
Compiling Applications with the KarHPFn� Compiler

Matthias M� M�uller

Institute for Program Structures and Data Organization�

Universit�at Karlsruhe� Germany�

e�mail� muellerm�ira�uka�de

Technical Report No� �			�

April ��� �			

Abstract

This paper compares the prefetching technique VSCAP �software controlled access pipel�
ing with vector commands� with Cray T�E�s highly optimized shared�memory functions
�SHMEM� and with Portland Group HPF �BMN��	
 �PGHPF� on three application bench�
marks namely PDE�� FIRE� and Veltran Previous work showed the good performance of
VSCAP for single communication kernels This paper examines VSCAP and practicability
of KarHPFn� our prototype HPF compiler� in the context of whole applications The results
show that VSCAP generated by KarHPFn reduces communication overhead of �ne�grained
data parallel applications to a minimum This leads to a performance gain compared to
PGHPF between a factor of �� for FIRE to a factor of �� for PDE� VSCAP programs
are nearly as fast as SHMEM for regular communication patterns but �� times faster than
SHMEM in the case of dynamic communication patterns All results were measured on ���
processors

� Introduction

As microprocessors get faster and the gap between computation and communication speeds widens�
network latency becomes the dominant factor of the execution time of �ne�grained parallel pro�
grams� Instead of a single communication operation a processor could perform hundreds to thou�
sand arithmetic operations� This situation is even worse by an order of magnitude once the
software overhead of communication libraries is taken into account�
Software controlled access pipelining with vector commands �VSCAP� overcomes these shortcom�
mings by means of prefetching� The potential of VSCAP and its predecessor SCAP has been
demonstrated by analytic models� simulations� and hand coded benchmarks �War	
� MWT	��� In
�Mul��a� we introduced KarHPFn� an optimizing HPF compiler which transforms data�parallel
programs to programs using VSCAP for the communication� The benchmark set consisted of small
communication kernels which emphasized the impact of fast communication� The results showed
that VSCAP is as fast as T�E�s shared�memory functions for regular communication patterns�
But VSCAP programs are up to � times faster in the case of dynamic communication patterns�
KarHPFn compiled programs are at least �� times faster than programs compiled by the Portland
Group HPF compiler�
Now� this paper extends the above comparison to applications which are not characterized by a
single communication pattern� This comparison shows also the practicability of KarHPFn� The
benchmark set consists of applications from geophysics �Veltran� and �uid dynamics �FIRE�� A
solver for partial di�erential equations �PDE�� is also presented� The tests were done on a Cray
T�E using up to ��� processors�

�Karpfen �without h� is the german word for carp�

�

Prefetching is not new� Previous research addresses it in the context of prefetching cache lines�
non�blocking loads� scheduling techniques� and speculative execution on uniprocessors or small�
scale cache�coherent multiprocessors �CB	�� RL	�� MLG	�� CKP	�� GGV	��� Prefetching is also
used by software distributed shared�memory systems to prefetch whole memory pages �LCD�	
�
BPA	���
But little is known about the e�ects of latency hiding applied to communication networks in
massively parallel computers with distributed memory� And to our knowledge� KarHPFn is the
�rst work targeting compiler directed prefetching for these architectures�
The next section describes the basic principle and the transformation rules of VSCAP which are
incorporated in our KarHPFn compiler� Section � discurses the benchmark set� After that� the
test environment is described� A presentation of our results terminates this paper�

� VSCAP

In �ne�grained parallel applications� as in most other parallel applications� latency prevents fast
access to non�local memory� Software controlled access pipelining with vector commands �VSCAP�
targets latency hiding through overlapping of computation and communication by splitting non�
local memory access into low overhead prefetch and access� This section explains VSCAP by
showing the basic concepts of SCAP� the predecessor of VSCAP without vector commands� The
concepts of SCAP can be easily extended to VSCAP with additional vector commands for prefetch
and access� A detailed explanation of SCAP and VSCAP can be found in �War	
� and �Mul��b��
respectively�

��� Basic Idea of SCAP and its extension to VSCAP

The aim of SCAP is a run�time improvement achieved by overlapping several communication
requests leading to a communication pipeline in �ne�grained data parallel applications� For a
better understanding of the basic principle of SCAP� we �rst explain how communication is usually
done�
The processor issues a request to the network �downwards arrow in Figure �� and waits until the
network replies �upwards arrow�� Only then� the processor continues its execution and issues a
new request� This is done as long as the processor requires remote data elements to perform its
local part of computation� As the processor blocks after each data request� we call this kind of
communication the blocking mode� see the upper half of Figure ��
Now� let us assume the processor could issue all its communication requests and the network
would be able to process them in an overlapped fashion� This would lead to a shorter waiting
period for the processor accessing the �rst and all other successive remote data elements� Finally�
communication could be performed faster compared to the above mentioned blocking execution�
We call this kind of communication overlapping communication� see the lower half of Figure ��
To enable overlapping communication� the network interface has to provide a prefetch bu�er that
decouples the processor from the network execution� see Figure ��
The second task of the prefetch bu�er is to synchronize the processor with the network execution�
The synchronization becomes necessary if the processor wants to access a data element which
has not been delivered by the network yet� In this case� the processor is stalled until the value
arrives� The waiting time in the lower part of Figure � denotes a processor stall� Figure � shows
an overlapped execution of the processor and the network without processor stalls�
VSCAP extends SCAP by the means of vector commands for prefetch and access� Instead of issuing
a communication requests for each non�local data element� the processor prefetches and accesses
L � � data elements at once� Lis the vector length of the vector commands� VSCAP�s vector
commands reduce prefetch and access overhead of SCAP and improve communication time further�
But the usage of vector commands supposes regular communication patterns with equidistant
o�sets between successive data accesses� Vector strategies describe the possible combinations of
vector and single element access�

�

Time

Wait

Latency

Wait

Blocking

Processor

Overlapping

Wait

Latency Latency

Wait

Latency

Latency

Latency

Network

Processor

Network

Figure �� Basic idea of SCAP

��� Vector strategies

Vector commands for prefetching are only useful if displacements of the elements are equidistant
and known at compile time� Otherwise� if element locality can be computed only at run time
as in dynamic communication patterns or if distance of elements varies on a per�element basis�
single�element prefetch instructions are used as a full block strategy� For this reason we introduce
the notion of a vector strategy which declares the usage of vector operations�

�p� a��vector strategy
A �p� a��vector strategy declares usage of vector operations for prefetch �p � �� and access
�a � �� operations� Assuming vector lengths p� a � f�� Lg there are four possible vector
strategies�

Network execution

Processor execution

Prefetch Buffer

Figure �� Usage of the Prefetch Bu�er

�

Vector strategy Explanation

����� Elementwise prefetch and access operations
���L� Element operations for prefetch but vector access
�L��� Vector prefetch but elementwise access operation
�L�L� Vector operations both for prefetch and access

The four vector strategies are characterized as follows�

��� ���vector strategy This is SCAP� It is used for communication patterns that do not allow
any vector commands� They are characterized in varying element distances for prefetch and
access� e�g� in masked assignments or in arbitrary block�cyclic distributions�

��� L��vector strategy Elementwise prefetching is done in dynamic communication patterns� e�g�
in indirect indexed array access like the one shown in Section ����

�L� ���vector strategy This strategy uses vector prefetch and elementwise access operations as
in scatter operations� As message passing architectures utilize remote write accesses already�
this vector strategy is not investigated further�

�L�L��vector strategy Vector operations can be used both for prefetch and for access if the
location of data elements can be determined at compile time� e�g� in a�ne communication
patterns B�a � I � b�� where a and b are variables that do not change their values during
execution of communication�

This paper shows performance results of the �L�L� and ��� �� vector strategies� Results of the
��� L� vector strategy can be found in �Mul��a��
The �L� ���vector strategy is not discussed further for the above reason� The remaining three
strategies are selected automatically during the compilation� Their usage depends on the commu�
nication pattern� data�distribution� and the iteration space of the data�parallel forall� Section ���
describes the selection of the vector strategy according to the ��dimensional parameter space�

��� Transformation rules

This paragraph describes the techniques used in the transformation from a data�parallel forall�
statement to VSCAP� Section ��� describes the implementation of these techniques within the
KarHPFn compiler�
The transformations are illustrated using the following simple forall�statement�

FORALL i � � TO N��
A�i� �� B�q�i���

END

The program fragment updates array A in parallel� indexing array B with array q� A parallelizing
compiler maps the problem size N onto P real processors �N � P �� This technique is called
virtualization� Assuming that P divides N each processor emulates V � N

P
virtual processors

within a virtualization loop� Both A and B are distributed over the P processors using the the
owner�computes rule� Since the value of q�i� can not be determined at compile time� the compiler
has to insert remote memory accesses� The virtualization of the program fragment is as follows�
given the blocking execution mode�

FORALL j � � TO P�� �� Forall processors in parallel
FOR k � j�V TO �j����V�� �� Simulate V virtual processors
adr �� calculate address�B�q�k���� �� Calculate remote address
A�k� �� remote read�adr�� �� Read remote data element

END

END

�

In the worst case� every processor issues V non�local memory accesses� These stall the processor
if the network can not serve the desired values fast enough� Hence� execution time of this loop is
at least V times the network latency�

The following transformation of the loop shows how communication and computation can be over�
lapped�

FORALL j � � TO P��
FOR k�j�V TO �j����V�� �� Prefetch loop
adr �� calculate address�B�q�k���� �� Calculate remote address
prefetch�adr�� �� Start read request

END

FOR k�j�V TO �j����V�� �� Access loop
adr �� calculate address�B�q�k����
A�k� �� access�adr�� �� Access data element

END

END

In this transformation� the main loop is split into two instances� a prefetch and an access �or
calculation� loop� Instead of stalling on a remote memory access as in blocking mode� the processor
issues remote memory prefetch requests� After the prefetch loop is executed the calculation loop
accesses non�local memory without waiting time �if the data is already present� in the prefetch
bu�er� This is the code for SCAP or the ��� ���vector strategy� In the best case� program speed�up
is about �V � �� times the network latency because there is at most one waiting period �arrival of
�rst data item� compared to V waiting times in a blocking network�

VSCAP improves the above code with vector access commands further� While vector prefetch
operations cannot be used due to the dynamic prefetch pattern caused by the index array q vector
accesses are possible because of the regular array accessA�k�� This leads to a ��� L��vector strategy�

FORALL j � � TO P��
FOR k�j�V TO �j����V�� �� Prefetch loop
adr �� calculate address�B�q�k���� �� Calculate remote address
prefetch�adr�� �� Start read request

END

FOR k�j�V TO �j����V�� STEP L �� Vector access loop
adr �� calculate address�B�q�k����
vector access�adr�A�k��� �� Access L data elements

END

END

For brevity� we assume that L divides V � Otherwise� additional elementwise access operations has
to be used to get the remaining V mod L data elements which do not �ll a vector of length L�
The access loop is blocked with blocksize L� Within the loop� vector access�adr�A�k�� copies L
entries from the prefetch bu�er starting at address adr to successive memory locations beginning
with A�k�� If we assume that a vector access lasts as long as an elementwise access operation� the
duration of the vector access loop is decreased about the factor L of the vector length�

If the number of non�local memory accesses is too large to �t into the prefetch bu�er� VSCAP�s
transformation rule uses a three loop execution pattern where the middle loop alternates between
access and prefetch instructions� This transformation is not shown for the sake of brevity�

� KarHPFn

This section describes the architecture and the compilation steps of the Karlsruher HPF compiler
KarHPFn�

�

��� Overview

KarHPFn is a source�to�source compiler to transform a data parallel HPF program into an exe�
cutable Fortran 	� node program that uses only Cray T�E�s E�register operations for communi�
cation� see Figure �� KarHPFn�s program transformations concentrate on the forall�statement�

node program
(SPMD)

(data parallel)

HPF
KarHPFn

F90 + E-register
F90

Figure �� Overview of KarHPFn

KarHPFn is based on the ADAPTOR front�end �Bra	��� All subsequent analysis and transforma�
tion phases use the Cocktail�Toolbox �GE	�� to operate on the abstract syntax tree built by that
front�end� Dependence and partitioning analysis phases use common techniques to perform their
tasks�

��� Transformation within KarHPFn

KarHPFn transforms a given source�program in four steps� First� data distribution information is
evaluated and the computation is spread among processors using the owner�computes rule� The
second step analyses subscripts of the arrays involved to determine the communication pattern�
The appropriate pattern is selected using the pattern matching technique from �Boz	��� In the
example of Section ���� KarHPFn determines the tuple �i� q�i��� KarHPFn assumes that all data
accesses are remote because the value of q cannot be computed at compile time� As each reference
to B�q�i�� is treaten as a non�local array access �although some elements could be local� we call
this speculative prefetch�
In the third step� KarHPFn determines the vector�strategy� It uses the subscript information
�i� q�i�� and the data�distribution� e�g� a blockwise distribution� and looks up the corresponding
table for a suitable vector�strategy� see Table ��

Table �� Selection of vector�strategies

Comm� pattern Data�distribution Vector�strategy

�i� b��� �i� i� c�y� �i� i� b�

BLOCK
CYCLIC
CYCLIC�k�

�L�L�
�L�L�
�L�L�� ��� ��

�i� a � i� b�

BLOCK
CYCLIC
CYCLIC�k�

�L�L�
��� L�
��� L�� ��� ��

�i� q�i��z
BLOCK
CYCLIC
CYCLIC�k�

��� L�
��� L�
��� L�� ��� ��

�a and b are arbitrary variables
yc is a constant
zq is a function or an array

The lines for the CYCLIC�k� distribution have an additional ��� �� entry for possible vector strate�
gies� This is caused by the fact that some combinations of iteration space and blocksize k force
a calculation of the local index set at run�time� As these index sets do not have equidistants

�

o�sets between consecutive data elements each data element has to be prefetched and accessed
separately� The switch to a ��� ���vector strategy is done automatically�

Returning to our example� KarHPFn selects with the tuple ��i� q�i���BLOCK� the ��� L��vector
strategy�

The fourth and �nal step generates the appropriate pipeline for communication and inserts it into
the �nal program�

As KarHPFn supports four di�erent communication modes �BLOCK� SCAP� VSCAP� and
SHMEM�� and three di�erent data distributions �BLOCK� CYCLIC� and CYCLIC�k� distribu�
tions� there are �� possible pipelines for the ��� L��vector strategy� Furthermore� KarHPFn can
apply two di�erent optimizations to this kind of vector strategy� The �rst one reduces address
calculation overhead as it uses capabilities of the hardware centrifuge of the Cray T�E� The sec�
ond one introduces a software test to determine locality of data accesses� This is useful if only
non�local data�elements have to be prefetched� These two optimizations can be applied to three
of the above four communication modes for all possible data�distributions� this leads to additional
	 � 	 � �� pipelines�

Therefore� KarHPFn can generate �� � �� � �� di�erent communication pipelines for the ��� L��
vector strategy which shows the need for a sophisticated software architecture for the pipeline
generation module�

� Benchmarks

The purpose of our benchmark set is to show the e�ects of fast communication in the context of
an entire application instead of the focus on a single and small part of the program� Execution
on more than hundred processors indicates performance in a massively parallel environment�

We chose three applications from three di�erent domains� PDE�� a solver for partial di�erential
equations� FIRE� a �uid dynamics application� and Veltran from geophysics� Characteristics of
these benchmarks are explained below�

��� PDE�

PDE� is a ��dimensional Poisson solver using red�black relaxation� The ��dimensional grid is
divided into red and black points� In an iteration �rst� red points are calculated using values of
the six adjacent black points� In the second step of the iteration� black points are determined
using the new red values�

PDE� splits the entire �d�grid into smaller cubes that are distributed among processors� Before
computation takes place� each processor has to read the border of its local cube from virtually
neighbouring processors� This so called nearest�neighborhood communication pattern results in
a linear communication compared to a cubic computation time� Therefore� we expect a small
advantage from fast communication for problem sizes with large local cubes because calculation
time dominates communication� But as the number of processors increase and as the virtualization
and computation time decrease� the usage of fast communication results in a further speed up�

Due to the regular communication pattern� KarHPFn uses a �L�L��vector strategy for VSCAP�
Remote data is read into overlap areas of local cubes�

��� FIRE

FIRE is a �uid dynamics package from AVL List using the method of conjugate gradients on un�
structured meshes �BSCG	��� The main communication loop in FIRE gathers cells from DIREC�

indexed through LCC�

�shared�memory library

FORALL J�� TO �
FORALL NC�� TO NNINTC
IF LCCMASK�J�NC� THEN
DIREC�V�J�NC� �� DIREC��LCC�J�NC���

END

END

END

FIRE distributes the problem domain in blocks� It has an high proportion of communication to
compuation leading to a large communication overhead regardless of local problem sizes�
Without the if�statement in the above program fragment KarHPFn would use a ��� L��vector
strategy but predication with LCCMASK forces a ��� ���vector strategy for FIRE because prefetch
and access operations depend on run�time information�

��� Veltran

Veltran is an application from geophysics that uses velocity analysis to calculate consistency of
earth layers �JPK	��� It uses the method of conjugate gradients�
Communication in Veltran is a scatter operation of local parts of two distributed dimensions of
the problem domain� If we use a concurrent�read memory model� the communication reduces to a
read of the remote data elements� The read access reduces the communication overhead for every
data element from O�log�P �� as in message passing architectures to O���� where P denotes the
number of processors� Nevertheless� an equal amount of communication and computaion leads to
a high communication overhead for all virtualizations�
Two dimensions of the ��dimensional global problem are distributed in blocks over processors�
KarHPFn uses a �L�L��vector strategy for the scatter operation�

� Test environment

This section presents a short overview of the Cray T�E and the investigated di�erent benchmark
versions�

��� Architecture of Cray T�E

The T�E 	������ used for our measurements consists of up to ���� DEC Alpha ����� processors
running at ���MHz� They are connected with a ��dimensional torus network� The net is decoupled
from the processors at a speed of
� MHz �ST	�� with overlapped communication� Each link has
a bandwidth of approximately ��� MB�s resulting in a � GB�s transfer rate for a single node�
The network interface consists of ��� user and ��� system E�registers� memory mapped into
the I�O�space of each processor� E�registers provide the only means to transfer data between
processors� Read and write operations between E�registers and the global memory are called gets
and puts� To load a global memory content into the processor� a get and a subsequent read of
the E�register has to be executed� The latter operation stalls the processor until the value arrives�
This synchronization is implemented in hardware using the readiness state of the E�register� On a
put� the memory of a remote node is modi�ed and the cache is updated �Oed	��� Hence� the T�E
implements a global address space with locally consistent memory�
Eight E�registers can be combined to a vector� Distance between successive vector elements have
to be equidistant to ensure correct address translation� Thus� the T�E enables VSCAP with a
vector length of L � ��

��� Benchmark versions

Benchmarks were compiled to four di�erent versions�

�

BLOCK simulates blocking communication of the T�E as described in Section ����

VSCAP does prefetch and access with vector operations� �� E�register vectors �of � E�registers
each� are used to allow a total number of ��� outstanding communication requests� ���
E�registers su�ce to hide network latency and to get maximum throughput �Sco	���

SHMEM uses Cray�s shared�memory system functions for communication� SHMEM delivers
maximum communication performance on the T�E for regular communication patterns�
SHMEM behaves like BLOCK in dynamic patterns because of lack of support by the system
library� Hence� each element has to be read by a separate function call to shmem get resulting
in blocking performace�

PGHPF represents the executables of the Portland Group HPF compiler� PGHPF is the com�
mercial HPF compiler available for the Cray T�E�

The �rst three version were compiled by KarHPFn using di�erent command line options while
PGHPF compiled the fourth one� Both compilers got the same HPF�source� Standard optimiza�
tions were turned on for both PGHPF and for the Fortran 	� compilation step of KarHPFn� Time
was measured with the real�time clock �RTC �� Problem size was kept constant for each benchmark
but the number of processors was increased from � to ��� in powers of ��

� Results

The runtimes of the four di�erent versions for each benchmark are given� The discussion of each
benchmark includes two plots� The �rst one shows the runtimes� and the second one presents the
relative performance compared to BLOCK� Since we focus on the reduction in communication
time� the plots do not account for speed up compared to a one processor execution�

��� PDE�

A global cube with N � ���� data points formed the base of the measurements of PDE�� Figure �
presents runtimes and relative performance of the four di�erent versions of PDE��

1000

10000

100000

1e+06

10 100

R
un

tim
e

in
 m

s

Number of PEs

block
vscap

shmem
pghpf

0

0.5

1

1.5

2

2.5

3

10 100

R
un

tim
e

co
m

pa
re

d
to

 B
L

O
C

K

Number of PEs

Figure �� Runtimes and speed up relative to BLOCK of PDE�

The runtime plot on the left displays three di�erent lines� The upper one denotes runtime of
PGHPF� The solid line in the middle is execution time of BLOCK� our base model� and the lower
line presents runtime of VSCAP and SHMEM� The plot leads to three di�erent observations� First�
fast communication improves performance only for smaller local problemsizes� e�g� at execution
on more than �� processors� This behaviour is caused by the fact that with an increasing number
of processors less computation is needed and therefore� the relative advantage of better communi�
cation grows� Second� VSCAP is as fast as highly optimized shared�memory functions� and third�

	

PGHPF is slower than reading one remote data element after the other� The plot on the right
hand side quanti�es the last two observations� VSCAP and SHMEM are more than ��� times
faster than BLOCK on ��� processors while PGHPF is about ��
 times slower� The comparison
of VSCAP with SHMEM and PGHPF shows that VSCAP is only �� slower than SHMEM but
	�� times faster than PGHPF on ��� processors�

��� FIRE

FIRE was calculated with ������ cells� Thus� virtualization variied during the measurements
from ��	��� for � processors to ���� cells for ��� processors� Figure � shows the execution time
and the relative performance of the FIRE versions�

1e+06

1e+07

1e+08

1e+09

10 100

R
un

tim
e

in
 m

s

Number of PEs

block
vscap

shmem
pghpf

0.5

1

1.5

2

2.5

3

3.5

10 100

R
un

tim
e

co
m

pa
re

d
to

 B
L

O
C

K

Number of PEs

Figure �� Runtimes and speed up relative to BLOCK of FIRE

The runtime plot shows two di�erent groups� SHMEM� BLOCK and PGHPF belong to the
upper �slower� group and VSCAP to the fast one� The plot shows a constant di�erence in runtime
caused by the constant ratio of communication to computation time throughout all virtualizations�
The plot on the right displays relative performance compared to BLOCK� PGHPF is ��� faster�
SHMEM is ��� slower than BLOCK� Only VSCAP shows with a substantial speed up compared
to BLOCK �factor ��� on �� processors�� VSCAP is also ��� times faster than SHMEM and ���
times faster than PGHPF on ��� processors�

The poor performance of SHMEM is due to the fact that the shared�memory library does not
support any kind of dynamic communication pattern� Though� each non�local element has to
be read with a seperate call to shmem get resulting in a blocking execution� The reason for
the PGHPF behaviour is the usage of inspector�executor model that increases communication
overhead by additional execution time for the communication schedule� VSCAP is not a�ected by
this overhead because time for prefetch is limited to predicate evaluation and to issue the prefetch�

��� Veltran

Measurements of Veltran were done using a global problem size of ������� points� Figure � show
the results�

The runtime plot on the left shows two di�erent lines� The upper line contains BLOCK and
PGHPF while VSCAP and SHMEM belong to the lower one� The constant advantage in runtime
accounts for the constant ratio of communication and computation� Relative performances are
shown in the plot of the right hand side of Figure �� PGHPF is almost as fast as BLOCK �����
while VSCAP and SHMEM are at least ��� times faster� Relative runtime gain of the latter two
grows with the increasing number of processors used in parallel� It reaches its climax at ���
processors where VSCAP is ��� and SHMEM ��
 times faster than BLOCK and PGHPF� VSCAP
is only �� slower than SHMEM�

��

0.1

1

10

100

1000

10 100

R
un

tim
e

in
 s

Number of PEs

block
vscap

shmem
pghpf

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

10 100

R
un

tim
e

co
m

pa
re

d
to

 B
L

O
C

K

Number of PEs

Figure �� Runtimes and speed up relative to BLOCK of Veltran

The plot on the right hand side shows waves in the speed up of VSCAP and SHMEM� These waves
are caused by the ��dimensional virtual processor grid that was changed between successive mea�
surements to take the increasing number of processors into account� Di�erent from expectation�
however� this change did not lead to a constant improvement�

� Conclusions

This paper examined the performance of VSCAP on applications �PDE�� FIRE� and Veltran�
and showed the practicability of our HPF compiler KarHPFn� We compared VSCAP both with
the highly optimized shared�memory library and with the Portland Group HPF compiler� Test
programs were generated automatically by KarHPFn operating on the same HPF sources as
PGHPF�

On regular communication patterns KarHPFn�s VSCAP is nearly as fast as the system functions
������ On dynamic communication patterns �FIRE�� however� VSCAP is ��� times faster due to
lack of support of these patterns by the system library�

A comparison of VSCAP to PGHPF shows KarHPFn�s strength� a programmer gets a 	�� times
faster program �PDE�� just by exchanging PGHPF with KarHPFn without the need for additional
knowledge on communication techniques� These results were not limited to small problems as the
large problem sizes and the measurements on ��� processors show�

Further work concentrates on VSCAP for workstation clusters broadening the range of suitable
architectures� The SCI standard seems to be a promising candidate to achieve this goal� Further
questions in this context include the behavior of VSCAP on dynamic communication patterns and
the mixture of VSCAP�s remote read with remote write access�

References

�BMN�	
� Z� Bozkus� L� Meadows� S� Nakamoto� V� Schuster� and M� Young� PGHPF an
optimizing High Performance Fortran compiler for distributed memory machines� Sci�
enti�c Programming� ������	 ��� Spring �		
�

�Boz	�� Zeki Bozkus� Compiling Fortran ��D�HPF for Distributed Memory MIMD Computers�
PhD thesis� Syracuse University� June �		��

�BPA	�� Ricardo Bianchini� Raquel Pinto� and Claudio L� Amorium� Data Prefetching for
Software DSMs� In �	th International Conference on Supercomputing
 Melbourne�
pages ��� �	�� July �� �
� �		��

��

�Bra	�� Thomas Brandes� Adaptor� A compilation system for data parallel fortran programs�
Technical report� German National Center for Computer Science �GMD�� St� Augustin�
Germany� �		�� ftp���ftp�gmd�de�GMD�adaptor�docs�adaptor�ps�

�BSCG	�� P� Brezany� V� Sipkova� B� Chapman� and R� Greimel� Automatic parallelization of the
AVL FIRE benchmark for a distributed�memory system� Lecture Notes in Computer
Science� ������� ��� �		��

�CB	�� Tien�Fu Chen and Jean�Loup Baer� Reducing memory latency via non�blocking and
prefetching caches� In Fifth International Conference on Architectural Support for
Programming Languages and Operating Systems� pages �� ��� Boston� Massachusetts�
October �		�� Also available as U� Washington CS TR 	��������

�CKP	�� David Callahan� Ken Kennedy� and Allan Porter�eld� Software prefetching� In Fourth
International Conference on Architectural Support for Programming Languages and
Operating Systems� pages �� ��� Santa Clara� California� April �		��

�GE	�� Josef Grosch and Helmut Emmelmann� A tool box for compiler construction� In
Dieter Hammer� editor� Compiler Compilers
 Third International Workshop on Com�
piler Construction� volume �

 of Lecture Notes in Computer Science� pages ��� ����
Schwerin� Germany� �� �� October �		�� Springer� �		��

�GGV	�� Edward H� Gornish� Elana D� Granston� and Alexander V� Veidenbaum� Compiler�
directed data prefetching in multiprocessor with memory hierarchies� In Proceed�
ings ���� International Conference on Supercomputing� pages ��� ���� Amsterdam�
June�� �� �		��

�JPK	�� Matthias Jacob� Michael Philippsen� and Martin Karrenbach� Large�scale parallel
geophysical algorithms in Java� a feasibility study� Concurrency� Practice and Experi�
ence� ����� �������� ����� September �		�� Special Issue� Java for High�performance
Network Computing�

�LCD�	
� Honghui Lu� Alan L� Cox� Sandhya Dwarkadas� Ramakrishnan Rajamony� and Willy
Zwaenepoel� Compiler and Software Distributed Shared Memory Support for Irregular
Applications� ACM SIGPLAN Notices� ���
���� ��� July �		
�

�MLG	�� Todd C� Mowry� Monica S� Lam� and Anoop Gupta� Design and evaluation of a
compiler algorithm for prefetching� In Fifth International Conference on Architectural
Support for Programming Languages and Operating Systems� pages ��
�� Boston�
Massachusetts� October �		��

�Mul��a� Matthias M� Muller� KaHPF� Compiler generated Data Prefetching for HPF� In High
Performance Computing in Science and Engineering ����� pages �
� ���� Springer�
�����

�Mul��b� Matthias M� Muller� Latenzzeitverbergung in datenparallelen Sprachen� PhD thesis�
School of Computer Science� Universitat Karlsruhe� February �����

�MWT	�� Matthias M� Muller� Thomas M� Warschko� and Walter F� Tichy� Prefetching on
the Cray�T�E� In �	th International Conference on Supercomputing� pages ��� �
��
Melbourne� July �� �
� �		��

�Oed	�� Wilfried Oed� Massiv�paralleles Prozessorsystem CRAY T�E� Technical report� Cray
Research GmbH� Munchen� November �		��

�RL	�� Anne Rogers and Kai Li� Software support for speculative loads� In Fifth Interna�
tional Conference on Architectural Support for Programming Languages and Operating
Systems� pages �� ��� Boston� Massachusetts� October �		��

��

�Sco	�� Steven L� Scott� Synchronization and communication in the T�E multiprocessor� ACM
SIGPLAN Notices� ���	���� ��� September �		��

�ST	�� Steven L� Scott and Gregory M� Thorson� The Cray T�E network� Adaptive routing
in a high performance �D torus� HOT Interconnects IV� August �� �� �		��

�War	
� Thomas M�Warschko� E�ziente Kommunikation in Parallelrechnerarchitekturen� PhD
thesis� School of Computer Science� Universitat Karlsruhe� �		
�

��

