
E�cient Address Translation

Matthias M� M�uller

Institute for Program Structures and Data Organization�
Universitt Karlsruhe� Germany�

muellerm�ira�uka�de

Technical Report No� �������

Abstract� The address calculation for distributed data access plays a
major role for the performance of �ne�grained data�parallel applications�
This paper reports about the hardware centrifuge of the Cray T	E which
enables the shift of the address calculation from software into hardware�
This shift minimizes address calculation overhead reducing communica�
tion cost of dynamic communication patterns� The centrifuge is com�
pared with complex integer division and modulo and with integer mask
and shift operations� The measurements show for a one�dimensional dy�
namic communication pattern for several distributions a runtime advan�
tage of T	E
s hardware centrifuge of at least a factor ��� over integer
division arithmetic� But� the centrifuge is barely faster compared with
integer mask and shift operations�

� Introduction

The address calculation for distributed data accesses plays a major role in �ne�
grained data�parallel applications� Many data�distributions has been proposed
for di�erent purposes and all of them come with a more or less complex calcula�
tion scheme� First of all� the usage of a special data�distribution depends on the
supposed work�distribution among the processors� But if the locality of a data
element cannot be determined e�ciently� all the intended bene�ts of a data�
distribution are meritless� Thus� the calculation of data�distribution information
has to be fast to be e�ective� This paper studies block�cyclic distributions that
can be computed with bitwise mask and shift operations� As these distributions
can be processed by Cray T	E
s hardware centrifuge� the main focus of this
paper is the question about the bene�ts from using this hardware translation
mechanism�
Scott says in �� about the centrifuge

The T	E supports the data distribution features of many implicit pro�
gramming languages �he cites HPF� CRAFT� Fortran D and Vienna
Fortran via an integrated hardware centrifuge�

To my knowledge� nobody mentioned its bene�ts nor referred to its usage at
all� I compare the address translation mechanism of the hardware centrifuge
with complex division and modulo arithmetics and with bitwise mask and shift



operations� The �rst comparison shows the impact of time consuming arithmetics
on the computation time while the second one explains the advantage of the
hardware over fast integer manipulation�
This paper is part of the work done in the context of the HPF KarHPFn compiler
��� 	� � and latency hiding techniques ��� ��
The organization of this paper is as follows� The next section explains the ad�
dress translation for special block�cyclic distributions using mask and shift opera�
tions� Thereafter� basic E�register addressing and programming of the hardware
centrifuge is explained� Afterwards� the basic communication technique used
throughout the measurements is explained� The result section shows the per�
formance of the di�erent address translation mechanisms for BLOCK� CYCLIC
and block�cyclic distributions�

� Data Distributions

This section explains the structure of block�cyclic distributions with block size k�
The section focuses� as the whole paper does� on distributions where the number
of processors P � the block size k� and the local problem size� V are powers of
two� Only then� it is possible to calculate the processor number and the local
address with bitwise mask and shift operations�

��� Structure of an Address for Block�Cyclic Distributions

A global address for a block�cyclic distributed array with block size k consists
of three �elds� see Figure ��

Address PE Block

Fig� �� Composition of a global address for a block�cyclic distribution

The rightmost �eld indicates the o�set within a block of size k� The next �eld
on the left hand side describes the processor number� The leftmost �eld contains
the remaining bits to form the local address� The sizes of the �elds are calculated
using the logarithm with basis two�
For example� the following global address of a block�cyclic distribution with
block size k � � and P � �� processors

������ ���� ���

references the local address ��������� � �� on processor three�
BLOCK and CYCLIC distributions are special block�cyclic distributions� A
BLOCK distribution has k � V while a CYCLIC distribution sets k � ��
� The local problem size is called virtualization� too�



��� Calculation with mask and shift operations

The address translation needs a mask to select those bits which form the pro�
cessor number� In our example� the bit �eld

M � ������ ���� ���

would be such a mask� The calculation of the processor number is done in two
steps� First� the bits from the global address are selected using the mask� The
second step shifts the mask log��k� bits to the right� Hence� the processor num�
ber PE is calculated from a global address G with the following Fortran ��
commands

PE � ISHFT �AND�G�M���log��k��

The local address A is formed from the two remaining �elds� The �rst �eld
consists of the o�set within a block and the second one of the address� The
o�set is obtained with one mask operation while the remaining address needs
two shift operations�

A � OR�ISHFT �ISHFT �G��log��P �� log��k��� log��k��� AND�G� k � ���

The binary operations consume only a few processor cycles� and they are ex�
pected to improve communication time compared with integer DIV and MOD
operations which are done in the �oating point unit of the T	E
s Alpha proces�
sors�

� Hardware Centrifuge

This section presents T	E
s hardware centrifuge� E�registers build the center
for remote data�accesses within the T	E� Thus� discussion of the centrifuge
starts with an overview of their functionality� Afterwards� programming of the
E�registers is shown explaining address translation within the centrifuge� The
remaining paragraph explain its initialization�

��� E�registers

The network interface consists of ��� user and ��� system E�registers� memory
mapped into the address space of each processor� E�registers provide the only
means to transfer data between processors� Reads and writes between E�registers
and global memory are called gets and puts� To load a global memory content
into the processor� a get and a subsequent read of the E�register has to be
executed� The latter operation stalls the processor until the value arrives� This
is achieved in hardware using the readiness state of the E�register� On a put�
the memory of a remote node is modi�ed and the cache is updated ��� Hence�



the T	E implements a global address space with locally consistent memory� E�
registers address this global address space which includes memory local to the
issuing processor�
Eight E�registers can be combined to a vector� Distance between successive vec�
tor elements have to be equidistant to ensure correct address translation�

��� Programming the E�registers

E�registers are memory�mapped into the I�O�space of the processor� Therefore�
every E�register command is a store into I�O�space�

E�register�command � E�register�number � � Index�

The left hand side of the assignment accounts for the operation and the selected
E�register� Every pair of operation and register number points to a separate
memory location� The right hand side provides the source of the operation which
can be an arbitrary address of the global address space� The hardware centrifuge
performs calculation of the node number and the local node address in two steps�
For that purpose� it needs an additional block of four E�registers� A pointer in
the upper half of the Index addresses this block� see Figure ��

Index

Addend

Stride

Base

Mask

Fig� �� E�registers for non�local data access

Every address translation needs the Mask and the Base� The Stride is used
to calculate consecutive addresses in vector commands� Atomic operations like
fetch�and�add use the Addend as additional parameter� The pointer is scratched
out from Index after referencing the additional E�register block� The �rst step
of the address calculation uses the Mask to select the virtual node number from
the Index� see Figure 	�
The result of this step is the O�set with the selected bits scratched out and the
virtual processor number PE� The second step adds O�set and Base forming
the local virtual node address� Further transformations to physical addresses do
not matter and are left out for brevity�
To move address calculation from soft� to hardware Base points to the local
start of a distributed array� Consequently� the Index provides only the global



PE

PE

Offset

Mask

Address

Base

Index

+

&

Fig� �� Address calculation within the Hardware Centrifuge

index of the array needed for the calculation of the processor number PE and
the local O�set� The Mask is initialized according to Section 	�	 to point to
the bits signi�cant for the processor number� Now� a data�parallel program that
wants to perform address calculation in hardware sets up a separate block of four
E�registers for each distributed array or it provides separate Mask and Base if
the number of E�registers does not su�ce�

��� Initializing the Hardware Centrifuge

The initialization is similar to Section ���� TheMask selects those bits from Index

forming the virtual node number� For this purpose the Mask is divided into four
segments� see �gure �� Their meaning is described supposing an arbitrary block�
cyclic distribution with block size k� V denotes the local problem size in data
elements and P accounts for the number of processors�

0k’-10p’-1k’v’-1 s’-1 0

Mask

Fig� �� Calculation of Mask from �gure �

The leftmost segment contains those bits responsible for a correct alignment of
the appropriate data type� Its size in bits is s� � log��sizeof�datatype��� The
following k� � log��k� bits describe block size� These �rst k� � s� bits are set to
zero� The next p� � log��P � bits are set because they select the bits forming the
virtual node number� The remaining log��V �� k� bits are reset again�



The results section show how far the hardware centrifuge improves runtime com�
pared with software mask and shift operations�

� Used Communication Technique� VSCAP

The measurements are done in the context of overlapping communication� The
technique used is called VSCAP �software controlled access pipelining with vec�
tor commands� an extension to SCAP which was developed by Warschko ���
The major aim of VSCAP is network latency hiding through overlapping of
computation and communication by splitting non�local memory access into low
overhead prefetch and access� The duration for issuing the prefetch instructions
dominates communication time� Therefore� fast prefetch instructions caused by
fast address calculation result in fast communication leading to a lower execution
time of a data�parallel application� Hence� the goal of this section is to give a
short overview about VSCAP to understand the communication technique used
for the measurements�

��� Basic Idea of SCAP and its extension to VSCAP

The aim of SCAP is a runtime improvement achieved by overlapping several com�
munication requests leading to a communication pipeline in �ne�grained data�
parallel applications� For a better understanding of the basic principle of SCAP�
we �rst explain how communication is usually done�
The processor issues a request to the network �downwards arrow in Figure ��
and waits until the network replies �upwards arrow�� Only then� the processor
continues its execution and issues a new request� This is done as long as the pro�
cessor requires remote data elements to perform its local part of computation� As
the processor blocks after each data request� we call this kind of communication
the blocking mode� see the upper half of Figure ��
Now� let us assume the processor could issue all its communication requests
and the network would be able to process them in an overlapped fashion� This
would lead to a shorter waiting period for the processor accessing the �rst and
all other successive remote data elements� Finally� communication could be per�
formed faster compared with the above mentioned blocking execution� We call
this kind of communication overlapping communication� see the lower half of
Figure �� To enable overlapping communication� the network interface has to
provide a prefetch bu�er that decouples the processor from the network execu�
tion� The second task of the prefetch bu�er is to synchronize the processor with
the network execution� The synchronization becomes necessary if the processor
wants to access a data element which has not been delivered by the network yet�
In this case� the processor is stalled until the value arrives�
VSCAP extends SCAP by the means of vector commands for prefetch and access�
Instead of issuing a communication requests for each non�local data element� the
processor prefetches and accesses L � � data elements at once� L is the vector
length of the vector commands� VSCAP
s vector commands reduce prefetch and
access overhead of SCAP and improve communication time further�



Wait

Time

Wait Wait Wait

Access + Reply 1

Access + Reply 2

Access + Reply 3

Blocking

Overlapping

Access + Reply 1 Access + Reply 2 Access + Reply 3

Fig� �� Basic idea of SCAP

��� Transformation rules

This paragraph describes the techniques used in the transformation from a data�
parallel forall�statement to VSCAP� The communication loop used in this section
is used for the measurements�

The transformations are illustrated using the following simple forall�statement�

FORALL i � � TO N��
A�i� �� B�q�i���

END

The program fragment updates array A in parallel� indexing array B with array
q� A parallelizing compiler maps the problem size N onto P real processors
�N � P �� This technique is called virtualization� Assuming that P dividesN each
processor emulates V � N

P
virtual processors within a virtualization loop� Both

A and B are distributed over the P processors using the the owner�computes

rule� Since the value of q�i� can not be determined at compile time� the compiler
has to insert remote memory accesses� Each remote memory access causes an
address translation from global to local addresses�

The following transformation of the loop shows the virtualization and how com�
munication and computation can be overlapped�



FORALL j � � TO P��
FOR k�j�V TO �j����V�� �� Prefetch loop
adr �� calculate address�B�q�k���� �� Calculate remote address
prefetch�adr�� �� Start read request

END

FOR k�j�V TO �j����V�� STEP L �� Vector access loop
adr �� calculate address�B�q�k����
vector access�adr�A�k��� �� Access L data elements

END

END

In this transformation� the main loop is split into two instances� a prefetch and an
access �or calculation� loop� Instead of stalling on a remote memory access as in
blocking mode� the processor issues remote memory prefetch requests� After the
prefetch loop is executed the calculation loop accesses non�local memory without
waiting time �if the data is already present� in the prefetch bu�er� Due to the
dynamic communication pattern� vector commands can only be used for access�
Thus� the second loop is blocked with block size L� For simplicity� we assume
that L divides V � Otherwise� additional element wise access operations has to be
used to get the remaining V mod L data elements which do not �ll a vector of
length L� Within the loop� the vector access vector access�adr�A�k�� copies
L entries from the prefetch bu�er starting at address adr to successive memory
locations beginning with A�k�� If we assume that a vector access lasts as long
as an element wise access operation� the duration of the vector access loop is
decreased about the factor L of the vector length�
If the number of non�local memory accesses is too large to �t into the prefetch
bu�er� VSCAP
s transformation rule uses a three loop execution pattern where
the middle loop alternates between access and prefetch instructions� This trans�
formation is not shown for the sake of brevity�
The measurements replace the call to calculate address in the prefetch loop
with integer division� integer mask and shift� or it is completely omitted in the
case of the hardware centrifuge� On the Cray T	E� the call to the function
calculate address is not needed in the second loop� Therefore� manipulations
take place only in the prefetch loop�

� Results

The runtimes of Indirect� the example code shown in ���� for BLOCK� CYCLIC
and block�cyclic distributions are given� The discussion of each distribution in�
cludes two plots� The �rst one shows the runtimes� and the second one presents
the relative performance compared to an execution with integer division and
modulo commands �DIVMOD�� Each plot contains three di�erent versions of
Indirect � DIVMOD shows a VSCAP execution with integer division and modulo
commands for address translation� MASKSHIFT uses integer mask and shift
operations while HWC indicates an execution with the hardware centrifuge� DI�
VMOD and HWC are compiled by the KarHPFn compiler� MASKSHIFT was



hand coded with the DIVMOD version as starting point� Tests were measured on
	� processors varying the local problem size V from � to 	���� vector elements�
The Figure � shows the results for a BLOCK distribution�

1

10

100

1000

10000

100000

1 10 100 1000 10000

R
un

tim
e 

in
 m

s

Virtualizations

divmod
hwc

maskshift

0.8

1

1.2

1.4

1.6

1.8

2

2.2

1 10 100 1000 10000

R
el

at
iv

e 
to

 D
IV

M
O

D

Virtualizations

Fig� �� Runtimes and speed for BLOCK distribution

The runtime plot on the left hand side shows two lines� The upper line belongs
to DIVMOD� The lower line contains the runtimes for HWC and MASKSHIFT�
The plot indicates two facts� First� integer division and modulo arithmetic is very
slow compared with mask and shifts� and second� the hardware centrifuge HWC
has only a minor advantage over MASKSHIFT� The plot on the left hand side
of Figure � quanti�es the advantage of HWC and MASKSHIFT over DIVMOD�
HWC and DIVMOD are about ��� times and ��� times faster� respectively� The
small di�erence between HWC and MASKSHIFT is astonishing� MASKSHIFT
is at most �� slower� although� compared with HWC it executes 	 additional
integer operations for each non�local memory access� This behavior is due to the
multiple integer units of the Alpha processors which overlap several operations�
Another reason for this behavior could be a limited issue bandwidth for the E�
register commands which is reached by the MASKSHIFT version� Then� faster
prefetch operations� as the ones issued by the HWC version� would have no e�ect�
But this is speculation beyond my scope�
A similar result shows Figure � for a CYCLIC distribution�
The plot on the left hand side shows the runtimes of the three di�erent versions�
And again� there are only two lines� The upper one explains the runtime of DIV�
MOD while the lower one denotes the runtime of MASKSHIFT and HWC� The
CYCLIC distribution shows the same runtime behavior as the BLOCK distri�
bution� MASKSHIFT and HWC are faster than DIVMOD and the former two
versions are equally fast� The plot on the right hand side emphasizes these obser�
vations� MASKSHIFT and HWC are more than ��� times faster than DIVMOD
and MASKSHIFT is as fast as HWC ������
The results obtained so far are con�rmed by the block�cyclic distribution� see
Figure ��



1

10

100

1000

10000

100000

1 10 100 1000 10000

R
un

tim
e 

in
 m

s

Virtualizations

divmod
hwc

maskshift

0.6
0.8

1
1.2
1.4
1.6
1.8

2
2.2
2.4

1 10 100 1000 10000

R
el

at
iv

e 
to

 D
IV

M
O

D

Virtualizations

Fig� 	� Runtimes and speed up of INDIRECT for CYCLIC distribution

1

10

100

1000

10000

1 10 100 1000 10000

R
un

tim
e 

in
 m

s

Virtualizations

divmod
hwc

maskshift

0.8
1

1.2
1.4
1.6
1.8

2
2.2
2.4
2.6

1 10 100 1000 10000

R
el

at
iv

e 
to

 D
IV

M
O

D

Virtualizations

Fig� 
� Runtimes and speed up of INDIRECT for the block�cyclic distribution with
block size k � 

The runtimes of HWC and MASKSHIFT are equally fast and they show a sub�
stantial advantage over DIVMOD� The former two versions are at least � times
faster than DIVMOD�

The measurements show two results� The �rst one con�rms the expectation� that
integer mask and shift operations for address calculations are faster than ordi�
nary integer and modulo arithmetic� The second more astonishing result is the
behavior of the fast integer operations compared with the hardware centrifuge�

� Conclusions

This paper investigated the bene�ts from using Cray T	E
s hardware centrifuge�
The address translation mechanism was compared with complex integer division
and modulo arithmetic and with integer mask and shift operations�

The hardware centrifuge is in a dynamic communication kernel about ��� times
faster than integer division arithmetic� But� and this result is quite surprising�



it is only a few per cent ����� faster than integer mask and shift operations�
This is caused by the multiple integer units provided by the Alpha processors
which can overlap several integer operations�
The results show performance for one�dimensional arrays� The advantage of the
hardware centrifuge would be a little larger if the measurements had focused on
multidimensional arrays� Then� the software address calculation overhead would
be larger leading to a more signi�cant advantage of the centrifuge�
As this work emphasizes support for fast address calculation� it also shows the
weakness of T	E
s hardware centrifuge in doing this job for one�dimensional
arrays compared with software mask and shift operations�

References

�� Matthias M� M�uller� Compiling Applications with the KarHPFn Compiler� Tech�
nical Report �������� School of Computer Science� Universit�at Karlsruhe� April
�����

�� Matthias M� M�uller� KaHPF� Compiler generated Data Prefetching for HPF� In
High Performance Computing in Science and Engineering ����� pages �������
Springer� �����

	� Matthias M� M�uller� Latenzzeitverbergung in datenparallelen Sprachen� PhD thesis�
School of Computer Science� Universit�at Karlsruhe� February �����

�� Matthias M� M�uller� Thomas M� Warschko� and Walter F� Tichy� Prefetching on
the Cray�T	E� In ��th International Conference on Supercomputing� pages 	��	���
Melbourne� July �	���� ����

�� Wilfried Oed� Massiv�paralleles Prozessorsystem CRAY T	E� Technical report�
Cray Research GmbH� M�unchen� November �����

�� Steven L� Scott� Synchronization and communication in the T	E multiprocessor�
ACM SIGPLAN Notices� 	��������	�� September �����

�� Thomas M� Warschko� E�ziente Kommunikation in Parallelrechnerarchitekturen�
PhD thesis� School of Computer Science� Universit�at Karlsruhe� �����


