

KERNFORSCHUNGSZENTRUM

KARLSRUHE

K F K 597

Juli 1967

Institut für Radiochemie

Phasengleichgewichte in den Systemen $ThO_2-HoO_{1,5}(LuO_{1,5}, ScO_{1,5})$ und $HoO_{1,5}-UO_2(UO_{2+x}, NpO_{2+x}, PuO_{2+x})$

H. Engerer

GESELLSCHAFT FUR KERNFORSCHUNG M.B.H.

KARLSRUHE

Kernforschungszentrum Karlsruhe

Juli 1967

KFK 597

Institut für Radiochemie

PHASENGLEICHGEWICHTE IN DEN SYSTEMEN ThO2-HOO1,5(LuO1,5,ScO1,5) UND HOO1,5-UO2(UO2+x,NpO2+x,PuO2+x)

von

Hans Engerer

Gesellschaft für Kernforschung m.b.H., Karlsruhe und Lehrstuhl für Radiochemie der Technischen Hochschule Karlsruhe

Inhaltsverzeichnis

					Seite			
1.	EINLE	ITUNG UN	ID PROBLEMS	TELLUNG	l			
2.	ERGEE	NISSE UN	ID DISKUSSI	ON	5			
	2.1.	Binäre dreiwer	Systeme des Thoriumoxids mit Oxiden rtiger Elemente (Ho,Lu,Sc)					
		2.1.1.	Das Syste	m ThO ₂ -HoO ₁₅	5			
			2.1.1.1.	Die Zeitabhängigkeit der Gleichgewichtseinstellung	5			
			2.1.1.2.	Phasengrenzen und Tempe- raturabhängigkeit der Grenz- zusammensetzungen	6			
			2.1.1.3.	Das Phasendiagramm des Sys- tems ThO ₂ -HoO _{1,5}	8			
			2.1.1.4.	Der Aufbau der Fluorit- und Sesquioxidmischkristalle	8			
		2.1.2.	Das Syste	^m ThO ₂ -LuO _{1,5}	11			
		2.1.3.	Das Syste	$m \text{ ThO}_2 - \text{ScO}_{1,5}$	12			
	2.2.	Binäre	Systeme de	r Uranoxide mit Holmiumoxid	13			
		2.2.1.	Das Syste	^{m UO} 2 ^{-HOO} 1.5	13			
		2.2.2.	Das Syste	$^{\text{m UO}}_{2+x}$ -HoOl,5	16			
			2.2.2.1.	Phasengrenzen und Tempe- raturabhängigkeit der Grenz- zusammensetzungen	16			
			2.2.2.2.	Die Verbindung U0,.6Ho0 und ihre Phasenbreite	18			
			2.2.2.3.	Das Phasendiagramm des Sys- tems UO _{2+x} -HoO _{1.5}	21			
			2.2.2.4.	Die mittlere Wertigkeit des Urans im System UO _{2+x} -HoO _{1,5}	21			
		2.2.3.	Das Syste	$m (U_x, Ho_{1-x}) O_2$	23			
	2.3.	Das Sys	stem NpO _{2+x}	-Ho01,5	25			
		2.3.1.	Phasengre der Grenz	nzen und Temperaturabhängigkeit zusammensetzungen	25			
		2.3.2.	Die Verbi	ndung Np03.6Ho01,5	27			
		2.3.3.	Das Phase	ndiagramm des Systems NpO _{2+x} -HoO _{1,5}	28			
		2.3.4.	Die mittl im System	ere Wertigkeit des Neptuniums NpO _{2+x} -HoO _{1.5}	28			
	2.4.	Verbind	lungen vom	Typ Np03.6Me01,5	30			

Seite

	2.5.	Das Sys	$tem PuO_{2+x}$ -HoO _{1.5}	31				
		2.5.1.	Phasengrenzen und Temperaturabhängigkeit der Grenzzusammensetzungen	31				
		2.5.2.	Das Phasendiagramm des Systems Pu02+x-Ho01.5	33				
		2.5.3.	Die mittlere Wertigkeit des Plutoniums im System Pu0 _{2+x} -Ho0 _{1,5}	35				
3.	ARBEI	TS- UND	UNTERSUCHUNGSMETHODEN	37				
	3.1.	Allgeme	ine Versuchsdurchführung	37				
		3.1.1.	Herstellung der Mischoxidpräparate	37				
		3.1.2.	Herstellung der Ausgangslösungen	37				
	3.2.	Ausgang	ssubstanzen	38				
	3.3.	Chemisc	he Analysen	39				
	3.4.	Thermog	ravimetrische Analysen	39				
	3.5.	Röntgen	ografische Untersuchungen	39				
4.	ZUSAM	MENFASSU	NG	41				
5.	LITER	ATURVERZ	EICHNIS	43				
6.	ABBILDUNGEN							

6. ABBILDUNGEN

1. EINLEITUNG UND PROBLEMSTELLUNG

Bereits 1819 ist von Mitscherlich am Beispiel der Phosphate und Arsenate festgestellt worden, daß zwei Stoffe bei analoger Zusammensetzung in demselben Kristallsystem mit sehr ähnlichen Winkeln der Flächen kristallisieren und so die Fähigkeit besitzen, Mischkristalle zu bilden. Damit war der Begriff der Isomorphie geboren, den wir heute aufgrund unserer Kenntnis vom Bau der Kristalle erweiternd definieren können als Mischkristallbildung aus Kristallarten, die gleichen oder ähnlichen Formelund Strukturtyp aufweisen. Es können demnach chemisch recht verschiedene Verbindungen, wie z.B. $BaSO_4$ und $KMnO_4$, isomorph sein, da die Bildung von Mischkristallen weniger vom chemischen Charakter der Ionen als von der Koordinationszahl und der relativen Größe der Ionen (Differenz der Ionenradien maximal + 15 %) bestimmt wird.

Auch gleichgeladene Ionen können sich bei ähnlicher Größe gegenseitig im Gitter vertreten, z.B. Mg und Fe im Olivin, $(Mg,Fe)_2SiO_4$, und schließlich können Ionenpaare mit gleicher Wertigkeitssumme einander teilweise ersetzen, z.B. Na⁺ + Si⁴⁺ \longrightarrow Ca²⁺ + Al³⁺ in den Mineralien der Feldspatgruppe. Diese isomorphe Vertretbarkeit erklärt die oft sehr komplizierte Zusammensetzung vieler Mineralien.

Werden die Abweichungen zwischen den Ionenradien oder in den Polarisationseigenschaften zu groß, dann tritt auch bei Verbindungen des gleichen Strukturtypus keine Mischkristallbildung mehr ein. Als Beispiel hierfür seien die Verbindungen NaCl-MgO-PbS-TiC genannt, die alle Kochsalzstruktur aufweisen. Solche Kristalle, die zwar zum gleichen Formelund Strukturtyp gehören, zur Mischkristallbildung in merklichem Umfang jedoch nicht mehr befähigt sind, nennt man isotyp. Der Begriff der Isotypie ist also weitreichender und allgemeiner als der der Isomorphie.

Ganz besondere Verhältnisse liegen nun vor, wenn zwei Verbindungen, die nicht dem gleichen Formel- und Strukturtyp angehören, Mischkristalle bilden. Der Erforschung dieser heterotypen oder anomalen Mischkristallbildung wurde in den letzten Jahren verstärktes Interesse entgegengebracht. So konnte von verschiedener Seite gezeigt werden, daß insbesondere polar gebaute Verbindungen vom Gittertyp des Fluorits, CaF₂, auch solche strukturell verwandte Verbindungen homogen in das Wirtsgitter einzubauen vermögen, deren chemische Zusammensetzung nicht dem

- l -

Formeltyp AB₂, sondern z.B. AB, A_2B_3 , AB₃ oder AB₄ entspricht. Diese anomale Mischkristallbildung ist nicht nur bei den im CaF₂-Gitter kristallisierenden Halogeniden, sondern auch bei zahlreichen Dioxiden beobachtet worden. Von den Dioxiden mit Fluoritstruktur eignen sich CeO₂, ThO₂, UO₂, NPO₂, PuO₂ und AmO₂ wegen ihrer thermischen Stabilität besonders gut als Wirtsgitter. Eine große Gitterverwandtschaft zu diesen Dioxiden zeigen vor allem der kubisch kristallisierende C-Typ der Sesquioxide der Seltenen Erden und die Sesquioxide der den Seltenen Erden verwandten Elemente (Mn₂O₃-Struktur). Die Untersuchungen an Oxidsystemen, die als Komponenten Dioxide mit Fluoritstruktur und Sesquioxide vom Mn₂O₃-Typ enthalten, nehmen deshalb einen breiten Raum ein. Erwartungsgemäß konnte in diesen Systemen auch die Bildung von Sesquioxidmischkristallen bestätigt werden.

Die Oxide der Seltenen Erden treten noch in einem hexagonalen A-Typ (La,Ce,Pr,Nd) und einem monoklinen B-Typ auf (Sm,Eu,Gd,Tb). Auch diese beiden Modifikationen der SE-Oxide sind zur Mischkristallbildung mit den Dioxiden befähigt, wobei der C-Typ stabilisiert wird.

In neuerer Zeit wurden zahlreiche Mischoxidsysteme des orthorhombischen U_3O_8 mit Sesquioxiden beschrieben, bei denen es gleichfalls zur Ausbildung ausgedehnter Fluoritphasen kommt. Diese überraschenden Ergebnisse haben gezeigt, daß innerhalb des Systems eine Stabilisierung der Fluoritstruktur eintreten kann, auch wenn das Wirtsgitter dem Formeltyp AB₂ nicht angehört. Bartram et al. haben darüber hinaus bei fast allen Oxidsystemen UO_{2+x} -MeO_{1,5} (Me = SE,Y) die Existenz einer rhomboedrischen 1:6-Verbindung der Grenzzusammensetzung $UO_3 \cdot 6MeO_{1,5}$ nachweisen können (35).

Die bisherigen Untersuchungen von Dioxid-Sesquioxid-Mischphasen sind meist nur bei einer Temperatur und mit großen Fehlergrenzen durchgeführt worden. So sind beispielsweise die Ergebnisse der von Weigel et al. bearbeiteten Systeme $UO_{2+x}(NpO_2, PuO_2)-EuO_{1,5}$ (32,33,41) und der in dieser Arbeit beschriebenen Systeme $UO_{2+x}(NpO_{2+x}, PuO_{2+x})-HoO_{1,5}$ nicht miteinander in Einklang zu bringen.

Eingehendere Angaben liegen bisher nur über die Systeme ThO_2 -EuO_{1,5} (28), CeO_2 -YO_{1,5}(GdO_{1,5}, DyO_{1,5}, YbO_{1,5}) (37), ThO₂-YO_{1,5} (42), ThO₂(UO₂, UO_{2+x}, NpO₂, PuO₂)-TmO_{1,5}, UO_{2+x}-YbO_{1,5} (48) vor.

	CeO2	Th0 ₂	UO ₂	^{U0} 2+x	Np02	Pu02
La0 _{1,5}	1,37	4,5,7, 12,46	22,25,31	10,22,25, 31,35,49		
Ce0 _{1,5}	13	12				
Pr01,5	2	. 21		11,35		
Nd01,5	2,3,12, 37	4,12,46	14,26	10,26,35		
Sm0 _{1,5}	2,4,6, 12,37	4,12		10,35,49		
Eu0 _{1,5}		21, <u>28</u>	47	32	41	33
Gd.0 _{1,5}	6,12, <u>37</u>	4,12	34,40	35,40		-
Tb0 _{1,5}				35		
^{Dy0} 1,5	12, <u>37</u>		20	49		-
Er0 _{1,5}				9		
Ho0 _{1,5}	37			35		
Tm0 _{1,5}		<u>48</u>	<u>48</u>	35, <u>48</u>	<u>48</u>	<u>48</u>
Yb0 1,5	4,12, <u>37</u>	21,28		10,35, <u>48</u> ,49		
Lu0 _{1,5}				35,45		
Sc0 _{1,5}	39	39,43	43	10,43		
Y0 _{1,5}	4,6,12, <u>37</u>	4,8,12, <u>42</u>	15,17,18, 22,35,36, 44	15,16,19,22, 23,24,27,29, 30,35,36,44,45	19	
AmO _{1,5}		46				
Bi0 _{1,5}	38	38	38			

<u>Tabelle 1</u>: Literaturzusammenstellung über bisher bekannte Arbeiten in den Systemen $MeO_2(MeO_{2+x})-Me^{\dagger}O_{1,5}$ Tabelle 1 enthält eine Zusammenstellung der umfangreichen, aber weit verstreuten Literatur über binäre Dioxid-Sesquioxid-Systeme. Die Literaturhinweise auf quantitative Untersuchungen sind unterstrichen, soweit sich die Aussagen auf die festen Lösungen beziehen. Die Tabelle soll lediglich einen Überblick vermitteln und erhebt keinen Anspruch auf Vollständigkeit.

Die vorliegende Arbeit beschäftigt sich mit den Phasenverhältnissen in den Systemen ThO₂-HOO_{1,5}, ThO₂-LuO_{1,5}, ThO₂-ScO_{1,5}, UO₂-HOO_{1,5}, $(U_x, HO_{1-x})O_{2,00}, UO_{2+x}-HOO_{1,5}, NpO_{2+x}-HOO_{1,5} und PuO_{2+x}-HOO_{1,5}$ zwischen 1100°C und 1700°C.

Im System ThO₂-HoO_{1,5} wurde stellvertretend für alle bearbeiteten Oxidsysteme der Aufbau der Fluorit- und Sesquioxidmischkristalle untersucht.

2. ERGEBNISSE UND DISKUSSION

2.1. Binäre Systeme des Thoriumdioxids mit Oxiden dreiwertiger Elemente (Ho,Lu,Sc)

2.1.1. Das System ThO_-HoO

2.1.1.1. Die Zeitabhängigkeit der Gleichgewichtseinstellung

Ausgehend von den reinen Oxiden wurde eine feinstpulverisierte Mischung mit 85 Mol% $\text{ThO}_2 + 15 \text{ Mol\% HoO}_{1,5}$ bis zu einer Gesamtreaktionsdauer von 700 Stunden im Silitrohrofen bei 1400°C in O₂-Atmosphäre getempert. Anfangs wurde der Versuch immer nach 25 Stunden, später in Intervallen von 100 Stunden unterbrochen und nach erneutem Durchmischen des Präparats jeweils eine Probe zur Bestimmung der Gitterkonstanten entnommen.

<u>Tabelle 2:</u> Versuchszusammenstellung des Langzeitversuchs (85 Mol% ThO₂-15 Mol% HoO_{1,5}, 1400^oC) (Zeit (h); Phase I a (Å); Phase II a (Å)):

0, 5.599, - ; 25, 5.598, - ; 50, 5.597, 5.569 ; 75, 5.598, 5.569 ; 100, 5.598, 5.570 ; 125, 5.598, 5.569 ; 150, 5.597, 5.570 ; 175, 5.597, 5.570 ; 200, 5.597, 5.570 ; 300, 5.596, 5.571 ; 400, 5.595, 5.570 ; 500, 5.594, 5.571 ; 600, 5.593, 5.572 ; 700, 5.593, 5.572 .

Zuerst bildet sich eine $HoO_{1,5}$ -arme Fluoritphase (Phase I). Nach einer Reaktionszeit von 50 Stunden erscheint auf dem Röntgenfilm eine zweite, $HoO_{1,5}$ -reichere Phase (Phase II). Die erhaltenen Gitterkonstanten wurden num über der Reaktionszeit aufgetragen und bis zum Schnittpunkt extrapoliert (Abb. 1)⁺⁾. Die hieraus resultierende Reaktionszeit liegt bei etwa 2000 Stunden, was zeigt, daß zum quantitativen Umsatz der feingepulverten Oxide extrem lange Glühzeiten erforderlich wären. Die extrapolierte Gitterkonstante und die Gitterkonstante des im System ThO₂-HoO_{1,5} durch Mischhydroxidfällung hergestellten Präparats gleicher Zusammensetzung stimmen überein. Beim Erhitzen von Präparaten,

⁺ Aus drucktechnischen Gründen wurden alle Abbildungen in Abschnitt 6 zusammengefaßt die durch Mischhydroxidfällung dargestellt wurden, ist das Gleichgewicht bei 1400°C i.a. schon nach weniger als einer Stunde erreicht.

2.1.1.2. Phasengrenzen und Temperaturabhängigkeit der Grenzzusammensetzungen

Die Röntgenaufnahmen der Mischpräparate des Systems ThO₂-HoO_{1,5} zeigten auf der thoriumreichen Seite bezüglich der Linienfolge vollkommene Übereinstimmung mit dem Fluoritgitter des reinen Thoriumoxids. Mit steigendem HoO_{1,5}-Gehalt verschoben sich die Linienlagen nach größeren Winkeln. Auf der holmiumreichen Seite traten erwartungsgemäß die Interferenzen des reinen Sesquioxids auf, deren Lage sich mit wachsenden Anteilen an ThO₂ nach kleineren Winkeln hin änderte.

Es liegt also auf beiden Seiten des Systems $\text{ThO}_2-\text{HoO}_{1,5}$ Mischkristallbildung vor, wobei unter Erhaltung der Gittersymmetrien eine Kontraktion des CaF_2 -Gitters des ThO_2 und eine Aufweitung des Mn_2O_3 -Gitters des HO₂O₃ eintritt, beides bedingt durch die unterschiedliche Größe der Ionenradien von $r_{\text{Th}}^{4+} = 0,99$ Å (50) und $r_{\text{Ho}}^{3+} = 0,89$ Å (51).

In Tabelle 3 sind die Gitterkonstanten der untersuchten Mischpräparate zusammengestellt. Die Reaktionszeiten lagen je nach der Reaktionstemperatur zwischen 1 und 8 Stunden.

Tabelle 3:	Gitterkonstanten und auftretende Phasen im System
	ThO ₂ -HoO ₁₅ zwischen 1250° C und 1700° C
	(Mol% HoO _{1.5} ; Temp. (^o C); Gitterkonstanten a bzw. a/2 (Å);
	auftretende Phasen):

0	, 1400, 5.599	, <u>F</u> ;	2.5, 1400, 5.595, \underline{F} ;	
5	, 1400, 5.591	• <u>F</u>	7.5, 1400, 5.588 , <u>F</u> ;	
10	, 1400, 5.586	• <u>F</u> ;	12.5, 1400, 5.581 , \underline{F} ;	
15	, 1400, 5.578	, <u>F</u> ;	17.5, 1400, 5.574 , \underline{F} ;	
20	, 1400, 5.569	, <u>F</u> ;	22.5, 1400, 5.567 , <u>F</u> ;	
25	, 1400, 5.564	• <u>F</u> ;	30 , 1250, 5.560 , $\underline{F} + C$;	
30	, 1400, 5.558	, $\underline{F} + C$;	30 , 1550, 5.556 , \underline{F} ;	
35	, 1250, 5.560	, <u>F</u> + C ;	35 , 1475, 5.555 , $\underline{F} + C$;	
35	, 1550, 5.548	, <u>F</u> + C ;	40 , 1250, 5,560 , $\underline{F} + C$;	

- 6 -

40 ;	1400,	5.557	و	<u>F</u> +	C	;	40	و	1475,	5.555	, <u>F</u> +	с;	
40 ,	1550,	5.549	و	<u>F</u> +	C	;	45	و	1700,	5.533	, <u>F</u>	;	
50 ,	1250,	5.560	و	<u>F</u> +	C	;	50	و	1400,	5.558	, <u>F</u> +	C;	
50,	1475,	5.555	و	<u>F</u> +	C	;	50	و	1550,	5.549	。 <u>F</u> +	C;	
50,	1700,	5.527	و	F		;	60	و	1400,	5.558	, <u>F</u> +	C;	
60,	1700,	5.525	و	<u>F</u> +	Ç	ŝ	70	,	1400,	5.558	, <u>F</u> +	C;	
70,	1700,	5.527	۶	<u>F</u> +	C	;	70	و	1250,	5.350	+, <u>C</u> +	F;	
75 ,	1250,	5.349	+ ,	<u>C</u> +	F	;	77.	5,	1250,	5.349	+, <u>C</u> +	F;	
80,	1400,	5.559	3	<u>F</u> +	C	;	80	و	1250,	5.350	+, <u>C</u> +	F;	
80,	1400,	5.342	+ ,	<u>C</u> +	F	;	80	9	1475,	5.336	+, <u>C</u> +	F;	
80 ,	1550,	5.330	ا و	<u>C</u> +	F	° 3	82.	5,	1250,	5.350	+, <u>C</u> +	F;	
85,	1250,	5.351	+ ,	<u>C</u> +	F	;	85	و	1400,	5.343	+, <u>C</u> +	F;	
85,	1475,	5.336	+ و	<u>C</u> +	F	;	85	و	1550 ,	5.330	+, <u>C</u> +	F;	
87.5,	1250,	5.349	+ ,	<u>c</u> +	F	;	87.	5,	1400,	5.343	+, <u>c</u> +	F;	
87.5,	1475,	5 335	+ ,	<u>C</u> +	F	;	87.	5,	1550,	5.331	+, <u>C</u> +	F;	
90,	1250 ,	5.346	+ ,	C		;	90	و	1400,	5.343	+, <u>C</u> +	F;	
90,	1475,	5.336	+,	<u>C</u> +	F	;	90	و	1550,	5.331	+, <u>c</u> +	F ;	
90,	1700,	5.321	+ ,	<u>C</u> +	F	;	92.	5,	1400,	5.334	+, <u>C</u>	;	
92.5,	1700,	5.321	+,	<u>C</u> +	F	;	95	و	1400,	5.326	+, <u>c</u>	;	
97.5,	1400,	5.315	+	Ċ		;]	L00	,	1400,	5.304	+, C	•	

F = Fluorittyp, C = C-Typ, + = 1/2 C-Typ-Gitterkonstante (die Gitterkonstanten gelten für die jeweils unterstrichene Phase)

Aus Tabelle 3 ist ersichtlich, daß die Gitterkonstanten der bei verschiedenen Temperaturen hergestellten Präparate gleicher Zusammensetzung zum Teil erhebliche Unterschiede aufweisen. Damit bietet sich in der röntgenografischen Untersuchung eine Methode an, um auf einfache Weise die Phasengrenzen zu bestimmen und die Temperaturabhängigkeit der Grenzzusammensetzungen zu verfolgen.

Abb. 2 zeigt, daß im System $\text{ThO}_2-\text{HoO}_{1,5}$ eine feste Lösung mit Fluoritstruktur von 0-27 Mol% $\text{HoO}_{1,5}$ für alle Versuchstemperaturen existiert. Bei $\text{HoO}_{1,5}$ -Gehalten von mehr als 27 Mol% erreichen die Gitterkonstanten der 1250°-Präparate einen konstanten Wert. In diesen Bereich tritt neben der Fluoritphase die C-Typ-Phase auf, d.h. es liegt neben der gesättigten festen Lösung von 27 Mol% $\text{HoO}_{1,5}$ in ThO₂ noch eine gesättigte feste Lösung von ThO₂ in $\text{HoO}_{1,5}$ vor. Auch für alle anderen Temperaturen gehen die Gitterparameter nach und nach in konstante Werte über, falls die jeweilige Sättigungsgrenze überschritten ist.

	Grenzzusamm	Grenzzusammensetzungen							
Temp. ([°] C)	Flucrittyp (in Mol% HoO _{1,5})	C-Typ (in Mol% ThO ₂)							
1250	27,0	10,5							
1400	28,5	9,0							
1475	30,5	7,5							
1550	35,0	6,5							
1700	51,0	4,0							

Tabelle 4: Grenzzusämmensetzungen im System ThO2-HoO1.5

2.1.1.3. Das Phasendiagramm des Systems ThO2-HoO1.5

Aus den in Tabelle 4 zusammengestellten Werten für die Grenzzusammensetzungen zwischen 1250°C und 1700°C kann man ein Phasendiagramm aufstellen, das in recht anschaulicher Weise die Phasenverhältnisse im genannten Temperaturbereich darstellt (Abb. 3). Man sieht, daß die Breite der Fluoritphase mit steigender Temperatur erheblich zunimmt. Auf der holmiumreichen Seite ist dagegen eine Abnahme der Löslichkeit von ThO₂ in HoO_{1,5} mit steigender Temperatur festzustellen. Zwischen den beiden homogenen, kubischen Phasen erstreckt sich eine ausgedehnte Mischungslücke, in der eine gesättigte feste Lösung von ThO₂ neben einer solchen von HoO_{1.5} vorliegt.

2.1.1.4. Der Aufbau der Fluorit- und Sesquioxidmischkristalle

Für den Aufbau der Fluorit- und Sesquioxidmischkristalle sind jeweils zwei theoretische Möglichkeiten gegeben, die am Beispiel des ThO₂-HoO_{1,5} Fluoritkristalls kurz erläutert werden sollen. Im einen Fall bleibt das Kationenteilgitter der Fluoritstruktur des ThO₂ erhalten, d.h. die Th⁴⁴-Ionen werden sukzessive durch Ho³⁺-Ionen ersetzt. Der aus Gründen der Elektroneutralität ausfallende Sauerstoff bewirkt dabei die Ausbildung von Fehlstellen im Anionenteilgitter. Der 2. Fall setzt ein mit 8 0²⁻-Ionen vollständig besetztes Anionenteilgitter voraus, wobei die zur Erhaltung der Elektroneutralität einzuführenden zusätzlichen Ho³⁺-Ionen Zwischengitterplätze besetzen. Für beide Möglichkeiten lassen sich die Dichten nach

$$g_{\text{ber.}} = \frac{x \operatorname{ThO}_2 + y \operatorname{HoO}_{1,5}}{N_{\text{L}} \cdot a^3}$$

berechnen. Dabei bedeuten x und y die Anzahl Moleküle ThO₂ bzw. HoO_{1,5} pro Elementarzelle, N_L die Loschmidtsche Zahl und a die Gitterkonstante in Å. Ein Vergleich zwischen berechneten und experimentell gefundenen Dichten muß nun zeigen, nach welchem der beiden Prinzipien die Mischkristalle aufgebaut sind. Die experimentellen Dichten wurden von 1400[°]-Präparaten nach der Biltzschen Methode bei 20[°]C mit Xylol als Sperrflüssigkeit bestimmt.

Mol% ThO ₂	x y	Anior x	nenfeh y	lstellen S _{ber} . (g/cm ³)	Kati x	onenein y	lagerung S _{ber.} (g/cm ³)	3 _{exp.} (g∕cm ³)
100		4		9,99	4		9,99	9 , 94
95	19	3,8	0,2	9,89	3,85	0,2	10,02	9,84
90	9	3,6	0,4	9,78	3,69	0,42	10,04	9 ,6 0
85	5,67	3,4	0,6	9,67	3,53	0,63	10,06	9,59
80	4	3,2	0,8	9,58	3,37	0,84	10,08	9,41
75	3	3	1	9,46	3,2	1,07	10,09	9,25

Tabelle 5a: Berechnete und experimentelle Dichten (thoriumreiche Seite)

In Abbildung 4a sind die berechneten und experimentellen Dichten für die Fluoritmischkristalle eingezeichnet. Gerade I repräsentiert den Kationeneinlagerungstyp, Gerade II den Anionenfehlstellentyp und Gerade III die experimentellen Dichten.

Mol% ^{HoO} 1,5	y x	Auffllg y	. d., x	Anioneng. Sber. (g/cm ³)	Katio y	menfehl x	stellen S _{ber} (g/cm ³)	3 exp. (g∕cm ³)
100 97,5 95 92,5	- 39 19 12,33	32 31,2 30,4 29,6	0,8 1,6 2,4	8,41 8,44 8,47 8,51	32 30,94 29,9 28,87	0,8 1,58 2,35	8,41 8,37 8,33 8,31	8,32 8,39 8,41 8,49

Tabelle 5b: Berechnete und experimentelle Dichten (holmiumreiche Seite)

Aus Abb. 4a geht hervor, daß der Unterschied zwischen den berechneten und den experimentellen Dichten beim Kationeneinlagerungstyp viel größer ist als beim Fehlstellentyp. Die experimentell ermittelten Dichten folgen eindeutig der Geraden für die Anordnung mit Anionenfehlstellen. Damit ist erwiesen, daß die Fluoritmischkristalle nach diesem Prinzip aufgebaut sind. Dieses Ergebnis wird auch durch die bereits früher über den Bau der Fluoritmischkristalle angestellten Untersuchungen bestätigt (1,5,42).

Auf der holmiumreichen Seite war eine Aussage insofern etwas schwieriger zu treffen, als die berechneten Dichten für die beiden möglichen Mischkristalltypen sich nur geringfügig unterscheiden (Abb. 4b). Gerade I zeigt den Gang für eine Auffüllung des Anionengitters, Gerade II für Kationenfehlstellen und Gerade III für die experimentellen Dichten.

Man kann aus Abb. 4b aber doch ersehen, daß die experimentellen Dichten ganz offensichtlich der Gerade folgen, deren berechnete Werte einer Auffüllung des Anionengitters entsprechen.

Somit kann man feststellen, daß sowohl auf der thoriumoxid- als auf der holmiumoxidreichen Seite die Mischkristalle jeweils ein vollkommenes Kationenteilgitter besitzen. Mit steigendem Ho0_{1,5}-Gehalt werden dabei auf der Thoriumseite in zunehmendem Maße Anionenfehlstellen gebildet, während auf der Holmiumseite mit Zunahme an ThO₂ eine Auffüllung des Anionengitters einhergeht.

2.1.2. Das System ThO_-LuO_1.5

Der Homogenitätsbereich der festen Lösungen ist wesentlich von der Größe der an der Mischkristallbildung beteiligten Ionen abhängig. Man kann deshalb aus der Differenz der Ionenradien $|r_{Th}^{H+} - r_{Ho}^{3+}|$ im vorherein eine qualitative Aussage über die zu erwartenden Phasenbreiten treffen. Im System ThO₂-LuO_{1,5} sollte demnach eine geringere Tendenz zur Mischkristallbildung bestehen als im System ThO₂-HoO_{1,5} $(r_{Ho}^{3+} = 0.89 \text{ Å}, r_{Lu}^{3+} = 0.85 \text{ Å} (51))$. Diese Voraussage bestätigte sich. Zwar kommt es noch auf beiden Seiten des Systems ThO₂-LuO_{1,5} zur Ausbildung von Mischphasen, jedoch sind diese Bereiche wesentlich kleiner als im System ThO₂-HoO_{1,5} (Abb. 5a, 5b und 6).

Ein weiterer bemerkenswerter Unterschied gegenüber dem System ThO₂-HoO_{1,5} besteht darin, daß die Löslichkeit auf der LuO_{1,5}-reichen Seite mit steigender Temperatur zunimmt. Völlig analog hierzu sind die Ergebnisse der an CeO₂-MeO_{1,5}-Systemen durchgeführten Untersuchungen von Bevan et al. (37), die auf der sesquioxidreichen Seite bei dem mit Holmium vergleichbaren Yttrium eine Abnahme und bei dem mit Lutetium vergleichbaren Ytterbium eine Zunahme der Löslichkeit mit steigender Temperatur feststellen konnten.

Tabelle 6:Gitterkonstanten und auftretende Phasen im System Th02-Lu01,5zwischen 1250°C und 1700°C (Reaktionszeiten 1-12 Stunden)(Mol% Lu01,5; Temp. (°C); Gitterkonstanten a bzw. a/2 (Å);
auftretende Phasen):

;		F	و	5.594	1400,	-5,	2	•		$\overline{\mathbf{F}}$	599,	5	1400,	و	0
;	+ C	F	\$	5.585	1400,	,5	7	ŝ		F	589,	5	1400,	و	5
;	+ C	F	9	5.584	1400,	9	10	ŝ	+ C	F	587,	5	1250,	و	10
;	+ C	F	9	5.587	1250,	.5,	12	°,	+ C	F	582,	5	1550,	9	10
;	+ C	F	و	5.582	1550,	5,	12	ŷ	+ C	F	585,	5	1400,	5,	12
;	+ C	F	۶	5.585	1400,	ک	15	ŝ	+ C	F	586 ,	5	1250,	و	15
;	+ C	F	و	5.578	1700,	و	15	ŝ	+ C	F	581 ,	5	1550,	و	15
;	+ C	F	و	5.585	1400,	,	20	ŝ	+ C	F	586 ,	5	1250,	5	20
;	+ C	F	و	5 578	1700,	5	20	9	+ C	F	581 ,	5	1550,	و	20
;	+ C	F	و	5 585	1400,	9	30	ĵ	+ C	F	586 ,	5	1250,	و	30
;	+ C	F	9	5 583	1550,	و	35	9	+ C	F	582,	5	1550,	9	30
;	+ C	F	و	5,585	1400,	و	40	ŝ	+ C	F	586 ,	5	1250,	و	40

40 , 1550, 5.582 , F + C ; 50 , 1250, 5.587 , F + C ; 50 , 1400, 5.585 , F + C ; 50 , 1550, 5.582 , F + C ; 90 , 1700, 5.202 ⁺, C + F ; 90 , 1550, 5.201 ⁺, C + F ; 90 , 1400, 5.200 ⁺, C + F ; 90 , 1250, 5.199 ⁺, C + F ; 92.5, 1550, 5.200 ⁺, C + F ; 95 , 1700, 5.202 ⁺, C + F ; 95 , 1550, 5.200 ⁺, C + F ; 95 , 1400, 5.200 ⁺, C + F ; 95 , 1250, 5.199 ⁺, C + F ; 97.5, 1550, 5.201 ⁺, C + F ; 97.5, 1250, 5.199 ⁺, C + F ; 98 , 1700, 5.200 ⁺, C ; 98 , 1400, 5.200 ⁺, C + F ; 98.5, 1550, 5.199 ⁺, C ; 99 , 1400, 5.199 ⁺, C ; 99 , 1250, 5.198 ⁺, C ; 99.5, 1400, 5.197 ⁺, C ;100 , 1400, 5.196 ⁺, C .

F = Fluorittyp, C = C-Typ, $^+$ = 1/2 C-Typ-Gitterkonstante (die Gitterkonstanten gelten für die jeweils unterstrichene Phase)

	Grenzzusam	nensetzungen
Temp.	Fluorittyp	C-Typ
(C)	(in Mol% LuO _{1,5})	(in Mol% ThO ₂)
1250	6,5	1,5
1400	7,0	1,7
1550	8,5	2,0
1700	10,5	2,6

Tabelle 7: Grenzzusammensetzungen im System ThO2-LuO1.5

2.1.3. Das System ThO2-ScO1.5

Die Differenz der Ionenradien wird hier schon so groß ($r_{Sc}^{3+} = 0,81$ Å (52)), daß auf der $ScO_{1,5}^{-reichen}$ Seite eine innerhalb der Meßgenauigkeit nachweisbare Löslichkeit nicht mehr auftritt (Abb. 7). Auch auf der Thoriumseite ist die Phasenbreite der festen Lösung sehr klein geworden. Bei 1750°C löst sich nur noch etwa 1 Mol% $ScO_{1,5}^{-}$ in ThO₂. Dieser von Möbius et al. gefundene Wert (39) wurde beim Aufstellen des Phasendiagramms (Abb. 8) mit einbezogen. <u>Tabelle 8:</u> Gitterkonstanten und auftretende Phasen im System ThO₂-ScO_{1,5} bei 1250°C und 1500°C (Reaktionszeiten 4-12 Stunden) (Mol% ScO_{1,5}; Temp. (°C); Gitterkonstanten a bzw. a/2 (Å); auftretende Phasen):

0 , 1500, 5.599 , \underline{F} ; 0.25, 1500, 5.597 , \underline{F} ; 0.5, 1500, 5.596 , \underline{F} ; 0.75, 1500, 5.596 , \underline{F} + C ; 1 , 1250, 5.597 , \underline{F} + C ; 1 , 1500, 5.596 , \underline{F} + C ; 1.5, 1500, 5.595 , \underline{F} + C ; 2 , 1250, 5.597 , \underline{F} + C ; 4 , 1250, 5.597 , \underline{F} + C ; 5 , 1500, 5.596 , \underline{F} + C ; 95 , 1250, 5.597 , \underline{F} + C ; 95 , 1500, 5.596 , \underline{F} + C ; 95 , 1500, 4.922 + C + F ; 97.5 , 1500, 4.922 + C + F ; 100 , 1500, 4.922_{5}^{+} , C

F = Fluorittyp, C = C-Typ, $^+$ = 1/2 C-Typ-Gitterkonstante (die Gitterkonstanten gelten für die jeweils unterstrichene Phase)

	Grenzzusamm	ensetzungen
Temp.	Fluorittyp	С-Тур
(°C)	(in Mol% ScO _{1,5})	$(in Mol\% ThO_2)$
1250	0,4	
1500	0,6	0,0
1750	0,9 (39)	

Tabelle 9: Grenzzusammensetzungen im System ThO2-ScO1.5

2.2. Binäre Systeme der Uranoxide mit Holmiumoxid

2.2.1. Das System UO_-HoO1.5

Wie ein Vergleich der Ionenradien von $r_{Th}^{4+} = 0,99$ Å und $r_{U}^{4+} = 0,93$ Å (50) zeigt, sollte die Löslichkeit von Ho0_{1,5} in U0₂ größer sein als in Th0₂. Im vergleichbaren Temperaturbereich zwischen 1250°C und 1550°C trifft dies für die Actinidenseite auch zu, während auf der holmiumoxidreichen Seite die Phasenbreiten der festen Lösungen in beiden Systemen annähernd gleich groß sind (Abb. 9 und 10). Bei der Herstellung der UO2-HOO1.5-Mischpräparate wurde auf strengen Sauerstoffausschluß geachtet, da in diesen Proben das Uran schon bei Zimmertemperatur zu Wertigkeiten >4 oxydiert wird. Anderson et al. zeigten beispielsweise an Präparaten des Systems UO2-YO15, die zur Verhinderung einer Oxydation vorher im Vakuum mit Uranmetall erhitzt worden waren, daß das O/Me-Verhältnis an der Luft zwischen -20°C und +20°C bereits einen Wert von etwa 2,0 erreicht (15). Zur Vermeidung dieser unerwünschten Oxydation wurden die an der Luft vorgeglühten Präparate im Wasserstoffstrom reduziert und getempert. Der für diese Versuche verwendete wassergekühlte Ofen war in einer Glove-Box aufgestellt, die laufend mit reinstem Argon gespült wurde, um nach dem Tempern alle Arbeiten in inerter Atmosphäre durchführen zu können. Trotz dieser sorgfältigen Darstellungsweise der UO2-HoO1.5-Präparate ist eine geringfügige Oxydation des Urans dabei nicht auszuschließen, da die Spuren Sauerstoff im H2-Gas bereits ausreichen, um in UO2-SEO1.5-Mischkristallen die vollständige Reduktion des Urans auf die Stufe UO_{2.00} zu verhindern (25,44). Dasselbe trifft natürlich auch auf das Argon zu, weshalb die Spülzeiten mit Argon im Reaktionsrohr so kurz wie möglich gehalten wurden.

Die leichte Oxydierbarkeit der UO₂-Phase ist vermutlich auch die Erklärung dafür, weshalb sich in den Systemen ThO₂-HoO_{1,5} und UO₂-HoO_{1,5} die Löslichkeiten auf der Holmiumseite nicht voneinander unterscheiden. Ein Vergleich der Ionenradien von $r_U^{4+} = 0.93$ Å, $r_U^{5+} = 0.87$ Å und $r_U^{6+} = 0.83$ Å (50) zeigt deutlich, daß die Oxydation des Urans zu einer Verkleinerung der Gitterparameter führt und damit auch eine geringere Breite der C-Typ-Phase im System UO₂-HoO_{1.5} bedingen sollte.

<u>Tabelle 10:</u> Gitterkonstanten und auftretende Phasen im System U0₂-Ho0_{1,5} zwischen 1250°C und 1550°C (Reaktionszeiten 4-12 Stunden) (Mol% Ho0_{1,5}; Temp. (°C); Gitterkonstanten a bzw. a/2 (Å); auftretende Phasen):

0	, 1400	, 5.468	, <u>F</u>	; 5	, 1400,	5.458	, <u>F</u>	;
10	, 1400	, 5.448	, <u>F</u>	; 15	<i>,</i> 1400,	5.437	, <u>F</u>	;
20	, 1400	, 5.424	, <u>F</u>	; 25	, 1400,	5.411	, <u>F</u>	;
30	, 1400	, 5.401	, <u>F</u>	; 35	, 1400,	5.391	, <u>F</u>	;
40	, 1400	, 5.380	, <u>F</u>	; 45	, 1400,	5.370	, <u>F</u>	;

50,	1400,	5.359	, <u>F</u>		° 9	55,	1400,	5.349	9	F		;
60,	1400,	5.339	۶ F		;	62.5,	1250,	5.337	و	<u>F</u> +	С	;
62.5,	1400,	5.335	, <u>F</u> +	C	;	62.5,	1550,	5.333	و	<u>F</u> +	С	;
65,	1250,	5.339	, <u>F</u> ÷	C	ŝ	65,	1400,	5.335	و	<u>F</u> +	С	;
65,	1550,	5.334	, <u>F</u> +	С	ŝ	67.5,	1250,	5.336	و	<u>F</u> +	С	;
67.5,	1400,	5,334	, <u>F</u> +	С	•	67.5,	1550,	5.333	و	<u>F</u> +	С	;
70,	1250,	5.336	, <u>F</u> +	С	;	70,	1400,	5.334	9	<u>F</u> +	С	;
,70	1550,	5.333	, <u>F</u> +	С	ŝ	72.5,	1250,	5,337	و	<u>F</u> +	С	;
72.5,	1400,	5.335	, <u>F</u> +	C	;	72.5,	1550,	5.332	و	<u>F</u> +	С	;
75,	1250,	5.339	, <u>F</u> +	С	ŝ	75,	1400,	5.335	و	<u>F</u> +	С	;
75 ,	1550,	5.334	, <u>F</u> +	C	ŝ	77.5,	1250,	5.337	و	<u>F</u> +	С	;
77.5,	1400,	5.336	, <u>F</u> +	С	;	77.5,	1550,	5.332	و	<u>F</u> +	С	;
80 ,	1250,	5.338	, <u>F</u> +	C	;	80,	1400,	5.335	و	<u>F</u> +	С	;
80,	1550,	5.333	, <u>F</u> +	C	0 9	80 ,	1250,	5.329	+ e	<u>C</u> +	F	;
80,	1400,	5.324	⊦, <u>C</u> +	F	;	80,	1550,	5,320	+ •	<u>C</u> +	F	;
82.5,	1250,	5.329	⊦, <u>C</u> +	F	ŝ	82.5,	1400,	5.326	+ ,	<u>C</u> +	F	;
82.5,	1550 ,	5.321	⊦, <u>C</u> +	F	ŝ	85,	1250,	5.330	+ ,	<u>C</u> +	F	;
85,	1400,	5.325	⊦, <u>C</u> +	F	;	85,	1550,	5.321	+ ,	<u>C</u> +	F	;
87.5,	1250,	5.329 -	⊦, <u>C</u> +	F	ŷ	87.5,	1400,	5.325	+ ,	<u>C</u> +	F	;
87.5,	1550,	5.321	⁺, <u>C</u> +	F	;	90,	1250,	5.327	+ ,	C		;
90 _s	1400,	5.325	⁺, <u>C</u> +	F	;,	90,	1550,	5.320	+ ,	<u>C</u> +	F	;
92.5,	1400,	5.322	+, <u>C</u>		ĵ	92.5,	1550,	5.319	+,	<u>C</u> +	F	;
95 ,	1400,	5.317	⁺ , <u>C</u>		ĵ	97.5,	1400,	5.310	+ و	C		;
100 ,	1400,	5.304	⁺ , <u>C</u>		•							

F = Fluorittyp, C = C-Typ, $^+$ = 1/2 C-Typ-Gitterkonstante (die Gitterkonstanten gelten für die jeweils unterstrichene Phase)

	Grenzzusamm	ensetzungen
Temp.	Fluorittyp	C-Typ
(°C)	(in Mol% HoO _{1,5})	(in Mol% UO_2)
1250	60,0	10,5
1400	61,0	9,0
1550	62,0	6,5

Tabelle ll: Grenzzusammensetzungen im System U02-Ho01,5

2.2.2. Das System U0_-Ho01.5

2.2.2.1. Phasengrenzen und Temperaturabhängigkeit der Grenzzusammensetzungen

Tabelle 12 bringt eine Zusammenstellung der bei der Untersuchung der verschiedenen Phasengebiete für p = 1 Atm O_2 ermittelten kubischen Gitterkonstanten. Im Bereich der rhomboedrischen Phase, die in Abschnitt 2.2.2.2. noch ausführlich beschrieben wird, konnten aufgrund der Ähnlichkeit von rhomboedrischem und kubischem Gitter sogenannte "pseudokubische" Gitterkonstanten angegeben werden. Abb. 11 zeigt den Verlauf der Gitterkonstanten im System U O_{2+x} -Ho $O_{1.5}$.

Tabelle 12: Gitterkonstanten und auftretende Phasen im System UO_{2+x}-HoO_{1,5} zwischen 1100°C und 1550°C (Reaktionszeiten 2-14 Stunden, 1 Atm O₂) (Mol% HoO_{1,5}; Temp. (°C); Gitterkonstanten a bzw. a/2 (Å); auftretende Phasen):

10 ,	1550,	5.399	5	<u>F</u> +	0	;	10	9	1400,	5.377	,	F	+	0	;	
15 ,	1550 ,	5.399	9	<u>F</u> +	0	3	15	3	1400,	5.376	,	F	╋	0	;	
20 ,	1550,	5.398	3	F		;	20	,	1100,	5,352	9	F	+	0	;	
25 ,	1550,	5.389	9	F		;	25	,	1400,	5.376	,	F	+	0	;	
25,	1250,	5.358	9	<u>F</u> +	0	;	30	,	1550,	5.381	و	F			;	
30,	1400,	5.375	9	<u>F</u> +	0	;	30	,	1250,	5.359	3	F	+	0	;	
30,	1100,	5.351	9	<u>F</u> +	0	ţ	33	,	1400,	5.376	و	F			;	
35 ,	1400,	5.371	9	F		į	35	9	1250,	5.359	,	F	+	0	;	
40 ,	1400,	5.365	9	F		;	40	9	1250,	5.360	و	F	+	0	;	
40,	1100,	5.353	و	<u>F</u> +	0	;	43	,	1250,	5.359	و	F			;	
45,	1400,	5.355	9	F		;	47	9	1100,	5.351	و	F			;	
50,	1400,	5.347	5	F		ۇ	55	,	1400,	5.339	و	F			;	
60 ,	1400,	5.330	و	F		;	62.	5,	1400,	5.326	و	F			;	
65,	1400,	5.324	و	<u>F</u> +	R	•	67.	5,	1400,	5.324	و	F	+	R	;	
70,	1400,	5.328	و	<u>F</u> +	- <u>R</u>	;	72.	5,	1400,	5.332	9	R			;	
75,	1400,	5.334	y	R		;	77.	5,	1400,	5.337	و	R			;	
80,	1400,	5,337	و	<u>R</u>		ĵ	82.	5,	1400,	5.340	,	R			;	
85.7,	1400,	5.343	9	R		;	90	9	1400,	5.342	,	<u>R</u>	+	С	;	
92.5,	1400,	5.343	8	<u>R</u> +	· C	ĵ	95	,	1100,	5.3075	+ و	<u>C</u>	+	R	;	

95 , 1250, 5.306⁺, \underline{C} + R ; 95 , 1400, 5.305⁺, \underline{C} + R ; 95 , 1550, 5.304⁺₅, \underline{C} + R ; 97.5, 1100, 5.307⁺₅, \underline{C} + R ; 97.5, 1250, 5.306⁺, \underline{C} + R ; 97.5, 1400, 5.305⁺, \underline{C} + R ; 97.5, 1550, 5.304⁺₅, \underline{C} + R ; 99 , 1250, 5.306⁺, \underline{C} ; 100 , 1400, 5.304⁺, \underline{C} .

O = orthorhombisches U_{308} , F = Fluorittyp, R = rhomboedrische Phase (pseudokubische Gitterkonstanten), C = C-Typ, $^+$ = 1/2 C-Typ-Gitter-konstante (die Gitterkonstanten gelten für die jeweils unterstrichene Phase)

Die Phasenverhältnisse auf der uranreichen Seite wurden mit Hilfe von Goniometeraufnahmen untersucht. Bei der Bestimmung der Löslichkeitsgrenzen von nicht kubischen Gittern ist es sinnvoll, die Änderung des Molvolumens mit der Zusammensetzung zu verfolgen. Um eine lineare Abhängigkeit zu erhalten, trägt man $\frac{2}{\sqrt{V_{MOl}/z}}$ gegen die Zusammensetzung auf, wobei z die Anzahl der Formeleinheiten pro Elementarzelle angibt. Im Falle des U $_{3}0_{8}$ ist z gleich 2.

Tabelle 13: Orthorhombische Gitterparameter und auftretende Phasen zwischen 0 und 6 Mol% Ho0_{1,5} (1250[°]C und 1400[°]C, Reaktionszeiten 4-15 Stunden, 1 Atm 0₂)

Mol%	Temp.	4799 - ¹	Orthor	hombisc	he Gitterpa	rameter	Auftretende
H00 _{1,5}	(°C)	a (Å)	b (Å)	c (Å)	V _{Mol} (Å ³)	$\frac{3}{V_{Mol}/z}$ (Å)	Phasen
0	1250	6,739	3,970	4,144	110,87	3,813	<u>0</u>
1	1250	6,737	3,969	4,145	110,83	3,812	<u>0</u> + F
2	1250	6,738	3,972	4,143	110,88	3,813	<u>0</u> + F
4	1250	6,740	3,971	4,142	110,86	3,813	<u>0</u> + F
6	1250	6,738	3,968	4,145	110,82	3,812	<u>0</u> + F
0	1400	6,741	3,969	4,143	110,85	3,813	<u>0</u>
1	1400	6,739	3,969	4,144	110,84	3,813	<u>0</u> + F
2	1400	6,734	3,972	4,145	110,87	3,813	<u>0</u> + F
4	1400	6,736	3,973	4,142	110,82	3,812	<u>0</u> + F
6	1400	6,737	3,970	4,143	110,81	3,812	<u>0</u> + F

 $0 = \text{orthorhombisches } U_3 0_8, F = Fluorittyp$

(die Gitterkonstanten gelten für die jeweils unterstrichene Phase)

Tabelle 14: Grenzzusammensetzungen der kubischen Phasen im System U02+x-H001.5

	Grenzzusamm	ensetzungen
Temp. ([°] C)	Fluorittyp (in Mol% HoO _{1,5})	C-Typ (in Mol% UO _{2,67})
1100	47,0 - 64,0	1,8
1250	43,0 - 64,0	1,0
1400	33,0 - 64,0	0,5
1550	19,0 - 64,0	0,3

Da die Mischoxidpräparate des Systems UO2+x-HOO1.5 besonders charakteristische Färbungen aufweisen, soll das Aussehen dieser Mischkristalle einmal kurz beschrieben werden. Auf der Uranseite sind die Präparate dunkel gefärbt. Mit wachsenden Anteilen an HoO_{1.5} tritt erwartungsgemäß Farbaufhellung ein. Im einzelnen werden dabei folgende Farbabstufungen beobachtet:

Schwarzgrau - braunschwarzgrau - schwarzbraun - braun - braungrün olivgrün - grün - rotbraun - dunkelrot - hellrot - orangerot - orange gelbrot - gelb. Das Auftreten dieser z.T. sehr intensiven Farben ist auf die Änderung der mittleren Wertigkeit des Urans mit der Zusammensetzung zurückzuführen.

2.2.2.2. Die Verbindung $UO_{3} \cdot 6HoO_{1,5}$ und ihre Phasenbreite

Keller hat die Fluoritphasenbreiten einiger UO2+x-MeO1,5-Systeme übersichtlich zusammengestellt (53). Dabei fällt auf, daß auf der sesquioxidreichen Seite der Grenzwert der Fluoritphasen fast immer bei etwa 65 Mol% MeO ligt. Auch für das System UO 2+x-HoO konnte dieser Wert bestätigt werden, wie aus Tabelle 14 festzustellen ist.

Von verschiedenen Autoren wurde nun beobachtet, daß die Gitterkonstanten bei MeO_{1.5}-Gehalten von mehr als 65 Mol% erneut ansteigen und nicht - wie eigentlich erwartet - konstante Werte annehmen. Erste Hinweise für eine Erklärung dieses Verlaufs der Gitterkonstanten gab Chase (23),

der im System $UO_{2+x}-YO_{1,5}$ eine rhomboedrische Verbindung der Zusammensetzung $UO_{3} \cdot 6YO_{1,5}$ beschrieb. Später beschäftigten sich vor allem Bartram et al. sehr eingehend mit den Phasenverhältnissen im Bereich zwischen 65 und 90 Mol% $YO_{1,5}$ (36). Im Zuge dieser Untersuchungen stießen die gleichen Autoren auf eine ganze Familie von rhomboedrischen 1:6-Verbindungen vom Typ $UO_{3} \cdot 6MeO_{1,5}$ (Me = Se,Y), wobei das Uran auch durch Wolfram oder Molybdän – allerdings nicht in allen Fällen – ersetzt werden kann (35).

Die Untersuchung der Löslichkeitsgrenzen im Bereich der rhomboedrischen Phase erfolgtewieder mittels Goniometeraufnahmen. Im Gegensatz zu der Bestimmung der pseudokubischen Gitterkonstanten erlaubte die durch die rhomboedrische Struktur bewirkte auftretende Aufspaltung der Reflexe hier eine exakte Auswertung. Die Indizierung der Reflexe erfolgte hexagonal nach Angaben von Aitken et al. (35). Als Eichsubstanz wurde NaCl verwendet.

Tabelle 15:Hexagonale und rhomboedrische Gitterparameter und auf-
tretende Phasen zwischen 65 und 90 Mol% Ho0
1,5(1100°C
1,5bis 1550°C, Reaktionszeiten 4-24 Stunden, 1 Atm 0,0

Mol%	Temp.	Hexag.	Param.	R	homboed	rische Par	ameter	Auftretende
Ho0 _{1,5}	(°C)	a (Å)	c (Å)	a (Å)	α (⁰)	$v_{Mol}(A^3)$	3 V _{Mol} /z(Å)	Phasen
65	1550	9,860	9,291	6,481	99,0	260,95	6,390	<u>R</u> + F
67,5	1100	9,866	9,290	6,483	99, 0	261,20	6,392	$\underline{R} + F$
67,5	1550	9,864	9,288	6,482	99, 0	261,07	6,391	$\underline{R} + F$
67,5	1400	9,862	9,285	6,481	99,0	260,95	6,390	$\underline{R} + F$
67,5	1250	9,861	9,282	6,480	99, 0	260,83	6,389	$\underline{\mathbf{R}} + \mathbf{F}$
69	1550	9,859	9,290	6,480	99,0	260,83	6,389	$\underline{\mathbf{R}} + \mathbf{F}$
70	1400	9,865	9,289	6,483	99,0	261,20	6,392	$\underline{\mathbf{R}} + \mathbf{F}$
70	1550	9,862	9,293	6,482	99,0	261,07	6,391	$\underline{\mathbf{R}} + \mathbf{F}$
70	1250	9,860	9,285	6,480	99,0	260,83	6,389	$\underline{\mathbf{R}}$ + F
70	1100	9,858	9,287	6,479	99,0	260,71	6,388	$\underline{\mathbf{R}} + \mathbf{F}$
71	1550	9,861	9,289	6,481	99,0	260 , 95	6,390	$\underline{\mathbf{R}} + \mathbf{F}$
72,5	1550	9,864	9,295	6,483	99,0	261,20	6,392	R
75	1550	9,877	9,310	6,492	99,0	262,28	6,401	R
77,5	1550	9,893	9,321	6,502	99,0	263,50	6,411	R

- 19 -

Mol%	Temp.	Hexag.	Param.	R	homboed	rische Par	ameter	Auftretende
Ho01,5	(°C)	a (Å)	c (Å)	a (Å)	α (°)	V _{Mol} (⁸³)	$\frac{3}{V_{Mol}/z}$ (Å)	Phasen
80	1550	9,905	9,336	6,511	99,0	264,59	6,420	<u>R</u>
82,5	1550	9,918	9,350	6,519	99,0	265,57	6,428	R
84	1550	9,927	9,362	6,526	99, 0	266,43	6,435	R
85,7	1250	9,938	9,370	6,533	99,0	267,29	6,442	R
85,7	1550	9,936	9,370	6,532	99,0	267,16	6,441	R
85,7	1100	9,934	9,365	6,530	99,0	266,92	6,439	R
90	1550	9,937	9 , 374	6,533	99,0	267,29	6,442	<u>R</u> + C
90	1400	9,936	9,371	6,532	99, 0	267,16	6,441	$\underline{R} + C$
90	1250	9,934	9,371	6,531	99,0	267,04	6,440	$\underline{R} + C$

F = Fluorittyp, R = rhomboedrische Phase, C = C-Typ(die Gitterkonstanten gelten für die jeweils unterstrichene Phase)

Aus Abb. 12 ist zu ersehen, daß sich die rhomboedrische Phase bei allen untersuchten Temperaturen von 72,0 Mol% HoO_{1,5} bis zur 1:6-Verbindung mit 85,7 Mol% HoO_{1.5} erstreckt.

Die für die 1:6-Verbindung gefundenen hexagonalen Gitterparameter und das hieraus resultierende rhomboedrische Molvolumen stimmen gut mit den von Aitken et al. angegebenen Daten für $UO_3 \cdot 6HoO_{1.5}$ überein (35).

Ein von der Verbindung aufgenommenes IR-Spektrum ließ die charakteristischen Frequenzen von Uranylionen vermissen (Angaben von Nakamoto (54)), so daß in $UO_3 \cdot 6HOO_{1,5}$ keine UO_2^{++} -Gruppierungen vorliegen dürften. Die theoretische Dichte von $UO_3 \cdot 6HOO_{1,5}$ berechnete sich zu 8,82 g/cm³.

Die Abbildungen 13a, b und c zeigen die Goniometeraufnahmen der fast rein kubischen Zusammensetzung mit 65 Mol% HoO_{1,5} und der rhomboedrischen Zusammensetzungen mit 80 und 85,7 Mol% HoO_{1.5} (1:6-Verbindung). 2.2.2.3. Das Phasendiagramm des Systems U0 -Ho0

Die Zusammenfassung der Ergebnisse aus den Abschnitten 2.2.2.1. und 2.2.2.2. ermöglicht die Aufstellung eines Phasendiagramms (Abb. 14).

Aus Tabelle 13 ist festzustellen, daß U_{308} keine nachweisbaren Mengen an Holmiumoxid in fester Lösung aufnimmt. Auf der uranreichen Seite liegt demnach ein Zweiphasengebiet vor, das sich aus orthorhombischem U_{308} und gesättigter Fluoritphase zusammensetzt. Daran anschließend erstreckt sich die reine Fluoritphase bis zum temperaturunabhängigen Grenzwert von 64 Mol% Ho0_{1,5}. Wie Abb. 14 zeigt, nimmt jedoch die Phasenbreite dieser festen Lösung auf der uranreichen Seite mit steigender Temperatur stark zu.

Zwischen 64 und 72 Mol% HoO_{1,5} existiert ein temperaturunabhängiges Zweiphasengebiet, in dem neben der festen Lösung mit Fluoritstruktur eine solche mit rhomboedrischer Struktur vorliegt. Bei 72 Mol% HoO_{1,5} beginnt der einphasige Bereich der rhomboedrischen Phase, der bis zur 1:6-Verbindung reicht, was einem HoO_{1,5}-Gehalt von 85,7 Mol% entspricht. Eine Löslichkeit von HoO_{1,5} in der rhomboedrischen Verbindung wurde nicht festgestellt, so daß sich bei HoO_{1,5}-Gehalten von mehr als 85,7 Mol% wieder ein zweiphasiges Gebiet anschließt. Schließlich tritt noch ein schmaler Löslichkeitsbereich nahe beim reinen HoO_{1,5} auf, die C-Typ-Phase. Die nur noch schwach ausgeprägte Tendenz zur Bildung von Sesquioxidmischkristallen ist auf die hohe mittlere Wertigkeit des Urans und die damit verbundenen besonderen Phasenverhältnisse im System UO_{2+x} -HoO_{1,5} zurückzuführen.

2.2.2.4. Die mittlere Wertigkeit des Urans im System UO2+x-Ho01.5

Es ist schon länger bekannt, daß UO_2 und U_3O_8 in Sauerstoffatmosphäre oberhalb $1200^{\circ}C$ einen erhöhten Dampfdruck zeigen, der auf die Flüchtigkeit von UO_3 zurückzuführen ist (55,56).

Wilson et al. stellten nun bei Untersuchungen am System UO_{2+x} -La $O_{1,5}$ fest (22), daß mit zunehmenden Gehalt an SE $O_{1,5}$ das in fester Lösung vorliegende Uranoxid weitgehend stabilisiert wird und sich die Flüchtigkeit des Urans in oxydierender Atmosphäre somit verringert. Wie nachfolgende Ergebnisse zeigen, trifft diese Aussage für den Bereich der rhomboedrischen Phase im System UO $_{2+x}$ -HoO $_{1.5}$ ebenfalls zu.

Der Sauerstoffgehalt der U0_{2+x}-Ho0_{1,5}-Mischpräparate wurde naßchemisch bestimmt. Zu diesem Zweck wurden die Proben bei 60° C in einer schwefelsauren Ce(SO₄)₂-Lösung gelöst und nach Zugabe von Indikator das unverbrauchte Ce⁴⁺ mit Fe²⁺-Salzlösung zurücktitriert. Die hochgeglühten Präparate waren zum Teil nur schwer in Lösung zu bringen.

$HoO_{1,5}$ (°c)Uran (± 0,03)Uran (±25 +)11005,23225 +)12505,19225 +)14004,97225 +)15505,02240 +)11005,02240 +)12505,02240 +)12505,02240 14004,96240 15505,03250 11004,98250 12505,05250 14004,92160 15505,12175 12505,9718012505,971	0,02) ,34 ,33 ,24
25^{+} 1100 $5,23$ 2 25^{+} 1250 $5,19$ 2 25^{+} 1400 $4,97$ 2 25^{+} 1550 $5,02$ 2 40^{+} 1100 $5,02$ 2 40^{+} 1250 $5,02$ 2 40^{+} 1250 $5,02$ 2 40^{-+} 1250 $5,02$ 2 40^{-+} 1250 $5,03$ 2 $40^{}$ 1400 $4,96$ 2 $40^{}$ 1550 $5,03$ 2 $50^{}$ 1250 $5,05$ 2 $50^{}$ 1250 $5,05$ 2 $50^{}$ 1250 $5,12$ 1 $60^{}$ 1550 $5,12$ 1 $75^{}$ 1250 $5,97$ 1 $80^{}$ 1250 $5,97$ 1	,34 ,33 ,24
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,33 ,24 ,26
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,2 4
25 1550 $5,02$ 2 40^{+} 1100 $5,02$ 2 40^{+} 1250 $5,02$ 2 40 1400 $4,96$ 2 40 1550 $5,03$ 2 40 1550 $5,03$ 2 50 1100 $4,98$ 2 50 1250 $5,05$ 2 50 1250 $5,05$ 2 50 1400 $4,92$ 1 50 1550 $4,96$ 1 60 1550 $5,12$ 1 75 1250 $5,97$ 1 80 1050 $5,07$ 1	.26
40^{+} 1100 $5,02$ 2 40^{+} 1250 $5,02$ 2 40 1400 $4,96$ 2 40 1550 $5,03$ 2 50 1100 $4,98$ 2 50 1250 $5,05$ 2 50 1250 $5,05$ 2 50 1400 $4,92$ 1 50 1550 $4,96$ 1 60 1550 $5,12$ 1 75 1250 $5,97$ 1 80 1050 $5,07$ 1	ں ہے و
40^{+} 12505,022 40 14004,962 40 15505,032 50 11004,982 50 12505,052 50 14004,921 50 15504,961 60 14005,421 60 15505,121 75 12505,971 80 10505,271	,11
40 1400 4,96 2 40 1550 5,03 2 50 1100 4,98 2 50 1250 5,05 2 50 1250 5,05 2 50 1400 4,92 1 50 1550 4,96 1 60 1550 5,12 1 75 1250 5,97 1 80 1050 5,97 1	,11
40 1550 5,03 2 50 1100 4,98 2 50 1250 5,05 2 50 1250 5,05 2 50 1250 4,92 1 50 1550 4,96 1 60 1400 5,42 1 60 1550 5,12 1 75 1250 5,97 1 80 1050 5,07 1	,09
50 1100 4,98 2 50 1250 5,05 2 50 1400 4,92 1 50 1550 4,96 1 60 1400 5,42 1 60 1550 5,12 1 75 1250 5,97 1 80 1050 5,07 1	,12
50 1250 5,05 2 50 1400 4,92 1 50 1550 4,96 1 60 1400 5,42 1 60 1550 5,12 1 75 1250 5,97 1 80 1050 5,07 1	,00
5014004,9215015504,9616014005,4216015505,1217512505,9718010505,071	,01
50 1550 4,96 1 60 1400 5,42 1 60 1550 5,12 1 75 1250 5,97 1 80 1050 5,07 1	,98
6014005,4216015505,1217512505,9718010505,071	,99
60 1550 5,12 1 75 1250 5,97 1 80 1050 5,07 1	,99
75 1250 5,97 1 80 1050 5.07 1	,92
	,87
00 1250 5,97 I	,80
80 1550 5,93 1	,79
85,7 1100 5,99 1	,71
85,7 1250 5,98 1	
85,7 1300 5,97 1	,71
85,7 1400 5,98 1	,71 ,71

Tabelle 16: Die mittlere Wertigkeit des Urans im System UO_{2+x}-HoO_{1,5} zwischen 1100°C und 1550°C

+) Zweiphasiges Gebiet (U_{308} + Fluoritphase)

1500

1550

5,93

5,85

1,71

1,70

85,7

85,7

Nach Wilson soll die mittlere Wertigkeit des Urans in den Fluoritphasen maximal 4,6 betragen (57). Aus Tabelle 16 ist zu entnehmen, daß die Werte von \overline{W} der untersuchten Mischpräparate mit Fluoritstruktur wesentlich höher liegen.

Im Gebiet der Fluoritphase nimmt die mittlere Wertigkeit des Urans bei den Zusammensetzungen mit 25, 40 und 60 Mol% HoO_{1,5} mit steigender Temperatur ab. Dies entspricht durchaus den Erwartungen. Für die 1:1-Zusammensetzung mit 50 Mol% HoO_{1,5} wurde jedoch unabhängig von der Temperatur die mittlere Wertigkeit des Urans zu + 5,00 - Fehlergrenzen maximal 1 % - und damit die Sauerstoffzahl von $(U_{0,5}, Ho_{0,5})^{0}x^{2}u^{2}$,00 ± 0,02 bestimmt. Diese thermische Stabilität von $(U_{0,5}, Ho_{0,5})^{0}2^{1}$ läßt vermuten, daß das Uran hierin fünfwertig und nicht je zur Hälfte vier- und sechswertig vorliegt, da bei den zwei Wertigkeitsstufen enthaltenden Zusammensetzungen mit steigender Temperatur eine Sauerstoffabnahme erfolgt.

Die 1:6-Verbindung ist mit rein sechswertigem Uran bis mindestens 1400[°]C stabil. Bei 1500[°]C ist nur ein geringfügiger und erst bei 1550[°]C ein merklicher Sauerstoffverlust festzustellen. Die gleiche Aussage gilt für den gesamten Bereich der rhomboedrischen Phase.

2.2.3. Das System (U,Ho1-x)02

Es war anzunehmen, daß das System $(U_x, Ho_{1-x})O_2$ aufgrund des vorgegebenen O/Me-Verhältnisses von 2,00 eine Art Mittelstellung zwischen den Systemen $UO_2-HOO_{1,5}$ und $UO_{2+x}-HOO_{1,5}$ einnehmen würde. Ein Vergleich im Bereich der Fluoritphasen dieser Systeme zeigt, daß die Werte der Gitterparameter des Systeme liegen. Weiterhin fällt auf, daß in den Systemen $(U_x, HO_{1-x})O_2$ und $UO_{2+x}-HOO_{1,5}$ nach anfänglich großen Unterschieden die Werte für die Gitterkonstanten immer ähnlicher und bei den 1:1-Zusammensetzungen innerhalb der Fehlergrenzen gleich groß werden, was aufgrund der in Abschnitt 2.2.2.4. beschriebenen thermischen Stabilität von $(U_{0,5}, HO_{0,5})O_2$ auch zu erwarten war. Zur Einstellung des gewünschten Sauerstoffgehaltes wurden UO_2 , $HOO_{1,5}$ und U_3O_8 bzw. UO_3 in entsprechenden Mengen eingewogen, gut miteinander vermischt und in Quarzampullen im Vakuum bei 1100° C bzw. bei $HOO_{1,5}$ -Anteilen bis 15 Mol% bei 1250° C ge-

tempert. Die Bildung der Fluoritmischkristalle vollzog sich ungleich schneller als beim Langzeitversuch des Systems ThO₂-HoO_{1,5}, was auf die höhere Diffusionsgeschwindigkeit der kleineren U⁵⁺- und U⁶⁺-Ionen zurückzuführen ist. Trotzdem waren Reaktionszeiten von mehreren Tagen erforderlich und auch dann hatte sich das Gleichgewicht bei den uranreichen Präparaten noch nicht völlig eingestellt (Abb. 15). Eine homogene Mischkristallbildung war in diesem Bereich nicht zu erreichen, da bei höheren Temperaturen bzw. längeren Reaktionszeiten die Quarzampullen undicht wurden.

Tabelle 17:Gitterkonstanten und auftretende Phasen im System $(U_x, Ho_{1-x})O_2$ bei 1100° C und 1250° C (Reaktionszeiten
3-10 Tage) $(Mol\% HoO_{1,5}; Temp. (^\circC); Gitterkonstanten a (^oA); auftretende Phasen):$

0	و	1250,	5.468,	F	ŝ	1.5,	1250,	5.467,	F	;
5	و	1250,	5.462,	F	;	10 ,	1250,	5.448,	F	;
15	و	1250,	5.435,	F	;	20,	1100,	5.422,	F	;
25	و	1100,	5.411,	F	;	30 ,	1100,	5.399,	F	;
35	,	1100,	5.384,	F	;	40,	1100,	5.373,	F	;
45	,	1100,	5,360,	F	;	50,	1100,	5.351,	F	;
55	9	1100,	5.345,	$\underline{F} + C$;	57.2,	1100,	5 .3 44,	<u>F</u> + C	;
60	و	1100,	5.344,	<u>F</u> + C	;	66.7,	1100,	5.342,	<u>F</u> + C	•

F = Fluorittyp, C = C-Typ
(die Gitterkonstanten gelten für die jeweils unterstrichene Phase)

Aus Abb. 15 ersieht man, daß die Grenzzusammensetzung der homogenen Fluoritphase für 1100[°]C bei 53 Mol% Ho0_{1,5} liegt. Bei höheren Ho0_{1,5} Anteilen tritt ein Zweiphasengebiet auf, in dem feste Lösungen vom Fluorit- und C-Typ nebeneinander vorliegen.

Die mittlere Wertigkeit des Urans beträgt bei der Grenzzusammensetzung + 5,1, bei 57,2 Mol% $HoO_{1,5}$ + 5,3 (U_3O_8) und bei 66,7 Mol% $HoO_{1,5}$ + 6,0 (UO_3) . Mit Hilfe des U_3O_8 war die Einstellung eines O/Me-Verhältnisses von 2,00 also nur bis 57,2 Mol% $HoO_{1,5}$ möglich, während UO_3 noch bis zur maximalen Grenze von 66,7 Mol% $HoO_{1,5}$ eingesetzt werden konnte.

2.3. Das System NpO_{2+x-HoO1,5}

2.3.1. Phasengrenzen und Temperaturabhängigkeit der Grenzzusammensetzungen

Der Literaturzusammenstellung in Abschnitt 1 ist zu entnehmen, daß bisher nur wenige Ängaben über die Systeme NpO₂-MeO_{1,5} vorliegen. Roberts et al. konnten im Vakuum bei 1400°C eine Fluoritphase im System NpO₂-YO_{1,5} feststellen, die vom reinen NpO₂ bis zu etwa 66 Mol% YO_{1,5} reicht (19). Nach Haug und Weigel existiert im System NpO₂-EuO_{1,5} bei 1150°C an der Luft eine Fluoritphase zwischen 43 und 50 Mol% EuO_{1,5} (41). Auf der neptuniumreichen Seite werden zwei Phasen beobachtet (NpO₂ und Fluoritphase), deren Gitterkonstanten sich in diesem Bereich nicht ändern. Offensichtlich hatte bei diesen Präparaten unter den gewählten Reaktionsbedingungen noch keine Gleichgewichtseinstellung stattgefunden. Schließlich wird von den Autoren auf der EuO_{1,5}-reichen Seite - wie übrigens auch in den Systemen UO_{2+x}-EuO_{1,5} und PuO₂-EuO_{1,5} eine "stark gittergestörte" Fluoritphase beschrieben. Keller und Leitner haben die Phasenverhältnisse im System NpO₂-TmO_{1,5} zwischen 1250°C und 1550°C quantitativ untersucht (48).

In Tabelle 18 sind die Ergebnisse der röntgenografischen Untersuchungen des Systems NpO_{2+x}-HoO₁₋₅ aufgeführt.

Tabelle 18:Gitterkonstanten und auftretende Phasen im System Np0, -Ho0,
2+xzwischen 1100°C und 1700°C (Reaktionszeiten 1-48 Stunden,
1 Atm 0,2)
(Mo1% Ho0,5; Temp. (°C); Gitterkonstanten a bzw. a/2 (Å);
auftretende Phasen):

0,	1400,	5.433	و	F	;	5,	1400,	5.424	9	F		;
10,	1400,	5.416	و	F	;	15,	1400,	5.409	ė	F		;
20,	1400,	5.403	9	F	;	25,	1400,	5.394	و	F		;
30,	1400,	5.389	9	F	;	35,	1400,	5.380	9	F		;
40,	1400,	5-372	9	F	;	45,	1400,	5.365	و	F		;
50,	1250,	5.357	و	F	;	55,	1250,	5.357	و	<u>F</u> +	С	;
55,	1400,	5.356	9	$\underline{F} + C$;	55,	1550,	5.355	و	<u>F</u> +	C	;
55,	1700,	5-353	و	$\underline{F} + C$;	60,	1100,	5.357	و	<u>F</u> +	С	;
60,	1550,	5-354	لا	<u>F</u> + C	;	65,	1100,	5.357	9	<u>F</u> +	С	;

65, 1400, 5.356 , $\underline{F} + C$; 65, 1550, 5.355 , $\underline{F} + C$; 70, 1250, 5.358 , $\underline{F} + C$; 70, 1400, 5.356 , $\underline{F} + C$; 70, 1550, 5.354 , $\underline{F} + C$; 75, 1250, 5.358 , $\underline{F} + C$; 75, 1400, 5.356 , $\underline{F} + C$; 75, 1550, 5.354 , $\underline{F} + C$; 85, 1700, 5.351 , $\underline{F} + C$; 94, 1100, 5.308 ⁺, $\underline{C} + F$; 94, 1250, 5.307 ⁺, $\underline{C} + F$; 94, 1550, 5.306 ⁺, $\underline{C} + F$; 94, 1700, 5.304 ⁺, $\underline{C} + F$; 96, 1100, 5.308 ⁺, $\underline{C} + F$; 96, 1250, 5.307 ⁺, $\underline{C} + F$; 96, 1400, 5.306 ⁺, $\underline{C} + F$; 96, 1550, 5.305 ⁺, $\underline{C} + F$; 96, 1700, 5.304 ⁺, $\underline{C} + F$; 98, 1250, 5.307 ⁺, $\underline{C} + F$; 98, 1400, 5.306 ⁺, $\underline{C} + F$; 98, 1550, 5.305 ⁺, $\underline{C} + F$; 99, 1250, 5.306 ⁺, $\underline{C} + F$; 100, 1400, 5.304 ⁺, \underline{C}

F = Fluorittyp, C = C-Typ, $^+$ = 1/2 C-Typ-Gitterkonstante (die Gitterkonstanten gelten für die jeweils unterstrichene Phase)

Aus der Abbildung lőacist festzustellen, daß auf der NpO₂-reichen Seite des Systems NpO_{2+x}-HoO_{1,5} die Gitterkonstanten vom Wert des reinen NpO₂ bis zur Grenzzusammensetzung bei der jeweiligen Temperatur abfallen. Zwischen 1100° C und 1250° C ist mit jeweils 50 Mol% HoO_{1,5} in NpO₂ kein Unterschied in der Löslichkeit festzustellen. Der homogene Bereich der C-Typ-Phase ist sehr klein (Abb. 16b) und nimmt wie bei allen MeO₂(MeO_{2+x})-HoO_{1.5}-Systemen mit steigender Temperatur ab.

Tabelle 19: Grenzzusammensetzungen der kubischen Phasen im System NpO_{2+x}-HoO_{1.5}

	Grenzzusamm	ensetzungen
Temp. ([°] C)	Fluorittyp (in Mol% HoO _{1,5})	C-Typ (in Mol% NpO ₂)
1100	50,0	2,0
1250	50,0	1,5
1400	50,5	1,0
1550	52,0	0,8
1700	53,5	0,3

- 26 -

2.3.2. Die Verbindung Np0_.6Ho0_1.5

Die Debye-Scherrer-Aufnahmen von NpO_{2+x}-HoO_{1,5}-Präparaten, die zwischen 75 und 92 Mol% HoO_{1,5} enthielten, zeigen eine auffallende Ähnlichkeit mit den Präparaten entsprechender Zusammensetzung des Systems UO_{2+x}-HoO_{1,5}, die dort in den Bereich der rhomboedrischen Phase fallen. Eine weitere bemerkenswerte Übereinstimmung wurde in den Systemen UO_{2+x}-HoO_{1,5} und NpO_{2+x}-HoO_{1,5} beim Vergleich der Breiten der C-Typ-Phasen festgestellt, die in beiden Fällen etwa gleich gering sind. Zu analogen Ergebnissen waren Keller und Leitner schon bei der Bearbeitung der Systeme UO_{2+x}-TmO_{1,5} und NpO₂-TmO_{1,5} gelangt (48), weshalb sie auch im System NpO₂-TmO_{1,5} einen rhomboedrischen Phasenbereich vermuteten.

Im System NpO_{2+x}-HoO_{1,5} wurden die Fhasenverhältnisse zwischen 80 und 90 Mol% HoO_{1,5} genau untersucht. Abbildung 17 zeigt die Goniometeraufnahme der Zusammensetzung mit 85,7 Mol% HoO_{1,5}, die nun tatsächlich alle charakteristischen Reflexe der rhomboedrischen 1:6-Verbindung UO₃·6HoO_{1,5} aufweist. Damit ist der Nachweis erbracht, daß auch im System NpO_{2+x}-HoO_{1,5} eine rhomboedrische Verbindung der Zusammensetzung NpO₃·6HoO_{1,5} existiert. Die Verbindung tritt bei allen Versuchstemperaturen - von 1100°C bis 1700°C - auf, aber im Gegensatz zum System UO_{2+x}-HoO_{1,5} war eine Phasenbreite von NpO₃·6HoO_{1,5} im genannten Temperaturbereich nicht festzustellen, so daß im System NpO_{2+x}-HoO_{1,5} also keine rhomboedrische Phase vorliegt.

Tabelle 20: Hexagonale und rhomboedrische Gitterparameter und auftretende Phasen zwischen 80 und 90 Mol% Ho0_{1,5} (1100^oC bis 1700^oC, Reaktionszeiten 1-48 Stunden, 1 Atm 0₂)

Mol%	Temp.	Hexag.	Param.	R	Auftretende			
HoO _{1,5}	(°C)	a (Å)	c (Å)	a $(\stackrel{O}{A})$	α (⁰)	V _{Mol} (Å ³)	-3√V _{Mol} /z(Å)	Phasen
85,7	1100	9,915	9,361	6,520	99,0	265,69	6,429	<u>R</u>
80	1250	9,919	9,358	6,521	99,0	265,82	6,430	$\underline{\mathbf{R}} + \mathbf{F}$
90	1250	9,918	9,363	6,521	99,0	265,82	6,430	<u>R</u> + C
80	1550	9,916	9,360	6,520	99,0	265,69	6,429	$\underline{\mathbf{R}} + \mathbf{F}$
90	1550	9,917	9,364	6,521	99,0	265,82	6,430	<u>R</u> + C
85,7	1700	9,916	9,362	6,520	99,0	265,69	6,429	R

F = Fluorittyp, R = rhomboedrische Phase, C = C-Typ

(die Gitterkonstanten gelten für die jeweils unterstrichene Phase)

Das Molvolumen von NpO₃·6HoO_{1,5} ist erwartungsgemäß etwas kleiner als das für UO₃·6HoO_{1,5} ermittelte, die rhomboedrischen Winkel sind jedoch mit jeweils 99,0° - Fehlergrenzen maximal \pm 0,2° - bei beiden Verbindungen gleich. In Analogie zu UO₃·6HoO_{1,5} enthält das IR-Spektrum von NpO₃·6HoO_{1,5} keine Neptunylschwingungsbanden. Die Berechnung der theoretischen Dichte von NpO₃·6HoO_{1,5} ergab einen Wert von 8,86 g/cm³.

2.3.3. Das Phasendiagramm des Systems Np0 -Ho0

Abbildung 18 zeigt das Phasendiagramm des Systems NpO_{2+x}-HoO_{1,5} für p = 1 Atm O₂. Man kann daraus entnehmen, daß die Breite der Fluoritphase nur mäßig von 50 Mol% HoO_{1,5} bei 1100°C auf 53,5 Mol% HoO_{1,5} bei 1700°C zunimmt. Bei höheren HoO_{1,5}-Gehalten tritt ein zweiphasiger Bereich auf, der sich aus gesättigter Fluoritphase und der rhomboedrischen Verbindung NpO₃.6HoO_{1,5} zusammensetzt. Da im System NpO_{2+x}-HoO_{1,5} die 1:6-Verbindung keine Phasenbreite hat, bleibt der Existenzbereich der rein rhomboedrischen Phase auf die Zusammensetzung mit 85,7 Mol% HoO_{1,5} beschränkt. Mit weitersteigenden Anteilen an HoO_{1,5} schließt sich demnach wieder ein Zweiphasengebiet an, in dem neben NpO₃.6HoO_{1,5} eine gesättigte feste Lösung von NpO₂ in HoO_{1,5} vorliegt. Die C-Typ-Phase erstreckt sich als schmaler Löslichkeitsstreifen mit maximal 2 Mol% NpO₂ bis zum reinen HOO_{1.5}.

2.3.4. Die mittlere Wertigkeit des Neptuniums im System NpO___HoO____,5

Aus dem Auftreten der 1:6-Verbindung mit der Grenzzusammensetzung NpO₃·6HOO_{1,5} mußte gefolgert werden, daß im System NpO_{2+x}-HOO_{1,5} unter den Versuchsbedingungen im Sauerstoffstrom eine Oxydation des Neptuniums zu Wertigkeitsstufen >4 erfolgt.

Tabelle 21 bringt die thermogravimetrisch ermittelten mittleren Neptuniumwertigkeiten einiger Mischoxidpräparate des Systems NpO_{2+x}-HoO_{1.5}.

S. A	13. 1.5					
Mol% ^{HoO} 1,5	Herst. Temp. der Präparate (^O C)	W Np (durch H ₂ -Red.) <u>+</u> 0,03	0/Me <u>+</u> 0,02	Oxyd.d Temp. ([°] C)	red.Präp.(1 Ѿ Np <u>+</u> 0,05	Atm 0 ₂) 0/Me <u>+</u> 0,02
10	1400	4,25	2,07		_	-
30	-	-	-	1100	4,45	2,00
30	-	-	-	1250	4,45	2,00
30	1400	4,45	2,00	1400	4,35	1,97
30	-	-		1550	4,30	1,96
50	-	-	-	1100	4,85	1,96
50	-	-	-	1250	4,75	1,94
50	1400	4,85	1,96	1400	4,70	1,93
50	-	-	-	1550	4,65	1,91
85,7	-		-	1100	6,00	1,73
85,7	1250	6,00	1,73	1250	6,00	1,73
85,7	-	-	-	1400	5,95	1,71
85,7	-	-	-	1550	5,25	1,65

<u>Tabelle 21:</u> Die mittlere Wertigkeit des Neptuniums im System NpO_{2+x} -HoO_{1.5} zwischen 1100^oC und 1550^oC

Überraschenderweise ist das Neptunium im System NpO_{2+x}-HoO_{1,5} in allen untersuchten Zusammensetzungen (10-85,7 Mol% HoO_{1,5}) zwischen 1100°C und 1550°C mehr oder weniger stark zu Wertigkeitsstufen > 4 oxydiert. Die mittlere Wertigkeit des Neptuniums nimmt dabei im Bereich der Fluoritphase erwartungsgemäß mit steigender Temperatur ab. Der Wert von \overline{W} für die 1:1-Zusammensetzung liegt mit 4,85 etwas unterhalb der vermuteten Wertigkeit von 5,00, bestätigt aber doch weitgehend das Vorliegen von fünfwertigem Neptunium in diesem Gebiet. Analog der 1:6-Verbindung im System UO_{2+x}-HoO_{1,5} liegt das Neptunium in NpO₃·6HoO_{1,5} bis zu etwa 1400°C rein sechswertig vor. Bei 1550°C wird allerdings ein vergleichsweise viel größerer Sauerstoffdefizit beobachtet.

Aus Tabelle 21 ist zu entnehmen, daß die durch Reduktion bzw. Oxydation von Präparaten gleicher Zusammensetzung ermittelten mittleren Wertigkeiten des Neptuniums nicht immer genau übereinstimmen. Dies ist auf die im Vergleich zur Herstellungszeit der Präparate kurze Durchlaufzeit bei der Oxydation der reduzierten Proben in der Thermowaage zurückzuführen, wobei es nicht zur Einstellung eines stationären Gleichgewichtes kommt.

Der Reduktions-Oxydations-Zyklus für die bei 1250° C hergestellte 1:6-Verbindung ist in den Abbildungen 19a und b wiedergegeben. Die Reduktion beginnt unterhalb 400° C und ist bei etwa 700° C abgeschlossen (Abb. 19a). Aus Abbildung 19b geht hervor, daß die Oxydation der reduzierten Verbindung unterhalb 400° C einsetzt und zwischen 800° C und 900° C beendet ist. Weiterhin kann man erkennen, daß unterhalb 1500° C eine merkliche, oberhalb 1500° C eine deutliche Sauerstoffabgabe erfolgt. Unter Berücksichtigung der Korrektur für den Auftrieb beträgt der absolute Wert von Δ G unterhalb 1400° C sowohl bei der Reduktion als auch bei der Oxydation 1,85 mg, was einer mittleren Wertigkeit des Neptuniums in Np0 $_{3}$ ·6Ho0 $_{1,5}$ von + 6,00 für 1250 $^{\circ}$ C entspricht (Tab. 21).

2.4. Verbindungen vom Typ Np0_3.6Me0_1.5

Nachdem feststand, daß im System NpO_{2+x}-HoO_{1,5} eine rhomboedrische 1:6-Verbindung auftritt, lag die Vermutung nahe, daß auch hier – ähnlich wie bei den Uranverbindungen – eine ganze Verbindungsklasse vom Typ NpO₃·6MeO_{1.5} (Me = SE,Y) existiert.

Sowohl bei allen Seltenen Erden mit Ausnahme des Cers als auch beim Yttrium konnte nun in der Tat der Nachweis für die Existenz dieses Verbindungstyps erbracht werden. Die Verbindung NpO₃.6CeO_{1,5} wurde nur deshalb nicht erhalten, weil sich das Cer unter den vorgeschriebenen Reaktionsbedingungen zu Ce⁴⁺ aufoxydiert. Anstelle der rhomboedrischen Verbindung entsteht so eine feste Lösung der Dioxide mit Fluoritstruktur, da CeO₂ und NpO₂ bekanrtlich eine lückenlose Mischkristallreihe bilden.

Aus den hexagonal indizierten Goniometerdiagrammen wurden zuerst die hexagonalen Gitterkonstanten bestimmt und diese dann in die rhomboedrischen Parameter umgerechnet. Dabei war festzustellen, daß von Verbindung zu Verbindung die hexagonale c-Achse sich jeweils um einen kleinen Betrag stärker ändert als die a-Achse. Die rhomboedrischen Winkel der in Tabelle 22 aufgeführten Verbindungen sind innerhalb der Fehlergrenzen von $0,2^{\circ}$ alle gleich und ergeben wie bei $UO_{3} \cdot 6HoO_{1,5}$ einen Wert von 99,0°. Aufgrund der ungleichen Änderung der hexagonalen Achsen werden die Winkel bei den 1:6-Verbindungen der leichten Seltenen Erden - die in Tabelle 22 noch nicht enthalten sind - jedoch etwas kleiner.

- 30 -

Tabelle 22: Hexagonale und rhomboedrische Gitterparameter von Verbindungen des Typs Np0₃·6Me0_{1,5} bei 1300^oC (Me = Yb,Tm, Er,Y,Ho,Dy; Reaktionszeiten 24 Stunden, 1 Atm O₂)

	Mol%	Hexag.	Param.	R	lhomboed	Gitter-	Sber.			
Me	MeO _{1,5}	a (Å)	¢ (Å)	a (Å)	α (°)	V _{Mol} (A ³)	JV _{Mol} /z(Å)	typ	(g/cm ²)	
Yb	85,7	9,806	9,244	6,446	99,0	256,75	6,356	R	9,49	
Tm	85,7	9,840	9,282	6,469	99,0	259,51	6,379	R	9,23	
Er	85,7	9,875	9,318	6,492	99,0	262,28	6,401	R	9,07	
Y	85,7	9,914	9,354	6,518	99,0	265,45	6,427	R	6,02	
Ho	85,7	9,917	9,361	6,521	99,0	265,82	6,430	R	8,86	
Dy	85,7	9,966	9,420	6,555	99,0	269,99	6,463	R	8,61	

R = rhomboedrische Struktur

Interessant war die Frage, inwieweit eine Abhängigkeit zwischen den ermittelten rhomboedrischen Molvolumina der 1:6-Neptuniumverbindungen und den Ionenradien der entsprechenden dreiwertigen Metalle besteht. In Abbildung 20 sind die verschiedenen Werte von $\frac{2}{\sqrt{V_{MOl}/z}}$ über den Me³⁺-Ionenradien aufgetragen. Man sieht, daß alle eingezeichneten Punkte auf einer Gerade liegen und somit eine lineare Abhängigkeit existiert.

2.5. Das System PuO_{2+x}-HoO_{1,5}

2.5.1. Phasengrenzen und Temperaturabhängigkeit der Grenzzusammensetzungen

Über binäre $Pu0_2$ -Me0_{1,5}-Systeme ist bisher noch wenig bekannt. Haug und Weigel haben das System $Pu0_2$ -Eu0_{1,5} sehr qualitativ bei 1100^oC bearbeitet (33). Eingehend wurde nur das System $Pu0_2$ -Tm0_{1,5} von Keller und Leitner zwischen 1250^oC und 1700^oC untersucht (48).

Die ermittelten röntgenografischen Daten des Systems $Pu0_{2+x}-Ho0_{1,5}$ für p = 1 Atm 0₂ sind in Tabelle 23a zusammengestellt. Einige Mischpräparate wurden unter reduzierenden Bedingungen (1 Atm H₂) bei 600[°]C hergestellt und anschließend im Argonstrom bei 1100[°]C und 1250[°]C getempert (Tab. 23b).

- 31 -

Tabelle 23a:	Gitterkonstanten und auftretende Phasen im System PuO_{P+x} -
	Hoo _{1,5} zwischen 1100° C und 1700° C (Reaktionszeiten 1-48
	Stunden, 1 Atm 0 ₂)
	(Mol% HoO _{1,5} ; Temp. (^o C); Gitterkonstanten a bzw. a/2 (Å); auftretende Fhasen):
4	

X	ور)。	5	96		و	F	•			;	5		و	1550;	5	•35)2	,	F	2			;
)(),	ц /	5.	3	89)	9	Ē	-			•	15		y	1400,	5	.38	36	3	F	Ì			;
50),	5	; .	38	83		و	F	-			ŝ	25		,	1550,	5	.38	30	و	F	۱ -			;
)(。(5		3'	77		و	F	-			;	35		,	1550,	5	•37	3	,	F	i ÷			;
50),	5	} •	3'	71		و	F				ŝ	45		,	1100,	5	.36	8	,	F	<u>'</u> +	-	Ċ	;
50),	5)。	30	68		و	F	-	-	С	•	50		,	1550,	5	.36	55	و	F	۱ -			;
)(),	5		30	58		و	F	. +	-	С	÷	55		,	1250,	5	.36	7	,	F	<u>'</u> +	-	С	;
)),	5		30	54		و	F	-	-	С	ŝ	55		9	1550,	5	.36	2	و	F	۱ -			;
50),	5	•	3(57		و	F	4	-	С	;	60		و	1400,	5	.36	4	و	F	<u>'</u> +	-	С	;
iC),	5	•	3!	59		و	F				;	65		,	1400,	5	. 36	4	و	F	<u>'</u> +	-	С	;
C),	5	•	35	58		و	F	+	-	Ç	; 9	65		,	1700,	5	.35	4	,	F	•			;
C),	5	•	35	58		و	F	+	-	С	;	70		,	1700,	5	.35	3	و	F				;
C),	5	•	35	50		9	F	4	-	С	;	80		,	1700,	5	.35	0	و	F	<u>'</u> +	-	С	;
C),	5	•	31	49		9	F	-	-	С	;	70		,	1400,	5	.34	8	+ و	C	+		F	;
1) •	5	•	<u>3</u> !	46	+	۔ و	C	+	•	F	;	70		•	1550,	5	.34	4	+ و	C	+		F	;
С	,(5	•	3 ¹	+3	4	۔ و	C	+	-	\mathbf{F}	;	70		و	1700,	5	33	8	+ •	C	-	•	F	;
C),	5	•	33	32	4	و	C	+	-	F	;	72	•5	,	1325,	5	.34	8	+,	C	•			;
5	, ,	5	•	32	łб	+	- 9	<u>C</u>	+		F	;	72	•5	,	1550,	5	.34	4	+,	<u>C</u>	+	•	F	;
С	و (5	•	31	1 3	+	۔ و	<u>C</u>	+	•	F	;	72	•5	و	1100,	5	.33	4	+,	C	+	•	F	;
С	و (5	•	31	+4	+	و	<u>C</u>				;	75		,	1550,	5	34	3	+ و	<u>C</u>				;
С	و (5	•_	33	38	4	و	C	+	•	F	ۋ	75		,	1100,	5.	33	2	+ و	C	. +	•]	ዋ	;
Q	و ا	5	•	33	33	+	و	<u>C</u>	+		F	;	80		و	1400,	5.	33	6	+ ,	<u>C</u>				;
0	وا	5	•_	33	33	+	و	<u>C</u>	+		F	ŝ	85		,	1400,	5.	32	8	+ و	C				;
0	وا	5	•	32	20	+	9	C				;	92		و	1400,	5.	31	6	+ ,	C				;
0	و	5	•	31	.3	+	9	C				;	96		y	1400,	5.	31	1	+ •	<u>C</u>				;
0	9	5	.]	<i>z</i> ,C	07	+	و	C				;	100		و	1400,	5.	30	4	+ ,	C				•

F = Fluorittyp, C = C-Typ, + = 1/2 C-Typ-Gitterkonstante (die Gitterkonstanten gelten für die jeweils unterstrichene Phase)

• .

- 32 -

Tabelle 23b:Gitterkonstanten und auftretende Phasen der Zusammen-
setzungen mit 67,5 und 70 Mol% Ho01,5 bei 1100°C und
1250°C für p = 1 Atm Ar (Reaktionszeiten 24-48 Stunden)
(Mol% Ho01,5; Temp. (°C); Gitterkonstanten a/2 (Å); auftretende Phasen):

67.5, 1100, 5.351 ⁺, \underline{C} + F ; 67.5, 1250, 5.350 ⁺, \underline{C} + F ; 70 , 1100, 5.352 ⁺, \underline{C} + F ; 70 , 1250, 5.350 ⁺, \underline{C} + F .

F = Fluorittyp, C = C-Typ, $^+$ = 1/2 C-Typ-Gitterkonstante (die Gitterkonstanten gelten für die jeweils unterstrichene Phase)

Abbildung 21 zeigt den Verlauf der Gitterkonstanten im System PuO_{2+x} -HoO_{1,5} für p = 1 Atm O₂. Die röntgenografischen Untersuchungsergebnisse der mit Wasserstoff vorbehandelten und im Argonstrom getemperten Präparate sind besonders gekennzeichnet.

	Grenzzusamm	ensetzungen
Temp.	Fluorittyp	C-Typ
(°C)	(in Mol% HoO _{1,5})	(in Mol% PuO ₂)
1100 (02)	44,0	18,5
1100 (Ar)	·	29,5
1250 (0 ₂)	46,0	24,5
1250 (Ar)	-	29,0
1325 (0 ₂)	-	27,5
1400 (02)	50,5	27,5
1475 (02)	-	26,5
1550 (0)	60,0	25,0
1700 (0 ₂)	72,0	21,5

Tabelle 24: Grenzzusammensetzungen im System Pu02+x-Ho01,5

2.5.2. Das Phasendiagramm des Systems Pu0 -Ho0 -Ho0

Es ist vergeblich versucht worden, vom Plutonium auf thermischem Wege ein höheres Oxid als PuO₂ herzustellen (58). Danach sollte - wenn überhaupt - eine Oxydation des Plutoniums in den PuO_{2+x} -HoO_{1,5}-Mischpräparaten zu wesentlich kleineren Werten von \bar{W} führen als dies bei Uran und Neptunium in den Systemen UO_{2+x} -HoO_{1,5} und NpO_{2+x} -HoO_{1,5} der Fall ist. Dies aber müßte sich in derart auswirken, daß die Homogenitätsbereiche der festen Lösungen im System PuO_{2+x} -HoO_{1,5} aufgrund der sehr ähnlichen Ionenradien von $r_{Pu}^{4+} = 0,90$ Å (50) und $r_{Ho}^{3+} = 0,89$ Å (51) groß werden. Abbildung 22 veranschaulicht die Phasenverhältnisse im System PuO_{2+x} -HoO_{1,5} zwischen 1100° C und 1700° C. Wie man sieht, erstrecken sich sowohl Fluorit- wie C-Typ-Phase über den vermuteten weiten Bereich. Während die Fluoritphase sich mit zunehmender Temperatur noch sehr verbreitert, beschreiben die Grenzzusammensetzungen der C-Typ-Phase im untersuchten Temperaturbereich eine gekrümmte Kurve. Zwischen den beiden einphasigen Gebieten existiert eine relativ schmale Mischungslücke, die sich - wie eine Extrapolation der Grenzwertkurven ergibt - bereits bei etwa 1800° C schließen dürfte.

Die Debye-Scherrer-Aufnahmen der zwischen 65 und 75 Mol% HoO_{1,5} enthaltenden Mischoxidpräparate zeigen bis zu 1400°C eine bemerkenswerte Ähnlichkeit mit den Aufnahmen von Zusammensetzungen der Systeme $UO_{2+x}(NpO_{2+x})-HoO_{1,5}$, die nachweisbar rhomboedrische Struktur besitzen. Diese Feststellung und die ungewöhnliche Grenzwertkurve der Sesquioxidmischkristalle waren auch der Grund für eine Untersuchung der Phasenverhältnisse auf der HoO_{1,5}-reichen Seite unter nichtoxydierenden Bedingungen. Die maximalen Löslichkeiten von PuO_2 in $HoO_{1,5}$ der bei $1100^{\circ}C$ und $1250^{\circ}C$ hergestellten Präparate sind tatsächlich sehr verschieden, je nachdem sie im Sauerstoff- oder Argonstrom (gestrichelte Kurve in Abb. 22) getempert wurden.

Die Existenz einer rhomboedrischen 1:6-Verbindung kann im System PuO_{2+x}-HoO_{1,5} mit Sicherheit verneint werden, da bei 85,7 Mol% HoO_{1,5} in jedem Fall die reine C-Typ-Phase vorliegt. Trotzdem kann aufgrund obiger Ergebnisse das Auftreten einer rhomboedrischen Phase bei Zusammensetzungen zwischen 65 und 75 Mol% HoO_{1,5} und Temperaturen bis etwa 1400°C nicht ausgeschlossen werden. Die Untersuchungen zur Klärung der Phasenverhältnisse in diesem Bereich sind jedoch noch nicht vollständig abgeschlossen.

- 34 -

2.5.3. Die mittlere Wertigkeit des Plutoniums im System Pu02+x-Ho01,5

In Abschnitt 2.5.2. wurde festgestellt, daß $PuO_{2+x}-HoO_{1,5}$ -Präparate gleicher Zusammensetzung verschiedene Gitterparameter besitzen können, wenn sie anstatt in Sauerstoff unter Argon getempert werden. Dies läßt vermuten, daß das Plutonium in den Mischpräparaten des Systems $PuO_{2+x}-HoO_{1,5}$ ebenfalls zu Wertigkeiten > 4 oxydiert wird. Die thermogravimetrisch bestimmten mittleren Wertigkeiten des Plutoniums verschiedener Mischpräparate des Systems $PuO_{2+x}-HoO_{1,5}$ sind in Tabelle 25 aufgeführt.

<u>Tabelle 25:</u> Die mittlere Wertigkeit des Plutoniums im System $Pu0_{2+x}-Ho0_{1.5}$ zwischen $1100^{\circ}C$ und $1550^{\circ}C$

Mol% ^{HoO} 1,5	Herst. Temp. der Präparate ([°] C)	₩ Pu (durch H ₂ -Red.) <u>+</u> 0,03	0/Me <u>+</u> 0,02	Oxyd.d Temp. ([°] C)	.red.Präp.(1 Ŵ Pu <u>+</u> 0,05	Atm 0 ₂) 0/Me + 0,02
				1100		1 06
<u>50</u>	-	-	-	1100	4,51	1,90
30	-	-	-	1250	4,31	1,96
30	1400	4,23	1,93	1400	4,25	1,93
30	-	-	-	1550	4,20	1,92
50 ⁺⁾	-	-	-	1100	4,36	1,84
50 ⁺⁾	-	-	-	1250	4,34	1,83
50	1400	4,36	1,84	1400	4,29	1,82
50	-	-	-	1550	4,25	1,81
70 +)	1100	4,59	1,74	1100	4,51	1,73
70 +)	-	_	-	1250	4,51	1,73
70 ⁺⁾	-	-	-	1400	4,46	1,72
70 ⁺⁾	-	-	-	1550	4,03	1,65
75 ⁺⁾	1100	4,51	1,68	1100	4,51	1,68
75 ⁺⁾	-	-	-	1250	4,48	1,67
75		-	-	1400	4,42	1,67
75	-	-	-	1550	4,05	1,62
80 ⁺⁾	1100	4,50	1,65	1100	4,35	1,63
80	<u>.</u>	-		1250	4,31	1,63
80	-	-	-	1400	4,26	1,62
80	-	-	-	1550	4,18	1,62

+) Zweiphasiges Gebiet (Fluoritphase + C-Typ-Phase)

- 35 -

Obwohl die für das Plutonium gefundenen mittleren Wertigkeiten im Systemen PuO_{2+x} -HoO_{1,5} wie erwartet deutlich unter denen der in den Systemen $UO_{2+x}(NpO_{2+x})$ -HoO_{1,5} für das Uran bzw. Neptunium ermittelten liegen, ist auch hier im Temperaturbereich zwischen $1100^{\circ}C$ und $1550^{\circ}C$ eine Oxydation des Plutoniums zu Wertigkeiten > 4 bei allen untersuchten Zusammensetzungen (30-80 Mol% HoO_{1,5}) zu beobachten. Aus Tabelle 25 ist ersichtlich, daß die höchsten Plutoniumwertigkeiten bei den Präparaten mit 70 und 75 Mol% HoO_{1,5} vorliegen, was wiederum die Annahme verstärkt, daß in diesem Gebiet eine rhomboedrische Phase auftritt.

Die Abbildungen 23a und b zeigen den Reduktions-Oxydations-Zyklus des bei 1100[°]C hergestellten Präparats mit 70 Mol% HoO_{1,5}. Man kann feststellen, daß bereits oberhalb 1300[°]C wieder Sauerstoff abgegeben wird (Abb. 23b).

3. ARBEITS- UND UNTERSUCHUNGSMETHODEN

3.1. Allgemeine Versuchsdurchführung

3.1.1. Herstellung der Mischoxidpräparate

Die Herstellung der Präparate erfolgte durch Fällen der Mischhydroxide aus äquimolaren Lösungen unter ständigem Rühren in der Hitze mit karbonatfreiem Ammoniak. Anschließend wurden die Mischungen vorgeglüht, feinst pulverisiert und im Platintiegel bzw. – beim Arbeiten in Wasserstoffatmosphäre – im Iridiumtiegel in einem Silitrohrofen bei den entsprechenden Temperaturen getempert (Schwankungsbreite ca. \pm 20^oC). Die dabei hergestellte Gesamtmenge an Mischoxid einer bestimmten Zusammensetzung betrug bei Thorium und Uran etwa 200-300 mg, bei Neptunium und Plutonium zwischen 10 und 100 mg.

Für das Mischhydroxidpräparat mit 85 Mol% ThO₂ und 15 Mol% HoO_{1,5} wurde die Gleichgewichtseinstellung in Abhängigkeit von der Reaktionszeit bei 1400[°]C bestimmt. Dabei konnte man feststellen, daß die Reaktion schon nach wenigen Minuten beendet war, denn die Gitterkonstante änderte sich auch bei fortgesetztem Tempern nicht mehr. Unter Berücksichtigung einer längeren Reaktionszeit für die Gleichgewichtseinstellung bei Temperaturen unterhalb 1400[°]C bzw. von Mischungen, die in einem zweiphasigen Gebiet liegen, waren deshalb für die durch Mischhydroxidfällung hergestellten Präparate Reaktionszeiten zwischen 1 und 48 Stunden völlig ausreichend.

Alle Arbeiten mit Neptunium und Plutonium mußten in sogenannten Glove-Boxen ausgeführt werden, um eine radioaktive Kontamination des Arbeitsplatzes und physiologische Schäden durch Inkorporation der Radionuklide zu vermeiden. Für die Untersuchungen standen zwei Glove-Boxen zur Verfügung, die über eine Schleuse zu einer Arbeitseinheit verbunden waren.

3.1.2. Herstellung der Ausgangslösungen

Zur Herstellung der 0,05-0,15-molaren Ausgangslösungen wurden $\text{Ho}_2^{0}_{3}$ und $U_{3}^{0}_{8}$ in konzentrierter HNO_{3} , $\text{Lu}_2^{0}_{3}$ und $\text{Sc}_2^{0}_{3}$ in konzentrierter HClO_4 gelöst. Die Ausgangssubstanz für die Thoriumlösungen war $\text{Th}(\text{NO}_3)_4 \cdot \text{xH}_2^{0}$. Beim Neptunium wurde durch Auflösen von NpO₂ in konzentrierter HClO₄ eine Np⁶⁺-Lösung erhalten, die in dieser Form beständig ist. Um eine quantitative Fällung des Neptuniums als Np⁴⁺-Hydroxid zu erhalten, mußte jede Probe unmittelbar vor dem Ausfällen der Mischhydroxide mit Wasserstoff/Platinmohr reduziert werden. Die blaue Farbe des Np³⁺ erschien nach etwa 2 Stunden. Danach wurde einige Minuten lang Luft durch die Lösung geleitet, bis Oxydation zum grünen Np⁴⁺ erfolgte. Durch Aufnahme eines Absorptionsspektrums konnte festgestellt werden, daß zu dieser Zeit nur Np⁴⁺ in der Lösung vorhanden war. Die Mischhydroxide wurden jeweils sofort nach Herstellung der Np⁴⁺-Lösungen gefällt.

Das zur Verfügung gestellte Plutoniumoxalat wurde zum Dioxid verglüht, das schwerlösliche PuO₂ mit KHSO₄ aufgeschlossen und nach Lösen der Schmelze Pu⁴⁺-Hydroxid ausgefällt und in verdünnter HNO₃ gelöst. Um ein eventuelles Vorliegen von sechswertigem Plutonium mit Sicherheit auszuschließen und somit eine quantitative Fällung des Plutoniums zu gewährleisten, wurden die Mischhydroxidfällungen unter Zugabe von etwas Hydroxylaminhydrochlorid durchgeführt. Das dabei gebildete dreiwertige Plutonium wird schon nach kurzen Erhitzen der Mischhydroxidniederschläge an der Luft zu Wertigkeiten ≥ 4 aufoxydiert.

3.2. Ausgangssubstanzen

 Ho_2^{0} , Lu_2^{0} , Sc_2^{0} , $und U_3^{0}$ besaßen einen Reinheitsgrad von 99,9 %. Thoriumnitrat war als p.a.-Substanz erhältlich (Fa. Merck).

 NpO_2 stand von der USAEC, Oak Ridge mit einer Reinheit von > 99,8 % zur Verfügung (Verunreinigungen: 0,02 % Pu, 0,08 % U, 0,02 % Th).

Das ebenfalls von der USAEC gelieferte Plutonium wurde im Kernforschungszentrum Karlsruhe nachgereinigt (Abtrennung von Am), so daß das verwendete $Pu(C_2O_4)_2$ aq eine Reinheit von > 99,5 % aufwies.

Für Oxydationsreaktionen wurde reinster im Handel erhältlicher Sauerstoff, für Reduktionsreaktionen reinster Wasserstoff und als Spül- bzw. Inertgas reinstes Argon verwendet.

3.3. Chemische Analysen

Alle Ausgangslösungen, die zur Herstellung der Mischoxidpräparate dienten, wurden mit einer Genauigkeit von + 1 % analysiert.

Bei jedem System wurden außerdem die angegebenen Zusammensetzungen von mehreren getemperten Mischoxiden überprüft. Die einzelnen Komponenten wurden dabei wie folgt bestimmt: Holmium, Lutetium und Scandium komplexometrisch und colorimetrisch, Thorium gravimetrisch und colorimetrisch, Uran cerimetrisch und colorimetrisch, Neptunium über die $0,31-\gamma$ -Strahlung des Pa-233 und coulometrisch sowie Plutonium coulometrisch. Die Analysen wurden zum überwiegenden Teil von der analytischen Gruppe des Instituts für Radiochemie durchgeführt. Alle Analysenergebnisse lagen innerhalb einer maximalen Fehlergrenze von ± 3 %.

3.4. Thermogravimetrische Analysen

Auf der Mettler-Thermowaage Nr. 10 wurden verschiedene Mischoxidpräparate der Systeme $NpO_{2+x}(PuO_{2+x})-HoO_{1,5}$ unter reduzierenden und oxydierenden Bedingungen untersucht. Aus den aus den Thermogrammen erhaltenen Stufen konnten die mittleren Wertigkeiten der Actiniden und damit auch der Sauerstoffgehalt der einzelnen Proben bestimmt werden.

3.5. Röntgenografische Untersuchungen

Die röntgenografischen Untersuchungen bildeten die wichtigste Methode zur Aufklärung der Phasenverhältnisse in den binären Oxidsystemen. Für die Aufnahmen wurden die Präparate in Glaskapillaren von 0,3 mm Durchmesser eingeschmolzen. Die Debye-Scherrer-Aufnahmen wurden mit Ni-gefilterter Cu-K_{α}-Strahlung in einer Röntgenkamera von 114,6 mm Durchmesser nach der asymmetrischen Methode von Straumanis erhalten (59). Die Belichtungszeit des verwendeten Röntgenfilms Agfa Texo-SH betrug durchschnittlich 1,5 Stunden. Zur Bestimmung der Gitterkonstanten - Fehlergrenzen <u>+</u> 0,001 Å bis <u>+</u> 0,003 Å - wurde die Extrapolationsmethode von Nelson-Riley herangezogen (60).

Goniometeraufnahmen erwiesen sich als besonders geeignet für die Unter-

suchung der Phasenverhältnisse in Bereichen mit orthorhombischer und rhomboedrischer Struktur sowie bei der Identifizierung von neuen Verbindungen. Die Fehlergrenzen der hierbei ermittelten Gitterparameter betrugen \pm 0,005 Å bis \pm 0,010 Å.

4. ZUSAMMENFASSUNG

- 4.1. In den Systemen ThO₂-HoO_{1,5}(LuO_{1,5},ScO_{1,5}) wurde die Temperaturabhängigkeit der Grenzzusammensetzungen der einzelnen Phasen zwischen 1250[°]C und 1700[°]C bestimmt und die Phasendiagramme aufgestellt.
- 4.1.1. Die Untersuchung der Gleichgewichtseinstellung einer aus den Oxidkomponenten hergestellten Mischung mit 85 Mol% ThO₂ und 15 Mol% HoO_{1,5} in Abhängigkeit von der Zeit ergab, daß beim Umsatz der reinen Oxide eine vollständige Mischkristallbildung erst nach extrem langen Reaktionszeiten (ca. 2000 h) zu erreichen ist.
- 4.1.2. Die Homogenitätsbereiche der festen Lösungen werden erwartungsgemäß um so kleiner, je größer die Differenz der Ionenradien |r_{Th}⁴⁺ - r_{Me}³⁺ | wird.
- 4.1.3. Im System ThO₂-HoO_{1,5} wurde der Aufbau der Fluorit- und Sesquioxidmischkristalle durch Vergleich der theoretischen mit den experimentell gefundenen Dichten bestimmt. Es konnte gezeigt werden, daß in beiden Mischkristalltypen ein vollkommen besetztes Kationenteilgitter vorliegt.
- 4.2. Die Phasenverhältnisse der Systeme UO₂(UO_{2+x})-HoO_{1,5} wurden zwischen 1100[°]C bzw. 1250[°]C und 1550[°]C, das System (U_x,Ho_{1-x})O_{2,00} bei 1100[°]C untersucht.
- 4.2.1. Im System UO_{2+x} -HoO_{1,5} erstreckt sich die Fluoritphase im untersuchten Temperaturbereich immer bis zu 64 Mol% HoO_{1,5}. Eine homogene rhomboedrische Phase tritt zwischen 72 und 85,7 Mol% HoO_{1,5} auf. Die rhomboedrische Verbindung $UO_3 \cdot 6HoO_{1,5}$ mit rein sechswertigem Uran ist bis mindestens 1400°C stabil. Thermisch besonders stabil ist die 1:1-Zusammensetzung, da bei allen Temperaturen für $(U_{0,5}, Ho_{0,5})O_x$ eine Sauerstoffzahl von x = $2,00 \pm 0,02$ ermittelt wurde. Die C-Typ-Phase ist nur schwach ausgeprägt.
- 4.2.2. Das System (U_x, Ho_{1-x})O_{2,00} nimmt wie erwartet eine Mittelstellung zwischen den Systemen UO₂-HoO_{1,5} und UO_{2+x}-HoO_{1,5} ein. Eine homogene kubische Phase existiert vom reinen UO₂ bis zu 53 Mol% HoO_{1.5}.

- 4.3. Die Systeme NpO_{2+x}(PuO_{2+x})-HoO_{1,5} wurden zwischen 1100^oC und 1700^oC untersucht und die dazugehörigen Phasendiagramme aufgestellt.
- 4.3.1. Im System NpO_{2+x}-HoO_{1,5} tritt eine rhomboedrische 1:6-Verbindung der Zusammensetzung NpO₃·6HoO_{1,5} auf, die ebenfalls bis etwa 1400°C stabil ist. Die Verbindung besitzt keine Phasenbreite. Aufgrund der hohen mittleren Wertigkeit des Neptuniums in den NpO_{2+x}-HoO_{1,5}-Präparaten ist wie im System UO_{2+x}-HoO_{1,5} die Breite der C-Typ-Phase sehr klein.
- 4.3.2. In den PuO_{2+x}-HoO_{1,5}-Mischkristallen ist das Plutonium im Vergleich zu Uran und Neptunium allerdings geringer - zu Wertigkeiten >4 aufoxydiert. Wegen der ähnlichen Ionenradien von r_{Pu}⁴⁺ und r_{Ho}³⁺ erstrecken sich Fluorit- und C-Typ-Phase über einen weiten Bereich.
- 4.4. Es wurde eine neue Familie von rhomboedrischen 1:6-Verbindungen des Typs NpO₃·6MeO_{1,5} (Me = SE,Y) gefunden. Sie sind isostrukturell mit den entsprechenden Uranverbindungen. Zwischen den Molvolumina der 1:6-Neptuniumverbindungen $(\sqrt[2]{V_{Mol}/z})$ und den Ionenradien der entsprechenden dreiwertigen Metalle besteht eine lineare Abhängigkeit.

5. LITERATURVERZEICHNIS

1. E. Zintl, U. Croatto Z.anorg.allg.Chem. 242, 79 (1939) Ricerca Sci. 18, 578 (1948) 2. U. Croatto, M. Bruno 3. J.D. McCullough J.Am.Chem.Soc. 72, 1386 (1950) 4. G. Brauer, H. Gradinger Naturw. 38, 559 (1951) 5. F. Hund, W. Dürrwächter Z.anorg.allg.Chem. <u>265</u>, 67 (1951) 6. J.D. McCullough, J.D. Britton J.Am.Chem.Soc. 74, 5225 (1952) TID-16350 (1952) 7. L. Eyring, B. Hyde, B. Holmberg, P. Kokoropolous 8. F. Hund, R. Metzger Z.Phys.Chem. 201, 268 (1952) Z.anorg.allg.Chem. 267, 189 (1952) 9. F. Hund, U. Peetz Z.anorg.allg.Chem. 271, 6 (1952) 10. F. Hund, U. Peetz Z.Elektrochem. 56, 223 (1952) 11. F. Hund, U. Peetz 12. G. Brauer, H. Gradinger Z.anorg.allg.Chem. 276, 209 (1954) 13. G. Brauer, H. Gradinger Z.anorg.allg.Chem. 277, 89 (1954) 14. W.A. Lambertson, M.H. Mueller ANL-5312 (1954) J.Inorg.Nucl.Chem. 1, 340 (1955) 15. J.S. Anderson, I.F. Ferguson, L.E.J. Roberts 16. F. Hund, U. Peetz, G. Z.anorg.allg.Chem. 278, 184 (1955) Kottenhahn 17. S.M. Lang, F.P. Knudsen, NBS-Circular-568 (1956) C.L. Filmore, R.S. Roth 18. I.F. Ferguson, P.G.T. Fogg J.Chem.Soc. 3679 (1957) 2nd Geneva Conf. <u>28</u>, 215 (1958) L.E.J. Roberts, L.E. Russel, 19. A.G. Adwick, A.J. Walter, M.H. Rand 20. G.L. Ploetz, A.T. Muccigrosso, J.Am.Ceram.Soc. 43, 154 (1960) L.M. Osika, W.R. Jakoby TID-14808 (1961) 21. K.A. Gingerich W.B. Wilson, C.A. Alexander, J.Inorg.Nucl.Chem. 20, 242 (1961) 22. A.F. Gerds 23. G.A. Chase Acta Cryst. <u>15</u>, 91 (1962) 24. E.J. Felten, E.A. Aitken J.Inorg.Nucl.Chem. 24, 35 (1962) 25. D.C. Hill J.Am.Ceram.Soc. <u>45</u>, 258 (1962) 26. D. Kolar, J.H. Handwerk, ANL-6631 (1962) R.J. Beals 27. H.S. Parker NBS-D-150 (1962) 28. K.A. Gingerich, G. Brauer Z.anorg.allg.Chem. <u>324</u>, 48 (1963) KR-48 (1963) 29. K. Hagemark 30. S. Hasko NBS-D-154 (1963)

31.	D.C. Hill, J.H. Handwerk, R.J. Beals
32.	H. Haug, F. Weigel
33.	H. Haug, F. Weigel
34.	
35.	E.A. Aitken, S.F. Bartram, E.F. Juenke
36.	S.F. Bartram, E.F. Juenke, E.A. Aitken
37.	D.J.M. Bevan, W.W. Barker, R.L. Martin, T.C. Parks
38.	F. Hund
39.	H.H. Möbius, H. Witzmann, F. Zimmer
40.	R.J. Beals, J.H. Handwerk
41.	H. Haug, F. Weigel, W. Oertel
42.	E.C. Subbarao, P.H. Sutter, J. H r izo
43.	W. Trzebiatowski, R. Horyń
44.	E.A. Aitken
45.	S.F. Bartram
46.	C. Keller, H. Radzewitz
47.	L.N. Grossman, J.E. Lewis, D.M. Rooney
48.	C. Keller, L. Leitner
49.	G.G. Koshcheev, L.M. Kovba, A.V. Zhelankin
50.	W.H. Zachariasen
51.	D.H. Templeton, C.H. Dauben
52.	
53.	C. Keller
54.	K. Nakamoto
55.	R.J. Ackermann, P.W. Gillis, R.J. Thorn
56.	R.J. Ackermann, R.J. Thorn, C.A. Alexander, M. Tetenbaum
57.	W.B. Wilson

ANL-6711 (1963) J.Nucl.Mat. 9, 355 (1963) J.Nucl.Mat. 9, 360 (1963) Progress Report ANL-6784 (1963) Inorg.Chem. 3, 949 (1964) J.Am.Ceram.Soc. 47, 171 (1964) 4th Rare Earth Conf., Phoenix Arizona, Session IV (1964) Z.anorg.allg.Chem. <u>333</u>, 248 (1964) Z.Chem. 4, 194 (1964) J.Am.Ceram.Soc. 48, 271 (1965) J.Nucl.Mat. 17, 73 (1965) J.Am.Ceram.Soc. 48, 443 (1965) Bull.Acad.Pol.Sc.Ser.Chim. 13, 303 (1965) J.Nucl.Mat. 19, 248 (1966) Inorg.Chem. 5, 749 (1966) Diss. H. Radzewitz, TH Karlsruhe 1966 J.Nucl.Mat. 21, 302 (1967) Diss. L. Leitner, TH Karlsruhe 1967 NSA 21, 527 (1967) "The Actinide Elements", Nat.Nucl. Energy Ser., Div. IV, 14A (1954) J.Am.Chem.Soc. 76, 5237 (1954) Handbook of Chemistry and Physics, 46th Edition, F-117 (1965/66) KFK <u>225</u>, 86 (1964) "Infrared Spectra of Inorganic and Coordination Compounds", Wiley, New York 1963 J.Phys.Chem. 25, 1089 (1956)

. . . .

J.Phys.Chem. <u>64</u>, 350 (1960)

EMI-1318 (1959)

58.	J.J. Katz, G.T. Seaborg	"The Chemistry of the Actinide Elements", Methuen und Co, London 1957
59.	M. Straumanis, A. Ievins	"Die Präzisionsbestimmung von Gitterkonstanten nach der asymmetrischen Methode", Springer Verlag, Berlin 1940
60.	J.B. Nelson, D.P. Riley	Proc.Phys.Soc. <u>57</u> , 160 (1945)

~

Abbildung 1:

Bestimmung der Reaktionszeit für homogene Mischkristallbildung aus den Oxidkomponenten

Verlauf der Gitterkonstanten im System ThO₂-HoO_{1,5}

Abbildung 3:

Phasendiagramm des Systems Th⁰2^{-Ho0}1,5

Abbildung 4a: Berechnete und experimentelle Dichten der Fluoritmischkristalle im System ThO₂-HoO_{1,5}

Abbildung 4b: Berechnete und experimentelle Dichten der Sesquioxidmischkristalle im System ThO₂-HoO_{1,5}

- 47 -

- 48 -

Abbildung 7: Verlauf der Gitterkonstanten im System Th02-Sc01,5

Abbildung 8: Phasendiagramm des Systems Th02-Sc01,5

- 49 -

Abbildung 10: Phasendiagramm des Systems U02-Ho01,5 (1 Atm H2)

- 50 -

Abbildung 12: Die Phasenbreite der 1:6-Verbindung im System UO_{2+x}-HoO_{1,5} (1 Atm O₂)

Abbildung 13a:

Goniometeraufnahme des Präparates mit 35 Mol% ^{UO}2,67 und 65 Mol% HoO_{1,5}

Abbildung 13b:

Goniometeraufnahme des Präparates mit 20 Mol% ^{UO}2,67 und 80 Mol% HoO_{1,5}

Goniometeraufnahme von ^{UO}3^{.6HoO}1,5</sub> (14,3 Mol% ^{UO}2,67 + 85,7 Mol% HoO_{1,5})

<u>Abbildung 15:</u> Verlauf der Gitterkonstanten im System $(U_x, Ho_{1-x})_2^{\circ}$ bei 1100°C

- 53 -

<u>Abbildung 16a:</u> Verlauf der Gitterkonstanten im System NpO_{2+x}-HoO_{1,5} auf der neptuniumreichen Seite (1 Atm O₂)

<u>Abbildung 16b:</u> Verlauf der Gitterkonstanten im System NpO_{2+x}-HoO_{1,5} auf der holmiumreichen Seite (1 Atm O₂)

- 54 -

<u>Abbildung 17:</u> Goniometeraufnahme von Np0₃.6Ho0_{1,5} (14,3 Mol% Np0₂ + 85,7 Mol% Ho0_{1,5})

Abbildung 18: Phasendiagramm des Systems Np02+x-Ho01,5 (1 Atm 02)

- 55 -

Abbildung 19a: Thermogramm für die Reduktion der bei 1250°C hergestellten Verbindung Np0₃.6Ho0_{1,5}

Abbildung 19b: Thermogramm für die Oxydation der in Abbildung 19a reduzierten Verbindung

Abbildung 21: Verlauf der Gitterkonstanten im System PuO_{2+x}-HoO_{1,5} (1 Atm O₂ bzw. 1 Atm Ar)

Abbildung 22: Phasendiagramm des Systems Pu0_{2+x}-Ho0_{1,5} (1 Atm 0₂ bzw. 1 Atm Ar)

Abbildung 23a: Thermogramm für die Reduktion des bei 1100[°]C hergestellten Präparates mit 30 Mol% Pu0₂ und 70 Mol% Ho0_{1,5}

Abbildung 23b: Thermogramm für die Oxydation des in Abbildung 23a reduzierten Präparates