a function of the gate voltage for di�erent
numbers n of electron charges on the island.

applied the surface charges on the capacitor plates, which are of equal magnitude but
opposite sign on the two sides of each junction, are in general non-quantized. They

are determined by the integer n and the non-quantized applied voltage. We obtain
the charging energy from the following elementary arguments: the total excess charge
of the box splits into two parts on the left and right capacitor plate �ne = Ql + Qr.
The corresponding voltage drops add to the applied voltage VG = Ql=CJ � Qr=CG,
and the charging energy is Q2

l =2CJ +Q2
r=2CG. The relevant free energy is a Legendre

transform of this energy, which also contains the work done by the voltage source
�VGQr. Elimination of Ql and Qr in favor of n and VG yields, up to a contribution
which does not depend on the variable n, the result

Ech(n;QG) =
(ne�QG)

2

2C
: (3.2)

Here C = CJ + CG is the total capacitance of the island. The e�ect of the voltage
source is contained in the \gate charge" de�ned as QG = CGVG.

The charging energy Ech is plotted in Fig. 3.3 as a function of the gate charge for

di�erent numbers of excess electrons n. With increasing gate voltage, the electron

number of the lowest energy state increases. It does so in discrete steps from n to n+1

at the degeneracy points QG=e = n+1=2. Under the same conditions the voltage of the
island Visland = @Ech=@QG displays a sawtooth-like dependence on the applied voltage.

At �nite temperatures the steps and sawtooth dependence are washed-out, as fol-

lows from the classical statistical average

hn(QG)i = 1

Zch

1X
n=�1

n e�Ech(n;QG)=kBT ; (3.3)

where Zch is an obvious normalization. The result is displayed in Fig. 3.4 for di�erent
temperatures. The stepwise increase has been observed experimentally, e.g. by the

Saclay group (see results in Ref. [2]). Their measurement procedure will be discussed
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Fig. 3.4: The average number of electron charges hni on the island of a single-electron box as a
function of the gate charge (voltage) for di�erent temperatures T=EC = 0 (dashed steps), 0.02, 0.05,
0.1, 0.2, 0.4, and 1 (nearly linear).

below. The experiments generally agree well with theoretical expectations, if one man-
ages to control heating and the noise from the measurement setup, which usually is at
a temperature higher than that of the cryostat.

3.2.3 Single-electron transistor

Another fundamental example is provided by the single-electron transistor shown in

Fig. 3.5. Here an island is coupled via two tunnel junctions to a transport voltage
source V = VL � VR such that a current can ow. The island is, furthermore, coupled
capacitively to a gate voltage VG. The charging energy of the system depends again on
the (integer) number of electrons n on the island and the (continuous) voltages. Some
algebra along the lines outlined for the electron box produces again Ech(n;QG) =
(ne�QG)

2=2C. For the transistor C = CL + CR + CG is the total capacitance of the

island, i.e. the sum of the two junction capacitances and the gate capacitance, and all
three voltage sources de�ne the gate charge QG = CGVG + CLVL + CRVR.

In a tunneling process, increasing the island charge from n to n + 1, the charging

energy changes by

Ech(n+ 1; QG)� Ech(n;QG) =

�
n+

1

2
� QG

e

�
e2

C
: (3.4)

These energy di�erences are equally spaced and can be tuned by the gate voltage.

The situation is illustrated in the energy scheme shown in Fig. 3.6. The di�erences in
charging energy are plotted in the center. We further display the Fermi levels of the

two leads which are shifted by the applied potentials VL=R.

For de�niteness, we assume that the energy of the electrons in the left lead is higher
than that in the right lead. Then, at low temperature, tunneling from the left lead to

the island (transition from n to n + 1) is possible if the energy in the left lead eVL is



3.2 Charging energy and single-electron devices 9

R

C C

G

RL

C

n

V
G

V
L V
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high enough to compensate for the increase in charging energy of the island

eVL > Ech(n+ 1; QG)� Ech(n;QG) : (3.5)

Similarly tunneling from the island (transition from n + 1 to n) to the right lead is

possible at low temperature only if

Ech(n+ 1; QG)� Ech(n;QG) > eVR : (3.6)

Both conditions have to be satis�ed simultaneously in order for a current to ow
through the transistor. It is obvious from the �gure that at low transport voltages,
depending on the gate voltage VG we may be either in a Coulomb blockade regime or
have a �nite current. By varying the gate voltage we produce the Coulomb oscillations,

i.e. the e-periodic dependence of the conductance on QG.

Further devices can be constructed (see e.g. Ref. [2]). We mention here the electron
trap, which is similar to the electron box except that it contains at least two junctions

in series. In contrast to the electron box the trap has metastable charge states. Two

traps are combined to build the electron turnstile, which can serve as a current source.
A suitable ac-gate voltage with frequency f allows the controlled transfer of a single-

electron per cycle. Hence the current is I = ef . Finally we mention single-electron

pumps, where a current is driven by two phase-shifted ac-voltages applied to di�er-
ent islands. In this case a current I = ef is transported even at vanishing transport

voltages. Both devices, in principle, can serve as a current standards, if one manages
to minimize the e�ect of missed cycles, of thermal uctuations, and of quantum uc-

tuations. This requires low frequencies, low temperatures, but also a design (many
junctions) which minimizes higher order quantum tunneling processes.

Many properties of the SET transistor and its extensions can be understood by
considering only the energy of the di�erent charge con�gurations. However, a detailed

understanding of the I-V characteristic requires knowledge of the tunneling rates of

the electrons, which will be the next topic.
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shown. They can be shifted by the gate voltage VG. The Fermi energies of the leads are shifted
relative to each other by the transport voltage V = VL � VR.

3.3 Tunneling rates and I-V characteristics

In this Section, we introduce the Hamiltonian of the SET transistor. Using simple

golden-rule arguments, we derive the rate for the transfer of a single electron charge
across the tunnel barriers. It depends crucially on the change in the charging energy.
The transition rates enter a master equation, from which we obtain the current-voltage
characteristic. If the tunneling would increase the charging energy it is suppressed at
low temperature, a phenomenon called \Coulomb blockade". This \orthodox theory"
was developed by Averin and Likharev [1]. In the regime of the Coulomb blockade

higher-order processes gain importance. We describe here \cotunneling" processes (see
e.g. Averin and Nazarov in [2]).

3.3.1 The single-electron tunneling rate

For de�niteness, we consider a SET transistor, shown in Fig. 3.5, which consists of
a metallic island coupled via tunneling barriers to two leads and capacitively to an

external gate voltage. Its Hamiltonian is

H = HL +HI +HR +Hch +Ht : (3.7)

Here, HL =
P
k;� �kc

y
k;�ck;� describes the noninteracting electrons with wave vector k

in the left lead, with similar expressions for the island (with states denoted by q) and
the right lead. We allow that the leads have di�erent electrochemical potentials. The

Coulomb interaction Hch is assumed to depend only on the total charge on the island,
as described in the previous Section,

Hch =
(bne�QG)

2

2C
: (3.8)
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The number operator of excess electrons on the island is given by bn =
P
q;� c

y
q;�cq;��N+,

where the number of positively charged ions of the island has been subtracted. Charge

transfer processes are described by the standard tunneling Hamiltonian, for instance

tunneling in the left junction between the states k and q by

Ht;L =
X
k;q;�

Tk;qc
y
k;�cq;� + h:c: : (3.9)

We determine the transition rates by golden-rule arguments. The rate of tunneling

of an electron (one of many) from one of the states k in the left lead into one of the

available states q in the island, changing the electron number from n to n+ 1, is

�LI(n) =
1

e2Rt;L

Z 1

�1
d�k

Z 1

�1
d�qfL(�k)[1� fI(�q)]�(�Ech+ �q � �k) : (3.10)

The crucial point is that the energy, which is conserved as expressed by the �-function,
contains the energies of the electron states �k=q, but also the charging energy. The

latter depends on the electron number and the applied voltages VG and VL=R. In the
process considered it changes by

�Ech = Ech(n + 1; QG)� Ech(n;QG)� eVL : (3.11)

We further introduced the tunnel conductance of the junction

1

Rt;L

=
4�e2

�h
NI(0)
INL(0)
LjT j2 : (3.12)

It depends on the tunnel matrix elements Tk;q, which here can be considered as con-
stants, as well as the densities of states at the Fermi level, NI=L(0), and the volumes,

I=L, of the island and lead. Equivalent expressions apply for the reverse process

�IL(n+ 1), changing the island charge from n+ 1 to n, and the other tunnel barrier.
In equilibrium the distribution functions fI=L are Fermi functions, and the integrals

in Eq. (3.10) can be performed explicitly:
R
d�f(�)[1�f(��E)] = E=[exp(E=kBT )�1].

Thus the \single-electron tunneling" (SET) rate is [1]

�LI(n) =
1

e2Rt;L

�Ech

exp[�Ech=kBT ]� 1
: (3.13)

At low temperatures, kBT � j�Echj, if the charging energy would increase in a tunnel-

ing process, the tunneling is suppressed, �! 0. This phenomenon is called \Coulomb

blockade" of electron tunneling. If the charging energy is decreased the rate is

�LI(n) =
1

e2Rt;L

j�Echj for �Ech � 0 ; T ! 0 : (3.14)

At �nite temperatures all processes are allowed. The forward and backward rates be-

tween two states satisfy the detailed balance condition, �LI(n)=�IL(n+1) = e��Ech=kBT .

A familiar limit of what is described above is a single voltage-biased tunnel junction
where �Ech is replaced by �eV . In this case (3.13) yields a linear current- voltage
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relation, It = e[�(V ) � �(�V )] = V=Rt. We can also reverse the argument. The two

requirements { (i) a linear characteristic in the voltage-biased case and (ii) detailed

balance { uniquely determine the expression for the rate to be of the form (3.13) 1.

3.3.2 Master equation for sequential tunneling

Given the electron tunneling rates we can set up a master equation for the probability

p(n; t) to �nd the island in a state with n electrons. The probability changes by

tunneling in the left and right junctions. Hence

d

dt
p(n; t) = � [�LI(n) + �IL(n) + �RI(n) + �IR(n)] p(n; t)

+ [�LI(n� 1) + �RI(n� 1)] p(n � 1; t)

+ [�IL(n+ 1) + �IR(n + 1)] p(n+ 1; t) : (3.15)

The rates and probabilities also determine the current. In the left junction it is

IL(t) = �eX
n

[�LI(n)� �IL(n)] p(n; t) : (3.16)

In most cases we apply dc-voltages and are interested in the dc-current. In this case
we need only the stationary solution of the master equation, and the currents in the
left and right junctions are equal I = IL = IR.

As an example we consider a transistor with symmetric bias VL = �VR = V=2.
At low temperatures and low transport voltages (except at symmetry points) only two
di�erent charge states { and those transitions which connect both { have an appreciable
probability. For instance, if ne < QG < (n + 1)e we need to consider only p(n) and
p(n + 1) and the two transitions �LI(n) and �RI(n) increasing the island charge from

n to n + 1 electrons, as well as the two reverse transitions �IL(n+ 1) and �IR(n + 1).
The energy changes determining the rates �LI(n) and �IL(n + 1) are

�Ech = �
"
(n+

1

2
� QG

e
)
e2

C
� eV

2

#
; (3.17)

respectively, while for the transitions in the right junction eV is replaced by �eV . In
the 2-state limit the stationary solution of the master equation is

p(n) =
�IL(n + 1) + �IR(n+ 1)

��
; p(n+ 1) = 1 � p(n) (3.18)

1Although the I-V characteristic may be linear, the system di�ers from an Ohmic resistor. For
instance, the noise associated with the stochastic tunneling is shot noise. Assuming a Poissonian
statistics we �nd for of a voltage-biased junction the power spectrum of current uctuations

SI(!) �

Z
dt
�
hI(t)I(0)i � hIi2

�
ei!t = e2[�(V ) + �(�V )] =

eV

Rt
coth

�
eV

2kBT

�
;

which di�ers from the Johnson-Nyquist noise of a resistor. Similarly, the current uctuations in the
junction of an electron box are [11] SI(!) = (e2=Zch)

P
n[�LI(n) + �IL(n)] exp[�Ech(n)=kBT ], with

the rates given by (3.13). In both cases we wrote the classical form, the quantum mechanical form is
obtained by shifting eV or �Ech by ��h!=2.



3.3 Tunneling rates and I-V characteristics 13

0.5
1

1.5
2

0.5
1

1.5
2

0.5

1

QG/e
VC/e

2IRtC/e

Fig. 3.7: The current of a symmetric transistor is shown as a function of gate and transport voltage.
At low temperatures and low transport voltages V C=e < 1 only two charge states play a role, and the
Coulomb oscillations are clearly demonstrated. At larger transport voltages, more charge states are
involved.

where �� = �LI(n) + �RI(n) + �IL(n+ 1) + �IR(n+ 1). The current reduces to

I = �e�LI(n)�IR(n+ 1)� �RI(n)�IL(n+ 1)

��
: (3.19)

This expression is readily analyzed by inspection of (3.17). At low temperatures the
tunneling process in the left junction from n to n+1, with rate �LI(n), is allowed when
QG � (n + 1=2)e � �V C=2. On the other hand, the transition which carries on the

charge to the right electrode with rate �IR(n+ 1) is allowed when QG � (n + 1=2)e �
V C=2. Both coexist in a window of width CV around QG = (n + 1=2)e. The other
two processes are not allowed simultaneously, and in fact are suppressed in the window

just mentioned. Therefore, at low temperature the current is

I =
1

4Rt

"
V � 4e2

C2V

�
QG

e
� n� 1

2

�2#
for � V C

2e
� QG

e
� n� 1

2
� V C

2e
; (3.20)

while it vanishes outside the window. For simplicity we have assumed in (3.20) that

the two junctions have the same tunneling resistance Rt = Rt;L = Rt;R.

At low temperatures, such that only two adjacent charges, n and n + 1, play a

role, jEch(n + 1; QG) � Ech(n;QG)j � kBT � EC, we obtain from (3.19) the linear

conductance (V ! 0)

G(T;QG) =
1

2Rass

�Ech

sinh (�Ech=kBT )
: (3.21)

It is peaked near the points of degeneracy where �Ech = Ech(n + 1; QG)� Ech(n;QG)

vanishes. The width of the peaks is proportional to the temperature. Even at the
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Fig. 3.8: Coulomb staircase: The current of an asymmetric transistor with di�erent tunneling resis-
tances in the two junctions Rt;R = 10Rt;L is shown as a function of the transport voltage for QG = 0
(pronounced Coulomb blockade), QG=e = 0:25 (intermediate), and QG=e = 0:5 (linear at low voltage).

maxima the conductance reaches only 1=2 of the assymptotic value Rass = Rt;L +Rt;R

corresponding to the series addition of the two junction resistors.

The current through a symmetric SET transistor is plotted as a function of the
transport and gate voltages in Fig. 3.7. For gate voltages such that QG=e is close to
an integer, the current vanishes below a threshold bias voltage Vth(QG = ne) = e=C.
This is a manifestation of the Coulomb blockade. At non-integer values of QG=e the

threshold voltage is lower Vth(QG) = minn f2jQG � (n+ 1=2)ej=Cg. One �nds a series
of evenly spaced peaks centered around half-integer values of QG=e = n+ 1=2, each of
parabolic shape as given by Eq. (3.20). These are the so-called \Coulomb oscillations".

The strong dependence of I(QG; V ) on the gate voltage makes the SET transistor

a highly sensitive \electrometer". Small changes of polarization charges by fractions
of an electron charge inuence a macroscopic measurement current. It has been used,
for instance, to measure the charge in an electron box hn(QG)i discussed above.

For larger transport voltages, more charge states play a role even at low tem-
peratures. In order to illustrate this, we consider a junction with symmetric bias

VL = �VR = V=2 and QG = 0, where the lowest energy state has n = 0 electrons

in the island. At transport voltages exceeding a threshold Vth;0 = e=C tunneling sets
in to a charge state with n = 1. Above this voltage, the electrochemical potential in
the left lead is su�cient to compensate the increase in charging energy of the island.

Since at the same time this state with n = 1 is unstable against a tunneling process

in the right junction, a current is transported through the system. At the same volt-
age tunneling processes involving the state with n = �1 are possible. At still higher

voltages further charge states jnj � 1 play a role. This leads to a series of threshold
voltages Vth;n = (2n+1)e=C, each marking where another pair of charge states becomes

populated, opening a new channel for the conductance. The increase in conductance is

limited due to the normalization condition for the p(n). Still, for suitable parameters
(signi�cantly di�ering conductances or capacitances of the two junctions), the current

increases in the shape of a staircase, as demonstrated in the plot of Fig. 3.8. The
phenomenon was named accordingly \Coulomb staircase" [12].
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3.3.3 Cotunneling processes

If sequential single-electron tunneling is suppressed by the Coulomb blockade, higher-

order processes such as coherent \cotunneling" through several junctions become cru-

cial (Averin and Nazarov in Ref. [2]). As a speci�c example, we consider a SET

transistor, biased such that the current in lowest-order perturbation theory vanishes

(see Fig. 3.7). At low temperatures sequential tunneling is exponentially suppressed in

this regime since the energy of a state with an excess charge on the island lies above

the Fermi levels of the leads. On the other hand, if a transport voltage is applied, a

higher-order tunneling process transferring an electron charge coherently through the

total system is energetically allowed. In this case the state with an excess electron

charge in the island exists only virtually. Standard second-order (or fourth, depending

on the counting) perturbation theory yields the rate

�i!f =
2�

�h

������
X
 

hijHtj ih jHtjfi
E �EI

������
2

�(Ei �Ef) : (3.22)

The energy of the intermediate virtual state lies above the initial one, E � Ei > 0,
but it enters only into the denominator rather than into the exponent of the sequential
tunneling rate. Hence the higher-order rate is nonzero even at very low temperatures.

When analyzing the process we have to pay attention to the following:

(i) There are actually two channels which add coherently. Either an electron tunnels
�rst from the left lead onto the island, and then an electron tunnels from the

island to the other lead. In this case the increase in charging energy of the
intermediate state compared with the initial one is �EL = Ech(n + 1; QG) �
Ech(n;QG)� eVL. Or an electron tunnels �rst out of the island to the right lead
and another electron from the left lead replaces the charge. In this case the
increase in energy of the intermediate state is �ER = Ech(n � 1; QG) + eVR �
Ech(n;QG). Both amplitudes have to be added before the matrix element is
squared.

(ii) The leads contain a macroscopic number of electrons. Therefore, with overwhelm-
ing probability the outgoing electron will come from a di�erent state than the

one which the incoming electron occupies. Hence, after the process an electron-

hole excitation is left in the island, which explains why it is called \inelastic"
cotunneling.

Transitions involving di�erent excitations are added incoherently. The resulting rate

for inelastic cotunneling is

�cot =
�h

2�e4Rt;LRt;R

Z
k2L

d�k

Z
q2I

d�q

Z
q02I

d�q0
Z
k02R

d�k0f(�k)[1� f(�q)]f(�q0)[1� f(�k0)]

�
"

1

�q + �EL � �k
+

1

�k0 + �ER � �q0

#2
�(eV + �k � �q + �q0 � �k0) : (3.23)
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At T = 0 the integrals can be performed analytically with the result

�cot =
�h

2�e3Rt;LRt;R

V

2
4 1 + 2

eV

�EL�ER

�EL + �ER + eV

!0@ X
i=L;R

ln

�
1 +

eV

�EI

�1A� 2

3
5

=
�h

12�eRt;LRt;R

�
1

�EL

+
1

�ER

�2
V 3 for eV � �EL; �ER: (3.24)

At �nite temperatures forward and backward processes occur. They obey a detailed

balance relation �cot(�V ) = exp(�eV=kBT )�cot(V ). The current then is

I(V ) =
�h

12�e2Rt;LRt;R

�
1

�EL

+
1

�ER

�2 h
(eV )2 + (2�kBT )

2
i
V : (3.25)

In the Coulomb blockade regime of a SET transistor the V 3 dependence of the cotun-

neling current has been observed. In systemswithN junctions a corresponding N -th or-
der process (or 2N -th order, depending on the counting) leads to a current I / V 2N�1.
As an example we consider N = 4 junctions with C = 10�15F and tunneling resistance
Rt. In this case (see D. Esteve in Ref. [2]) �cot = (2:5� 10�3=s) (V=�V)7 (k
=Rt)

4.

These cotunneling processes limit the accuracy of the single electron turnstile even
under the most favorable situations, i.e. low T and low frequency, where thermally
activated multi-electron transfer processes and missed cycles play little role.

The expression for the cotunneling rate diverges logarithmically when the interme-
diate and initial or �nal states are degenerate. This divergence is removed by life-time
broadening e�ects, which will be derived systematically { together with further e�ects

{ in Section 3.7.
There exists also the process where one electron tunnels through the total system,

leaving no excitations in the island. This process is called \elastic cotunneling". Its
rate has a small prefactor / 1=[
INI(0)] (inversely proportional to the number of states
of the island) compared with the inelastic cotunneling rate. On the other hand, it yields

a current which is linear in the applied voltage, which makes it important at very low
voltages and temperatures kBT; eV � [EC=
N(0)]1=2.

3.3.4 Broadening of the steps

Even at T = 0 where thermal e�ects are frozen, tunneling of electrons leads to an
uncertainty in their location. This leads to a broadening of the steps in hn(QG)i in the

electron box. This e�ect can be estimated in perturbation theory [13]. We start from
the basis states jn; :::i(0) with total charge n on the island and certain single-electron

states of the lead and the island occupied or empty (indicated by the dots). Due to

tunneling the states are modi�ed. In lowest-order perturbation theory the corrections

j (1)
n i =

X
k;q

h Tq;k

�q � �k + Ech(n+ 1; QG)� Ech(n;QG)
jn+ 1; q; �ki(0)

+
Tk;q

�k � �q + Ech(n� 1; QG)� Ech(n;QG)
jn� 1; �q; ki(0)

i
; (3.26)
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arise due to tunneling from an electron state k of the lead (leaving it empty �k) into the

state q of the island, increasing the charge to n+1, or reversely. The resulting change

in the expectation value of the electron number, �n(QG) = h (1)
n jbnj (1)

n i, is

�n(QG) = jT j2NLNI

Z
d�k

Z
d�q
n f(�k)[1� f(�q)]

[�q � �k + Ech(n+ 1; QG)� Ech(n;QG)]2

� f(�q)[1� f(�k)]

[�k � �q + Ech(n� 1; QG)� Ech(n;QG)]2

o
; (3.27)

which for T = 0 reduces to

�n(QG) =
RK

8�2Rt

ln
Ech(n� 1; QG)� Ech(n;QG)

Ech(n+ 1; QG)�Ech(n;QG)
: (3.28)

The result displays several important properties: (i) the expansion parameter is the
dimensionless tunneling conductance RK=Rt, where the quantum resistance RK serves
as reference, (ii) tunneling of single electrons leads to logarithmic corrections, (iii) the

perturbation theory fails at the points of degeneracy of the charging energy,QG=e = n+
1=2. In the last Sections of this Chapter we will present the theoretical framework which
describes tunneling beyond perturbation theory and regularizes these expressions.

3.4 Inuence of the electromagnetic environment

So far we have assumed that the electron box or the SET transistor are driven by
ideal voltage sources, and we have considered ideal measurement devices. On the other
hand, in a real experiment the sources are outside the cryostat, some distance away
from the single-electron device to which they are connected by leads. This introduces

stray capacitances and Ohmic resistors as well as thermal uctuations. We have to
understand their inuence on single-electron tunneling in order to describe a realistic
situation { or to know how to set up an experiment close to ideal. We, therefore, will
consider now a tunnel junction which is connected to an electric circuit described by a

general impedance Z(!). A detailed review of this problems has been given by Ingold

and Nazarov in Ref. [2]. It is a speci�c example of the general problem how to describe
dissipation in quantum mechanics, which has been addressed for instance by Caldeira

and Leggett [14] and which is reviewed in Chapter 4 of this volume. In this approach
the uctuating linear circuit is modeled by an ensemble of harmonic oscillators.

3.4.1 The model Hamiltonian

The simplest example is a single tunnel junction in series with an impedance Z(!) and

both driven by a voltage source as shown in Fig. 3.9. The tunnel junction is modeled

in the usual way by a tunneling Hamiltonian. It is coupled to an ensemble of harmonic

oscillators to account for the e�ect of the impedance. Due to this coupling tunneling
processes in general are accompanied by emission or absorption processes of \photons".
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xV

ωZ( )
C

Fig. 3.9: A junction in an external circuit characterized by an impedance Z(!).

We will calculate the tunneling current I(V ) as a function of the dc-voltage at the

junction. Because of the voltage drop at the impedance the voltage at the junction

eV (t) = V + �V (t) (3.29)

is reduced below the applied value, V = Vx� I(V )Z(0). Since this drop depends again
on the current to be determined, we are left { even after we found I(V ) { with a self-

consistency problem. Furthermore, the impedance produces current and hence voltage
uctuations at the junction �V (t) with h�V (t)i = 0.

Let us recall what is known about the uctuations of a resistor, or in general of
a linear circuit element with impedance Z(!). For this purpose we ignore tunneling,
which means that the junction is reduced to a capacitor C. Then the balance of currents

in the circuit satis�es (after Fourier transformation)

[i!C + Z�1(!)]�V (!) = �I(!) : (3.30)

The power spectrum of the Gaussian current noise is given by the standard Johnson-
Nyquist relation

h�I�Ii! �
Z 1

�1
d(t� t0)ei!(t�t

0)1

2
hf�I(t); �I(t0)gi

= RefZ�1(!)g �h! coth
� �h!

2kBT

�
: (3.31)

Hence the uctuations of the voltage at the junction are governed by

h�V �V i! = RefZt(!)g �h! coth
� �h!

2kBT

�
: (3.32)

Here Zt(!) is the impedance seen at the site of the junction, i.e. the e�ect of Z(!) and
the capacitance of the junction shunted in parallel,

Zt(!) =
h
i!C + Z�1(!)

i�1
: (3.33)

Amicroscopic description of the system consisting of the junction and the impedance

is provided by the Hamiltonian

H =
X
k;�

�
�k + e eV (t)� cyk;�ck;� +X

q;�

�qc
y
q;�cq;� +

X
k;q;�

Tk;qc
y
k;�cq;� + h:c:+Hbath : (3.34)
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The �rst terms describe the right and left electrodes and the tunneling. The last term,

Hbath, describes the degrees of freedom responsible for the uctuations �V (t). Since

they result from a linear circuit element they are Gaussian and are in general described

by an ensemble of harmonic oscillators. We set

Hbath =
X
j

 
p2j

2mj

+
mj

2

2
jx

2
j

!
and ��(t) =

X
j

cjxj(t) : (3.35)

Here we introduced a phase as the time-integral of the voltage

�h�(t) �
Z t

dt0e eV (t0) = eV t+ �h��(t) ; �h��(t) =
Z t

dt0e �V (t0) ; (3.36)

which will turn out to be the natural variable. The distribution of the oscillator fre-

quencies 
j and the coe�cients cj have to be chosen appropriately in order to produce

the correct power spectrum.

Using properties of the harmonic oscillators,

hxj(t)xj0(t0)ibath = �j;j0
�h

2mj
j

(
coth

� �h
j

2kBT

�
cos[
j(t� t0)]� i sin[
j(t� t0)]

)
;

we �nd for the Fourier transform of the symmetrized correlation function of ��

1

2
hf��(t); ��(t0)gibath;! = J(!) coth

� �h!

2kBT

�
: (3.37)

The coe�cient cj and the frequencies of the oscillators enter only in the combination

J(!) � �
X
j

c2j�h

2mj
j
[�(! � 
j)� �(! + 
j)] : (3.38)

We can reproduce the Johnson-Nyquist correlation functions (3.32) by choosing

J(!) =
e2

�h!
RefZt(!)g : (3.39)

Technically it is inconvenient to deal with time-dependent energies in the electrodes.
Therefore, we perform a unitary transformation H = UyH 0U � i�hUy@U=@t, where

U = exp

2
4 i
�h

Z t

dt0 e eV (t0)X
k;�

c
y
k;�ck;�

3
5 : (3.40)

In the resulting Hamiltonian H 0 the electrodes appear in unperturbed form

H 0 =
X
k;�

�k c
y
k;�ck;� +

X
q;�

�q c
y
q;�cq;� +

X
k;q;�

Tk;q e
i�(t)

�
cyk;�cq;� + h:c:

�
+Hbath ; (3.41)

but the tunneling term acquired a time-dependent phase factor, depending on the

integral of the voltage introduced by (3.36).
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3.4.2 The single-electron tunneling rate

When evaluating the tunneling rates we have to take into account that a tunneling

process (from state k in one electrode to q in the other) in general is accompanied by

a transition in the bath (X ! X 0) as well. Using the golden rule we �nd the rate for

tunneling in one direction

�+(V ) =
1

e2Rt

Z
d�k

Z
d�qf(�k)[1� f(�q)]

�
X
X;X 0

�bath(X)
���hX 0jei��jXi

���2 �(�k + eV + EX � �q � EX0) : (3.42)

Here �bath(X) denotes the probability to �nd the bath in a state X. In thermal equi-

librium and lowest-order in the coupling it is �bath(X) = hXj exp[��Hbath]jXi=Zbath.

We write �(�k + eV + EX � �q � EX0) =
R

dt
2��h

exp
h
i
�h
(�k + eV + EX � �q �EX0)t

i
and

interpret the exponential of the bath energies as the time evolution operators of the
bath. This allows us to express (3.42) as

�+(V ) =
1

e2Rt

Z
d�k

Z
d�qf(�k)[1� f(�q)]

Z
dt

2��h
ei(�k+eV��q)t=�h

�
X
X;X 0

�bath(X)hXjei��(t)jX 0ihX 0je�i��(0)jXi : (3.43)

The second line of this expression can be expressed as a bath correlation function

hei��(t)e�i��(0)ibath = eh[��(t)���(0)]��(0)ibath � eK(t) : (3.44)

We arrived at the second form using the Baker-Hausdor� formula and properties of a
harmonic system. The correlation function K(t), unlike the symmetrized correlation
functions (3.37), depends on the order of the operators. It can be expressed as

K(t) =
Z 1

�1

d!

!

RefZt(!)g
RK

(
coth

� �h!

2kBT

�
[cos(!t)� 1]� i sin(!t)

)
: (3.45)

The tunneling rate in forward direction can now be written as

�+(V ) =
1

e2Rt

Z 1

�1
dE

Z 1

�1
dE0f(E)[1� f(E0)]P (E + eV �E0) ; (3.46)

where the function P (E) is related to K(t) by

P (E) =
1

2��h

Z 1

�1
dt exp[K(t) + iEt=�h] : (3.47)

This completes the derivation. The calculation of the tunneling rate is reduced to

integrations. We will continue with a discussion and derive some limiting results.
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3.4.3 General properties

The coupling to the environment (bath) is accounted for by the function P (E) in the

integral (3.46). In comparison to the usual expression for the tunneling rate of a voltage

biased junction (see e.g. Eq. (3.10) with �Ech replaced by eV ), P replaces the energy

conserving �-function. This can be made apparent also by rewriting the rate (3.46) as

a convolution

�+(V ) =
Z
dE �+Z=0

�
V � E

e

�
P (E) =

1

e2Rt

Z
dE

E � eV

exp[(E � eV )=kBT ]� 1
P (E) :

(3.48)

In the absence of the impedance and its uctuations i.e. for K(t) = 0, P (E) reduces

to a �-function, and we recover the standard result for the voltage-biased junction. In

general, the function P (E) describes the emission (E > 0) and absorption (E < 0) of

energy during a tunneling process due to the coupling of the electrons to the oscillator

bath.
The vanishing of K(t = 0) = 0 implies that the function P (E) is normalizedZ 1

�1
dEP (E) = 1 : (3.49)

We obtain a second sum rule by taking the derivative of exp[K(t)], with the result

Z 1

�1
dEEP (E) = i�hK 0(0) = �h

Z 1

�1
d!

RefZt(!)g
RK

= EC : (3.50)

At T = 0 the function P (E) vanishes for negative energies, P (E < 0) = 0, and only

the forward tunneling rate is nonzero. From the tunneling rates we obtain the current
I(V ) = e�+,

I(V ) =
1

eRt

Z eV

0
dE (eV �E)P (E) ; (3.51)

which provides a convenient relation

d2I

dV 2
=

e

Rt

P (eV ) : (3.52)

At large voltages, such that eV is larger than the energies where P (E) gives a noticeable

contribution, the limits of integration in (3.51) can be extended to �1. In this case
the sum rules derived above are su�cient to determine the current-voltage relation

I(V ) =
1

Rt

�
V � e

2C

�
: (3.53)

The shift of the I-V characteristic is a manifestation of the Coulomb blockade.
At �nite temperatures T 6= 0 the function P (E) obeys a detailed balance relation

P (E)=P (�E) = eE=kBT . The current then is

I(V ) = e(�+(V )� �+(�V )) = 1

eRt

Z 1

�1
dE

1� e��eV

1 � e��E
EP (eV �E) : (3.54)
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Below we will present further analytic and numerical results. For the moment we

only stress that the calculation of I(V ) is reduced to integrations. We have to recall,

however, that in Eq. (3.29) we have split the voltage at the junction eV (t) = V + �V (t)

into a dc part V and a uctuating part with vanishing average. There remains the

problem to determine the dc part, which di�ers from the applied voltage Vx due to the

voltage drop at the junction. This in turn is proportional to the current I(V ), leading

to the following self-consistency relation

I(V )Z(! = 0) + V = Vx : (3.55)

Along the same line we can also describe a current-biased junction with a parallel

Ohmic resistor. Here the imposed current Ix is divided into a current through the

junction I(V ) and a current through the resistor, which in turn depends on the voltage
at the junction. Hence

I(V ) +
V

R
= Ix : (3.56)

In both cases we combine the standard linear circuit description (Kirchho�'s laws) for
resistors, capacitances, sources, ... with the \black-box" relation I(V ) for the junction,
which is assumed to be the only nonlinear element in the circuit. The properties of
the junction depend on the impedance Zt(!) seen at the site of the junction. It is the
same for both examples mentioned above. The current-biased junction with an Ohmic
shunt resistor has been studied by Odintsov [15] and by Panyukov and Zaikin [16], who

arrived at equivalent conclusions as described above.

At this stage we would like to comment on the range of validity of the treatment

presented above. The transition rate was obtained in lowest-order perturbation theory.
This requires that the tunneling conductance 1=Rt is low, but the question remains
what is the reference scale. Furthermore, it appears that no assumption was made

about the value of the series impedance Z(!). A systematic analysis of the problem
where the tunneling and the Ohmic resistor are treated on an equal footing (see Section

3.6), yields the requirementRt � Z(0). Obviously, in the extreme limit it is not crucial
to solve the self-consistency relation (3.55). However, in intermediate situations only

the self-consistent calculation produces results with the correct asymptotic behavior.

The analysis presented above can be generalized to more complex systems involv-
ing networks of junctions and general impedances. The basic point is that we treat

the tunneling in lowest-order perturbation theory, i.e. for a tunneling process in one
junction all the other junctions only act as capacitors. This means that the transition

rate in each junction has the form presented above. However, it depends on the spe-

ci�c impedance Zt(!) between the two sides of the considered junction, which in turn
depends on the capacitances of all other junctions. The calculation of that impedance

follows the classical electrodynamics rules.
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3.4.4 The e�ect of an Ohmic resistor

As an important example we consider a tunnel junction in series with an Ohmic resistor

Z(!) = R, de�ning the dimensionless conductance

�s � RK=R : (3.57)

The resulting function P (E) is plotted in Fig. 3.10 for di�erent values of �s at T = 0.

and the corresponding current-voltage characteristics in Fig. 3.11. The curves display

a pronounced crossover. As R=RK is increased the peak of P (E) shifts from the origin

to EC, and the I-V characteristics changes from a classical, linear dependence to a

nonlinear one with a pronounced Coulomb gap.

In the limit of a low impedance environment,R=RK � 1, the function P (E) reduces

to P (E) ! �(E). In this case we recover the classical linear I-V characteristic of a

junction driven by a constant voltage source. In the opposite limit of a high impedance

environment, R=RK � 1, the external voltage source and the series resistor act as
a current source, which should lead to Coulomb blockade e�ects. Indeed at �nite

temperatures, kBT � �h=RC, where it is su�cient to replace RefZt(!)g = R=(1 +
(!RC)2) ! (�=C)�(!), we �nd K(t) = ��=(CRK) (it+ kBTt

2=�h). Hence, P (E) is
peaked around the Coulomb gap EC = e2=2C,

P (E) =
1p

4�ECkBT
exp

"
�(E �EC)

2

4ECkBT

#
; (3.58)

and the I-V characteristic shows a Coulomb gap. At very low temperatures, kBT �
�h=RC, the width of the peak of P (E) is proportional to EC

p
�s.

We proceed by deriving further asymptotic results for P (E) and the I-V charac-
teristics. At low temperatures K(t) can be expressed by Exponential Integrals

d

d�
K(� ) =

1

�s

h
e��E1(�� )� e�E1(� )

i
: (3.59)

Here we have introduced � = t=RC. In the long-time limit � !1 we have

K(� ) = � 2

�s

�
ln(� ) +  + i

�

2
+ :::

�
(3.60)

where  = 0:5772::: is Euler's constant. From this we obtain P (E) at low energies, up

to a constant which is �xed by the normalization condition. Hence, we have

P (E ! 0+) / e�2=�s
Z 1

�1
d���2=�seiERC�=�h

=
e�2=�s

�(2=�s)

1

E

�
�

�s

E

EC

�2=�s
: (3.61)

Inserting the expansion into (3.51) we �nd for T = 0

I(V ) =
e�2=�s

�(2 + 2=�s)

V

Rt

"
�

�s

ejV j
EC

#2=�s
: (3.62)
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0

0.5

1

1.5

2

2.5

0 0.5 1 1.5 2 2.5 3

(2
C

 R
t/e

) 
 I

2CV/e

(g)(f)(e)
(d)

(c)

(b)

(a)
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Fig. 3.12: RLC line

We note that at low temperature, as long as the series resistance does not vanish,

R 6= 0, the di�erential conductance near V = 0 vanishes as a power law. At �nite

temperatures, T 6= 0, the conductance is �nite. The linear conductance is [16]

dI

dV

�����
V=0

/ 1

Rt

"
�

�s

2kBT

EC

#2=�s
: (3.63)

These examples show that a single tunnel junction only shows Coulomb blockade
e�ects if shunted in series with a resistor exceeding the quantum resistance RK. This is
di�cult to realize in an experiment since a high resistor close to the metal junction can

be fabricated only by bringing di�erent materials into good electric contact. Indeed
single-electron e�ects and Coulomb blockade are easier studied in more complex sys-
tems, such as SET transistors discussed previously. In this case one junction e�ectively
acts as a high resistor for the other junctions.

3.4.5 Other environments

Above we considered explicitly the e�ect of an Ohmic series resistor on the tunnel-
ing. The question arises, how other elements with a di�erent frequency dependence
of the impedance Z(!) inuence the tunneling. An example which is important from

a practical point of view is a coaxial line, which can be modeled by an in�nite line
of inductances, resistors, and capacitors as shown in Fig. 3.12. When pursuing this
question we quickly notice that we have done already most work. Most combinations

of linear elements produce an impedance Z(!), which is �nite at low frequencies. For
instance an LC-line has Z(! ! 0) = (L0=C0)

1=2, where L0 and C0 are the inductance

and capacitance per building block. The interesting low-voltage part of the junction
I-V characteristics depends precisely on this low-frequency impedance. Hence, most of

the results presented above apply, provided we replace the resistance R by Z(! = 0).

We can expect qualitatively di�erent results only when the impedance does not
approach a constant at low frequencies. Two examples can be mentioned: (i) A single

LC resonator with resonance frequency 
 =
p
LC and Z(!) / �(! �
). This system

is discussed in detail by Ingold and Nazarov in Ref. [2]. (ii) The RC line, i.e. a series

of resistors and capacitors, shown in Fig. 3.12 with L0 = 0. It has the impedance

ZRC(! � 0) =
q
R0=(i!C0).

We now study in more detail the e�ect of an RC-line. At low frequencies Zt(!) =

[i!C + Z�1
RC(!)]

�1 � ZRC(!). Hence, RefZt(!)g �
q
R0=(2!C0), and in the long-time
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limit

KRC(t) =
2e2

h

s
R0

2C0

Z 1

0

d!

!3=2

�
e�i!t � 1

�
= �2R0

RK

s
�jtj
R0C0

[1 + i sgn(t)] : (3.64)

Next we can evaluate

PRC(E) =
1

��h

Z 1

0
dt exp

"
�2R0

RK

s
�t

R0C0

#
cos

 
Et

�h
� 2

R0

RK

s
�t

R0C0

!

=

s
eV0

4�E3
exp

�
�eV0
4E

�
where eV0 = 4

R0

RK

e2

2C0

: (3.65)

The RC-line not only introduces a resistance scale but also an energy and voltage scale

V0. The function PRC(E) has a maximum at E � eV0. The resulting I-V characteristic

shows a structure resembling the Coulomb gap discussed above. However, the energy
scale does not depend on the junction but only on properties of the RC-line.

The RC-line sheds light on a fundamental problem. In all real systems the junction

capacitance is shunted by stray capacitors arising from the leads. This raises the
question whether the small junction capacitance C { with large charging energy EC =
e2=2C and physical consequences on the tunneling { remains observable, or whether
it is masked by the large stray capacitors. It has been conjectured that the tunneling
electron sees only the stray capacitances within a certain `horizon' in space, which

hopefully is small. The question then is, what is the size l of this region, explored by
the tunneling electron. In many cases the Ansatz l = c� where c is the propagation
velocity and � � �h=maxfeV; kBTg appears to work [17]. The model calculation with
spatially distributed capacitances, presented above, yields another limitation. Namely
the e�ective capacitance is

Ce� =
RK

4R0

C0 : (3.66)

Notice that RK=R0 is the number of building blocks needed to have a total resistance

of order RK. From (3.66) we see that RK=R0 is also the distance (in units of the
building blocks) up to which the tunneling electron sees the spatially distributed ca-
pacitances. In summary, stray capacitances do inuence the tunneling. However, they

are e�ectively screened by a resistor of the order of the quantum resistance.

3.5 Charging e�ects and superconductivity

If the electrodes of the junction are superconducting, Cooper pairs can tunnel. At the
same time quasiparticle tunneling is reduced due to the opening of the superconducting

gap. This can make higher-order e�ects, such as the charge transfer due to Andreev

reection the dominant process. In low capacitance junctions Cooper-pair and Andreev
tunneling are inuenced by charging e�ects in much the same way as single-electron

tunneling. In systems which contain small superconducting islands \parity e�ects"
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may be observable. They arise since single-electron tunneling from the ground state,

where all electrons near the Fermi surface are paired, leads to a state where one extra

electron { the \odd" one { in the island is in an excited state. Its energy lies above

that of the equivalent normal system by the gap �. Parity e�ects inuence various

physical properties, for instance the state of an electron box or the dissipative and

Josephson currents through superconducting single-electron transistors. In this Sec-

tion we discuss examples of these e�ects on the level of perturbation theory. A more

systematic approach and further results will be presented in the next Section. For an

introduction into superconductivity including some topics of this Section, Tinkham's

book [4] is recommended. Recent work is presented in the proceedings of the workshop

Mesoscopic Superconductivity [5] and the review article by Bruder [9].

3.5.1 Charging e�ects on quasiparticle tunneling

If the system, or part of it, is superconducting we have to describe the tunneling
of quasiparticles , whose energy depends on the superconducting gap. The rate for
tunneling is still given by the expression (3.10),

�LI(n) =
1

e2Rt

Z 1

�1
dE

Z 1

�1
dE0

�NL(E)NI(E
0)fL(E)[1� fI(E

0)]�(�Ech+ E0 � E) ; (3.67)

with the obvious modi�cation that the energy integrals include the reduced densities
of states of lead and island. In ideal systems they take the BCS form

NI=L(E) = �(jEj ��I=L)
jEjq

E2 ��2
I=L

: (3.68)

Although the integration can no longer be performed in closed form, the rate can be
expressed in a transparent way

�LI(n) =
1

e
It

 
�Ech

e

!
1

exp[�Ech=kBT ]� 1
: (3.69)

It depends on the change in charging energy given by Eq. (3.11). The function It(V )

is the well-known quasiparticle tunneling characteristic (see e.g. Ref. [4] or curve (a) in
Fig. 3.13), which is suppressed at voltages below the superconducting gap(s). Charging

e�ects reduce the quasiparticle tunneling further. At zero temperature the rate is

nonzero only if the gain in charging energy compensates the energy needed to create
the excitations. i.e. it sets in with a step at �Ech+�I +�L � 0 if both electrodes are
superconducting, or proportional to the square root of j�Ech+�I=Lj, if the argument is

negative, in NS junctions. The rates approach the normal state result for large energy

di�erences.

Fluctuations of the electrodynamic environment can be taken into account similar

as in the normal state. The �-function in Eq. (3.67) has to be replaced by the function
P (E) introduced in the previous Section. The resulting I-V characteristics [18], are

plotted in Fig. 3.13. They show much structure at the sum of gap and charging energy.
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Fig. 3.13: I-V characteristic of a superconducting junction in an electric circuit for di�erent val-
ues of the series resistor. From (a) to (k) �s � RK=R = 1; 40; 20; 8;4;2; 0:8;0:4; 0:2;0:04;0. The
superconducting energy gap is � = 2EC.

3.5.2 Two-electron tunneling, Andreev reection

In the regime where quasiparticle tunneling is suppressed by the superconducting gap
higher-order processes involving multi-electron tunneling play a role. Cooper-pair tun-

neling is such a process. We will discuss it later. If only one of the electrodes is
superconducting there is still the process of 2-electron tunneling, denoted as Andreev
reection . In this process an electron approaching from the normal side with energy
below the gap is reected as a hole, while a Cooper pair propagates into the supercon-
ductor. (Andreev considered a normal metal and a superconductor in good metallic
contact. But his physical picture can be generalized to tunnel junctions.)

For de�niteness we consider a SET transistor with a superconducting island and

normal leads (NSN). In order to describe tunneling in this system we have to rewrite the

tunneling Hamiltonian in terms of the Bogoliubov creation and annihilation operators

for the excitations in the superconducting island

Ht;L =
X
k;q;�

Tk;q[uq;�
y
q;� + v�q;��q;��]ck;� + h:c: : (3.70)

Here, uq;� and vq;� are the standard BCS coherence factors with magnitudes
q

1
2
(1� �q

Eq
),

and Eq =
q
�2q +�2 is the energy of the quasiparticles.

Andreev reection is a second-order coherent process. In the �rst part of the tran-

sition one electron is transferred from an initial state, e.g. k " of the normal lead, into

an intermediate excited state q " of the superconducting island. In the second part
of the coherent transition an electron tunnels from k0 # into the partner state �q #
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of the �rst electron, such that both form a Cooper pair. The �nal state contains two

excitations in the normal lead and an extra Cooper pair in the superconducting island.

The amplitude for this process, to which we add the amplitude of the process in reverse

order, is then given by [19]

Ak;k0 =
X
q

Tk;qTk0;�quqvq

 
1

�Ech;1+ Eq � �k
+

1

�Ech;1 + Eq � �k0

!
: (3.71)

Here spin indices have been suppressed. The change in the charging energy �Ech;1 �
Ech(n+ 1; QG)�Ech(n;QG)� eV corresponds to the virtual intermediate state where

one electron has tunneled from the lead (at voltage V ) to the island. Finally, the rate

for the Andreev reection process is

�ALI =
2�

�h

X
k;k0

jAk;k0j2 fL(�k)fL(�0k)�(�k + �0k + �Ech;2) : (3.72)

Here, the change in the charging energy �Ech;2 = Ech(n + 2; QG) � Ech(n;QG) � 2eV

corresponds to the real �nal state where two electron charges have been added to the
superconducting island.

If we ignore the dependence of the tunneling matrix elements on the magnituude
of the momenta the q-summation in (3.71) can be performed with the result

Ak;k0 = �NI(0)a

 
�

�Ech;1

!
hTk;qTk0;�qiq ; (3.73)

where

a(x) � 4

�

xp
x2 � 1

arctan

s
x� 1

x+ 1
: (3.74)

The quasiparticle energy Eq is at least �, and we assumed that the energy of the

intermediate state lies above that of the initial state, �+�Ech;1� �k; �k0 � 0. Andreev
reection is most important if the gap � is much larger than the relevant energy
di�erences j�Ech;1j. In this limit the function (3.74) reduces to a(�=�Ech;1 � 1) � 1.
We, therefore, drop in the following the weak energy dependence contained in the

function a. It has to be taken into account when the energy of the virtual state

coincides with that of the initial state, since a diverges in this case. In the opposite
limit, �+ �Ech;1 < 0, single electrons tunnel, and Andreev reection can be neglected.

If a � 1, the integrations in (3.72) can be performed, resulting in

�A(n;QG) =
GA

4e2
�Ech;2

exp(�Ech;2=kBT )� 1
: (3.75)

Note that this rate coincides in the functional dependence with that for single-electron

tunneling in a normal junction, Eq. (3.13), except that:

(i) The charge transferred in an Andreev reection is 2e, and the charging energy

changes accordingly. An important conclusion is that Andreev reection is also
subject to Coulomb blockade in a way similar to normal-state single-electron

tunneling [20].
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(ii) The e�ective conductance is of second-order

GA =
1

4

RK

NchR
2
t

: (3.76)

(iii) We introduced the number of independent parallel channels

1

Nch

=
hjhTk;qTk0;�qiqj2ik;k0

(hjTk;qj2ik;q)2
; (3.77)

which depends on the correlations between the tunnel matrix elements. In the

second-order Andreev process the matrix elements appear in a combination as

shown in the numerator of Eq. (3.77), di�ering from the square of the expres-

sion determining the normal state conductance 1=Rt given in the denominator of

Eq. (3.77) 2. For the moment we consider Nch as a �t parameter. Even in small

junctions it turns out (from a comparison of Andreev and normal state conduc-
tance) to be much larger than one. Notice both, the normal state conductance
1=Rt = Nch=Rt;0 and the Andreev conductance GA / NchRK=R

2
t;0 are the result

of Nch parallel channels. If we express the second order Andreev conductance by
the normal state conductance 1=Rt the factor Nch appears in the denominator.

Since the Andreev reection rate depends on the charging energy similar as the
normal-state single-electron tunneling rate we expect a similar dependence on gate and

transport voltages as shown in Fig. 3.7, with the obvious rescaling of the conductance
and charge. This is indeed what has been observed in the experiments of the Harvard
group [22].

3.5.3 Parity e�ects in small superconductors

In a normal-metal electron box, if the applied gate voltage is swept, the electron number
on the island increases in unit steps, and the voltage of the island shows a periodic
saw-tooth behavior. The periodicity in the gate charge QG is e. If the island is

superconducting, and the gap � is smaller than the charging energy EC, then at low

temperatures the charge and the voltage show a characteristic long-short cyclic, 2e-

periodic dependence on the induced charge. The e�ect arises since single-electron
tunneling from the ground state, where all electrons near the Fermi surface of the

superconducting island are paired, leads to a state with one extra electron { the \odd"
one { in an excited state [23]. In a small island, as long as charging e�ects prevent

further tunneling, the odd electron does not �nd another excitation for recombination.
Hence the energy of this state stays (at least metastable) above that of the equivalent

2The careful reader will notice that the expression (3.77) would be correct if we would not have
performed an integration over jqj in the derivation of the expression for a. Hence the present derivation
is not rigorous. (A separation into magnitude and direction of the momenta, suggested in Ref. [19],
does not account for the relevant di�culty.) A more careful discussion will be presented in Section
3.6, where we will �nd that the Andreev conductance depends on correlations in space, which extend
over the range of the Cooperon propagator in the normal metal [21].
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Fig. 3.14: The lowest energy state of a superconducting single-electron box as a function of the
gate voltage shows a di�erence between even and odd numbers n of electron charges on the island.
Accordingly the island charge is found in a broader range of gate voltages in the even state than in
the odd state.

normal system by the gap energy. Only at larger gate voltages another electron can
enter the island, and the system can relax to the ground state. This behavior repeats
with periodicity 2e in QG, as displayed in Fig. 3.14.

At low temperatures this even-odd asymmetry has been observed [24, 25, 26, 22],
but at higher temperatures, above a crossover value Tcr � �, the e-periodic behavior
typical for normal metal electron boxes is recovered. We can explain this crossover by
analyzing the rate of tunneling of electrons between the lead and the island, paying

particular attention to the fate of the \odd" electron [27]. Since at low temperature
single-electron tunneling processes which cost energy are exponentially suppressed the
further fate of the excited \odd" electron gains importance. This single excitation
can tunnel out with a rate  which is smaller by a factor 1=Ne� than the rate � of

the other Ne� electrons; in mesoscopic islands Ne� is typically of the order of 104 (see

below). On the other hand, in an important range of parameters  is not exponentially
suppressed, since the excitation energy of the odd electron is regained if this electron

tunnels out. Hence  � �e�=kBT=Ne� . Parity e�ects are observable as long as this
single-electron tunneling rate is relevant  � �, from which we obtain the crossover

temperature kBTcr � �= lnNe�. We will present now the arguments, analyze the rates

in more detail, and use them in the next Subsection to derive the I-V characteristics
of normal-superconducting NSN transistors.

We �rst consider an electron box with a superconducting island and a normal lead.

If the distribution functions of lead and island are equilibrium Fermi functions, the

rate of tunneling is given by Eq. (3.69). At low temperature the rate �LI is �nite only
at voltages where the gain in charging energy (i.e. �Ech < 0) exceeds the energy of the

excitations (�k � 0; Ep � �) created in the lead and island, i.e. for �Ech+� < 0. It is
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exponentially suppressed otherwise. The assumption of equilibriumFermi distributions

is su�cient when we start from the even state. For de�niteness let us assume that we

started from n = 0 and that the gate voltage is chosen such that 0 � QG � e. Hence,

the relevant change in charging energy is �Ech = Ech(1; QG)�Ech(0; QG) and the rate

of tunneling from an even to an odd state is

�eo = �LI(n = 0; QG) : (3.78)

In the odd state the quasiparticle distribution di�ers from an equilibrium Fermi

function. There is extra charge in the normal component. After thermalization the

distribution of the excitations in the island can be described by a Fermi function,

f��(�) = [e(����)=kBT +1]�1, but with a shifted chemical potential �N = �S+ �� relative

to the condensate 3. The shift in chemical potential is �xed by the constraint to have

one excess electron charge

1 = NI(0)
I

Z 1

�1
dENI(E)[f��(E)� f0(E)] : (3.79)

This reduces at low temperatures to

�� = �� kBT lnNe�(T ); (3.80)

where

Ne�(T ) = NI(0)
I

q
2��kBT (3.81)

is the number of states in the island available for quasiparticles near the gap [25].
Parity e�ects are observable as long as the shift of the chemical potential is observable
�� > kBT . This (again) amounts to the requirement T < Tcr, where the crossover
temperature is

kBTcr = �= lnNe�(Tcr) : (3.82)

The tunneling rate back from the odd state (here n = 1) to the even state (n = 0)

is given by the expression �oe = �IL;��(n = 1; QG) given by (3.67) with the island

distribution function replaced by f��(�). For exp(��=kBT )� 1 the ratio of the rates
of the two transitions is

�oe=�eo = e[Ech(odd)+���Ech(even)]=kBT = e�F=kBT : (3.83)

i.e. they obey a detailed balance relation, depending on a \free energy" di�erence,
which in addition to the charging energy contains the shift of the chemical potential
��. This free energy di�erence coincides with that introduced in Ref. [25].

3A similar phenomenon was described 20 years ago by Tinkham and denoted as charge (or branch)
imbalance [28]. In those experiments a nonequilibrium state was maintained by a balance of driving
currents and relaxation processes. In the present parity-e�ect experiments the charge imbalance is
preserved, at least in the sense of a metastable state, by the charging energy which prevents further
electrons from tunneling and the following recombination.
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For the following discussion it is useful to decompose the rate as

�oe = �IL(1; QG) + (QG) ; (3.84)

where �IL is given by the equilibrium form, analogous to (3.69), and

(QG) =
1

2e2Rt

Z 1

�1
d�k

Z 1

�1
dENI(E)

�[f��(E) � f0(E)] [1� f0(�k)]�(�k � E � �Ech) ; (3.85)

describes the rate of tunneling of the odd, excited electron only. In the important range

of parameters �+ �Ech > kBT this rate reduces to

(QG) =
1

2e2RtNI(0)
I

; (3.86)

whereas it is exponentially suppressed otherwise. Consistent with the simple picture

outlined before we see that the odd electron tunneling rate  contains a small prefactor
1=NI(0)
I as compared with �IL. On the other hand, in an important range of gate
voltages { since the energy of the excitation in the island is regained in the tunneling
process { the rate  is not exponentially suppressed. Hence it may be larger than �IL.

Above we described the range 0 � QG � e where tunneling occurs between the
island states n = 0 and n = 1. The range e � QG � 2e can be treated analogously.
The tunneling now connects the states n = 1 and n = 2. In this case, except for
the single-electron tunneling processes which create further excitations (described by
�), one electron can tunnel into one speci�c state (�k;��), the partner state of the
excitation (k; �) which is already present. Both condense immediately; the state with

two excitations only exists virtually. The latter process is described again by (QG).
The symmetry implies �eo=oe(QG) = �eo=oe(2e�QG). Since the properties of the system
are 2e-periodic in QG, we have provided a complete description for all values of the
gate voltage.

In the following we will consider processes where the sweep rate of the gate voltage

is small compared with the recombination rate of a pair of excitations. Therefore, we
can concentrate at a given gate voltage on the even state (ground state and thermal
distribution of pairs of excitations) and the odd state (one excess charge in an excited

state plus thermal distribution of pairs of excitations). The sequential tunneling of
charges between the island and the lead is described by a master equation for the

occupation probabilities of the even and odd states pe(QG) and po(QG),

dpe(QG)

dt
= ��eo(QG)pe(QG) + �oe(QG)po(QG) (3.87)

with pe(QG)+po(QG) = 1. The equilibriumsolution is pe(o)(QG) = �oe(eo)(QG)=��(QG),
where ��(QG) = �oe(QG)+�

eo(QG). For �
oe � �eo we have �e(QG) � 1, i.e. the system

occupies the even state, while for �eo � �oe the island is in the odd state.

The solution of the master equation, combined with symmetry arguments, deter-
mines the crossover value Qcr of the gate charge where the system switches between

the even and the odd state. The condition is �e � �o, i.e.

�oe(Qcr) � �eo(Qcr): (3.88)
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At very low temperatures the switching point is determined by the lowest energy as

shown in Fig. 3.14. At �nite, but low temperature we �nd Qcr(T ) = e

2
+ C

e
[� �

kBT lnNe�(T )], where Ne�(T ) was de�ned in (3.81). This means the short sections

in Fig. 3.14 get longer until, above Tcr, we have Qcr = e=2, and only the e-periodic

behavior known from normal systems is recovered.

3.5.4 I-V characteristics of NSN transistors

The analysis presented above can be extended to describe even-odd e�ects in SET

transistors with a superconducting island. As a speci�c example we �rst consider an

NSN transistor where the energy gap is smaller than the charging energy scale � < EC.

In this system the important processes are single-electron tunneling processes in the left

and right junction, causing transitions between even and odd states, with rates �
eo=oe
L

and �
eo=oe
R which are obvious generalizations of Eq. (3.78) and (3.84). They depend on

the change in charging energies as described in Eq. (3.17), and on the energies of the
excitations created in the island.

These rates enter a master equation. At low T it is su�cient to consider only

one even and one odd state of the island. From the master equation we �nd again
the crossover gate voltage and temperature, but also the I-V characteristic of the
transistor. In the limit considered (� < EC) it is

I = e(�eoL pe � �oeL po) = e
�eoL �

oe
R � �eoR �

oe
L

�eoL + �eoR + �oeL + �oeR
: (3.89)

At high temperatures T > Tcr the single-electron tunneling current (3.89) shows
the Coulomb oscillations known from normal systems with parabola-shaped maxima
at the points QG = e=2 + ne with integer n. At low temperature T < Tcr the current
is limited by the odd electron tunneling rate  in one of the junctions. In the window

Qcr(T ) < QG < e=2 + �C=e+Qcr=2 < e it is

Iplateau = e =
1

2eRtNI(0)
I

(3.90)

and exponentially small outside. A second current plateau exists in the window e <

3e=2 � �C=e � Qcr=2 < QG < 2e � Qcr. Both plateaus create a double structure

which repeats 2e-periodically. For � + eV=2 > EC the two plateaus merge to form a

2e-periodic single plateau structure. An example is shown in Fig. 3.15 with parameters
which are realistic for an experiment on parity e�ects. In this case the current (3.90)

is of the order of 100fA.

In NSN transistors with a larger superconducting gap � > EC the odd states have

a large energy. Hence a mechanism which transfers two electrons between the normal

metal and the superconductor becomes important. Andreev reection with rate (3.75)

provides such a mechanism [19]. The master equation description can be generalized to

include also this process. Because of the similarity of the rate for Andreev reection to
that of single electron tunneling it is clear that the shape of the I-V characteristic due

to Andreev reection also takes a similar form. At low temperatures a set of parabolic
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Fig. 3.15: Quasiparticle current in an NSN transistor with � < EC as a function of gate and transport
voltage. The parameters are � = 55�eV, EC = 125�eV, and Rt = 25k
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Fig. 3.16: The current I(QG; V ) through an NSN transistor with � > EC. The parameters are
chosen to coincide with those of the experiments of Hergenrother et al., EC = 100�eV, � = 245�eV.



36 Single-Electron Tunneling

current peaks is found centered around the degeneracy points QG = �e;�3e; : : : [19]

IA(�QG; V ) =
1

4
GA

�
V � 4

�Q2
G

V C2

�
�
�
V � 4

�Q2
G

V C2

�
: (3.91)

Here �QG is �QG = QG � e for QG close to e, and similar near the other degeneracy

points.

At larger transport voltages single-electron tunneling sets in, even in the limit

� > EC, and Andreev reection becomes blocked; it gets \poisoned" [19]. The reason

is that above a threshold voltage the odd state can be reached by a single-electron

tunneling process. This occurs when (e � QG)
2=2C � Q2

G=2C + � � eV=2, which

requires su�ciently large transport voltages, V � Vpoison, where

Vpoison =
2

e

�
EC � eQG

C
+�

�
: (3.92)

The rate for this transition, from the even to the odd state, is of the order of �eo �
Gn(V � Vpoison)=e. The state which is reached after such a single-electron tunneling
process is not the ground state. It is energetically favorable that after the �rst tunneling
process another electron tunnels into the partner state of the excitation which is present
already. The rate for this process is given by , which in the considered range of
parameters takes the value given in Eq. (3.86). Typically the rate for the second

transition, from odd to even, is smaller than that of the �rst processes and, hence,
creates the bottleneck in the sequence of SET processes. The same inequality also
implies that above Vpoison the system is most likely in the odd state, po=pe = �eo= � 1.
Hence the current produced by the cycle is given by Eq. (3.90). (The current due to
Andreev transitions between two odd states is smaller, IAndreev � peGAV .)

Fig. 3.16 shows the current-voltage characteristic of an NSN transistor with � >

EC. At small transport voltage the 2e-periodic peaks due to Andreev reection dom-
inate; they get poisoned above a threshold voltage. The peaks at larger transport
voltages arise from a combination of single-electron tunneling and Andreev reection
processes. The shape and size of the even-even Andreev peaks and some of the single-
electron tunneling features at higher transport voltages agree remarkably well with

the experiments of Hergenrother et al. [22]. In earlier experiments further odd-odd

Andreev peaks have been observed. They cannot be explained simply by raising the
electron temperature. Their origin, as has been pointed out by Hergenrother et al. [22],
are single-electron transitions induced by the noise of the electromagnetic environment,

which is at a higher temperature than the electron system.

3.5.5 Coherent Cooper-pair tunneling

In \classical" Josephson junctions Cooper pairs can tunnel free of dissipation between

the superconducting electrodes. The coupling is described by the Josephson energy

�EJ cos', which depends on ', the phase di�erence across the barrier. The energy
scale EJ = �hIcr=2e is related to the critical current of the junction, which in turn can

be expressed by the tunneling resistance of the junction and the energy gap of the

superconductor, Icr(T = 0) = ��=(2eRt).
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Charging introduces quantum e�ects: The phase di�erence and the charge on the

electrodes, Q, are quantum mechanical conjugate variables. The dynamics of an ideal

Josephson junction is governed by the Hamiltonian

H0 =
Q2

2C
� EJ cos' ; Q =

�h

i

@

@(�h'=2e)
: (3.93)

For simplicity we describe here a single junction. The generalization to multi-junction

systems, including gate voltage sources is obvious. An important question is how

dissipation due to the ow of normal currents and/or quasiparticle tunneling can be

accounted for, which has been addressed e.g. in Refs. [14, 29, 6, 7]. So-called \macro-

scopic quantum e�ects" like macroscopic quantum tunneling of the phase, or quantum

coherent oscillations are derived from the Hamiltonian (3.93). Macroscopic quantum

tunneling has been observed in tunnel junctions with small capacitances of the order of

10�12 F. These values are orders of magnitude larger than those of the junctions where

single-electron e�ects play a role.

We now turn to mesoscopic Josephson junctions or junction systems, where the
number of electrons or Cooper pairs in small islands is a relevant degree of freedom.
The charging energy has been discussed in detail above. The Josephson coupling
describes the transfer of Cooper-pair charges in forward or backward direction, and
can be written in a basis of charge states as

hnjEJ cos'jn0i = EJ

2
(�n0;n+2 + �n0;n�2) : (3.94)

Below we will �rst consider situations where Cooper pairs tunnel coherently. This

shows features known from the phenomenon of resonant tunneling. It is non-dissipative
and hence strongest in situations near degeneracy. We will show how in a supercon-
ducting electron box the steps in the expectation value of the charge on the island are
broadened by Cooper-pair tunneling. In the next Subsection we will discuss, following
Ref. [30], how coherent Cooper-pair tunneling can be probed by Andreev reection and

observed in the dissipative I-V characteristic of an NSS transistor. Further examples
of coherent tunneling of Cooper pairs can be found in the literature. We mention the
gate-voltage dependence of the critical current of SSS or SNS transistors [31, 32, 33].

Another example is the combination of coherent Cooper-pair tunneling and dissipative
quasiparticle tunneling or transitions induced by the environment, which are responsi-

ble for the dissipative I-V characteristic of SSS transistors [34, 35, 25, 36].
We �rst consider an electron box with superconducting island and lead, assuming

that the energy gap exceeds the charging energy and that the temperature is low,
� > EC � kBT . In this case, at low voltages quasiparticle tunneling is suppressed, and

the island charge can change only by Cooper-pair tunneling in units of 2e as described
by Eq. (3.94). The tunneling is strong near points of degeneracy. For instance for

QG � e the states with n = 0 and n = 2 have similar charging energies, and we can

restrict our attention to these two charge states. The coherent tunneling between both
is described by the 2 � 2 Hamiltonian

H =

 
Ech(0) �EJ=2

�EJ=2 Ech(2)

!
: (3.95)
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This Hamiltonian is easily diagonalized. The eigenstates are

 0 = �j0i + �j2i ;  1 = �j0i � �j2i (3.96)

with coe�cients

�2 =
1

2

2
41 + �Echq

�E2
ch + E2

J

3
5 = 1 � �2 ; (3.97)

and energies

E0=1 =
1

2

�
Ech(0) + Ech(2)�

q
�E2

ch + E2
J

�
: (3.98)

Here we introduced the di�erence in charging energy �Ech � Ech(2) � Ech(0) =

4EC (QG=e� 1). The coe�cient � is close to unity if the charging energy of the state

j2i lies above that of j0i, i.e. for �Ech > 0, and vanishes in the opposite limit, while �

has the complementary behavior.

The expectation value of the charge on the island in the ground state is given by

h 0jnj 0i = 2�2 : (3.99)

It changes continuously near QG = e from 0 to 2 in a range of width of order

�QG � EJ=EC. This has recently been observed experimentally [37]. We note that the
coherent mixing of di�erent charge states due to Cooper-pair tunneling is described by
elementary quantummechanics (the diagonalization of a 2�2 matrix). In contrast, the
perturbative description of single-electron tunneling presented in Section 3.3 diverges
near the degeneracy point and requires a more careful analysis (see Section 3.7).

3.5.6 Andreev spectroscopy of Josephson tunneling

Next we consider an example of coherent Cooper-pair tunneling in an NSS transistor .
Here Cooper pairs can tunnel coherently in the Josephson (SS) junction, which can
be probed by the dissipative current due to Andreev reection across the NS junction.

Again we restrict ourselves to low temperatures, kBT � EJ.
In the present example, where we describe coherent Cooper-pair tunneling in the

SS junction in a situation with a nonzero transport voltage we have to account in
the Hamiltonian for the work done by the voltage sources during the transitions. We,

therefore, keep track also of the number of electrons NL and NR in the left and right

electrode. A basis set of states is denoted by jNL; n;NRi, and the corresponding charg-
ing energy (for symmetric bias VL = �VR = V=2) is

Ech(NL; n;NR) =
(ne�QG)

2

2C
� (NR �NL)

eV

2
: (3.100)

In a situation where only two charge states get appreciably mixed the eigenstates
and energies of the corresponding 2� 2 Hamiltonian are

 0 = �j0; 0; 0i + �j0; 2;�2i ;  1 = �j0; 0; 0i � �j0; 2;�2i ;

E0=1 =
1

2

�
Ech(0; 0; 0) + Ech(0; 2;�2)�

q
�E2

ch + E2
J

�
: (3.101)
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The coe�cients coincide with those of the box discussed above, except for the obvious

change of notation, and �Ech = Ech(0; 2;�2) � Ech(0; 0; 0).

In the low-bias regime, the dominant mechanism of transport in the NS junction of

the transistor is Andreev reection. Starting from a state j0; 0; 0i we are led by such a

process to the state j � 2; 2; 0i. The Josephson coupling mixes this state with the state

j � 2; 0; 2i. Hence we have to consider a second set of eigenstates

 00 = �j � 2; 0; 2i + �j � 2; 2; 0i ;  01 = �j � 2; 0; 2i � �j � 2; 2; 0i : (3.102)

The coe�cients � and � are the same as for the other pair, but the corresponding

energies are shifted E0
0=1 = E0=1 � 2eV .

Andreev reection causes transitions between the two sets of eigenstates  0 !  00.

The rate for this process can be obtained along the lines described in the previous

Subsection for an NSN transistor. An important modi�cation arises as compared with

Eq. (3.71), since the charge transfer operators pick from the initial state the component
with zero charge on the island, which has amplitude �, and select from the �nal state

the component with two extra charges, which has amplitude �. Hence the amplitude for
a Andreev reection process between the states  0 and  

0
0 with two electrons tunneling

from the states k; " and k0; # of the normal electrode is

Ak;k0( 0 !  00) = ��
X
q

Tk;qTk0;�quqvq

 
1

E0 � Ek;q
+

1

E0 � Ek0;q

!
: (3.103)

The energy of the virtual intermediate state j�1k; 1q; 0i, with one electron added to the
island leaving a quasiparticle in each electrode, is Ek;q = Ech(�1; 1; 0)��k+Eq, where �k
and Eq = [�2q+�2]1=2 are the quasiparticle energies in the normal and superconducting
electrode, respectively.

The summation in Eq. (3.103) can be performed, and the rate for the Andreev
reection process is obtained by the golden rule. After summation over the initial
states k and k0 one �nds for low temperatures and E0

0 � E0 = �2eV � 0

�A( 0 !  00) = (��)2 a20
GA

4e2
2eV : (3.104)

The rate is proportional to the product

�2�2 =
1

4

E2
J

(�Ech)2 + E2
J

; (3.105)

which displays a typical resonance structure. The Andreev conductance GA and the
function a0 = a (�=[Ech(�1; 1; 0)� E0]) have been de�ned in Eq. (3.76) and (3.74).

Here we assumed that the energy �+Ech(�1; 1; 0) of the intermediate state lies above

E0. If the superconducting gap � is much larger than the charging energies with scale
EC the function a reduces to a � 1. It diverges if the energy of the virtual state

coincides with that of the initial state. In the other limit, where �+ Ech(�1; 1; 0) lies
below E0, parity e�ects play a role (see below).
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Andreev reection processes can also lead to transitions between the other states

introduced above, with rates

�A( 0 !  01) = �4 a20
GA

4e2
[2eV � (E1 � E0)]�[2eV � (E1 � E0)] ;

�A( 1 !  00) = �4 a21
GA

4e2
[2eV + (E1 � E0)] ;

�A( 1 !  01) = (��)2 a21
GA

4e2
2eV : (3.106)

The function a1 is de�ned similar as a0, but the energy of the initial state E0 is replaced

by E1.

Below the threshold voltage V < Vth, where

Vth = (E1 � E0)=2e ; (3.107)

the only transition at low temperatures is the Andreev reection between the states  0
and  00. The resulting current, Ires = �2e�A( 0 !  00), shows a pronounced resonant
structure due to the overlap of the functions � and �. The conductance is

Gres =
Ires

V
= GA

a20
4

E2
J

(�Ech)2 + E2
J

for V < Vth : (3.108)

At higher voltages the Andreev reection can take the transistor to the excited
state  01. A master equation yields the probabilities for the ground and excited states

p0 =
�A( 1 !  00)

�A( 0 !  01) + �A( 1 !  00)
; p1 = 1� p0 6= 0 for V > Vth : (3.109)

The current then is

I = �2e[�A( 0 !  00) + �A( 0 !  01)] p0 � 2e[�A( 1 !  01) + �A( 1 !  00)] p1 :
(3.110)

For � > EC + EJ=2, near the resonance, the di�erence between a0 and a1 is small. In

this case the current is a sum I = Ires + Ith, where Ires follows from (3.108), while the
second contribution, which exists only above the threshold V > Vth, is

Ith =
GAF

2
0

16e

E4
J

(�Ech)2 + E2
J

(2eV )2 � (�Ech)
2 � E2

J

[(�Ech)2 + E2
J](2eV � �Ech)� E2

JeV

��
�
2eV �

q
(�Ech)2 + E2

J

�
: (3.111)

Also this current contribution has a resonant peak. A plot of the current-voltage-

characteristic as a function of the gate and bias voltage is shown in Fig. 3.17.

When the superconducting gap is smaller than the charging energy � � E0, parity

e�ects play a role. If the gate voltage is such that the energy of the initial state coincides
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Fig. 3.17: I-V characteristic of an NSS transistor. A resonant structure due to Cooper-pair tunneling
is visible in the dissipative current due to Andreev reection.

with that of the virtual intermediate state the function a0 diverges. This happens for

QG = e� �Q�
G, where

�Q�
G =

e

2

vuut�1 � �

EC

�2
�
�
EJ

2EC

�2
:

Clearly, at these points the perturbative treatment of Andreev reection is no longer

su�cient. However, close to these points we expect a strong increase of the current.
Inside the window e � �Q�

G � QG � e+ �Q�
G, the ground state of the transistor is an

odd state with a single quasiparticle present in the island. In this regime the current
is much lower than outside. However, it is di�cult to derive a precise value, since a
large number of channels contribute with similar weight.

Above a threshold voltage, when (e�QG)
2=2C� eV=2+� � E0, the odd state can

be reached in a SET process, and the Andreev reection is again \poisoned" (compare
the NSN transistor). Again the odd electron tunneling creates a bottleneck for the
current, which is small ISET = e = [2eRtNI(0)
I]

�1. Once SET is possible the current

related to Andreev reection processes is negligible.

3.5.7 Incoherent Cooper-pair tunneling

Finally we consider situations where a mechanism is present which destroys the phase

coherence of the quantum mechanical time evolution. In this case Cooper-pair tun-

neling can be treated perturbatively as a stochastic process. A realization of such a
system is a circuit consisting of a Josephson junction in series with a voltage source

and an external impedance Z(!). It is the same setup as shown in Fig. 3.9 except that

the tunnel junction has superconducting electrodes. The electrodynamic environment
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can again be described by a suitable oscillator bath (see Section 3.4). An incoherent

Cooper-pair tunneling process is accompanied by a transition in the bath. In analogy

to Eq. (3.42) the rate for this process can be written as [40]

�+ =
�

2�h
E2
J

X
X;X0

�bath(X)
���hX 0jei'jXi

���2 �(EX � EX0) : (3.112)

Note that the phase in the superconductor, which is related to the voltage by Joseph-

son's relation �h _' = 2eV , di�ers from the phase �h _� = eV introduced in Section 3.4 by

a factor 2, which accounts for the di�erence in charge transferred in the two cases.

The trace over the bath degrees of freedom can be performed, with the result

�+ =
E2
J

�h2

Z 1

�1
dt exp

�
2i

�h
eVxt

�
hei'(t)e�i'(0)i : (3.113)

Proceeding as before we can express the forward tunneling rate for a Cooper pair as

�+ =
�

2�h
E2
J
eP (2eV ) ; (3.114)

where eP (2eV ) has been de�ned by

eP (E) = 1

2��h

Z 1

�1
dt exp

�
4K(t) + i

Et

�h

�
: (3.115)

This function eP (E) di�ers from P (E) introduced in (3.47) by a factor 22 because of
the di�erence in the charge transferred. Except for this, much of the discussion given
in Section 3.4 applies here as well. The backward tunneling rate follows simply from
��(V ) = �+(�V ), and the current is

ICP(V ) = 2e[�+(V )� ��(V )] =
�eE2

J

�h
[ eP (2eV )� eP (�2eV )] : (3.116)

The result depends strongly on the impedance. At low voltages the expansion ofeP yields ICP � V 2=�s�1. In a high impedance environment, �s � RK=R � 1 the

supercurrent has a Gaussian peak at V = e=C,

ICP(V ) = Imax exp

"
��

2(CV � e)2=2C

EC�s

#
: (3.117)

This feature has been denoted as \Coulomb blockade of Cooper-pair tunneling". The
predicted voltage dependence has been observed by Kuzmin et al. [41].

3.6 E�ective-action description

In the next two sections we will consider several aspects of transport through systems

of junctions in a path-integral formulation. It is a systematic approach to include
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dissipation in quantum mechanics (compare Chap. 4 and the work of Caldeira and

Leggett [14, 29]). It allows us to go beyond perturbation theory, if

�t � RK=(4�
2Rt) (3.118)

is no longer small. (For later convenience a factor 1=4�2 is included in the de�nition

of �t.) The path-integral formulation displays in a transparent way the interplay

of charging and tunneling phenomena. We will rederive the tunneling rate for single

electrons, cotunneling and Andreev reection, describe Cooper-pair tunneling, but also

further e�ects like the proximity e�ect and resonant tunneling. We �rst will review the

imaginary-time approach, starting from the work of Ref. [6, 7] and include extensions

discussed in Ref. [8, 9]. This approach is appropriate if we are interested in equilibrium

properties such as supercurrents or the proximity e�ect. But we will also be able to

draw conclusions about the tunneling rates. In Section 3.7 we will then present a real-

time path-integral formulation, which yields directly tunneling rates and currents and

allows us to describe time-dependent and nonequilibrium phenomena.

3.6.1 The e�ective action in imaginary times

Our aim is to study transport through systems composed of normal metal or super-

conducting tunnel junctions. A typical geometry is the one known from the transistor
consisting of leads and an island, which is coupled capacitively to a gate voltage. The
electrostatic charging energy of the system is given by Eq. (3.2). Tunneling across
the junctions is described by the tunneling Hamiltonian (3.9). We consider \wide"
metallic junctions, which implies that there are many transverse channels. As a result
\inelastic" higher-order tunneling processes, involving di�erent electron states for each

step, dominate over those higher-order processes which involve the same state repeat-
edly. Accordingly, in the e�ective-action description presented below only simple loop
diagrams have to be retained.

We are interested in the inuence of charging e�ects on the properties of the junction
system. Since the tunneling of electrons changes the charge on the island, the voltages

are uctuating quantities. They are related by the Josephson relation to the phases of
the superconducting order parameters in the electrodes, 'J (j = L;R), and that of the

island, ', if they are superconducting. When the electrodes or island are normal we

still de�ne a phase as the integral of the voltage

'(� ) �
Z �

0
d� 02eV (� 0)=�h ; (3.119)

and similar for the electrodes. A voltage drop at a junction interface can be accounted

for by phase factors expf�i['(� )�'J(� )]=2gmultiplying the tunneling matrix elements.
For de�niteness we study in the following a transistor with normal or superconduct-

ing electrodes and assume that the voltages of the electrodes are �xed. In this case

only uctuations of the phase of the island need to be considered. After elimination

of the microscopic electronic degrees of freedom the partition function of the junction

system can be expressed as a path integral over this phase [6, 7]

Z =
Z
d'(� ) expf�S[']=�hg : (3.120)
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It is governed by an e�ective action, which in an expansion in the tunneling matrix

elements can be written as

S['] = Sch + St + SJ + SAndreev + SSNS : (3.121)

The �rst term in the action is the charging energy (3.2), rewritten in terms of the phase

Sch =
Z �h�

0
d�

2
4C
2

 
�h

2e

@'

@�

!2
+ iQG

�h

2e

@'

@�

3
5 : (3.122)

The remaining contributions will be discussed below, term by term.

The question arises, whether the phase is to be viewed as an extended variable

de�ned in the range �1 � ' � 1 or whether it is de�ned on a ring. Both inter-

pretations are possible. The �rst describes a system where charges can change also in

a continuous fashion, for instance because of the additional ow of Ohmic currents.
The second describes a situation where the charges are quantized, for instance in the

island of a SET transistor [7]. In the latter case the path integral for the partition
function includes a summation over winding numbers '(�h�) = '(0) + 4�M , where
M = 0;�1;�2; ::::. (Because of the factor 2 in the de�nition of '(� ) suggested by the
analogy to superconductivity, the ring has circumference 4�.) The second term in the
charging action (3.122) has a meaning only in the latter case.

3.6.2 Single-particle and Cooper-pair tunneling

The second term in (3.121) describes single-electron tunneling. It is [6, 7]

St;L =
�h

4
�t

Z �h�

0
d�
Z �h�

0
d� 0GL(� � � 0)GI(�

0 � � ) cos

"
�L(� )� �L(�

0)

2

#
; (3.123)

which depends on �L = '� 'L, and similar for the right junction. In a diagrammatic
language, which allows us to keep track of the di�erent contributions to the action, St
corresponds to the \bubble" diagram shown in Fig. 3.18 a. It contains the two diagonal

quasiclassical Green functions, GL=I(� ) � i=N(0)
R
d3pGL=I(p; � ), of the left side and

the island. Their Fourier transforms are given by G(!� ) = !�=[!
2
� +�2]1=2. In normal

metals G(� ) = 2i=� , while in a superconductor it decays like G(� ) / exp(��j� j).
At this stage we do not want to present a derivation of the expression for St (which

is given in Refs. [6, 7]). Rather we stress the similarity and di�erences to the term

describing dissipative currents through an Ohmic resistor derived by Caldeira and

Leggett [14] from a harmonic oscillator bath:

(i) If both electrodes are normal the product of Green functions is proportional to

1=� 2 and coincides with the kernel found for Ohmic dissipation (see Chap. 4). If

one or both electrodes are superconducting the kernel depends on the supercon-
ducting gap(s), which accounts for the reduction of the subgap current below a

linear voltage dependence in this case.
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Fig. 3.18: Di�erent processes contributing to the transport through a SET transistor: a) \bubble"
diagram describing single-electron tunneling, b) Cooper-pair tunneling (if L and I are superconduct-
ing), c) \banana" diagram responsible for Andreev reection (between a normal I and superconductor
R), d) \sausage" diagram describing the correlated tunneling of a Cooper pair through both junctions
(in an SNS transistor).

(ii) The second di�erence is the trigonometric dependence on the phase di�erence in
contrast to a quadratic one of the Caldeira-Leggett action. Also this di�erence

accounts for di�erent physics. In the present problem the current is due to
discrete single-electron tunneling rather than a continuous ow of charge through
a resistor.

With suitable analytic continuation we can rederive from St the single-electron or
quasiparticle tunneling rates (3.13) and (3.69). Since these results are well-known we
do not discuss them here further. Rather we will demonstrate the limiting behavior,
which applies for an ideal SS or SN junctions, where at low voltages, eV � �, and low

temperatures the quasiparticle tunneling is suppressed (vanishing subgap conductance).

In this case, if the time evolution of the phase is slow on the scale given by the inverse
energy gap �h=�, the quasiparticle tunneling term St can be expanded to quadratic
order in @�=@� . This implies that tunneling e�ectively renormalizes the charging energy

and hence the capacitance Ce� = C + �C. For an SS junction the result is �CSS =

(3�2=16)�te
2=� [6], for an ideal SN junction the equivalent result is �CNS = 4��te

2=�.
The next term in the action (3.121) is again of second order in the tunneling,

SJ;L =
�h

4
�t

Z �h�

0
d�
Z �h�

0
d� 0FL(� � � 0)FI(�

0 � � ) cos

"
�L(� ) + �L(�

0)

2

#
: (3.124)

It involves a product of two o�-diagonal quasiclassical Green functions F (� ) with

Fourier transform F (!�) = �=[!2� + �2]1=2. This term is appropriate for an SS in-

terface and describes the Josephson tunneling. Diagrammatically, it corresponds again

to a \bubble" diagram, shown in Fig. 3.18 b, where the two propagators are o�-diagonal
Green functions F . If the phases evolve slowly on the scale given by the inverse energy
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gap the Josephson coupling can be simpli�ed to

SJ;L = �EJ

Z �h�

0
d� cos[�L(� )] ; (3.125)

and in this form is equivalent to the Hamiltonian (3.95).

3.6.3 Higher-order processes

In situations where quasiparticle tunneling is suppressed by the superconducting gap

higher-order processes may be observable. An important example is the correlated

tunneling of two electrons across a junction with a normal and a superconducting

electrode. Such higher-order correlated processes require a careful analysis of the space

correlations of the electron propagators. We, therefore, keep track of the location of

the tunneling process and, accordingly, specify the tunneling Hamiltonian to describe

tunneling at the junction interface (z = 0) only by choosing

Tr;r0 = eT �(r � r0)�(z) : (3.126)

Notice that this tunneling matrix element di�ers from the usual approximation, where
Tk;q is assumed to be independent of k and q and hence Tr;r0 = T �(r)�(r0). Using
(3.126) we can rederive the bubble diagram of Fig. 3.18 a. The comparison of results

in both formulations yields the relation between the old and new matrix elements and
the normal state tunneling conductance

jT j2 = a�2
�h2A

p2F
j eT j2 = h

e2Rt8�2NI(0)
INL(0)
L

: (3.127)

Here A is the junction area and a a numerical coe�cient of order one.
We can now study higher order terms. In NS junctions with vanishing quasipar-

ticle current the leading term is the \banana" diagram, shown diagrammatically in
Fig. 3.18 c. Two electron propagators on the normal-metal side are connected to o�-
diagonal propagators on the superconductor side (for de�niteness we assume that the

lead electrodes are superconducting while the island is a normal metal). This diagram

describes Andreev scattering across the interface. It yields the fourth term in the action
(3.121), which for the right junction becomes [20]

SA;R =
Z �h�

0
d�1

Z �h�

0
d�2

Z �h�

0
d� 01

Z �h�

0
d� 02

Z
A

d2�1

Z
A

d2�2

Z
A

d2�01

Z
A

d2�02

�j eT j4FR(�2;�1; �2 � �1)GI(�1;�
0
1; �1 � � 01)FR(�

0
1;�

0
2; �

0
1 � � 02)GI(�

0
2;�2; �

0
2 � �2)

� cos

"
�R(�1)� �R(�

0
1)� �R(�

0
2) + �R(�2)

2

#
: (3.128)

Here the modi�cation of the tunneling Hamiltonian is apparent. The propagators
connect the positions � in the junction plane where the tunneling processes occur.

(They are now full Green functions, in contrast to the quasiclassical functions which
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appeared in the expressions (3.123) and (3.124).) If we restrict ourselves to low voltages

eV � � the short range of the o�-diagonal Green functions F (�; � ) in space and time

and their normalization allow us to write

SA;R =
Z �h�

0
d�
Z �h�

0
d� 0

Z
A

d2�
Z
A

d2�0 j eT j4GI(�;�
0; � � � 0)GI(�

0;�; � 0 � � )

� cos [�R(� )� �R(�
0)] : (3.129)

If the leads are made of dirty metals we perform an impurity averaging, introducing

the Cooperon propagator introduced in Chap. 1, K(�;�0; � � � 0) = hGI(�;�
0; � �

� 0)GI(�
0;�; � 0 � � )iimp. It satis�es a di�usion equation and depends on the geometry

of the system. For illustration we consider a very small normal island in the absence of

pair breaking e�ects such that electrons can propagate phase coherently between each

pair of points. The integral of the Cooperon propagator then reduces to A2=
I and we

�nd [20, 21]

SA;R = GARK

Z �h�

0
d�
Z �h�

0
d� 0

1

(� � � 0)2
cos [�R(� )� �R(�

0)] ; (3.130)

where GA is given by (3.75) with Nch = 1. In general, the Cooperon propagator

controls the range in space where electron propagation { and hence the higher-order
tunneling processes { remain correlated. This allows us to evaluate the e�ective number
of channels Nch introduced by [19]. (The notation is suggested by the following picture:
If g0 denotes the dimensionless conductance per channel, then the total conductance
is g = Nchg0 and the e�ective (dimensionless) Andreev conductance gAA � Nchg

2
0 =

g2=Nch.) The problem has been analyzed in Ref. [21] for di�erent junction geometries,
including such geometries where interference e�ects in a magnetic �eld play a role.

The comparison of (3.129) and the quasiparticle term (3.123) reveals that in the low-
voltage limit Andreev reection and the associated charge transfer are very similar to
ordinary single-electron tunneling in the normal state. The di�erence is that instead

of e the charge 2e is transferred as can be seen from the missing factor 1=2 in the
argument of the cosine. This implies that two-electron tunneling is subject to the
Coulomb blockade in much the same way as single-electron tunneling [20, 19].

3.6.4 Josephson current through SNS transistors

The last term in the action (3.121), illustrated by the \sausage" diagram in Fig. 3.18

d, describes the correlated tunneling of two electrons through both junctions. It is
responsible for the Josephson coupling across an SNS structure (with tunnel barriers

between the metals). For vanishing transport voltage VL = VR = 0 it is

SSNS =
Z �h�

0
d�1

Z �h�

0
d�2

Z �h�

0
d� 01

Z �h�

0
d� 02

Z
AL

d2�1

Z
AL

d2�2

Z
AR

d2�01

Z
AR

d2�02

�j eT j4FL(�2;�1; �2 � �1)GI(�1;�
0
1; �1 � � 01)FR(�

0
1;�

0
2; �

0
1 � � 02)GI(�

0
2;�2; �

0
2 � �2)

� cos

"
'(�1)� '(� 01)� '(� 02) + '(�2)

2
� 'L + 'R

#
: (3.131)
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The short range of the o�-diagonal Green functions in space and time allows us to set

�2 � �1, �2 � �1 and equivalent relations for the primed coordinates. Hence, (3.131)

can be simpli�ed to

SSNS =
Z �h�

0
d�
Z �h�

0
d� 0

Z
AL

d2�
Z
AR

d2�0j eT j4GI(�;�
0; � � � 0)GI(�

0;�; � 0 � � )

� cos ['(� )� '(� 0)� 'L + 'R] : (3.132)

Impurity averaging introduces again the Cooperon propagator through the normal

island.

The term SSNS contributes to the free energy F of the system, from which we obtain

the supercurrent

ISNS('L � 'R) =
2e

�h�

@F
@('L � 'R)

=
Z �h�

0
d�
Z �h�

0
d� 0

Z
AL

d2�
Z
AR

d2�0 j eT j4GI(�;�
0; � � � 0)GI(�

0;�; � 0 � � )

�hsin['(� )� '(� 0)� 'L + 'R]iSch : (3.133)

The supercurrent through a classical SNS structure without charging e�ects has been

studied before by Aslamazov, Larkin, and Ovchinnikov [42]. Charging e�ects introduce
the phase correlation function in Eq. (3.133). In an expansion in the tunneling matrix
elements it is su�cient to evaluate the correlator hexp i['(� )� '(� 0)� 'L + 'R]iSch
with the charging energy Sch, given by Eq. (3.122). This is done most easily in the
charge representation. The factor expfi['(� )�'L]g describes the transfer of a Cooper
pair in the left junction, increasing the island charge at time � , while expf�i['(� 0) �
'R]g describes the transfer of another Cooper pair in the right junction decreasing the
island charge at time � 0 (see Fig. 3.19, which visualizes a more complicated process
relevant for the proximity e�ect). Hence, for vanishing transport voltage, V = 0, we
have

hei['(�)�'(� 0)]iSch =
1

Zch

1X
n=�1

e�f�Ech(n;QG)+[Ech(n�2;QG)+Ech(n;QG)](���
0)g ; (3.134)

where Zch is an obvious normalization. At low temperatures the sum is dominated by

that 2e charge transfer process which costs the lowest energy di�erenceEch (n� 2; QG)�
Ech (n;QG), and we have

hei['(�)�'(� 0)]iSch � maxfexp [� (Ech(n� 2; QG)� Ech(n;QG)) (� � � 0)]g : (3.135)

If the island is small enough and the external time scales long enough the Cooperon

propagator reduces again to a simple factor A2=
I. In this case we can generalize the
result derived in Ref. [43] to obtain the following expression for the critical current

IcritSNS =
2e

�h

R2
K

16Rt;LRt;R

��
1

2

X
�

log

"
�2

�2T 2 + (�Ech(QG))2

#
; (3.136)
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Fig. 3.20: Pair amplitude in a small island induced by the proximity e�ect. A normal island is
coupled to a bulk superconductor. The gate voltage is chosen such that QG = 0, and the parameters
are EC=� = 0 (upper curve), EC=�= 0:23 (middle curve), and EC=� = 0:45 (lower curve).

parison to the classical result for the proximity e�ect discussed by Azlamazov, Larkin,
and Ovchinnikov [42] there appears a time dependent phase correlation function, which

is averaged according to the dynamics of the system. Since we couple to an o�-diagonal
Green function the phases add in the exponent.

To lowest order in the tunneling the expectation value in Eq. (3.137) can be eval-
uated with the charging energy (3.122), which again is done most conveniently in the
charge representation. The factor exp[i'(� )=2] describes the transfer of one charge at

time � and exp[i'(� 0)=2] of another one at time � 0 before both of them are returned
by exp[�i'(�0)] at time �0, see Fig. 3.19. The result is*

cos

"
'(� ) + '(� 0)

2
� '(�0)

#+
Sch

(3.138)

=
1

Zch

1X
n=�1

e�[Ech(n)(�+���0)+Ech(n+1)(�
0��)+Ech(n+2)(�0��

0)]

for � < � 0 < �0. Similar expressions hold for other relations between �; � 0 and �0.

Eq. (3.138) shows that the modi�cation of the pair amplitude depends on the tem-
perature and on the applied gate voltage. Results displaying the inuence of charging
e�ect on the proximity e�ect are shown in Fig. 3.20 and Fig. 3.21. The gate voltages

can be used to modulate the proximity e�ect and hence the supercurrent in suitable

normal metal-superconductor systems [45].
Summarizing we can say that the e�ective action displays in a systematic and

transparent way the interplay of charging and transport properties. The latter includes
single-electron and Cooper-pair tunneling, but also several extensions as the proximity

e�ect, Andreev reection and the supercurrent through composite structures. We have

reproduced several classical results. As long as the tunneling is weak, charging e�ects
lead to extra phase correlation functions multiplying the classical expressions. Charging

suppresses the currents and proximity e�ects, but at the same time the gate voltage
can be used to modulate these e�ects.
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Fig. 3.21: Pair amplitude in a small island induced by the proximity e�ect as a function of the gate
voltage, QG. The island is superconducting and parity e�ects reduce the regime of the odd state of
the island. The parameters are EC=� = 0:45 (upper curve) and EC=� = 1:8 (lower curve).

We considered here \wide" junctions, where a large number Nch � 1 of parallel
channels contributes to the transport. As a result, higher order diagrams, such as the
Andreev contribution, carry extra powers of 1=Nch as compared with higher powers of
the simple-bubble diagrams St and SJ. From a comparison of the Andreev conductance

and the single-electron current in the experiments of Hergenrother et al. [22], we
conclude that even in these small fabricated junctions Nch is of order 10

3. Therefore,
wide junctions with conductances as large as 1=RK are still described by the action
presented above including only simple bubble diagrams. Only where the lowest-order
e�ects are suppressed by a combination of Coulomb blockade, superconducting gap

or parity e�ects or where further physical e�ects such as the Andreev current are of
interest, the appropriate higher-order diagrams need to be considered.

For a renormalization group analysis of the e�ective-action description of normal
junctions with large conductance we refer to the article [46]. As a result of strong
tunneling various parameters get renormalized, and, e.g., the steps in hn(QG)i in the
electron box are broadened. We will derive several of these results as well as several

extensions in the real-time analysis of the following Section.

3.7 Real-time evolution of the density matrix

From the imaginary-time description presented in the preceding Section we derived

equilibrium properties, such as the supercurrent or the pair amplitude in the proximity
e�ect. For a systematic analysis of transition rates and I-V characteristics of driven sys-

tems with strong charging e�ects we present now a real-time path-integral formulation.

We recover the classical (perturbative) description if the resistanceRt of a single barrier
is much higher than the quantum resistance RK = h=e2, i.e. for �t � RK=(4�

2Rt)� 1.

In this regime, transport occurs in sequences of uncorrelated tunneling processes with
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rates which can be obtained in lowest-order perturbation theory. When the dimen-

sionless conductance �t is not small, at very low temperatures or near resonances the

classical description breaks down. Quantum uctuations and higher-order coherent

tunneling processes become important. We have discussed already cotunneling, where

two electrons tunnel coherently in di�erent junctions, thus avoiding the Coulomb block-

ade. Beyond this resonant tunneling, where electrons tunnel coherently back and forth

between the island and the electrodes, plays a role. This phenomenon is well-known

in situations where the electrons can be treated independent. Here we encounter two

complications. One lies in the fact that the metallic system contains many electrons.

With overwhelming probability di�erent electron states are involved in the di�erent

transitions of the coherent process. The second arises since the Coulomb interaction is

strong and, hence, cannot be accounted for in perturbation theory.

In this Section we study the time evolution of the density matrix and develop a
systematic diagrammatic technique to identify the processes of sequential tunneling,
inelastic cotunneling and resonant tunneling. A systematic formulation has been pre-
sented in Ref. [47] where after a separation of charge and fermionic degrees of freedom
a many-body expansion technique has been used. Here we reformulate it in a real-time

path-integral representation [10]. The latter is familiar from the work of Feynman
and Vernon [48] and Caldeira and Leggett [49] who studied dissipation in quantum
mechanics. Dissipation associated with tunneling of electrons was investigated in Refs.
[6, 7]. An essential step in the present work is a transformation of the path-integral
description of electron tunneling from a phase to a charge representation [7].

3.7.1 Phase representation

The time evolution of the density matrix involves a forward and a backward propagator,

both of which can be expressed as path integrals. After elimination of bath or electronic
degrees of freedom the two propagators are coupled. This has been described by
Feynman and others [48, 49] for the case where a quantum degree of freedom is coupled

to a harmonic bath. In Refs. [6, 7] the equivalent procedure for the case of a tunnel

junction has been described, where the electronic degrees of freedom are eliminated.

For transparency we describe the formalism for a normal SET transistor with ap-

plied gate and transport voltages. The time evolution of its reduced density matrix

can be expressed as a path integral over '(t), which is de�ned as the integral of the
island voltage in analogy to Eq. (3.119) (in order to avoid confusion we retain the factor

2 in the de�nition). The phase is the conjugate variable of n, the number of excess
electrons on the island. The phases of the reservoirs r = L;R are �xed by 'r = 2eVrt,

without further uctuations. Here and in the following we put �h = kB = 1. The two

time-evolution operators require that we introduce two variables '� with � = 1; 2 for
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the forward or backward branch 4. Then we have

�(tf;'1f; '2f) =
Z
d'1i d'2i

Z '1f

'1i

D'1(t)
Z '2f

'2i

D'2(t)eiS['1;'2]�(ti;'1i; '2i) : (3.139)

The e�ective action is given by

S['1; '2] = Sch['1]� Sch['2] + St['1; '2] : (3.140)

The �rst two terms represent the charging energy

Sch['�] =
Z tf

ti

dt

"
C

2

�
_'�

2e

�2
�QG

_'�

2e

#
: (3.141)

In systems with discrete charges, which can be tuned by a gate voltage QG, the inte-

grations over the phases '� include a summation over winding numbers. For instance,

in a trace we have '�;f = '�;i + 4�m; m = 0;�1; ::: [7]. In this case the last term in

Sch does not vanish.
Electron tunneling in junction r, which is assumed to be a `wide' junction with a

large number of parallel channels, is described by [6, 7]

St;r['1;r; '2;r] = 4�i
X

�;�0=1;2

Z tf

ti

dt
Z t

ti

dt0 ��;�
0

r (t� t0) cos
��;r(t)� ��0;r(t

0)

2
; (3.142)

where ��;r = '� �'�;r is the appropriate phase di�erence. The tunneling term couples
the forward and backward propagators. This arises in the step where the microscopic

degrees of freedom are traced out. We notice at this stage that the e�ect of transport
voltages can be absorbed by a shift of the arguments of the tunneling kernels in Fourier
space ! ! ! � eVr. In this case the argument of the cos-function depends only on
'�(t), and the kernels ��;�

0

r are given in Fourier space by

��;1r (!) = (�1)�+1��r (!) ; ��;2r (!) = (�1)��+r (!) (3.143)

and

��r (!) = ��t;r ! � eVr

exp[��(! � eVr)]� 1
: (3.144)

3.7.2 Charge representation

An important step for a systematic description of tunneling processes is the change
from the phase to a charge representation , accomplished by

�(tf;n1f; n2f) =
X

n1i;n2i

�(ti;n1i; n2i)
Z
d'1f d'2f d'1i d'2i

4In order to make contact with the classical limit or the Wigner distribution the two variables
'1(t) and '2(t) referring to the forward and backward paths, respectively, are frequently replaced by
center of mass and relative coordinates,  = ('1 +'2)=2 and � = '1 �'2. The action in Ref. [5] has
been written explicitly in terms of  and �. For the present purpose it is more convenient to retain
the original form.
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�
Z '1f

'1i

D'1(t)
Z '2f

'2i

D'2(t)
Z
Dn1(t)

Z
Dn2(t) (3.145)

� exp

2
4 X
�=1;2

(�1)�
�
in�;i

'�;i

2
� in�;f

'�;f

2
+ iSch[n�]� i

Z
dt n�

_'�

2

�35

� exp

2
4�2�X

r

X
�;�0=1;2

Z tf

ti

dt
Z tf

ti

dt0��;�
0

r (t� t0) exp

 
i
'�(t)� '�0(t

0)

2

!3
5 :

The forward and backward propagators involve the charging energy exp(�iSch[n�]),
where Sch[n] =

R
tf
ti
dt(ne�QG)

2=2C.

To proceed we expand the tunneling part of the action exp(iSt) to arbitrary orders

and integrate over '�. Each of the exponentials exp[�i'�(t)=2] causes a change of the
number of electrons on the island by �1 at time t on the forward or backward branch,

� = 1 or 2, respectively. These changes occur in pairs and are connected by tunneling
lines representing ��;�

0

r (t � t0). The two correlated transitions can occur on the same

or on di�erent branches. The terms of the expansion can be visualized by diagrams;
an example is displayed in Fig. 3.22. It shows the closed time-path corresponding to
the forward propagator from ti to tf (upper line) and the backward propagator from
tf to ti (lower line). Vertices, describing tunneling, are connected in pairs by dashed
tunneling lines either within one propagator or between the two propagators.

The latter are of particular interest. Imagine we started in a diagonal state with
n charges �(ti) = jnihnj. Then a transition, described by exp(i['1;r(t) � '2;r(t

0)]=2)

changes the charge on both branches by e due to tunneling in junction r, and the
density matrix acquires a �nite value also for states jn+1i. After integrating over the
two times t and t0, limited by ti � t0 � t � tf, we �nd

hn + 1j�(tf)jn+ 1i = (tf � ti)2��
+
r (�Ech(n)) ; (3.146)

where �Ech(n) = Ech(n + 1) � Ech(n) (notice that eVr is absorbed in the de�nition of
�r). Obviously we can interpret the coe�cient of the time di�erence as transition rate,
and indeed we reproduce the well-known single-electron tunneling rate.

3.7.3 Diagrams and rules

The time evolution of the density matrix is visualized in Fig. 3.22. It is expressed by the
sum of all topological distinct diagrams with directed tunneling lines. The diagrams
are evaluated according to the following rules:

1. Assign charge states n and the corresponding charging energy to each segment of
the propagators. Segments of the forward (backward) propagator between t0 and

t > t0 carry factors exp[�iEch(n)(t� t0)].

2. Each vertex represents an exponential exp[�i'�(t)=2] of the tunneling contribu-
tion to the action. It changes the charge by �n = �1.
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Fig. 3.22: Example of a diagram showing various tunneling processes: on the left sequential tunneling
in the left and right junctions, then a term which preserves the norm, next a cotunneling process, and
on the right resonant tunneling processes.

3. Pairs of vertices are connected by a directed tunneling line �+r (t�t0) [��r (t�t0)] for
the electrodes r = L;R, if the line of is running backward [forward] with respect

to the closed time-path. The charge changes in units �n = +(�)1 along the

time-path by 1 if the tunneling line is directed towards (away from) the vertex.

4. Each diagram carries an prefactor (�i)M(�1)m, where M is the total number of
vertices and m their number on the backward propagator.

5. Integrate over the internal times and sum over the reservoirs.

In order to calculate stationary transport properties it is convenient to change to
an energy representation. For this purpose we order in each diagram the vertices from

left to right and label them by tJ, irrespective on which branch they are. We further
set ti = �1 and tf = tM+1 = 0. We then encounter integrals of the type

Z 0

�1
dt1 : : :

Z 0

tM�1

dtM e�t1ei�E1(t2�t1) � � � e�i�EM tM =
1

�i�E1 + �
� � � � 1

�i�EM + �
:

Here �Ej is the di�erence of the energies of the upper and lower propagator and {
if present { the frequency of the tunneling line within the segment limited by tj and

tj+1. The convergence factor e�t1 (� ! 0+) describes the adiabatic switching of the
tunneling. The rules in energy representation read:

1. Draw all topological distinct diagrams. These are the same as in time space. In

addition to the charging energy assigned to the propagators we assign a frequency
! to each tunneling line.

2. For each segment derived from tj � t � tj+1 with j � 1 we assign a resolvent

1=[�Ej � i�] where �Ej is the di�erence of the energies of the forward and
backward propagator, plus the sum of the frequencies of the tunneling lines in

the given segment. The latter have to be taken positive for lines from the left to
the right and negative for lines from the right to the left.

3. The prefactor is given by (�1)m+l, where m is the total number of vertices on the
backward propagator and l the total number of resolvents.

4. For each coupling of vertices we write �+r (!) [�
�
r (!)], if the tunneling line of

reservoir r is going backward (forward) with respect to the closed time-path.
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Fig. 3.23: The iteration of processes for �, describing the time evolution of the density matrix.
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Fig. 3.24: Lowest-order approximation of the self-energy �(1), de�ned to contain no overlapping
tunneling lines. Only one representative of each class is shown, the remaining ones are obtained
by changing the direction of the arrows and exchanging the position on the forward and backward
propagator.

5. Integrate over the frequencies of tunneling lines and sum over the reservoirs.

We denote the sum of all diagrams by �
n1;n

0

1

n2;n
0

2
, where the indices indicate the left

and right charge states on the two branches, � = 1; 2. They can be expressed as an
iteration in the style of a Dyson equation, illustrated in Figs. 3.23 and 3.24, by the free

propagator �(0)n1
n2

and an irreducible self-energy part �
n1;n

0

1

n2;n
0

2
, de�ned as the sum of all

diagrams where any vertical line cutting through them crosses at least one tunneling

line. Hence

�
n1;n

0

1

n2;n
0

2
= �(0)n1

n2
�n1;n01�n2;n02 +

X
n001 ;n

00

2

�
n1;n

00

1

n2;n
00

2
�
n001 ;n

0

1

n002 ;n
0

2
�(0)n

0

1

n02
: (3.147)

We start from a density matrix which is diagonal, �(ti; n1; n2) = p(0)(n1)�n1;n2. This
means it remains diagonal except during transitions described by �. In this case we can
drop the upper indices and write, for instance, �n;n0 � �n;n

0

n;n0 . We identify the solution

of Eq. (3.147) { after multiplication with p(0)(n) from the left { as the stationary

distribution function
P
n p

(0)(n)�n;n0 = pst(n0). Hence

pst(n0) = p(0)(n0) +
X
n00

pst(n00)�n00;n0�
(0)
n0 : (3.148)

The last term in this form, �(0) / 1=i�, describes a propagation in a diagonal state
with �E = 0. Hence we have

P
n0 p

st(n0)�n0;n = 0, and using symmetry arguments we

can show that
P

n0 �n;n0 = 0. We thus arrive at

0 = �pst(n)
X
n0 6=n

�n;n0 +
X
n0 6=n

pst(n0)�n0;n ; (3.149)

i.e. we recover the structure of a stationary master equation with transition rates
given by �n0;n. In general the irreducible self-energy � yields the rate of all possible
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correlated tunneling processes. We, furthermore, see that the stationary solution pst(n)

is independent of the initial distribution p(0)(n).

3.7.4 Simple examples, SET and cotunneling

For illustration, we evaluate all diagrams which contain no overlapping tunneling lines,

as visualized on the left hand side of Fig. 3.22. After each transition the system is in a

diagonal state of the density matrix and a probability can be assigned. These processes

are also described by the master equation. In this simplest case the irreducible self-

energy parts

�
(1)
n;n�1 = 2�i

X
r

��r (��E�
ch) ; �(1)

n;n = �2�i
X
�

X
r

��r (��E�
ch) ; (3.150)

where �E�
ch = Ech(n � 1) � Ech(n), coincide with the single-electron tunneling rates

derived within lowest-order perturbation theory above.

In situations where single-electron tunneling is suppressed by Coulomb blockade the
lowest-order contribution to the current arises due to cotunneling. It is described by a
diagram in Fig. 3.22 with tunneling processes in the left and in the right junction, where
the corresponding lines �L(tL� t0L) and �R(tR� t0R) overlap in time. This means there

is no intermediate state where the density matrix is diagonal, which would describe
sequential tunneling. Performing the integrations we �nd the cotunneling rate (3.23).

3.7.5 Resonant tunneling

The perturbative approach breaks down at low temperatures or for large values for
the dimensionless conductance �t. Speci�cally we will show that the classical master
equation is valid only for �t ln (EC=2�T ) � 1, whereas for larger values resonant
tunneling processes become important.

To proceed, we have to �nd a systematic criterion which diagrams should be retained

and summed. For this, we note that during a tunneling process the reservoirs contain
an electron excitation. Two parallel tunneling lines imply two such excitations. Our

criterion is that we take into account only those matrix elements of the total density

matrix, i.e. reservoirs plus charge states, which di�er at most by two excitations in the
leads or (equivalently) in the island. Graphically, this means that any vertical line will

cut at most two tunneling lines.

Furthermore, we will concentrate here on situations where only two charge states
with n = 0; 1 need to be considered. This is su�cient when the temperature, the

energy di�erence of the two charge states �0 � Ech(1) � Ech(0), and the bias voltage
eV = eVL � eVR are small compared with EC, which is the energy associated with

transitions to higher states. The combination of the two restrictions implies that no
diagram contains crossing tunneling lines. In this case we can evaluate the irreducible

self-energy analytically.

In order to sum all diagrams which contain up to two parallel tunneling lines we

introduce a diagram labeled by �
n1;n

0

1

n2;n
0

2
(r; !) (see Fig. 3.25). It has an open tunneling



58 Single-Electron Tunneling

1

n2
’’

n1
’’ n1

’’’ n1
’

n2 n2
’’’’ n2’

Φ Π

n

(1)a) ω

n1 n1
’

n2’n2

Φ ω

n1n1

n2 n2

Π
(1) ω += + .....

1 n1
’

n2’n2

Σ

n1

n2

n1
’

n2’

n

b) Φ
n2

n1 n1
’

n2’

Φ+=

Fig. 3.25: a) Self-consistent equation for �n(r; !). A summation over the electrodes r and the
direction of the tunneling lines is implied. b) Representation of the self-energy �n;1 within our
approximation.

line associated with tunneling in the junction r carrying the frequency !. Consequently
it remains in an o�-diagonal state at one side. For the two-state problem we need only

�n(r; !) � �
n;1
n;0(r; !) (3.151)

with n = 0; 1, for which we can formulate the iteration depicted diagrammatically in
Fig. 3.25. It yields

�n(r; !) = �(!)

"
�+r (!)�n;0 � ��r (!)�n;1 + �r(!)

Z
d!0

X
r0

�n(r
0; !0)�

!0 � ! � i�

#
: (3.152)

Here we encounter the propagator �(!) � �(1)1;1

0;0(!). It is given by the propagator

�, restricted to �rst order in the tunneling, starting and ending in an o�-diagonal
state. Furthermore, since the parallel tunneling line carries a frequency ! the energies
of the upper and lower lines are shifted relative to one another. Notice that due

to the restriction to a two-state problem there are no diagrams contained in �(1)1;1

0;0

where a tunneling line connects the upper and lower propagator. We can express it

by the �rst-order self-energy �(!) � �(1)1;1

0;0(!), which is the o�-diagonal version of
the expression known from the �rst-order discussion, with the added complication of a

parallel tunneling line with frequency !.

The irreducible self-energy � is obtained from �(r; !) by connecting the tunneling
line with the appropriate direction to the upper and the lower propagator and adding

both contributions (see Fig. 3.25). We get for n = 0; 1

�n;1 = �2i Im
Z
d!

X
r

�n(r; !) ; (3.153)

while �n;0 follows from the rule �n;0 + �n;1 = 0.
Applying our rules for the calculation of the diagrams we �nd

�(!) =
1

! ��0 � �(!)
; �(!) = �

Z
d!0

�(!0)

!0 � ! � i�
: (3.154)
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Here and for the following we introduce the notations ��(!) =
P

r �
�
r (!), �r(!) =

�+r (!) + ��r (!), �(!) = �+(!) + ��(!) =
P

r �r(!), and �t =
P

r �t;r. The integral

equation (3.152) is solved by

�0;1 = ��0;0 = 2�i
�+

�
; �1;0 = ��1;1 = 2�i

��

�
(3.155)

with

�� =
Z
d!��(!)j�(!)j2 ; � =

Z
d!j�(!)j2: (3.156)

Inserting these quantities in the kinetic equation (3.149) we arrive at the stationary

probabilities P st
0 = �� and P st

1 = �+ . Both are positive and normalized P st
0 +P st

1 = 1.

3.7.6 The current

The expression for the current at time t in the junction r can be written as

Istr (t) = 4�ie
Z t

�1
dt0
X
�

�1;�r (t� t0)hsin['1(t)� '�(t
0)]i ; (3.157)

where the expectation value is taken with the reduced density matrix discussed above,
and t = tf. We, therefore, have to evaluate the two real-time correlation functions
describing charge transfer processes at times t and t0

G>(t; t0) = �i he�i'(t)ei'(t0)i ; G<(t; t0) = i hei'(t0)e�i'(t)i : (3.158)

In the stationary limit the current can be expressed by

Istr = �ie
Z
d!

n
�+r (!)G

>(!) + ��r (!)G
<(!)

o
: (3.159)

We, furthermore, introduce a spectral density for charge excitations

A(!) =
1

2�i
[G<(!)�G>(!)] : (3.160)

The correlation functions and spectral density can be evaluated in the approximation

which we have used before, with the results

G
<

(>)(!) = +
(�) 2�i

X
r

�r(!)f [
+
(�)(! � eVr)]j�(!)j2 (3.161)

and

A(!) = �(!) j�(!)j2 : (3.162)

The current can then be written as

Istr =
e

h
4�2

Z
d!

X
r0

�r0(!)�r(!)

�(!)
A(!)[f(! � eVr0)� f(! � eVr)] : (3.163)
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These results satisfy the conservation laws and sum rules. The current is con-

served,
P

r I
st
r = 0, and vanishes in equilibrium when Vr = 0. The spectral density is

normalized
R
d!A(!) = 1, and the usual relationships between the correlation func-

tions and the spectral density in equilibrium are reproduced. The classical result can

be recovered if we use the lowest-order approximation in �t for the spectral density

A(0)(!) = �(!��0). We conclude with the observation that quantum uctuations yield

energy renormalization and broadening e�ects, which manifest themselves in the spec-

tral density via the real and imaginary part of the self-energy �(!) given in Eq. (3.154).

It will be evaluated in the next Section.

3.7.7 Charge uctuations in the single-electron box

In equilibrium when VR = VL, the SET transistor is equivalent to the single-electron

box. The energy di�erence �0(QG) = EC(1�2CGVG) is tuned by the gate voltage. The

average excess particle number can be obtained from (3.155) and (3.162) hn(QG)i =R
d!f(!)A(!).

In the classical limit A(0)(!) = �(! � �0(QG)), and one obtains hncl(QG)i =
f(�0(QG)). It shows a step at QG = 1=2, which is smeared only by temperature.

At larger values of �t or lower temperature we have to include the self-energy �(!)
(3.154) in the spectral density (3.162). The two limits, T = 0 and j!j � T , can be
analyzed analytically. In the �rst case, the spectral density has the form

A(!) � j!j
�0

e�(!)e�(!)
[! � e�(!)]2 + [� e�(!)e�(!)]2 ; T = 0 (3.164)

where

e�(!) = �0

1 + 2�t ln(EC=j!j)
1

1 + �2e�(!)2 ; e�(!) = �t

1 + 2�t ln(EC=j!j) : (3.165)

The spectral density A(!) has a maximum at the renormalized energy di�erence �,
which is obtained from the self-consistent solution of

� = e�(�) ; � = e�(�) : (3.166)

It further has a broadening of order ���. For ��� 1 the broadening can be neglected.

In this case our results coincide with the renormalization-group analysis of Refs. [46,
13, 50, 51].

At �nite temperatures j!j � T , we get

A(!) � �

�0

�! coth (!=2T )

[! ��]2 + [��! coth(!=2T )]2
; j!j � T (3.167)

where

� = e�(T ) = �0

1 + 2�t ln(EC=2�T )
; � = e�(T ) = �t

1 + 2�t ln(EC=2�T )
: (3.168)
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The broadening is of order ��tT . It adds in an important way to the thermal smearing

contained in distribution functions if ��t � 1.

As a consequence of quantum uctuations the step of the average charge in the

electron box near the degeneracy points is washed out. We neglect broadening e�ects

(��� 1) and assume that the energies of the ground state and the �rst excited state

near the degeneracy point depend symmetrically on the distance, EC=4��=2. In this

case the partition function is Z � 2 exp [�EC=4T ] cosh(�=2T ) and the average excess

charge hni becomes

hni = QG

e
� T

@

@�0

lnZ � �0 ��

2�0

+
�

�0

f(�) : (3.169)

In contrast to the result of perturbation theory (3.28) we �nd an anomalous but �-

nite result. Depending on the temperature we have to choose the appropriate lim-

iting form for �. At �nite temperature the slope at �0 = 0 is @hni=@�0j�0=0 =

�f4T [1+2�t ln (EC=2�T )]
2g�1. It is reduced compared with the classical result�1=4T .

This anomalous temperature dependence indicates coherent higher-order tunneling pro-
cesses.

3.7.8 Conductance oscillations in the SET transistor

We will now demonstrate that the linear and nonlinear conductance of a transistor show
pronounced deviations from the classical result, which are observable in an experiment.
The linear conductance G(V ! 0) of a transistor follows from (3.163)

G = �4�2

RK

Z
d!

�R(!)�L(!)

�(!)
A(!)f 0(!): (3.170)

Since the derivative of the Fermi function restricts the integration variable to the
regime j!j � T we can use the form (3.167) for the spectral function and perform the
integration [47]. The maximum of the conductance at �0 = 0 and the width of the
conductance peak are given by

Gmax =
2�

RK

e�R(T )e�L(T )e�(T )
"
�

2
� arctan

 
(� e�(T ))2 � 1

2e�(T )�
!#

;

 � 1

Gmax

Z
d�0G(�0) =

�3 T [1 + 2�t ln(EC=2�T )]

� � 2 arctan
�
(�e�(T ))2�1
2e�(T )�

� : (3.171)

Here e�L=R(T ) is given by (3.168) for the left and right junction and e�(T ) depends on
the sum of the conductances. We also introduced �t = �t;R + �t;L. In the regime
�t ln (EC=2�T )� 1 the height and width of the conductance peak get modi�ed as

Gmax � 2�2

RK

�t;R �t;L

�t

1

1 + 2�t ln (EC=2�T )
;  � �2

2
T

�
1 + 2�t ln

EC

2�T

�
: (3.172)

For �t ! 0 we recover the classical result for sequential tunneling. The corrections

depend logarithmically on temperature, indicating energy renormalization e�ects due



62 Single-Electron Tunneling

-2.0 -1.0 0.0 1.0 2.0
0.0

0.2

0.4

0.6

0.8

1.0

(0)

(1)
(2)

(3)

∆0

2GRt

eV
=

2QG/e-1
eV/EC

Fig. 3.26: The nonlinear di�erential conductance at T = 0 as function of the di�erence in charging
energy between the two lowest branches �0 = EC(1 � 2CGVG), normalized to the transport voltage
V . The parameters are �Lt = �Rt = 0:05 (Rt;L = Rt;R = Rt), we consider a symmetric bias and chose
(1) eV=EC = 0:1 ; (2) eV=EC = 0:01 ; (3) eV=EC = 0:001 . For comparison, (0) shows the result for the
classical case obtained from lowest-order perturbation theory.

to higher-order tunneling processes. For T ! 0 the maximum value as well as the
broadening become Gmax � 1= ln T and  � T lnT . For �t ln (EC=2�T ) � 1 �nite
life-time e�ects play a role, which are contained in (3.171). For a further discussion
and comparison with experiment see Ref. [52].

A pronounced signature of quantum uctuations is contained in the non-linear dif-
ferential conductance G(V ) = @Ist(V )=@V . In this case the �nite voltage provides an
energy scale eV , and the renormalization and life-time e�ects are probed over a �nite
energy range even at zero temperature. The T = 0 result obtained from Eq. (3.163) is
plotted in Fig. 3.26. For comparison we also show again the result obtained in pertur-

bation theory. In this limit the conductance is nonzero only in the range j�0j � eV=2

with vertical steps at the edges. The result of Fig. 3.26 displays clearly the renormaliza-
tion e�ects and, moreover, the �nite life-time broadening due to the tunneling. Finite
temperatures and Joule heating e�ects will wash out the e�ect. However, as long as

the temperature remains lower than eV the quantum e�ects should be observable.

3.8 Outlook

Here we have described charging e�ects in normal-metal and superconducting tunnel

junctions and discussed single-electron tunneling. We started from perturbation the-

ory. We included higher-order processes where needed. This includes cotunneling in

the regime of Coulomb blockade and Andreev tunneling in NS junction, where at sub-
gap voltages single-electron tunneling is suppressed. We also described coherent and
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incoherent tunneling of Cooper pairs, and we accounted for the e�ect of the electro-

dynamic environment. In the last two Sections we presented a systematic description

of tunneling in metallic junctions beyond perturbation theory. Using the real-time de-

scription, the single-electron and cotunneling rates have been reproduced, but we also

could go beyond and describe for instance inelastic resonant tunneling.

We have restricted ourselves to a discussion of the electron box and single-electron

transistors. More complicated multi-junction systems are interesting too and impor-

tant in various contexts. The electron turnstile which can serve as a current standard

requires at least 4 junctions. Cotunneling processes which limit the accuracy of this

standard are suppressed if one uses even more junctions. Arrays of junctions show

collective behavior which depends on the competition between charging e�ects and

tunneling. Another important extension which we had not the space to describe here

are time-dependent perturbations. They produce e.g. side bands in the I-V character-

istics.

Charging e�ects are also pronounced in the transport through semiconductor nano-
structures, for instance through quantum dots in 2-dimensional electron systems. Here
a new feature enters compared to the metallic case: In a small dot the electron states

are quantized and the energy di�erence between di�erent levels may become observable.
In fabricated dots the charging energy is still the larger of the energies, but on top of
the Coulomb oscillations further �ne-structure related to the discrete energy levels and
the occupation of excited states has been seen.
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