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Abstract

We present an interpolatory subdivision scheme

to generate adaptiely re�ned quadrilat�

eral meshes which approximate a smooth surface

of arbitrary topology� The described method sig�

ni�cantly di�ers from classical mesh generation

techniques based on spline surfaces or implicit

representations since no explicit description of

the limit surface is used� Instead� simple a�ne

combinations are applied to compute new ver�

tices if a face of the net is split� These rules

are designed to guarantee asymptotic smooth�

ness� i�e�� the sequence of re�ned nets converges

to a smooth limit surface� Subdivision techniques

are useful mainly in applications where a given

quadrilateral net is a coarse approximation of a

surface and points on a re�ned grid have to be

estimated� To evaluate our approach� we show

examples for FE�computations on surfaces gen�

erated by this algorithm�

Introduction

To perform numerical computations on surfaces�
one usually starts by discretizing the problem�
i�e�� a smooth manifold is approximated by a tri�
angular or quadrilateral net� The faces of such
nets can be �lled by linear or bilinear elements
respectively� The size of the faces controls the

�Computer Sciences Department� University of Wis�

consin � Madison� ���� West Dayton Street� Madison�

WI �	
�������� USA� kobbelt�cs�wisc�edu
yUniversitat Karlsruhe� Institut fur Mechanik� 
����

Karlsruhe� Germany
zUniversitat Karlsruhe� Institut fur Betriebs� und Di�

alogsysteme� 
���� Karlsruhe� Germany

quality of the approximation and thus the re�
liability of the computation� The trade�o� be�
tween computational complexity and error toler�
ance makes it necessary to adapt the grid size of
the discretization during the computation� Usu�
ally one starts with a rather coarse approxima�
tion and then iteratively re�nes the net until the
required precision is obtained�

In many applications� the underlying surface it�
self is given by a set of data points� e�g�� scanned
from a real object� In a pre�processing step� the
topology has to be determined� i�e�� the points
have to be connected to build an initial mesh
�reverse engineering�� Then one can apply ap�
proximation or interpolation techniques to con�
struct a smooth surface �tting the data� How�
ever� to perform �nite element computations�
this surface again has to be sampled on some
��ner� grid thus returning to a discrete repre�
sentation �cf� Fig� 	�� The standard methods de�
scribe such constructions usually by means of
spline surfaces 
HL�� or implicit representations

BCX��a� BCX��b�

If we are interested only in the meshes them�
selves� it makes sense to avoid the explicit con�
struction of an interpolating surface and to de�
rive the re�ned net directly from the given one�
This technique is called interpolatory subdivi�

sion or re�nement � A re�nement scheme is com�
pletely de�ned by a set of rules how to com�
pute new vertices� These rules are usually simple
a�ne combinations of points from the unre�ned
net� If the coe�cients of these combinations sat�
isfy certain conditions 
Rei��� Pra�� then the
iterative re�nement generates a sequence of �ner
and �ner nets which converge to a tangent�plane
continuous surface�

The justi�cation for this approach is that one
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Figure 	� Generation of interpolating surfaces

avoids the mathematically involved construction
of smooth parametric surfaces but uses the ini�
tial mesh obtained during the reverse engineer�
ing process directly or after some regularization�
If a re�nement of the mesh is needed to achieve
a prescribed tolerance� the net is re�ned by sim�
ple �xed rules to compute the locations of the
new points�

In the literature the term subdivision usually
refers to a more general class of algorithms
which generate sequences of polyhedral nets

DS��� CC��� Loo��� Loo��� Kob��� Most of
these schemes are derived from knot�insertion al�
gorithms of piecewise polynomial tensor�product
splines� In this paper we restrict ourselves to the
special case of interpolatory subdivision where
the net re�nement is achieved by inserting new
vertices and keeping the existing vertices un�
changed�

A fairly well�known algorithm of this subclass
is the butter�y�algorithm of 
DGL��� ZSS���
However� this algorithm operates on trian�
gular nets only� For our application of FE�
computations on surfaces� quadrilateral �bilin�
ear� elements turn out to be more appropriate
since� especially for varying gradients� the geom�
etry is approximated better with the same num�
ber of degrees of freedom and locking problems
are overcome 
BD��� SF��a� SF��b�

In the following� we �rst describe an interpola�
tory subdivision scheme for closed quadrilateral
nets which� in the limit� generates smooth �C��
surfaces of arbitrary topological type� A slight
modi�cation of the scheme allows us to re�ne
open nets in which case smooth boundary curves

interpolate the given boundary polygon�

Since the computation of new vertices only re�
quires local information from the preceeding re�
�nement level� local re�nement strategies can
be applied� However� to keep the mesh C��
consistent the locally re�ned net has to remain
balanced � i�e�� the re�nement level of two faces
having at least one vertex in common� must
not di�er by more than 	� We refer to well�
known techniques to handle balanced quadrilat�
eral meshes 
PSB���

We derive the approximation order� i�e�� the fac�
tor by which the approximation to a real sur�
face S is improved if we start the iterative re�ne�
ment on a �ner initial mesh �with points lying
exactly on S�� Further� we compare the results
of FE�computations on meshes generated by our
re�nement scheme to results obtained by other
mesh re�nement techniques� The experimental
results demonstrate the practical usefulness of
the scheme�

Subdivision Rules

The following description is intended to be as
concise as possible� A more detailed presentation
can be found in 
Kob��� Kob���

Uniform re�nement of a quadrilateral mesh
means to compute one new vertex for each edge
and one for each face� We call these new ver�
tices edge�vertices �E� and face�vertices �F � re�
spectively �cf� Fig� ��� For both types of new
vertices� we de�ne a separate re�nement rule to
determine their position�

We label the vertices as shown in Fig� �� Let e be
the vertex associated with the edge p� q� then

e ��
� � w

�
�p� � q��� w

�
�p� � q��� �	�

where p�� q� and w are de�ned as follows� The
value w is a tension parameter in�uencing how
closely the resulting surface follows the initial
net� For w � �� e happens to be the midpoint
of the edge p� q�� In order to guarantee the
smoothness of the limiting surface the value w
should be in the interval ���

p
��	� Best results

are obtained by choosing w close to the standard
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Figure �� Splitting a quadrilateral face by E�
vertices and F �vertices�

value w � 	 
DGL��� The point q� is given by
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i��
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�

���
and the point p� is de�ned analogously� Here� n
denotes the valence of the vertex q�� In the regu�
lar case� n � �� the formula reduces to q� � p��
Since the new vertices which are inserted during
the re�nement process always have valence �� the
general formula ��� is only needed to subdivide
the edges directly emanating from a singular ver�
tex �valence �� ��� In the regular regions which
cover most of the net� no further computation is
necessary �cf� Fig� ���

A face�point f is computed by applying �	� to
four succeeding edge�points�

f ��
� � w

�
�b� c� � w

�
�a� d�� ���

There are two possibilities for choosing this set
of edge�points a� b� c� and d� However� rule ���
is especially designed to make both alternatives
equivalent� Hence� it does not matter in which
direction rule ��� is applied since both lead to
the same result�

If a re�nement scheme is to be used in prac�
tical modeling or reconstruction applications� it
must provide features that allow the de�nition of
creases and cusps 
Hop��� These requirements
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Figure �� Labeling the vertices in the vicinity of
the edge p� q��

can be satis�ed if the scheme includes special
rules for the re�nement of open nets which yield
well�behaved boundary curves that interpolate
the boundary polygons of the given net� Hav�
ing such a scheme� creases can be modeled by
joining two separate subdivision surfaces along a
common boundary curve and cusps result from
a topological hole in the initial net which geo�
metrically shrinks to a single point �cf� Fig� ���

In order to re�ne open nets� we have to de�
�ne additional rules for re�ning edges on or
near the boundary� C��joins of subdivision sur�
faces whose initial nets have a common bound�
ary polygon� require that the rules for the sub�
division of boundary edges does not depend on
inner vertices� Hence� we compute new edge ver�
tices on the boundary by applying rule ��� where
in this case a� b� c and d represent four neigh�
boring boundary vertices�

In cases where three or more subdivision sur�
faces meet at a common point c� it is necessary
to allow piecewise smooth boundary curves� Let
a� b� c� and d be four neighboring boundary
vertices of one of the nets� Since c belongs to
more than three adjacent surfaces� it has to be
a breakpoint in the piecewise smooth boundary
curves� We de�ne the corresponding re�nement
rule by replacing d by d� �� � c� b in ����

Well�de�ned rules for the subdivision of inner
edges emanating from a boundary vertex can be
obtained by linearly extrapolating the boundary
faces� This gives an additional layer of faces at
the boundaries of the net� making former bound�

�



Figure �� Modeling sharp features �piecewise smooth boundary� crease� cusp�

Figure �� Singularities in the re�ned net�

ary vertices to inner vertices such that the above
rules for inner edges can be applied� More pre�
cisely� if q�� � � � �qn are the inner vertices con�
nected to the boundary vertex p then we can
extrapolate by p� �� �p� �

n

P
i qi�

In the case of a boundary face fp�q� r� sg where
the boundary vertex p is not connected to any
inner vertex we have to distinguish two constel�
lations� If p is a breakpoint in the piecewise
smooth boundary curve� we add the extrapo�
lated face fp�q�� r�� s�g with q� �� �p � q�
s� �� �p � s and r� � q� � s� � p� If p is
no breakpoint� we add the vertex p� �� �p� r�

Connecting the extrapolated vertices corre�
sponding to neighboring boundary vertices gives
the additional layer of extrapolated faces� After
the re�nement� these faces have to be deleted�

Convergence Analysis

The re�nement scheme de�ned in the last sec�
tion belongs to the class of stationary subdi�

vision schemes 
Dyn�	 since the same formu�
las are used on every re�nement level� In the
vicinity of any vertex� such schemes can be de�
scribed in terms of a matrix which maps vertices
from the mth level to the �m � 	�st level� In

Rei��� Pra�� su�cient conditions on the eigen
structure of this matrix are derived which guar�
antee the convergence of the sequence of nets to
a tangent�plane continuous limiting surface�

These condition are that the leading eigen val�
ues have to be �� � 	 and �� � �� � 	 and
the eigen vectors corresponding to �� and �� al�
low the de�nition of a regular paramerization
with respect to which C��continuity is achieved

Rei��� We omit the details of the straightfor�
ward veri�cation of these criteria and refer to

Kob���

Approximation Order

The interpolation scheme presented in this paper
is designed to generate free form surfaces� Since
we do not exploit any meta�knowlegde about
the geometry but only the information given by
the initial net� we cannot expect to exactly re�
produce basic shapes like spheres or cylinders�
However� this lack is tolerable if we can guar�
antee that denser information about the consid�
ered object� i�e�� a �ner initial net with correct
vertex positions �on the surface to be approxi�
mated�� signi�cantly improves the quality of the
approximation�

From 
DGL�� we know that� on regular tensor
product meshes� the above presented interpola�
tion scheme reproduces the polynomials 	� x� y�
and x y� Further� if we restrict the tension pa�
rameter to w � 	� the scheme even reproduces

�



all polynomials up to bi�degree �� For irregu�
lar meshes� we have to apply the rule ��� in
its full generality� Since the scheme generates
C��surfaces in the limit� we can use the special
parametrization induced by the eigen structure
of the subdivision matrix with respect to which
the re�nement scheme has at least linear preci�
sion�

Keeping in mind that the position of the new
points only depends on a �xed number of neigh�
boring vertices� it is obvious that for su�ciently
smooth surfaces� the approximation order di�
rectly follows form the polynomial precision of
the scheme� This can be seen by looking at a
local Taylor expansion of the surface� Hence� we
obtain an approximation order of O�h�� which
increases to O�h�� over regular regions of the net
if the tension parameter is set to w � 	� Here�
h denotes any uniform measure of the grid size�
e�g�� average or maximal length of edges in the
initial mesh� In order to achieve the best approx�
imation� let w �� 	 for the rest of this section�

Obviously� the O�h���term in the vicinity of ex�
traordinary vertices asymptotically dominates
the error functional such that in general� we only
get quadratic convergence� However� if we can
ensure that the number of singularities in the
initial net does increase signi�cantly with the
density of the input data then we achieve the
full O�h�� convergence� The assumption that the
number of singular vertices in a mesh Ph approx�
imating a surface S can be bounded by a con�
stant is quite realistic since the amount of sin�
gularities somewhat re�ects the topological or
geometrical complexity of the shape of S which
is independent of h�

Suppose S � � � IR� is a parametrization of
the surface and Ph is an interpolating quadri�
lateral mesh whose average meshsize is mea�
sured by the stepwidth h �in the domain ���
The size of the local region around singular ver�
tices where O�h���convergence occurs� is deter�
mined by topological distance on Ph� i�e�� by the
minimal number of edges connecting some ver�
tex to a singular one� Hence the corresponding
portion of the domain � � � covers an area of
k�k � O�h�� if the number of singular vertices
is �nite� Under these conditions the error func�
tional can be written as

Eh�S� �

Z
�n�

O�h�� �

Z
�

O�h��

� O�h���

Several algorithms to reduce the number of sin�
gular vertices in a mesh have been proposed

Eck��� Sch��� The meshes one encounters in
practical applications usually have a constant or
very slowly increasing number of singularities as
the mesh�size h is reduced� e�g�� �D�scanners of�
ten measure an object along parallel pro�les or
along radial meridians and thus generate tensor�
product�type data�

Examples

We use the re�nement scheme to approximate
two test surfaces� the unit�sphere and the graph
of the function cos�

p
x� � y�� over the domain

� � 
�� 	�� In the sphere case the number of sin�
gular vertices is constant� since the initial nets
are generated by using nets as depicted in Fig� 	
and projecting the vertices onto the sphere� The
graph�surface is approximated by taking equidis�
tant samples in x� and y�direction�

h
R
�
j�j q� max j�j q�

	 ��		e��� ����e���
�� 	���e��� 	��� ����e��� 	���
��� 	���e��� 	��� ����e��� 	���
�	�� ����e��� 	��	 	��	e��� 	���

Table 	� Approximation errors for the graph of
cos�r�� r� � x� � y� over � � 
�� 	�� step�
width h� We show the errors with respect to the
L�� and the L��norms� The q�columns contain
the ratio of successive errors indicating O�h���
convergence�

In order to demonstrate the di�erent rates of
convergence in the parametric case� we compute
the approximation error separately for the regu�
lar portions of the net� In the functional settings
this distinction is not necessary since the nets
have no extraordinary vertices�

Numerical Experiments

In order to evaluate the practical usefulness
of the presented scheme� we apply it to a set
of examples and compare our results to those
obtained by standard techniques based on im�
plicit representations used� e�g�� in the context
of adaptive �nite element analysis by 
SR�	�
Bau��� For both types of representation we

�
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R
reg

j�j qreg
R
tot
j�j qtot

��� 	���e��� ����e���
�	�� 	���e��� 	��� ����e��� 	���
����� ����e��� 	��	 ��	�e��� 	���
���	�� ����e��� 	��� ����e��� 	���

Table �� Approximation errors for the sphere�
The errors are normalized to the volume of the
sphere� The stepwidth h � 	 corresponds to a
cube as initial approximation�

compare approximations obtained by adaptive

uniform re�nement and adaptive irregular re�

�nement 
Bau��� Both schemes are also tested
in combination with mesh smoothing as sug�
gested by 
Sch��� Sch��� Ric��� where the el�
ement shape is optimized after each re�nement
step by using a local smoothing technique� We
use the following abbreviations�

� unif � � � uniform re�nement� exact geometry

� adap � � � non�uniform re�nement� exact ge�
ometry

� smoo � � � with mesh smoothing

� orig � � � without mesh smoothing

� inte � � � mesh generation by the proposed
re�nement scheme

Cylindrical Shell with Hole

The cylindrical shell� originally proposed by

Sco�� is rigidly supported at both curved
boundaries �cf� Fig� �� and loaded by a uniformly
distributed load in vertical direction� The verti�
cal displacement v at the center of the free edges
is the quantity compared in the analysis�

Due to symmetry� only a quarter of the shell has
to be discretized in the �nite element model� The
starting meshes used in the analysis are shown in
Fig� �� They consist of �� elements and �� nodes�
In order to achieve a su�ciently good approxi�
mation of the geometry� � nodes are chosen in
the latitudinal direction� Using an initial mesh
having � elements �	� nodes�� it turns out that
the geometry is not well approximated and the
numerical analysis results in a displacement be�
ing 	�� larger than the exact value�

The mesh given in Fig� �b is a slight modi�ca�
tion of the mesh in Fig� �a� which results from

Figure �� Circular shell with hole� geometry� ma�
terial properties� and loading

mesh smoothing� As the element boundaries are
no longer aligned with the direction of the main
curvatures� this leads to a signi�cantly di�erent
initial geometry for the interpolation algorithm�
The modi�cation of the mesh leads to displace�
ments di�ering about 	�� from the correct val�
ues�

In Fig� � the meshes for uniform and irregular
adaptive re�nement based on the interpolatory
re�nement scheme are given� Convergence dia�
grams are depicted for the displacement v in Fig�
� and for the relative error in energy in Fig� 	��
For comparison� the curves for other re�nement
strategies which are performed on the implicit
representation of the exact geometry� are also
included�
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Figure �� Circular shell with hole� Convergence
of midside displacement

Discussion

If the starting mesh is reasonably �ne� the in�
terpolation algorithm leads to almost the same
results as the re�nement on the implicitly given

�



Figure �� Circular shell with hole� a� basic� b� smoothed starting mesh

Figure �� Circular shell with hole� a� uniform� b� adaptive irregular �nal mesh
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Figure 	�� Circular shell with hole� Convergence
of energy error

geometry for uniform re�nement� For adaptive
irregular re�nement the results can be worse if
the starting mesh is too coarse because in this
case the geometry itself is not approximated cor�
rectly� According to the observations in the last
section� the approximation order of the re�ne�
ment scheme guarantees that a higher density
of the initial mesh strongly improves the quality
of the approximation of the geometry�

A combination of the re�nement scheme with
smoothing techniques 
Sch�� is not possible� as
the interpolation nodes are �xed in the current

form of the interpolation algorithm� However�
the convergence of the displacements is very
good � only the algorithms which use smooth�
ing techniques lead to better results� It turns out
that the algorithm is well suited for practical en�
gineering applications�

Composite Cylinder�Plate structure

The second example is the intersection of a cylin�
der and a plate by an angle of �� degrees� The
width of the quadratic plate is w � 	� and the
cylinder of radius r � � has an average length of
l � 	�� The thickness of the cylinder and of the
plate are both t � 	� The modulus of Elasticity
is E � 	�� and the Poisson ratio � is set to zero�
The plate is simply supported� A uniformly dis�
tributed load is applied at the free edge of the
cylinder and is directed along the axis of the
cylinder�

As we explained earlier� the crease along the in�
tersection curve can be modeled by joining two
separate parts� the cylinder and the the plate�
having a common boundary polygon� Hence�
common nodes have to be stored twice since oth�
erwise the interpolatory re�nement would gen�
erate a smooth join�

�



Figure 		� Composite structure �common
boundary indicated�� starting mesh

The initial and the �nal meshes of the adaptive
analysis are shown in Fig� 		 and 	�� For an ex�
act interpolation of the plate it is su�cient to
de�ne � corner vertices �linear precision�� The
cylinder is de�ned by the boundary polygons at
the free edge and at the intersection� Using �
nodes along these boundaries guarantees a suf�
�ciently accurate reproduction�

Discussion

The convergence diagram for the energy error
in Fig� 	� shows a slightly reduced convergence
for the interpolation algorithm in combination
with uniform re�nement compared to the re�
sults obtained by using the other algorithms�
With adaptive irregular re�nement the results
obtained with our scheme are almost identical
to all other results�

Conclusion

The presented scheme to generate adaptively
re�ned quadrilateral meshes allows to approxi�
mate arbitrary surfaces with holes and sharp lo�
cal features� The quality of the approximation is
su�ciently well� even if the scheme is applied to
moderately detailed initial meshes� Due to the
symmetry of the re�nement rules for the edges
around a vertex� the local distortion is reduced�
i�e�� if n edges meet at a common vertex� the
angles between them tend to � �

n
� This regular�

ization e�ect causes the shapes of adjacent faces
to become alike�

The slightly less accurate results obtained by us�
ing the interpolatory re�nement scheme instead

of an exact representation of the given objects
�cf� last Section� stems from the fact that the
subdivision scheme computes new vertices with�
out any meta�knowledge about the shape �in
this case that the surfaces are cylindrical�� How�
ever� the scheme is mainly designed for com�
putations on free form surfaces of which only
discrete points are given and an exact represen�
tation is not known� Therefore also other ap�
proaches based on splines would have to guess

the actual shape�

The power of the scheme is demonstrated best
by applying it to a more sophisticated model�
The surface in Fig� 	� is generated by using the
coarse approximation as input data and re�ning
twice� No additional information is necessary�
Constructing a piecewise smooth spline surface
interpolating this irregular net would be rather
complicated�

The major advantage of this scheme compared
to other approaches therefore is its striking sim�
plicity� Only local a�ne combinations of points
have to be computed in order to re�ne a given
net� Almost no special cases concerning the lo�
cal topology of the mesh have to be considered�
The examples have been generated by our im�
plementation which provides all the presented
features including adaptive irregular re�nement
with C��consistency preservation� �please con�
tact� kobbelt�cs�wisc�edu�
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Figure 	�� Generating complex shapes by interpolatory subdivision
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