Efficient Address Translation

Matthias M. Miiller

Institute for Program Structures and Data Organization,
Universitt Karlsruhe, Germany.
muellerm@ira.uka.de
Technical Report No. 2000-12

Abstract. The address calculation for distributed data access plays a
major role for the performance of fine-grained data-parallel applications.
This paper reports about the hardware centrifuge of the Cray T3E which
enables the shift of the address calculation from software into hardware.
This shift minimizes address calculation overhead reducing communica-
tion cost of dynamic communication patterns. The centrifuge is com-
pared with complex integer division and modulo and with integer mask
and shift operations. The measurements show for a one-dimensional dy-
namic communication pattern for several distributions a runtime advan-
tage of T3E’s hardware centrifuge of at least a factor 1.9 over integer
division arithmetic. But, the centrifuge is barely faster compared with
integer mask and shift operations.

1 Introduction

The address calculation for distributed data accesses plays a major role in fine-
grained data-parallel applications. Many data-distributions has been proposed
for different purposes and all of them come with a more or less complex calcula-
tion scheme. First of all, the usage of a special data-distribution depends on the
supposed work-distribution among the processors. But if the locality of a data
element cannot be determined efficiently, all the intended benefits of a data-
distribution are meritless. Thus, the calculation of data-distribution information
has to be fast to be effective. This paper studies block-cyclic distributions that
can be computed with bitwise mask and shift operations. As these distributions
can be processed by Cray T3E’s hardware centrifuge, the main focus of this
paper is the question about the benefits from using this hardware translation
mechanism.

Scott says in [6] about the centrifuge

The T3E supports the data distribution features of many implicit pro-
gramming languages [he cites HPF, CRAFT, Fortran D and Vienna
Fortran] via an integrated hardware centrifuge.

To my knowledge, nobody mentioned its benefits nor referred to its usage at
all. T compare the address translation mechanism of the hardware centrifuge
with complex division and modulo arithmetics and with bitwise mask and shift



operations. The first comparison shows the impact of time consuming arithmetics
on the computation time while the second one explains the advantage of the
hardware over fast integer manipulation.

This paper is part of the work done in the context of the HPF KarHPFn compiler
[2, 3, 1] and latency hiding techniques [7, 4].

The organization of this paper is as follows. The next section explains the ad-
dress translation for special block-cyclic distributions using mask and shift opera-
tions. Thereafter, basic E-register addressing and programming of the hardware
centrifuge is explained. Afterwards, the basic communication technique used
throughout the measurements is explained. The result section shows the per-
formance of the different address translation mechanisms for BLOCK, CYCLIC
and block-cyclic distributions.

2 Data Distributions

This section explains the structure of block-cyclic distributions with block size k.
The section focuses, as the whole paper does, on distributions where the number
of processors P, the block size k, and the local problem size! V are powers of
two. Only then, it is possible to calculate the processor number and the local
address with bitwise mask and shift operations.

2.1 Structure of an Address for Block-Cyclic Distributions

A global address for a block-cyclic distributed array with block size k consists
of three fields, see Figure 1.

Address PE Block

Fig. 1. Composition of a global address for a block-cyclic distribution

The rightmost field indicates the offset within a block of size k. The next field
on the left hand side describes the processor number. The leftmost field contains
the remaining bits to form the local address. The sizes of the fields are calculated
using the logarithm with basis two.

For example, the following global address of a block-cyclic distribution with
block size £ = 8 and P = 16 processors

1001010] 0011|010 ]

references the local address | 001010010 |= 82 on processor three.

BLOCK and CYCLIC distributions are special block-cyclic distributions. A
BLOCK distribution has £ =V while a CYCLIC distribution sets k = 1.

! The local problem size is called wvirtualization, too.




2.2 Calculation with mask and shift operations

The address translation needs a mask to select those bits which form the pro-
cessor number. In our example, the bit field

M =1{000000]1111]000]

would be such a mask. The calculation of the processor number is done in two
steps. First, the bits from the global address are selected using the mask. The
second step shifts the mask logs(k) bits to the right. Hence, the processor num-
ber PE is calculated from a global address G with the following Fortran 90
commands

PE = ISHFT(AND(G, M), —log,(k))

The local address A is formed from the two remaining fields. The first field
consists of the offset within a block and the second one of the address. The
offset is obtained with one mask operation while the remaining address needs
two shift operations:

A=O0OR(ISHFT(ISHFT(G, —log2(P) —log2(k)),log2(k)), AND(G, k — 1))

The binary operations consume only a few processor cycles, and they are ex-
pected to improve communication time compared with integer DIV and MOD
operations which are done in the floating point unit of the T3E’s Alpha proces-
Sors.

3 Hardware Centrifuge

This section presents T3E’s hardware centrifuge. E-registers build the center
for remote data-accesses within the T3E. Thus, discussion of the centrifuge
starts with an overview of their functionality. Afterwards, programming of the
E-registers is shown explaining address translation within the centrifuge. The
remaining paragraph explain its initialization.

3.1 E-registers

The network interface consists of 512 user and 128 system E-registers, memory
mapped into the address space of each processor. E-registers provide the only
means to transfer data between processors. Reads and writes between E-registers
and global memory are called gets and puts. To load a global memory content
into the processor, a get and a subsequent read of the E-register has to be
executed. The latter operation stalls the processor until the value arrives. This
is achieved in hardware using the readiness state of the E-register. On a put,
the memory of a remote node is modified and the cache is updated [5]. Hence,



the T3E implements a global address space with locally consistent memory. E-
registers address this global address space which includes memory local to the
issuing processor.

Eight E-registers can be combined to a vector. Distance between successive vec-
tor elements have to be equidistant to ensure correct address translation.

3.2 Programming the E-registers

E-registers are memory-mapped into the I/O-space of the processor. Therefore,
every E-register command is a store into I/O-space:

E-register-command ( E-register-number ) = Index.

The left hand side of the assignment accounts for the operation and the selected
E-register. Every pair of operation and register number points to a separate
memory location. The right hand side provides the source of the operation which
can be an arbitrary address of the global address space. The hardware centrifuge
performs calculation of the node number and the local node address in two steps.
For that purpose, it needs an additional block of four E-registers. A pointer in
the upper half of the Index addresses this block, see Figure 2.

A

Mask Index

Base

Stride

Addend

Fig. 2. E-registers for non-local data access

Every address translation needs the Mask and the Base. The Stride is used
to calculate consecutive addresses in vector commands. Atomic operations like
fetch-and-add use the Addend as additional parameter. The pointer is scratched
out from Index after referencing the additional E-register block. The first step
of the address calculation uses the Mask to select the virtual node number from
the Index, see Figure 3.

The result of this step is the Offset with the selected bits scratched out and the
virtual processor number PE. The second step adds Offset and Base forming
the local virtual node address. Further transformations to physical addresses do
not matter and are left out for brevity.

To move address calculation from soft- to hardware Base points to the local
start of a distributed array. Consequently, the Indez provides only the global



Index
& Mask
PE Offset
+ Base
PE Address

Fig. 3. Address calculation within the Hardware Centrifuge

index of the array needed for the calculation of the processor number PE and
the local Offset. The Mask is initialized according to Section 3.3 to point to
the bits significant for the processor number. Now, a data-parallel program that
wants to perform address calculation in hardware sets up a separate block of four
E-registers for each distributed array or it provides separate Mask and Base if
the number of E-registers does not suffice.

3.3 Initializing the Hardware Centrifuge

The initialization is similar to Section 2.2. The Mask selects those bits from Index
forming the virtual node number. For this purpose the Mask is divided into four
segments, see figure 2. Their meaning is described supposing an arbitrary block-
cyclic distribution with block size k. V denotes the local problem size in data
elements and P accounts for the number of processors.

Mask

v-1 k p-1 0k-1 0s-1 0

Fig. 4. Calculation of Mask from figure 2

The leftmost segment contains those bits responsible for a correct alignment of
the appropriate data type. Its size in bits is s’ = loga(sizeof (datatype)). The
following k' = log» (k) bits describe block size. These first k' + s’ bits are set to
zero. The next p’ = log2(P) bits are set because they select the bits forming the
virtual node number. The remaining log,(V') — k' bits are reset again.



The results section show how far the hardware centrifuge improves runtime com-
pared with software mask and shift operations.

4 Used Communication Technique: VSCAP

The measurements are done in the context of overlapping communication. The
technique used is called VSCAP (software controlled access pipelining with vec-
tor commands) an extension to SCAP which was developed by Warschko [7].
The major aim of VSCAP is network latency hiding through overlapping of
computation and communication by splitting non-local memory access into low
overhead prefetch and access. The duration for issuing the prefetch instructions
dominates communication time. Therefore, fast prefetch instructions caused by
fast address calculation result in fast communication leading to a lower execution
time of a data-parallel application. Hence, the goal of this section is to give a
short overview about VSCAP to understand the communication technique used
for the measurements.

4.1 Basic Idea of SCAP and its extension to VSCAP

The aim of SCAP is a runtime improvement achieved by overlapping several com-
munication requests leading to a communication pipeline in fine-grained data-
parallel applications. For a better understanding of the basic principle of SCAP,
we first explain how communication is usually done.

The processor issues a request to the network (downwards arrow in Figure 5)
and waits until the network replies (upwards arrow). Ounly then, the processor
continues its execution and issues a new request. This is done as long as the pro-
cessor requires remote data elements to perform its local part of computation. As
the processor blocks after each data request, we call this kind of communication
the blocking mode, see the upper half of Figure 5.

Now, let us assume the processor could issue all its communication requests
and the network would be able to process them in an overlapped fashion. This
would lead to a shorter waiting period for the processor accessing the first and
all other successive remote data elements. Finally, communication could be per-
formed faster compared with the above mentioned blocking execution. We call
this kind of communication overlapping communication, see the lower half of
Figure 5. To enable overlapping communication, the network interface has to
provide a prefetch buffer that decouples the processor from the network execu-
tion. The second task of the prefetch buffer is to synchronize the processor with
the network execution. The synchronization becomes necessary if the processor
wants to access a data element which has not been delivered by the network yet.
In this case, the processor is stalled until the value arrives.

VSCAP extends SCAP by the means of vector commands for prefetch and access.
Instead of issuing a communication requests for each non-local data element, the
processor prefetches and accesses L > 1 data elements at once. L is the vector
length of the vector commands. VSCAP’s vector commands reduce prefetch and
access overhead of SCAP and improve communication time further.



Blocking

Wait Wait Wait
Access + Reply 1 Access + Reply 2 Access + Reply 3
Time
A A A
Wait
! Overlappin
Access + Reply 1 aping

’ Access + Reply 2

’ Access + Reply 3

Fig. 5. Basic idea of SCAP

4.2 Transformation rules

This paragraph describes the techniques used in the transformation from a data-
parallel forall-statement to VSCAP. The communication loop used in this section
is used for the measurements.

The transformations are illustrated using the following simple forall-statement:

FORALLi=0TO N-1

A(i) = B(q(@);
END

The program fragment updates array A in parallel, indexing array B with array
g- A parallelizing compiler maps the problem size N onto P real processors
(N > P). This technique is called virtualization. Assuming that P divides N each
processor emulates V = % virtual processors within a virtualization loop. Both
A and B are distributed over the P processors using the the owner-computes
rule. Since the value of ¢(i) can not be determined at compile time, the compiler
has to insert remote memory accesses. Each remote memory access causes an
address translation from global to local addresses.

The following transformation of the loop shows the virtualization and how com-
munication and computation can be overlapped:



FORALL j=0TO P-1

FOR k=j*V TO (j+1)*V-1 // Prefetch loop
adr := calculate_address(B(q(k))); // Calculate remote address
prefetch(adr); // Start read request

END

FOR k=j*V TO (j+1)*V-1 STEP L // Vector access loop
adr := calculate_address(B(q(k)));
vector_access(adr,A (k)); // Access L data elements
END
END

In this transformation, the main loop is split into two instances: a prefetch and an
access (or calculation) loop. Instead of stalling on a remote memory access as in
blocking mode, the processor issues remote memory prefetch requests. After the
prefetch loop is executed the calculation loop accesses non-local memory without
waiting time (if the data is already present) in the prefetch buffer. Due to the
dynamic communication pattern, vector commands can only be used for access.
Thus, the second loop is blocked with block size L. For simplicity, we assume
that L divides V. Otherwise, additional element wise access operations has to be
used to get the remaining V' mod L data elements which do not fill a vector of
length L. Within the loop, the vector access vector_access(adr,A(k)) copies
L entries from the prefetch buffer starting at address adr to successive memory
locations beginning with A(k). If we assume that a vector access lasts as long
as an element wise access operation, the duration of the vector access loop is
decreased about the factor L of the vector length.

If the number of non-local memory accesses is too large to fit into the prefetch
buffer, VSCAP’s transformation rule uses a three loop execution pattern where
the middle loop alternates between access and prefetch instructions. This trans-
formation is not shown for the sake of brevity.

The measurements replace the call to calculate_address in the prefetch loop
with integer division, integer mask and shift, or it is completely omitted in the
case of the hardware centrifuge. On the Cray T3E, the call to the function
calculate_address is not needed in the second loop. Therefore, manipulations
take place only in the prefetch loop.

5 Results

The runtimes of Indirect, the example code shown in 4.2, for BLOCK, CYCLIC
and block-cyclic distributions are given. The discussion of each distribution in-
cludes two plots. The first one shows the runtimes, and the second one presents
the relative performance compared to an execution with integer division and
modulo commands (DIVMOD). Each plot contains three different versions of
Indirect: DIVMOD shows a VSCAP execution with integer division and modulo
commands for address translation. MASKSHIFT uses integer mask and shift
operations while HWC indicates an execution with the hardware centrifuge. DI-
VMOD and HWC are compiled by the KarHPFn compiler. MASKSHIFT was



hand coded with the DIVMOD version as starting point. Tests were measured on
32 processors varying the local problem size V' from 1 to 32768 vector elements.
The Figure 6 shows the results for a BLOCK distribution.

100000

N

- 2 _I'I'I11'II1_I'I'I1'I'I'I1_I'I'I1'I'I'I1_I'I'I11'I'I|_I'I
B - a 2F N =
10000 = divmod — ®) N o=
2 i hwe --- g s 18} o —
[ maskshift ---- e > /
.E 1000 ¢ g 516 K -
/ i
£ B id i) 14 ,//’ ]
£ wop = Y
12 B ool g 12 - //,’ —
10 = A NV
1 10 100 1000 10000 1 10 100 1000 10000
Virtualizations Virtualizations

Fig. 6. Runtimes and speed for BLOCK distribution

The runtime plot on the left hand side shows two lines. The upper line belongs
to DIVMOD. The lower line contains the runtimes for HWC and MASKSHIFT.
The plot indicates two facts: First, integer division and modulo arithmetic is very
slow compared with mask and shifts, and second, the hardware centrifuge HWC
has only a minor advantage over MASKSHIFT. The plot on the left hand side
of Figure 6 quantifies the advantage of HWC and MASKSHIFT over DIVMOD.
HWC and DIVMOD are about 1.9 times and 1.8 times faster, respectively. The
small difference between HWC and MASKSHIFT is astonishing. MASKSHIFT
is at most 7% slower, although, compared with HWC it executes 3 additional
integer operations for each non-local memory access. This behavior is due to the
multiple integer units of the Alpha processors which overlap several operations.
Another reason for this behavior could be a limited issue bandwidth for the E-
register commands which is reached by the MASKSHIFT version. Then, faster
prefetch operations, as the ones issued by the HWC version, would have no effect.
But this is speculation beyond my scope.

A similar result shows Figure 7 for a CYCLIC distribution.

The plot on the left hand side shows the runtimes of the three different versions.
And again, there are only two lines. The upper one explains the runtime of DIV-
MOD while the lower one denotes the runtime of MASKSHIFT and HWC. The
CYCLIC distribution shows the same runtime behavior as the BLOCK distri-
bution: MASKSHIFT and HWC are faster than DIVMOD and the former two
versions are equally fast. The plot on the right hand side emphasizes these obser-
vations. MASKSHIFT and HWC are more than 2.1 times faster than DIVMOD
and MASKSHIFT is as fast as HWC (£2%).

The results obtained so far are confirmed by the block-cyclic distribution, see
Figure 8.



100000 24 LA BRI Rl pa L
22 e
10000 = divmod — 8 2L T
g hwe --- S5l pa |
c 1000 m&BkShlft - 2 ) /'J;J’
© 016 //_-’ -
€ o - -
€ 100 g 14 /
5 212+ -
@ B | 27
10 g1
0.8 |- —
1 06 Lol vovd vl 3l o
1 10 100 1000 10000 1 10 100 1000 10000
Virtualizations Virtualizations
Fig. 7. Runtimes and speed up of INDIRECT for CYCLIC distribution
10000 2.6 T
24 - /\ -
@ 1000 g divmod — Q22 AV
g hwe —-- g 2 PoYer v
£ maskshift - - - - S18 bk A -
(] . ol
S 100 216t i -
b= [ /
S 214 7 -
x IS /
10 T 12 ! -
UL el
1 F=——=%
1 0.8 _I-I-I-I.I.II‘—I-I-I-I.I.I.I‘—I—I-I-I.III‘—I—I-I-I.IIII—I_I
1 10 100 1000 10000 1 10 100 1000 10000
Virtualizations Virtualizations

Fig. 8. Runtimes and speed up of INDIRECT for the block-cyclic distribution with
block size k =8

The runtimes of HWC and MASKSHIFT are equally fast and they show a sub-
stantial advantage over DIVMOD. The former two versions are at least 2 times
faster than DIVMOD.

The measurements show two results. The first one confirms the expectation, that
integer mask and shift operations for address calculations are faster than ordi-
nary integer and modulo arithmetic. The second more astonishing result is the
behavior of the fast integer operations compared with the hardware centrifuge.

6 Conclusions

This paper investigated the benefits from using Cray T3E’s hardware centrifuge.
The address translation mechanism was compared with complex integer division
and modulo arithmetic and with integer mask and shift operations.

The hardware centrifuge is in a dynamic communication kernel about 1.9 times
faster than integer division arithmetic. But, and this result is quite surprising,



it is only a few per cent (<7%) faster than integer mask and shift operations.
This is caused by the multiple integer units provided by the Alpha processors
which can overlap several integer operations.

The results show performance for one-dimensional arrays. The advantage of the
hardware centrifuge would be a little larger if the measurements had focused on
multidimensional arrays. Then, the software address calculation overhead would
be larger leading to a more significant advantage of the centrifuge.

As this work emphasizes support for fast address calculation, it also shows the
weakness of T3E’s hardware centrifuge in doing this job for one-dimensional
arrays compared with software mask and shift operations.

References

1. Matthias M. Miiller. Compiling Applications with the KarHPFn Compiler. Tech-
nical Report 2000-11, School of Computer Science, Universitat Karlsruhe, April
2000.

2. Matthias M. Miiller. KaHPF: Compiler generated Data Prefetching for HPF. In
High Performance Computing in Science and Engineering 1999, pages 474-482.
Springer, 2000.

3. Matthias M. Miiller. Latenzzeitverbergung in datenparallelen Sprachen. PhD thesis,
School of Computer Science, Universitat Karlsruhe, February 2000.

4. Matthias M. Miiller, Thomas M. Warschko, and Walter F. Tichy. Prefetching on
the Cray-T3E. In 12th International Conference on Supercomputing, pages 368-375,
Melbourne, July 13-17, 1998.

5. Wilfried Oed. Massiv-paralleles Prozessorsystem CRAY T3E. Technical report,
Cray Research GmbH, Miinchen, November 1996.

6. Steven L. Scott. Synchronization and communication in the T3E multiprocessor.
ACM SIGPLAN Notices, 31(9):26-36, September 1996.

7. Thomas M. Warschko. Effiziente Kommunikation in Parallelrechnerarchitekturen.
PhD thesis, School of Computer Science, Universitat Karlsruhe, 1997.



