

KERNFORSCHUNGSZENTRUM

KARLSRUHE

September 1970

KFK 1291

Institut für Radicchemie

Über Komplexe dreiwertiger Transurane mit Aminopolykarbonsäuren

I. Bayat

KERNFORSCHUNGSZENTRUM KARLSRUHE

September 1970

KFK - 1291

Institut für Radiochemie

ÜBER KOMPLEXE DREIWERTIGER TRANSURANE MIT AMINOPOLYKARBONSÄUREN

von

Iradj Bayat

Gesellschaft für Kernforschung m.b.H., Karlsruhe

Zusammenfassung

Die Stabilitätskonstanten der Komplexe dreiwertiger Actinidenionen (Am(III) - Cf(III)) mit 11 drei- bis zehnzähnigen Aminopolyessigsäuren werden angegeben und Regeln für die Abhängigkeit der Komplexzusammensetzung und -stabilität von der Art des Liganden abgeleitet. Aus spektralphotometrischen Daten an Am(III) und durch Korrelation der Stabilitätskonstanten wird die Koordinationszahl der Zentralionen in den Komplexen abgeleitet. Aus den Stabilitätskonstanten und Ionenaustausch-Verteilungskoeffizienten wurden Trennfaktoren Am/Cm für zahlreiche Aminopolykarbonsäuren berechnet.

Abstract

Stability constants of the complexes of tervalent actinides (Am(III) - Cf(III)) with 11 aminopolycarboxylic acids are reported and rules fore the dependence of complex stability and complex composition on the structure of the ligand are given. The coordination number of the central ions of the complexes is derived from spectrophotometric data and by correlation of the stability constants. Separation factors for Am/Cm are calculated from stability constants and ion exchange distribution coefficients for several aminopolycarboxylic acids.

INHALT

			р. н. н		1 A A	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		a se a se a		·. · *
						4		지 않는 것을 같다.	1	Seite
	Zusa	mmenfas	sung		* • • • • •	• • • • • •		• • • • • •	, ¹ , 10, 10, 10, 10, 10, 10, 10, 10, 10, 10	. III
1.	Einl	eitung				• • • • • • •			• • • • • •	• 1
	1.1	Aufgab	enstellung	5 • • • • •		• • • • • •				• 1
	1.2	Unters	uchte Acti	nidenio	nen	••••		• • • • • •	• • • • • •	. 1
	1.3	Aminop	olykarbons	äuren .	•••••			••••	••••	• 2
2.	Unte	rsuchun	gs- und Be	erechnun	gsmeth	oden .				• 4
	2.1	Kation	enaustausc	h		• • • • • • •			• • • • • •	• 4
	2.2	Spektr	alphotomet	rie				• • • • • •	• • • • • •	• 5
	2.3	Defini	tion und B	Berechnu	ng der	Stabi	litäts	konsta	nten .	• 6
3.	Erge	bnisse								• 8
	3.1	Einflu	ß der Vers	uchspar	ameter	auf da	as			
		Kation	enaustausc	hgleich	gewich	t		• • • • • •	• • • • • •	• 8
	3.2	Einflu harzes	ß des Vern auf die b	etzungs erechne	grades te Sta	des Ka bilitä	atione tskons	nausta tante	usch-	. 10
	3.3	Komple: Curium	xe des dre s und Cali	eiwertig fornium	en Cer s mit	s, Euro Polyam:	opiums inopol	, Amer yessig	iciums säuren	. 11
		3.3.1	Zusammens	etzung				• • • • • •	• • • • • •	. 11
		3.3.2	Komplexst	abilitä	t				• • • • • •	. 14
		3.3.3	Zusammenh Struktur	ang von des Lig	Komp1 anden	exstab:	ilität	und	• • • • • •	. 15
	3.4	Komple: mit Im	xe des dre inodiessig	eiwertig säure u	en Ame nd ein	ricium igen il	s, Cur nrer D	iums u erivat	nd Cer	s • 18
		3.4.1	Zusammens	etzung						. 18
		3.4.2	Komplexst	abilitä	t	• • • • • • •				. 19
		3.4.3	Zusammenh Struktur	ang von des Lig	Kompl anden	exstab	ilität	und		. 22
	3.5	Zusamm Absorp	enhang von tionsspekt	Ligand rum der	enstru Am(II	ktur un I)-Komp	nd plexe			• 24
	3.6	Vergle: Transp	ich der Ko lutoniumio	mplexbi nen unt	ldungs: ereina	neigung nder	g der	dreiwe	rtigen	. 26
	3.7	Trennf	aktoren		• • • • • •					. 26
	3.8	Säured	issoziatio	nskonst	anten			• • • • • •	• • • • • •	. 28
4.	Expe	rimente	ller Teil		•••••	• • • • • • •				. 29
	4.1	Radioi	ndikatoren			• • • • • • •			• • • • • •	. 29
	4.2	Komple:	xbildner .		• • • • • •	••.•••		• • • • • •	• • • • • •	• 29
	4.3	Kation	enaustausc	her	•••••	• • • • • • •		••••	•••••	. 30
	4.4	Tonenai	ustauschve	rsuche						. 30

• I -

			Seite
	4.5	Radioaktivitätsmessung	31
	4.6	pH-Messung	31
	4.7	Spektralphotometrische Titration	32
5.	Tabel	len	33
6.	Lite	atur	46

ZUSAMMENFASSUNG

Die Komplexe von Am(III), Cm(III), Ce(III) und in einem Fall von Eu(III) und Cf(III) mit Iminodiessigsäurederivaten und 5- bis 10-zähnigen Polyaminopolyessigsäuren wurden nach der Ionenaustauschmethode sowie bei Am(III) durch Spektralphotometrie untersucht.

Liganden mit bis zu fünf verfügbaren Koordinationsstellen bilden 1:1- und 1:2-Komplexe, solche mit sechs und mehr nur 1:1-Komplexe. Bei Taurin-N,N-diessigsäure und den vier- und mehrbasigen Säuren " H_NL " wurden Hydrogenkomplexe MHL, welche die nur zum Teil dissoziierten Ligandenanionen " $HL^{(N-1)-n}$ und " $H_2L^{(N-2)-n}$ " enthalten, festgestellt. Die Stabilitätskonstanten sind in Tabelle A zusammengestellt.

Enthalten die Liganden ausschließlich Aminoessigsäure- und Iminodiessigsäurereste als koordinativ wirksame Gruppen ("normale"Aminopolyessigsäuren), so ist die Stabilität ihrer Komplexe eine lineare Funktion der Zahl verfügbarer Donatoratome, der Anstieg beträgt drei Einheiten von 1g ß je Koordinationsstelle. Man kann daraus schließen, daß alle Donatoratome an das Zentralion koordiniert sind. Zusätzliche Donatoratome in einem Liganden, die nicht in "normaler" Verknüpfung stehen, z.B. ein Pyridinstickstoff in ß-Stellung, erhöhen die Stabilitätskonstante weniger, sie sind nur partiell koordiniert. Bei den Hydrogenkomplexen MHL ist aufgrund der Stabilitätskonstante zu schließen, daß jeweils eine Iminodiessigsäuregruppe nicht koordiniert ist.

Die intensive, scharfe 5031 Å-Absorptionsbande des Am(III) ist in Komplexen zu höheren Wellenlängen verschoben, wobei die Verschiebung in der Regel der aus den Stabilitätskonstanten abgeleiteten Koordinationszahl proportional ist.

Versuche über die Trennung von Am(III) und Cm(III) zeigen, daß Aminopolykarbonsäuren generell bessere Trennfaktoren als Hydroxykarbonsäuren ergeben, ein systematischer Einfluß der Aminopolykarbonsäurestruktur aber nicht zu erkennen ist.

Mit normalen Alkylaminopolyessigsäuren bildet Curium stabilere Komplexe als Americium, der Unterschied in 1gßist jedoch meist kleiner als der Fehlerbereich; bei einigen nicht "normalen" AminokarbonsäureLiganden istß_{Cm}kleiner oder praktisch gleichß_{Am}.

- III -

Ligand	Kompley	lg Stabilitätskonstante				
IIgana	Rompiex	Ce(III)	Am(III)	Cm(III)	Cf(III)	
Triäthylentetraminhexaessigsäure (H ₆ L)	MHL ²⁻ MH ₂ L	15,76 9,70	18,13 11,85	18,19 11,77		
Diäthylentriaminpentaessigsäure (H ₅ L)	MHL ML ² -		14,06 23,07	14,43 23,48		
Äthylenglykol-bis-2-aminoäthyl- tetraessigsäure (H _L L)	ML	16,54 (Eu(III	18,22): 17,88)	18,13	17,88 (Eu(III)!)	
N-2-hydroxyäthyl-äthylendiamin- triessigsäure (H ₃ L)	$\frac{ML^{O}}{ML^{3}}$	14,14	15,72 ≃27,4	15,93 ≃27,2	16,27 ≃28,5	
Taurin-N,N-diessigsäure (H ₃ L)	MHL ⁺ ML ⁰	1,63 7,24	2,29 8,08	2,53 8,05		
Anthranilsäure-N,N-diessigsäure (H ₃ L)	$\frac{ML^{O}}{ML_{2}^{3}}$	8,69 ≃13,8	8,92 14,5	9,27 ≃14,5		
6-Methyl-2-picolyliminodiessigsäure (H ₂ L)	ML ^Ŧ	7,32	8,38			
2-Picolyliminodiessigsäure (H ₂ L)	ML ⁺ ML ₂	8,34 19,68	8,96 17,71	9,21 17,69		
N-2-Hydroxyäthyliminodiessigsäure (H ₂ L)	ML ⁺ ML ₂	8,50 14,79	9,14 17,03	9,21 17,13		
N-Methyliminodiessigsäure (H ₂ L)	ML_{-}^{\mp} ML_{2}		7,01 12,51			
Iminodiessigsäure (H ₂ L)	$\frac{ML^{\frac{2}{4}}}{ML_{2}^{\frac{2}{2}}}$		7,37 12,39	7,65		

ΔI -

TABELLE A

1. EINLEITUNG

- 1 -

<u>l.1</u><u>Aufgabenstellung</u>

Aminopolykarbonsäuren, deren bekanntester Vertreter Äthylendiamintetraessigsäure in der analytischen Chemie zu einem Standardreagenz geworden ist, haben bei der quantitativen Bestimmung der Actiniden keine große Bedeutung gewonnen, nehmen jedoch bei der präparativen Trennung und für systematische Untersuchungen der Komplexbildungscharakteristika dieser Elemente einen hervorragenden Platz ein. Als unspezifische Liganden, die mehrere gleichartige Donatorgruppen enthalten und sie alle an ein Zentralion koordinieren können, ermöglichen sie aus den Stabilitätskonstanten Schlußfolgerungen über die Koordinationszahl und den Einfluß des Kationenradius auf die Komplexbildung.

Ziel der vorliegenden Arbeit war es, die Stabilitätskonstanten der Actiniden(III)-Komplexe einiger bisher wenig beachteter Aminopolykarbonsäuren zu untersuchen und die Zusammenhänge zwischen Ligandenstruktur, Komplexstabilität, Koordinationszahl und Trennfaktor abzuleiten.

1.2 Untersuchte Actinidenionen

In dreiwertiger Form kommen die Actinidenelemente Uran bis Lawrencium vor. Gegen Oxydation ausreichend stabil sind die Ionen ab Am(III); U(III) und Np(III) werden schon durch Luftsauerstoff sehr schnell oxydiert, Pu(III) ist in komplexbildnerfreier Lösung beständig, wird jedoch bei Gegenwart von Komplexbildner ebenfalls schnell oxydiert, da das Redoxpotential Pu(III)/Pu(IV) infolge der viel größeren Komplexbildungsneigung der Pu(IV)-Stufe stark herabgesetzt wird. Die hier beschriebenen Untersuchungen befassen sich mit dem Verhalten von dreiwertigem Americium, Curium und Californium, wofür Am-241 in Milligrammengen und Cm-244 sowie Cf-252 in Indikatormengen zur Verfügung standen.

Das Am-Isotop entsteht durch den ß-Zerfall aus Pu-241 und ist ein α -Strahler:

 $\frac{241}{Pu} \frac{\beta}{14 a} \xrightarrow{241} Am \frac{\alpha}{433 a} \xrightarrow{237} Np$

- 2 -

Seine spezifische Aktivität beträgt 1,26·10¹¹ Zerfälle pro Sekunde und Gramm; da für ausreichend genaue Messungen eine volumspezifische Zerfallsrate von 100 bis 10 000 Zerfällen je Sekunde und cm³ Lösung notwendig ist, liegt die Metallkonzentration bei minimal etwa 1·10⁻⁸ Mol/L und bei maximal 10⁻⁵ Mol/L, also knapp an der oberen Grenze des Indikatorbereiches. Üblicherweise verwendet man die Komplexliganden in 10⁻³ bis 10⁻² molarer Lösung, d.h., der Verbrauch des Liganden durch Komplexbildung beträgt höchstens 1% und braucht daher nicht berücksichtigt zu werden.

Für spektralphotometrische Messungen sind pro Versuch ca. 10 mg Am-241 erforderlich. Bei dieser Menge ist außer dem Kontaminationsschutz auch eine Abschirmung der 60 keV- γ -Strahlung erforderlich, die eine Dosisleistung von ca. 30 mR/h in normaler Arbeitsdistanz zur Folge hat. Ausreichenden Schutz gewährleistet eine Bleifolie von ein bis zwei mm Dicke.

Curium- und Californiumnuklide entstehen durch Bestrahlung von Plutonium im Kernreaktor bei hohem Neutronenfluß. Aufgrund der Reaktionsquerschnitte und Halbwertszeiten besteht die Mischung der entstandenen Curiumisotope nach einer Dosis von ca. $1\cdot 10^{22}$ Neutronen/ cm² zu mehr als 90% aus Cm-244 (α -Strahler, Halbwertszeit 18,1 a). Californium bildet sich in nutzbaren Mengen ab einer Dosis von etwa $3\cdot 10^{22}$ Neutronen/cm², der Hauptanteil besteht dann aus Cf-252 (α -Strahler, Halbwertszeit 2,65 a; 1/30 aller Zerfälle sind Spontanspaltung). Diese beiden Nuklide standen in µg-Mengen zur Verfügung; infolge der hohen spezifischen Aktivität von 2,98·10¹² Zerfällen je Sekunde und Gramm bei Cm-244 und 1,98·10¹³ Zerfällen je Sekunde und Gramm bei Cf-252 lag die Konzentration stets unter 10⁻⁷ Mol/L, so daß auch hier der Verbrauch des Liganden nicht berücksichtigt werden muß.

Zum Vergleich der Transurane mit den Seltenen Erden wurde Cer und in einigen Fällen auch Europium untersucht, wozu das aus den Spaltprodukten isolierbare Ce-144 bzw. das durch Neutronenbestrahlung von Europium sowie aus den Spaltprodukten erhältliche Nuklidgemisch Eu-152/Eu-154 verwendet wurde.

1.3 Aminopolykarbonsäuren

Die in dieser Arbeit untersuchten Aminopolykarbonsäuren sind in Tabelle 1 zusammengestellt. Sie lassen sich in zwei Gruppen einteilen: Iminodiessigsäure und ihre Derivate mit einem koordinationsfähigen Atom "X" in B- oder γ -Stellung zum Stickstoff, z.B.

- 3 -

Diese können somit drei- oder vierzähnig wirken.

II. Aminopolyessigsäuren mit fünf bis zehn koordinationsfähigen Donatoratomen, die so verknüpft sind, daß benachbarte Donatoratome Chelatfünfringe bilden können. Ein Beispiel ist Diäthylentriaminpentaessigsäure:

TABELLE 1 In dieser Arbeit untersuchte Aminopolykarbonsäuren

Name	Kurzbe- zeichnung	pK-Werte µ=0,1;25°C	Lit.
Iminodiessigsäure	H ₂ IDE	2,662 9,35	d.A.
N-Methyl-iminodiessigsäure	H2MIDE	2,57 9,71	d.A.
N-2-Hydroxyäthyliminodiessigsäure	H ₂ NHIDE	2,20 8,72	64RAMA
2-Picolyliminodiessigsäure	H ₂ PIDE	2,60 8,21	63T0
6-Methyl-2-picolyliminodiessigsäure	HMPIDE	3,46 8,30	6310
Anthranilsäure-N,N-diessigsäure	H ₃ ADE	2,34 2,98 7,75	50WI
Taurin-N,N-diessigsäure	H ₃ TDE	1,92 2,28 8,16	495AA
N-2-Hydroxyäthyl-äthylendiamin- triessigsäure	H ₃ NHADTE	2,39 5,37 9,93	61MOFE
Äthylenglykol-bis(2-aminoäthyl)- tetraessigsäure	H ₄ AGTE	2,0 2,68 8,85 9,46	57SASA
Diäthylentriaminpentaessigsäure	H ₅ DTPE	1,80 2,55 4,33 8,60 10,58	65BA

Name	Kurzbe- zeichnung	pK-Werte μ=0,1;25 [°] C	Lit.
Triäthylentetraminhexaessigsäure	H ₆ TTHE	2,42	
		4,166,16	65BOMA
		9,40 10,19	

2. UNTERSUCHUNGS- UND BERECHNUNGSMETHODEN

2.1 Kationenaustausch

Die Kationenaustauschmethode beruht auf der Veränderung der Verteilung des Kations zwischen einem Kationenaustauscher und einer wäßrigen Phase durch die Bildung von Komplexen in dieser. Da die Komplexe weniger als das unkomplexe Kation sorbiert werden, ist die Abnahme des Verteilungskoeffizienten ein Maß für den Komplexbildungsgrad.

Für eine sukzessive Reihe mononuklearer "normaler" Komplexe ML gilt die Ionenaustauschgleichung:

(1)

 $Q = Q_0 / (1 + \Sigma B_i \cdot |L|^i)$

Q : Verteilungskoeffizient bei Abwesenheit von Komplexbildner
Q : Verteilungskoeffizient bei Anwesenheit von Komplexbildner
ß : Komplexstabilitätskonstante
|L| : Konzentration der komplexbildenden Anionen

Als Ausgangsdaten zur Berechnung der Stabilitätskonstanten nach Formel (1) wurden die Verteilungskoeffizienten Q₀ und Q in Abhängigkeit vom pH-Wert der wäßrigen Phase bestimmt. Die Zusammensetzung der entstandenen Komplexe wird in dieser Arbeit aus der graphischen Darstellung der Größe 1g ($\frac{Q_0}{Q}$ - 1) als Funktion von 1g |L| bestimmt, da der tg α dieser Komplexbildungskurve gleich dem Mittelwert des Verhältnisses Ligand:Zentralion in den vorhandenen Komplexen ist. Demnach sollte der Mindestwert des tg α gleich 1 sein. In einigen Fällen traten kleinere Werte auf, was mit dem Vorliegen von Hydrogenkomplexen M(H_iL) interpretiert wird. Dieser Typ enthält nicht den vollständig, sondern den nur zum Teil dissoziierten Liganden an das Zentralion gebunden. Mit steigendem pH-Wert wird in der Regel der am Hydrogenkomplex gebundene dissoziierbare Wasserstoff abgespalten und es entsteht der Normalkomplex. Für ein derartiges System mit dem Monohydrogenkomplex gilt die Ionenaustauschgleichung (2).

$$Q = Q_{o} / (1 + B_{H} \cdot |HL| + \Sigma B_{i} \cdot |L|^{\perp})$$

 $|HL| = |L| \cdot k_N / |H^+|$

k_N = letzte Dissoziationskonstante der N-basischen Säure H_NL

2.2 Spektralphotometrie

Dreiwertiges Americium in wäßriger Lösung hat im Bereich des sichtbaren Lichtes eine scharfe Absorptionsbande, die sich durch Komplexbildung nach höheren Wellenlängen verschiebt. Die gleiche Erscheinung tritt auch bei Np(IV), Np(V) und Pu(VI) auf (70EB). In günstigen Fällen ist die Verschiebung so groß, daß im Spektrum die Banden von unkomplexem Kation und Komplex gut getrennt sichtbar sind. Da jeder Komplex seine eigene Bande hat, kann man anhand der Bandenzahl die Zahl der entstandenen Komplexe erkennen. Für den Zusammenhang zwischen den Extinktionen, den Stabilitätskonstanten und den Konzentrationen gelten die Gleichungen (3) und (4). Dabei wird angenommen, daß nur die metallionenhaltigen Species bei den Meßwellenlängen zur Lichtabsorption beitragen und daß das Lambert-Beersche Gesetz gilt.

(3)
$$E_{(\lambda)} = E_{M} + E_{ML} + E_{ML_{2}} \cdots E_{ML_{N}}$$

(4)
$$E_{(\lambda)} = M_{0} \frac{\varepsilon_{M} + \Sigma(\varepsilon_{ML_{1}} \cdot B_{1} \cdot |L|^{1})}{1 + \Sigma(B_{1} \cdot |L|^{1})}$$

E =	Extinktion
M _o =	Gesamtkonzentration des Metallions
E _ =	Extinktionsmodul
ß. =	Stabilitätskonstante des Komplexes ML;
L =	Anionenkonzentration (Ligand)
Index "M" =	unkomplexes Metallion
Index "ML _i "=	Komplex ML

Zur Ermittlung der Stabilitätskonstanten wurden Lösungen von Am(III) und dem infrage stehenden Liganden mittels konz. NH₄OH schrittweise auf höhere pH-Werte gebracht und jeweils ein Spektrum im Bereich 4500 - 5500 Å aufgenommen. Eigentliche Ausgangsdaten der Berechnung sind die bei den Absorptionsmaxima abgelesenen Extinktionen. Aus diesen, den pH-Werten und den Einwaagekonzentrationen wurden die Stabilitätskonstanten nach Formel (3) berechnet.

Der Extinktionsmodul des Am(III)·aq beträgt nach (69BADE) 430 $|L/Mol \cdot cm|$; eine eigene Bestimmung mit durch Kationenaustauschelution gereinigtem Am-241 ergab 370 $|L/Mol \cdot cm|$. Das Extinktions<u>–</u> maximum liegt für das in dieser Arbeit verwandte Spektralphotometer bei 5031 Å. Eine ins Gewicht fallende Abhängigkeit dieser Größe von der Meßtemperatur und Salzkonzentration (NaClo₄) wurde nicht beobachtet.

Curium und Californium standen nicht in Mengen zur Verfügung, die eine spektralphotometrische Untersuchung erlauben. Vermutlich ist diese bei Cm mangels ausreichend intensiver Absorptionsbanden nicht möglich. Auch Cf besitzt keine Banden, die für komplexchemische Messungen geeignet erscheinen.

2.3 Definition und Berechnung der Stabilitätskonstanten

Die Stabilitätskonstanten werden im Sinne der Hinreaktion als "Bruttokonstanten" definiert:

M + iL ML_i

(5)
$$\beta_{i} = \frac{|ML_{i}|}{|M| \cdot |L|^{i}} |Liter^{i}/Mol^{i}|$$

- 6 -

Sie sind auf Konzentrationen bezogen, sind somit eine Funktion der Ionenstärke, die in allen Versuchen bei 0,1<u>+</u>0,02 lag und mit NaClO₄ oder NH₄ClO₄ eingestellt wurde. Zur Umrechnung der pH-Ablesungen in Wasserstoffionenkonzentrationen diente die Formel:

(6)
$$|H^+| = e^{-(pH - 0, 08)}$$

Bei den Ionenaustausch- und Spektralphotometrieexperimenten wurde der Verteilungskoeffizient bzw. die Extinktion der wäßrigen Phase (Metallion und Ligand enthaltend) als Funktion des pH-Wertes gemessen. Zur Berechnung der Anionenkonzentration dient die Gleichung:

(7)
$$|L| = HL_{G} \frac{k_{1} \cdot k_{2} \cdot \cdot \cdot \cdot k_{N}}{|H|^{N} + |H|^{N-1} \cdot k_{1} + |H|^{N-2} \cdot k_{1} \cdot k_{2} \cdot \cdot \cdot + k_{1} \cdot k_{2} \cdot k_{3} \cdot \cdot \cdot k_{N}}$$

HL_G ist hierbei die Gesamtkonzentration des nicht komplex gebundenen Liganden. Beim Ionenaustausch ist HL_G gleich der Einwaagekonzentration "HL_o", da die Metallionen in Indikatormengen vorliegen und daher der Ligandenverbrauch nicht berücksichtigt zu werden braucht. Bei der Spektralphotometrie gilt das nicht, hier muß HL_G mit folgender Formel aus HL_o berechnet werden:

(8)
$$HL_{G} = HL_{o} \cdot (1 - M_{o} \frac{\Sigma i \cdot B_{i} \cdot |L|^{1}}{1 + \Sigma B_{i} \cdot |L|^{1}})$$

Zur Berechnung der Stabilitätskonstanten nach den Formeln (1) bis (8) aus den Meßwerten "Y" und den unabhängigen Variablen X (=|L|, M_0 , HL_0) wurden die Rechenprogramme PHOTO4 und JONAS4 (70EB) verwandt. Das Resultat ist derjenige Satz von unbekannten Parametern (Stabilitätskonstanten, Extinktionsmoduln), welcher ein Minimum der Fehlergröße

$$U = \Sigma (Y_{exp} - Y_{ber})^2$$

ergibt. Die Minimalisierung erfolgt nach der Methode von Gauss.

- 7 -

3. ERGEBNISSE

<u>3.1_Einfluß_der_Versuchsparameter_auf_das_Kationenaustausch-</u> gleichgewicht

Kontaktzeit

Die Kinetik der Gleichgewichtseinstellung im System Austauscherharz/wäßrige Phase wurde mit Ce³⁺ untersucht; für die übrigen in dieser Arbeit verwendeten Kationen Eu³⁺, Am³⁺, Cm³⁺ und Cf³⁺ ist kein prinzipiell anderes Verhalten zu erwarten. Bei Abwesenheit von Komplexbildnern stellt sich das Verteilungsgleichgewicht innerhalb 3 Stunden und bei Anwesenheit bzw. Zugabe von Nitrilotriessigsäure schon nach 20 Minuten auf mehr als 98% des Endwertes ein (Abbildung 1). Alle komplexchemischen Versuche wurden mit 48h Reaktionsdauer ausgeführt.

ABBILDUNG 1

Kinetik der Sorption und Desorption von Am³⁺ im System 0,1 m NH₄ClO₄, H₂O/ Dowex 50 bei 25^oC

Abhängigkeit der Q-Werte von der Harzcharge

Die verschiedenen, im Lauf der Arbeit verwandten Austauscherharzchargen ergaben unterschiedliche Verteilungskoeffizienten Q_o, die jeweils extra bestimmt wurden (Tabelle 2). Der Harztyp war stets Dowex 50-X12, Korngröße 50 - 100 mesh in der NH₄-Form.

Harzcharge	Ce ³⁺	Eu ³⁺	Am ³⁺	Cm ³⁺	Cf ³⁺
A	9,39·10 ⁵		7,76·10 ⁵	8,75·10 ⁵	4,92·10 ⁵
В	7,81·10 ⁵		6,82·10 ⁵	5,65·10 ⁵	
C	9,40·10 ⁵	5,76·10 ⁵	8,41·10 ⁵	6,38·10 ⁵	
D			6,67·10 ⁵		

TABELLE 2Zusammenstellung der gemessenen Verteilungskoeffizienten
"Qo". $\mu = 0,1 (NH_4C10_4), pH = 2,5 - 3,5; 25^{\circ}C$
Harz: Dowex 50-X12

Abhängigkeit der Q-Werte vom pH-Wert der wäßrigen Phase

Im Bereich von pH 2,5 bis pH 4 ist Q_o der untersuchten Kationen konstant (Abbildung 2). Bei stärker saurer Lösung vermindert sich Q_o infolge Verdrängung der Kationen durch Wasserstoffionen; vollständige Desorption tritt mit 6m Mineralsäure ein. Bei pH-Werten oberhalb 5 hydrolysieren die dreiwertigen Lanthaniden und Actiniden, wodurch ebenfalls Desorption eintritt.

ABBILDUNG 2

Verteilungskoeffizienten in Abhängigkeit vom pH-Wert (µ = 0,1; 25°C Harz: Dowex 50-X12)

Abhängigkeit der Q-Werte von der Salzkonzentration

Die Salzkonzentration "I" der wäßrigen Phase beeinflußt das Sorptionsgleichgewicht erheblich (Abbildung 3), z.B. bewirkt eine Änderung der Ionenstärke um 1% eine etwa 6%-ige Ab- bzw. Zunahme des Verteilungskoeffizienten. Bei allen Versuchen wurde die Ionenstärke μ auf <u>+</u>1% konstant gehalten, wodurch auch eine ausreichende Konstanz der Salzkonzentration gegeben ist. Es läßt sich ableiten, daß für den Zusammenhang von Q₀ und Salzkonzentration die Beziehung 1g Q₀ = C - 3·1g I gilt, wenn ein dreiwertiges Kation bei Gegenwart eines großen Überschusses eines einwertigen Kations vorliegt und beide vom Harz sorbiert werden können (70EB). Die Meßdaten genügen, wie Abbildung 3 zeigt, in erster Näherung dieser Beziehung.

<u>ABBILDUNG 3</u> Zusammenhang von Q_o und Salzkonzentration

<u>3.2 Einfluß des Vernetzungsgrades des Kationenaustauschharzes</u> auf die berechnete Stabilitätskonstante

Theoretisch darf eine durch Ionenaustausch bestimmte Stabilitätskonstante nicht von der Art des verwandten Harzes abhängen, wie überhaupt die Bestimmungsmethode keinen Einfluß auf diese Größe haben sollte. Trotzdem erhält man mittels verschiedener Methoden oft unterschiedliche Werte der Stabilitätskonstanten, ohne daß man dies erklären kann. Der Einfluß der Harzsorte auf das Kationenaustausch- und Komplexbildungsgleichgewicht wurde am Beispiel Ce(III)/Nitrilotriacetat geprüft (Nitrilotriessigsäure: H₃NTE).

Nach Abbildung 4 ergibt ein Harz niedrigeren Vernetzungsgrades eine tiefer liegende Ionenaustauschkurve. Diese tiefere Lage geht jedoch auf die Verschiedenheit der Q_o-Werte für Ce(III) zurück: Dowex 50-X4 Q_o = 2,12·10⁵, Dowex 50-X12 Q_o = 9,39·10⁵. Zeichnet

ABBILDUNG 4

Ionenaustauschkurve des Systems Ce(III)/H₃NTE/DOWEX für zwei Harze unterschiedlichen Vernetzungsgrades

 $H_{2}NTE$: 0,002m, μ =0,1; 25^oC

ABBILDUNG 5

Komplexbildungskurve des Systems Ce(III)/H₃NTE/DOWEX für zwei Harze unterschiedlichen Vernetzungsgrades

man den korrigierten Verteilungskoeffizienten $Q_R = Q_0/Q - 1$ als Funktion der Ligandenanionenkonzentration auf ("Komplexbildungskurve"), so liegen beide Messungen auf einer Kurve (Abbildung 5), und man erhält für die Komplexe Ce(NTE)⁰ und Ce(NTE)³⁻ die Stabi-

litätskonstanten:

DOWEX 50-X4 $1g \ B_1 = 10,92$ $1g \ B_2 = 18,66$ DOWEX 50-X12 $1g \ B_1 = 10,89$ $1g \ B_2 = 18,66$

Diese Ergebnisse zeigen, daß das Ce(III)-Kation mit zunehmendem Vernetzungsgrad des Austauschers stärker sorbiert wird, daß jedoch hierdurch kein Unterschied der mittels dieser Austauscher bestimmten Stabilitätskonstanten hervorgerufen wird.

3.3___Komplexe_des_dreiwertigen_Cers, Europiums, Americiums, Curiums_und_Californiums_mit_Polyaminopolyessigsäuren

3.3.1 Zusammensetzung

Die Komplexbildungskurven des Systems M(III)/H₃NHADTE (M = Ce(III), Am(III), Cm(III), Cf(III) sind fast über den ganzen Meßbereich Geraden mit Steigung 1, d.h. es liegen 1:1-Komplexe

vor (Abbildung 6). Bei den Transuranen, besonders deutlich bei Californium, ist der Kurventeil ab 1g $|NHADTE^{3-}| = -13$ nach oben gekrümmt, woraus auf einen geringen Anteil höherer Komplexe zu schließen ist. F.L. Moore (66MO) berichtete, daß dreiwertige Transurane aus H₃NHADTE-Lösung mit dem quartären Ammoniumsalz "ALIQUAT 336" extrahierbar sind, d.h. als anionische Komplexe vorliegen. Der 1:1-Komplex ist neutral, so daß als einfachste negative Species der 1:2-Komplex infrage kommt; anders zusammengesetzte anionische Komplexe sind wenig wahrscheinlich. Die Meßdaten sind also mit der Annahme des Vorhandenseins der Komplextypen M(NHADTE)^o und M(NHADTE)³⁻ zu interpretieren (67EBBA).

ABBILDUNG 6

Kationenaustausch-Komplexbildungskurven für Komplexe der H₂NHADTE

Die mehr als 5-zähnigen Liganden ergeben Kurven mit der maximalen Steigung 1 (Abbildung 7), höhere Komplexe als der Typ ML₁ lassen sich nicht erkennen.

Bei H_6 TTHE liegt die Steigung unter 1, woraus zu schließen ist, daß Hydrogenkomplexe "MHL" vorliegen. Man kann sie graphisch nachweisen, indem man die Größe 1g ($Q_0/Q - 1$) als Funktion des Logarithmus der Konzentration des betreffenden Hydrogenanions aufträgt; wurde dieses richtig gewählt, so erhält man wieder Kurven mit Steigung 1. Aus Abbildung 8 erkennt man, daß sich nur bei den Anionen HTTHE⁵⁻ und H_2 TTHE⁴⁻ Kurvenstücke mit Steigung 1 ergeben, es liegt also der Mono- und der Dihydrogenkomplex vor, jedoch nicht der Normalkomplex. Dieser wurde von DelleSite und Baybarz (69BADE) spektralphotometrisch nachgewiesen.

Diäthylentriaminpentaessigsäure bildet mit Am(III) (und Cm(III)!), wie die graphische und rechnerische Auswertung der Meßdaten zeigt, ebenfalls einen Monohydrogenkomplex neben dem 1:1-Normalkomplex.

ABBILDUNG 7

Kationenaustausch-Komplexbildungskurven der mehr als 5-zähnigen Polyaminopolyessigsäure

ABBILDUNG 8

Graphischer Nachweis der Am(III)-Hydrogenkomplexe von H₆TTHA

Ein merkwürdiges Resultat lieferten die Versuche mit Äthylendiamintetrapropionsäure: der Verteilungskoeffizient nimmt im Meßbereich mit steigendem pH-Wert zu (Tabelle 3). Bei einem pH um 3 ist somit die desorbierende Wirkung dieses Liganden größer als darüber. Der Effekt wurde nicht näher untersucht.

TABEI	LE 3	Ver Äth	Verteilungskoeffizienten des Am(III) im System Äthylendiamintetrapropionsäure/Dowex 50										
		^H 4 ^{A]}	DTP :	0,01	m j	μ = 0,	1 (NH	4 ^{C10} 4), 25	°c			
рН	2,42	2,62	2,84	2,98	3,15	3,370	3,49	3,66	3,85	3,99	4,17	4,37	
lg q	3,97	4,10	4,26	4,37	4,55	4,81	4,93	5,12	5,38	5,50	5,66	5,70	

3.3.2 _Komplexstabilität

Die aus Kationenaustauschdaten berechneten Stabilitätskonstanten sind in Tabelle 4 zusammengestellt. Beim System Ce/H₃NHADTE stimmt das erhaltene β_1 sehr gut mit dem von Moeller (61MOFE) angegebenen Wert (1g β_1 = 14,11) überein, dagegen besteht bei Ce/H₄AGTE ein außerhalb der Fehlergrenzen liegender Unterschied zu Literaturdaten, die auch ihrerseits differieren:

	lg ß _l	Quelle	Methode
Ce(III)	16,54	d.A.	Kationenaustausch
	16,06	62MAMP	EMK-Messung (Hg)
	15,70	59HI	Polarographie
Eu(III)	17,88	d.A.	Kationenaustausch
	17,10	62MAMP	EMK-Messung (Hg)
	17,77	59HI	Polarographie

Zur Kontrolle wurde Eu(III) untersucht, für das ähnliche Unterschiede auftreten. Mehrfache Wiederholung der Ionenaustauschversuche erbrachte stets die gleichen Stabilitätskonstanten, so daß diese als richtig angesehen werden.

Für Am(III)-Diäthylentriaminpentaacetat sind in der Literatur vom gleichen Autor (69BADE, 65BA) zwei verschiedene Stabilitätskonstanten angegeben worden: 1g β_1 = 22,92 aus Ionenaustausch- und 1g β_1 = 24,03 aus Spektralphotometriemessungen. Der in dieser Arbeit erhaltene Wert bestätigt das Ionenaustauschresultat.

Alle mehr als fünfzähnigen Liganden bilden sehr stabile Transuran(III)-Komplexe. Sie werden durchweg schon unterhalb pH 2,5 gebildet, also weit vom Hydrolysenbereich (pH \simeq 6) entfernt. Allerdings ist die Komplexbildung stark vom pH abhängig, so daß für Ligandenkonzentrationen von 0,01 m und weniger bei pH < 1 die Komplexe vollständig zersetzt sind. Für die vielen, unter Verwendung dieser Säuren arbeitenden Trennverfahren ist diese Eigenschaft von großem Wert, da hierdurch die Kationen aus den Produktlösungen nach dem Ansäuern leicht mittels eines Kationenaustauschers oder eines Extraktionsmittels wiedergewonnen werden können. Bei den vierwertigen Actinidenionen würde dieser Punkt erhebliche Schwierigkeiten machen, da sie auch in Im Säure noch vollständig komplexiert sind.

- 14 -

Formel	lg ß						
	Ce	Am	Cm	Cf			
M(NHADTE) ⁰ M(NHADTE) ³⁻ 2	14,14 <u>+</u> 0,01 -	15,72 <u>+</u> 0,02 ≃27,4	15,93 <u>+</u> 0,01 ≃27,2	16,27 <u>+</u> 0,02 ≃28,5	5/1-5/4		
(MHDTPE) ⁻ (MDTPE) ²⁻		14,06 <u>+</u> 0,03 23,07 <u>+</u> 0,08	14,43 <u>+</u> 0,25 23,48 <u>+</u> 0,05	······································	5/5-5/6		
M(H ₂ TTHE) ⁻ M(HTTHE) ²⁻	9,70 <u>+</u> 0,3 15,76 <u>+</u> 0,06	11,85 <u>+</u> 0,03 18,13 <u>+</u> 0,06	11,77 <u>+</u> 0,03 18,19 <u>+</u> 0,04		5/7-5/9		
M(AGTE) ⁰	16,54 <u>+</u> 0,02 17,88 <u>+</u> 0,01*	18,22 <u>+</u> 0,01	18,13 <u>+</u> 0,02		5/10- 5/13		

TABELLE 4 Stabilitätskonstanten der Komplexe von H_NHADTE, H₅DTPE und H₆TTHE mit dreiwertigen Lanthaniden und Transplutonkationen (25°C, $\mu = 0, 1$)

*Eu(III)!

3.3.3 Zusammenhang von Komplexstabilität und Struktur des Liganden

Die Stabilitätskonstanten der hier untersuchten Transuran(III)-Komplexe sind umso größer, je mehr Aminstickstoffe und Karboxylgruppen der Ligand enthält.

Trägt man die 1g ß,-Werte der Am(III)-Komplexe von H₂IDE (s. 3.2), H₃NTE (68EBAL), H₃NHADTE, H₄ADTE (70MO) und H₅DTPE über der Zahl verfügbarer Koordinationsstellen (ZVK) des Liganden auf, so liegen sie, wie Abbildung 9 zeigt, auf oder in der Nähe einer Geraden, deren Anstieg ca. 3 Einheiten von 1g ß pro ZVK-Einheit beträgt (69EBBA).

ABBILDUNG 9

Zusammenhang der Komplexstabilitätskonstanten von Am(III)-Aminopolyacetaten und der Zahl verfügbarer Koordinationsstellen (ZVK) des Liganden

(Kurzbezeichnungen der Liganden sind im Text erläutert)

Für Cm(III) und Cf(III) erhält man ebenfalls eine derartige Gerade; nach (67FU) gilt das ganz allgemein für Metallkationenkomplexe, sofern man hinsichtlich Struktur und Acidität ähnliche Komplexbildner vergleicht. Bei den hier in Betracht gezogenen Liganden ist diese Einschränkung beachtet; sie enthalten alle ausschließlich Iminodiessigsäure- oder Aminoessigsäurereste als koordinativ wirksame Gruppen und haben etwa den gleichen pK_N-Wert (letzte Diss.-Konstante).

Man kann annehmen, daß in den Transuran(III)- und Lanthaniden(III)-Komplexen von H_2IDE , H_3NTE , $H_3NHADTE$ und H_4ADTE alle verfügbaren Koordinationsstellen an das Am(III)-Ion gebunden sind; wie es für die Lanthaniden(III)-Äthylendiamintetraacetate durch die Strukturaufklärung bewiesen worden ist (65HOLL). Demnach kann man folgern, daß die Gerade in Abbildung 9 sehr wahrscheinlich den Zusammenhang zwischen 1g ß und der "tatsächlichen" Koordinationszahl (Zahl der koordinativen Bindungen zwischen Ligand und Zentralion) für den betrachteten Komplextyp darstellt. Die Linearität dieser "Koordinationszahlgeraden" ist als eine Folge überwiegender Entropiestabilisierung der Komplexe zu verstehen. Diese geht u.a. aus kalorimetrischen Messungen an (AmADTE) hervor, wonach ΔG zu mehr als 80% aus dem Entropieglied der Gibbs-Helmholtzschen-Gleichung stammt (65FUCU).

Bei Am(III)-Komplexen, deren Liganden den oben angeführten Bedingungen genügen, kann man mittels der Abbildung 9 eine Aussage über die Koordination machen. So ist ß₁ für (AmAGTE) bei ZVK = 6 einzutragen, um es auf die Gerade zu bringen; die beiden in das Gerüst der sechszähnigen H₄ADTE eingefügten Äthersauerstoffe verändern die Stabilitätskonstante fast nicht. Analog ergibt sich bei H₃NHADTE, daß das Zentralion fünffach koordiniert ist. In beiden Fällen ist die Stabilitätskonstante so groß, als würden nur die Aminstickstoffe und die daran gebundenen Essigsäuregruppen mit dem Zentralion in Wechselwirkung stehen, die Äthersauerstoffe der H₄AGTE bzw. die OH-Gruppe der H₃NHADTE tragen nicht zu lg ß bei. Da bei den Lanthanidenkomplexen der Aminopolykarbonsäuren die gleiche Beobachtung gemacht wurde, ist zu schließen, daß sie Ausdruck einer allgemein für diese Liganden gültigen Regel ist.

Die Stabilitätskonstanten von $Am(TTHA)^{3-}$ und $Am(NHADTE)_{2}^{3-}$ müssen bei ZVK = 9 eingetragen werden, um auf die Gerade zu kommen; d.h. eine der koordinationsfähigen Gruppen scheint nicht gebunden zu

- 16 -

sein. In beiden Fällen sind jedoch die Daten für eine einwandfreie Aussage nicht genügend gesichert.

Um die Stabilitätskonstanten der Hydrogenkomplexe auf die Gerade der "tatsächlichen" Koordinationszahl zu bringen, müssen sie bei einem ZVK eingetragen werden, das um drei bis sechs Einheiten unter dem normalen ZVK des Liganden liegt (Abbildung 10). Für Am(HDTPE) ist Δ ZVK = 3, das entspricht der Nichtkoordination einer Iminodiessigsäuregruppe. Bei Am(HTTHA)²⁻ und Am(H₂TTHA)⁻ ist Δ ZVK = 4 bzw. 6, wenn man für den normalen Komplex AmTTHA⁻ ein ZVK von 10 annimmt; daraus ergibt sich keine einfache Aussage über die nichtkoordinierte Gruppe. Berücksichtigt man jedoch, daß 1g ß₁ des normalen Komplexes bei ZVK = 9 einzutragen ist, um auf die Gerade zu kommen, so beträgt Δ ZVK = 3 bzw. 5. Die Stabilitätskonstante ist also so groß, wie wenn eine Iminodiessigsäuregruppe bzw. eine Aminoessigsäure- + eine Iminodiessigsäuregruppe nicht, die andern Gruppen aber normal koordiniert wären.

Die bei Am(III) gefundenen Korrelationen und Regeln gelten in gleicher Weise bei Cm(III) und vermutlich auchbei Cf(III), von dem bis jetzt allerdings noch nicht sehr viel Angaben vorliegen.

ABBILDUNG 10

Stabilitätskonstanten der Am(III)-Hydrogenkomplexe 3.4 Komplexe des dreiwertigen Americiums, Curiums und Cers mit Iminodiessigsäure und einigen ihrer Derivate

3.4.1 Zusammensetzung

Die Absorptionsspektren einer schrittweise auf höhere pH-Werte eingestellten Lösung von dreiwertigem Americium und Iminodiessigsäure ergeben beim Übereinanderzeichnen die Abbildung 11. Es treten zwei neue Banden bei 5049 Å und 5068 Å auf, woraus auf die Entstehung zweier Komplexe zu schließen ist. Eine ähnliche Erscheinung erhält man mit H₂MIDE, die Banden liegen hier bei 5043 Å bzw. 5063 Å und erscheinen bei etwas höheren pH-Werten. Die Aus-

ABBILDUNG 11

Absorptionsspektren einer $Am(III)/H_2IDE-Lösung$ $Am(III) : 1,25 \cdot 10^{-3} m$ $H_2IDE : 1,00 \cdot 10^{-2} m$

wertung mit PHOTO4 ergibt in beiden Fällen, daß der 1:1- und der 1:2-Komplex vorliegt.

Mittels Kationenaustauschmessungen wurde bei H₂IDE nur der 1:1-Komplex gefunden, da die für eine Entstehung des 1:2-Komplexes erforderliche Ligandenkonzentration (>0,01m) und der günstige pH-Wert (5 bis 6) nicht möglich waren ohne eine zu große Unsicherheit bei Q₀ (Ionenstärke, partielle Hydrolyse) hervorzurufen.

Aus der graphischen Auswertung der Kationenaustauschversuche mit H₂NHIDE, H₂PIDE, H₂MPIDE, H₃ADE und H₃TDE (Abbildung 12) geht hervor, daß H₂NHIDE und H₂PIDE Komplexe mit ein und zwei Ligandenmolekülen pro Zentralatom ergeben. Bei H₃ADE hat die Steigung fast im ganzen Meßbereich den Wert 1,0, nur bei der höchsten Ligandenkonzentration liegen die Meßpunkte etwas über der Geraden, d.h., daß ein höherer Komplex in geringem Anteil vorhanden ist.

ABBILDUNG 12

Kationenaustausch-Komplexbildungskurven für Am(III)-Komplexe

Im Falle der H_3 TDE zeigt die graphische Auswertung, daß neben dem 1:1-Komplex noch ein Hydrogenkomplex (MHTDE)⁺ mit M = Ce(III), Am(III), Cm(III) auftritt. Spektralphotometrisch läßt sich bei Am(III) sowohl mit H_3 ADE als auch mit H_3 TDE der 1:1- und der 1:2-Komplex erkennen (s. 3.5).

3.4.2 Komplexstabilität

Zur Berechnung der Stabilitätskonstanten wurden die graphisch nachgewiesenen Komplextypen zugrundegelegt. Bei zwei H_3ADE -Versuchen ist jeweils die Fehlerquadratsumme U für die Rechnung mit dem 1:2-Komplex kleiner als ohne ihn (Tabelle 5), ebenso ist der mittlere quadratische Fehler der Stabilitätskonstanten niedriger; damit ist dieser Komplex identifiziert. Die erste Stabilitätskonstante ist nicht sehr empfindlich gegenüber dem angenommenen Reaktionsschema, der Unterschied für beide Fälle beträgt etwa 10%; sie ist bei Vernachlässigung von B_2 größer. Als Endergebnis wird für dieses System das Resultat einer gemeinsamen Berechnung der beiden Versuche genommen. Bei Cm(III) und Ce(III) hat B_2 einen Fehlerbereich von $\pm 70\%$, so daß hier der 1:2-Komplex nicht sicher identifiziert ist.

					10 ⁻⁷ ·ß	$10^{-14} \cdot B_2$	U
Versuch	1	Reaktion Reaktion	$M \rightarrow MI$ $M \rightarrow MI$	$\rightarrow ML_2$	8,09 <u>+</u> 0,22 8,80 <u>+</u> 1,1	1,62 <u>+</u> 0,73 -	0,0426 0,0657
Versuch	2	Reaktion Reaktion	$M \rightarrow ML$ $M \rightarrow ML$	$\rightarrow ML_2$ $\rightarrow ML_2$	8,03 <u>+</u> 0,23 9,19 <u>+</u> 0,41	6,05 <u>+</u> 1,2 -	0,0569 0,224
Versuch	1+2	Reaktion	M → MI	$\rightarrow ML_2$	8,21+0,21	3,23+0,81	0,131

<u>ABBILDUNG 13</u> Extinktionskurven im System $Am(III), H_2IDE/H_2O$ $Am(III) : 1,25 \cdot 10^{-3} m$ $H_2IDE : 1,00 \cdot 10^{-2} m$ $\begin{array}{c} 6,0\\ 5,5\\ 1gq \\ 5,0\\ 3 \\ 4 \\ 5,0\\ \hline \end{array}$

ABBILDUNG 14

Kationenaustauschkurve im System M(III),H₂IDE,H₂O/ Dowex 50 H₂IDE : 5,00·10⁻³ m

Für H₂IDE wurde ß₁ sowohl spektralphotometrisch als auch durch Kationenaustausch bestimmt. Meßwerte und berechnete Kurven stimmen für jede Methode sehr gut überein (Abbildungen 13 und 14), jedoch unterscheiden sich die Stabilitätskonstanten um den Faktor zwei voneinander. Auch bei anderen Liganden wurde die Beobachtung gemacht, daß Spektralphotometrie und Kationenaustausch etwas verschiedene Stabilitätskonstanten ergeben; und zwar ist die "Kationenaustauschkonstante" höher (70EB). Der spektralphotometrische Wert von ß₁ für AmIDE⁰ ist kürzlich von DelleSite und Baybarz bestätigt worden (69BADE), andererseits ergab ein Vergleich bei Ce(III) in verschiedenen Fällen Übereinstimmung von Kationenaustausch und Potentiometrie (70EB). Eine endgültige Erklärung der Differenz bei H₂IDE wurde nicht gefunden, möglicherweise beruht sie darauf, daß der Kationenaustauscher den vermutlich in geringem Anteil vorhandenen Hydrogenkomplex Am(HIDE)⁺⁺ "sieht", der erfahrungsgemäß (70EB) auf das Absorptionsspektrum nur einen geringen Einfluß hat.

Die Stabilitätskonstanten sind in Tabelle 6 zusammengefaßt.

<u>TABELLE 6</u> Stabilitätskonstanten der Ce(III)-, Am(III)- und Cm(III)-Komplexe von Iminodiessigsäure und ihren Derivaten (25,0°C, $\mu = 0,1$)

Forme1	enter volution	lg ß		Meßwerte
	Ce	Am	Cm	(Tabelle)
M(IDE) ⁺		7,02+0,01* 7,37+0,02	7,65 <u>+</u> 0,02	5/14 5/16-5/17
$M(IDE)_2^-$	_	12,39 <u>+</u> 0,04	-	
M(MIDE) ⁺		7,01 <u>+</u> 0,01*	_	5/15
$M(MIDE)_2$	-	12,51 <u>+</u> 0,05*	-	
M(NHIDE) ⁺	8,50+0,02	9,14 <u>+</u> 0,02	9,21 <u>+</u> 0,03	5/18-5/20
$M(NHIDE)_{2}$	14,97 <u>+</u> 0,05	17,03 <u>+</u> 0,02	17,13 <u>+</u> 0,02	
M(PIDE) ⁺	8,34 <u>+</u> 0,05	8,96 <u>+</u> 0,15	9,21 <u>+</u> 0,08	5/21-5/23
$M(PIDE)_2^-$	15,68 <u>+</u> 0,05	17,71 <u>+</u> 0,03	17,69 <u>+</u> 0,04	
M(ADE) ⁰	8,69 <u>+</u> 0,04	8,92 <u>+</u> 0,02	9,27 <u>+</u> 0,02	5/24-5/26
$M(ADE)\frac{3}{2}$	≃13,8	14,51 <u>+</u> 0,1	≃14 , 5	
M(MPIDE) ⁺	7,32+0,06	8,38 <u>+</u> 0,02		5/27-5/28
M(HTDE) ⁺	1,63+0,1	2,29 <u>+</u> 0,09	2,53 <u>+</u> 0,05	5/29-5/31
M(TDE) ⁰	7, 24 <u>+</u> 0,08	8,08 <u>+</u> 0,01	8,05 <u>+</u> 0,02	na an a

*: aus spektralphotometrischen Messungen

3.4.3 Zusammenhang von Komplexstabilität und Struktur des Liganden

Die vierzähnigen Iminodiessigsäurederivate besitzen neben den drei Koordinationsstellen der Iminodiessigsäuregruppe eine weitere, welche einen Chelatfünfring oder Chelatsechsring knüpfen könnte. Die Stabilitätskonstanten ihrer Am(III)-Komplexe sind jedoch erheblich kleiner als die der Komplexe der vierzähnigen Nitrilotriessigsäure; die Anwesenheit der vierten Koordinationsstelle im Liganden vergrößert seine komplexierende Wirkung nur wenig. Im 1g ß/ZVK-Diagramm (Abbildung 15) liegt dementsprechend β_1 der Am(III)-Komplexe von H_2NHIDE , H_3TDE , H_3ADE und H_2PIDE bei ZVK = 3,1 - 3,3 und β_2 etwa bei ZVK = 6. Der Vergleich von H_2NHIDE , H_3ADE usw. mit H_3NTE

ABBILDUNG 15

Stabilitätskonstanten der Am(III)-Komplexe von Iminodiessigsäurederivaten und "Koordinationszahlgerade"

ist allerdings nicht ganz zulässig, da ihre pK-Werte um etwa eine Einheit niedriger sind, gleicher pK-Wert aber eine der Voraussetzungen dafür wäre.

L.C. Thompson (67TSEM) hat die Stabilitätserhöhung durch die zusätzliche Koordinationsstelle mittels folgender Überlegung abgeleitet: beim Auftragen von 1gßüber dem pK-Wert entsteht bei gleichartigen Komplexen eines Kations eine ansteigende Gerade; ergibt ein Ligand eine höhere Koordinationszahl, so liegt sein 1gß¹ über der Geraden und der vertikale Abstand von der Geraden ist die 1g ß-Erhöhung durch die zusätzliche Koordination. Die Gerade für dreizähnige Koordination hat er anhand mehrerer H₂IDE-Derivate festgelegt und dabei gefunden, daß gleichartige Kationen parallele Kurven ergeben. In Abbildung 16 ist die Ce(III)-Gerade eingezeichnet und eine Am(III)-Gerade mittels des ß₁-Wertes von Am-Iminodiacetat als Parallele dazu konstruiert.

ABBILDUNG 16

Grafische Bestimmung der Stabilitätserhöhung infolge der Substitution des H-Atoms am Stickstoff der H₂IDE durch einen koordinativ einzähnigen Substituenten

Weiterhin sind in die Abbildung die B_1 -Werte der H_2 NHIDE-Komplexe von Ce(III) und Am(III) eingetragen. Auf diesem Weg erhält man die folgendenStabilitätserhöhungen " Δ lg ß" für Iminodiessigsäurederivate R-N-(CH₂COOH)₂:

R	^{∆lg ß} l,Ce(III)	$\Delta lg \beta l, Am(III)$		
<u>-</u> СН ₂ -СООН*	+4,10	+4,36		
-C2H50H	+2,8	+2,7		
-C2H50CH3	+1,7	- · · · · · · · · · · · · · · · · · · ·		
$-C_2H_4SO_3H$	2,0	2,0		
$-CH_2 - C_5H_5N$	3,1	2,9		
-с ₆ н ₄ соон	3,8	3,2		
-CH ₃	0	0		

* (68EBAL)

Bis auf den Fall der H_3^{ADE} sind die Δlg ß für Cer und Americium etwa gleich. Mit Δlg ß $\simeq 4,4$ ergibt eine zusätzliche Essigsäuregruppe (Nitrilotriessigsäure), die, wie in Abschnitt 3.1.3 ausgeführt wurde, vollständig an das Zentralion koordiniert ist, die größte Stabilitätserhöhung. Gemäß dem Gedankengang von Thompson bedeutet das, daß der Pyridinstickstoff, der Sauerstoff der C_2H_4 -OH-Gruppe sowie die Phenylkarboxylgruppe der H_3ADE ebenfalls, jedoch mit geringerer Bindungsenergie – oder anders ausgedrückt "partiell" – koordiniert sind. Die gleiche Aussage erhält man auch aus dem lg ß/ZVK-Diagramm, jedoch ergibt sie mit $\Delta ZVK \simeq 0,3$ einen geringeren Koordinationsgrad als die Thompsonsche Abschätzung anhand der Formel $\Delta ZVK = \frac{\Delta lg B_1}{\Delta lg B_1} \simeq 0,7$, worin $\Delta lg B_1$ die Stabilitätserhöhung pro Koordinationsstelle ist (diese beträgt etwa 4,4 wie aus lg B, von Am(NTE)^o hervorgeht!).

Alle koordinationsfähigen Substituenten "R" rufen ein positives $\Delta \log \beta$ hervor, eine Wechselwirkung mit dem Zentralion ist daher immer vorhanden.

<u>3.5 Zusammenhang von Ligandenstruktur und Absorptionsspektrum</u> <u>der Am(III)-Komplexe</u>

Die Wellenlängen der Absorptionsmaxima der Am(III)-Komplexe sind in Tabelle 6 zusammengestellt. Bei H₂IDE, H₂MIDE, H₂PIDE und H₃NTE ist die Wellenlängendifferenz $\Delta_1 = \lambda(AmL) - \lambda(Am \cdot aq)$ etwa ebenso groß wie $\Delta_2 = \lambda(\text{AmL}_2) - \lambda(\text{AmL})$; man kann daraus folgern, daß der Ligand im 1:1-Komplex in ähnlicher Weise an das Zentralion koordiniert ist wie im 1:2-Komplex. Bei H2ADE und H2NADTE ist dagegen Δ_2 nur etwa halb so groß wie Δ_1 , wodurch für das zweite Ligandenanion eine andere, geringere Koordination angezeigt wird. Zu dem gleichen Schluß kommt man auch durch den Vergleich der sukzessiven Stabilitätskonstanten; die Ligandengruppe mit $\Delta_1 \simeq \Delta_2$ ergibt ein Verhältnis $K_2/K_1 \simeq 0,1$, die mit $\Delta_1 >> \Delta_2$ ergibt $K_2/K_1 \simeq < 0,001$. Aufgetragen als Funktion der Zahl verfügbarer Koordinationsstellen (ZVK) (Abbildung 17) liegt λ_{max} der Komplexe von H₂NHIDE, H₃NTE, H₄ADTE und H₅DTPE auf einer Geraden; λ_{max} für Am(IDE)⁺, Am(IDE)₂, Am(PIDE)^o, Am(PIDE)₂³⁻ und Am(NHADTE)^o liegt deutlich darüber. Offensichtlich existiert eine Proportionalität zwischen ZVK und der Wellenlängendifferenz Δ ; die Größe Δ/ZVK hat bei den meisten Li-

$\Delta_1 - \lambda_{max}$	(AmL) -	λ ma:	x(Am(II	I)•aq)'	$\Delta_2 - \lambda_1$	max(AmI	$L_2^{-\lambda}$ max(AmL)
	1:1-Ko	mple:	x		1:2-Ko	mplex	
Ligand	λ max	Δı	ZVK 1	Δ_1/ZVK_1	λ_{max}	Δ ₂	Δ_2/ZVK_2
H ₂ IDE	5049	18	3	6,0	5068	19	6,3
H ₂ MIDE	5043	12	3	4,0	5063	10	3,3
H ₂ PIDE	5062	31	4	7,9	5094	32	8,0
H ₃ ADE	5053	22	4	5,5	5068	15	3,8
H ₃ NTE	5051	20	4	5	5073	22	5,5
H ₂ NHIDE	5045	14	4	3,5	5068	13	3,2
H ₃ NHADTE	5063	32	6	5,3	5075*	12	2
H ₄ ADTE	5061*	30	6	5,0			
H ₄ AGTE	5071	40	8	5,0			
H ₅ DTPE	5074*	43	8	5,4			
H ₃ TDE	5049	18	4	3,9	5064	15	3,8

TABELLE 6 Absorptionsmaxima der Am(III)-Komplexe

*: 69BADE

ganden einen Wert um 5,5. Einen höheren Quotienten ergibt nur H_2 PIDE, der einzige Ligand mit koordinativ wirksamem Pyridinstickstoff; dessen spektrallinienverschiebende Wirkung anscheinend größer als die des aliphatischen Aminstickstoffs ist. Man findet bei Pyridin- α -karbonsäure mit $\Delta_1 = 15 \rightarrow \Delta_1/2VK = 7,5$ etwa den gleichen Wert (70EBRI). In einigen Fällen ist der Quotient $\Delta/2VK$ deutlich kleiner als 5,5; da die betreffenden Liganden sich hinsichtlich der Art der koordinativ wirksamen Gruppen nicht von den andern unterscheiden, darf man hier auf niedrigere Koordination schließen (H_2 NHIDE, H_3 TDE, H_3 ADE (B_2), H_3 NHADTE (B_2)), wie sie auch aus der Diskussion der Stabilitätskonstanten hervorging.

ABBILDUNG 17

Wellenlänge der Absorptionsmaxima der Am(III)-Komplexe als Funktion der Zahl verfügbarer Koordinationsstellen des Liganden (ZVK)

3.6 Vergleich der Komplexbildungsneigung der dreiwertigen Transplutoniumionen untereinander

Wie Abbildung 18 an einigen Beispielen zeigt, steigen die Stabilitätskonstanten der Aminopolykarbonsäurekomplexe in der Regel mit der Ordnungszahl an; bei einigen Liganden liegt als Ausnahme ${}^{R}_{Cm}$ unter ${}^{R}_{Am}$. Es scheint, daß eine von Am zu Cm abnahmende Komplexstabilität vor allem bei den Liganden auftritt, die vom normalen Bauprinzip der Alkylaminopoly-<u>essigsäure</u> abweichen; die Differenz Δ 1g ß ist jedoch meist nur wenig größer oder sogar kleiner als der Fehlerbereich, so daß die sichere Feststellung einer Tendenz nicht möglich ist. Anthranil-N,N-diessigsäure ergab mit Δ 1g ß(Am/Cm) = 0,35 den größten Unterschied.

Abbildung 18

Stabilitätskonstanten der Transuran(III)-aminopolykarbonate als Funktion der Ordnungszahl

H ₄ ADTE	:	(58FU)
H ₃ NTE	:	(68EBAL)

3.7_Trennfaktoren

Mittels statischer Ionenaustauschmessungen wurden die in Tabelle 7 zusammengestellten Trennfaktoren " $\alpha = Q_{Am}/Q_{Cm}$ " bestimmt. In den meisten Fällen ist α im Bereich pH 2,5 bis pH 3,5 konstant, eine Ausnahme bildet H₂PIDE mit abnehmenden α bei steigendem pH. Der Trennfaktor $\alpha(Am/Cm)$ beträgt bei den untersuchten Liganden 1,25 bis 2,7. Als nur undeutlich ausgeprägte Tendenz stellt man eine etwas bessere Trennwirkung mit abnehmender Polyzähnigkeit und Symmetrie des Liganden fest. Die Liganden H₄AGTE und H₆TTHA mit den kleinsten α -Werten für Am/Cm besitzen die höchsten α -Werte für Cm/Ce, sie lassen somit zur Gruppentrennung Spalterden/Transplutone gute Eignung erwarten. Ein systematischer Einfluß der Ligandenstruktur auf den Trennfaktor ist nicht zu erkennen, jedoch sind die meisten Aminopolykarbonsäuren (lg $\alpha \simeq 0,2 - 0,3$) bessere Trennmittel als die α -Hydroxykarbonsäuren (lg $\alpha \simeq 0,15$).

Ligand	Konzentration Mol/L	рH	lg α(Am/Cm)	lg α(Cm/Ce)
H ₂ IDE	0,005	4,5	0,25	-
H ₂ PIDE	0,002	2,5 3,0 3,5	0,26 0,20 0,15	0,8 1,44 2,1
H ₃ ADE	0,0033	3,0 3,5 4,0	0,43 0,45 0,48	0,80 0,78 0,78
H ₃ TDE	0,004	2,5 3,0 3,5	0,14 0,15 0,15	- 0,95
H ₆ TTHA	0,0004	2,5 3,0	0,1 0,09	-
H ₄ AGTE	0,0013	2,5 3,0 3,5	0,10 0,10 0,10	- 1,64 1,66
H ₄ ADTE	0,001	2,0	0,31	
H ₃ NTE	0,002	2,5 3,0 3,5	0,22 0,22 0,22	0,7 0,9 1,2
H ₃ NHADTE	0,00078	2,5 3,0 3,5	0,17 0,16 0,15	1,22 1,48 1,64
H2 ^{NHIDE}	0,01	2,5 3,0 3,5	0,16 0,17 0,18	1,03 1,67 1,58

<u>TABELLE 7</u> Trennfaktoren für die Elution der Kationen von einem Kationenaustauscher berechnet aus den Gleichgewichtsmessungen ($\mu = 0,1$; 25°C)

- 27 -

3.8 Säuredissoziationskonstanten

Zur Bestimmung der pK-Werte von H₂IDE und H₂MIDE wurden Lösungen (Ansätze) des Liganden mit verschiedenem Neutralisationsgrad hergestellt und ihr pH-Wert mit einer Glas-Kalomelelektrodenkette gemessen. Abbildung 19 zeigt die pH/Neutralisationsgradkurve der Experimente für pK₁.

ABBILDUNG 19

Neutralisationskurve zur 1. Dissoziationsstufe von Iminodi- und N-Methyliminodiessigsäure

Zur Berechnung der Konstanten dienten die Formeln (1) bis (3), wobei zur Umrechnung von $|H^+|$ in $|OH^-|$ der von Harned (58HAOW) angegebene Wert $a_H/(f_H \cdot f_{OH}) = 1,605$, der für O,1m NaBr gilt (ein Wert für NaClO₄ ist nicht bekannt) sowie der Wert $k_W = 1,008 \cdot 10^{-14}$ (58HAOW), eingesetzt wurde. Die so erhaltenen Dissoziationskonstanten sind in Tabelle 8 zusammengestellt.

1)
$$K_1 = \frac{|H^+| \cdot (|B| + |H^+|)}{|H_2L| - |B| - |H^+|}$$

2)
$$K_2 = \frac{|H^+| \cdot (|B| - |OH^-|)}{|NaHL| - |B| + |OH^-|}$$

3)
$$|OH^-| = \frac{k_W}{|H^+|} \cdot \frac{a_{H_2}O}{f_{OH^-} \cdot f_{H^+}}$$

|H⁺| = Wasserstoffionenkonzentration

B = Zugegebene NaOH in Mol/L

 $|H_2L| = Einwaagekonz.$ für Ligand (für K₁)

NaHL = Einwaagekonz. an Mononatriumsalz (für K₂)

TABELLE 8Säuredissoziationskonstanten von Iminodiessigsäure
(H2IDE) und N-Methyliminodiessigsäure (H2MIDE)
25,0°C ; μ = 0,1 (NaClO4)

	H ₂ IDE	H ₂ MIDE
^K 1	$(2, 18\pm0, 07) \cdot 10^{-3}$	$(2, 7\pm 0, 1) \cdot 10^{-3}$
^K 2	$(4, 50\pm0, 2) \cdot 10^{-10}$	$(1, 9\pm 0, 1) \cdot 10^{-10}$

- 28 -

4. EXPERIMENTELLER TEIL

4.1 Radioindikatoren

Stammlösungen von Ce-144, Am-241, Cm-244 und Cf-250/252 mit etwa 100 μ Ci/ml wurden durch Abrauchen der Indikatoraktivität mit konz. Perchlorsäure, Glühen des Rückstandes in einem Quarzglas und anschließendem Auflösen mit 0,1 M HClO₄ hergestellt. Diese Behandlung zerstört schädliche organische Verunreinigungen.

Bei Cer wird anschließend inaktives CeCl₃ (ca. 0,001m) und 0,005m NH₂OH·HCl (zur Verhinderung der Oxydation von Ce(III) zu Ce(IV)) zugesetzt, mit konz. NH₄OH Cerhydroxyd ausgefällt, abzentrifugiert und mit 0,1 M HClO₄ aufgenommen. Die Bestimmung der radiochemischen Reinheit erfolgte über α - bzw. γ -Spektren.

Das Americium $(AmO_2$ von der Fa. ALKEM) für die spektralphotometrische Titration wurde in $HClO_4$ gelöst, auf 0,1 m freie Säure verdünnt, auf einer Kationenaustauschersäule sorbiert, diese mit 1 m HNO_3 gewaschen und dann das Am mit 6 m HNO_3 eluiert. Aus dieser Lösung fällte man das Am als Oxalat (0,1 m HNO_3 ; 0,1 m $H_2C_2O_4$) und kalzinierte den abfiltrierten Niederschlag bei 500°C zu AmO_2 . Dieses Produkt wurde für jede Titration gesondert mit $HClO_4$ konz. gelöst.

4.2 Komplexbildner

Die zur Komplexbildung verwendeten Säuren wurden, soweit erhältlich, gekauft, durch Umkristallisieren aus Wasser gereinigt und die Reinheit durch Bestimmen des Äquivalentgewichtes überprüft.

Darstellung von 2-Picolyliminodiessigsäure (63TO)

In einem 2 Liter Dreihalskolben, der mit Rührer, Tropftrichter und Rückflußkühler versehen war, wurden 54 g 2-Picolylamin und eine Lösung von 189 g Monochloressigsäure, die vorher mit 5 m Natronlauge neutralisiert worden war, gegeben. Die Mischung wurde erhitzt und durch Zusatz von 5 m Natronlauge auf pH 8 bis 10 gebracht. Nach beendeter Zugabe erhitzte man noch eine Stunde auf 80 - 90°C und kühlte anschließend mit Eiskochsalzmischung stark ab. Zu dieser Lösung wurde dann tropfenweise 6 m Salzsäure zugegeben, bis pH 2,5 erreicht war, wobei der Hauptteil NaCl ausfiel. Zu der von NaCl abfiltrierten Mutterlauge wurde Äthanol gegeben bis sich die Säure ausschied; sie wurde mit Aktivkohle aus Äthanol umkristallisiert und über P₂0₅ im Exsiccator getrocknet. Die Reinheit der Säure wurde durch Schmelzpunkts- und Äquivalentgewichtsbestimmung kontrolliert.

Äquivalentgewicht	gef.:	225	ber.:	224,5
Schmelzpunkt	gef.:	173 ⁰ C	Lit.:	174-175 ⁰ C

6-Methy1-2-Picoliniminodiessigsäure

Als Ausgangsmaterial zur Herstellung dieser Säure wurde 6-Methyl-2-Picolylamin verwendet und sonst wie oben verfahren.

Äquivalentgewicht	gef.:	238	ber.:	237,2
Schmelzpunkt	gef.:	160,5 [°] C	Lit.:	160-161 ⁰ C

4.3 Kationenaustauscher

Als Kationenaustauscher fand Dowex 50-X12, 50 - 100 mesh in der NH₄-Form Verwendung. Das von der Firma "Bio Rad Laboratories" in p.a. Qualität bezogene Harz wurde durch mehrmaliges Behandeln mit konzentrierter HC1 und HNO₃ gereinigt, mit Wasser säurefrei gewaschen, mit gesättigter NH₄C1-Lösung in die NH₄-Form überführt und anschließend bei 110[°]C getrocknet und gesiebt (verwandte Fraktion 0,1 bis 0,3 mm). Nach dreitägigem Stehen an der Luft wurde es in einem verschlossenen Gefäß aufbewahrt.

4.4 Ionenaustauschversuche

Eine wäßrige Phase, die den radioaktiven Indikator, den Liganden und die für Ionenstärke 0,1 erforderliche Menge NH₄ClO₄ enthielt, brachte man mit konz. NH₄OH auf den gewünschten pH-Wert. Je 20 ml dieser Lösung wurden in ein Kunststofffläschchen (50 ml), das abgewogenes Harz enthielt, gegeben und dieses zur Gleichgewichtseinstellung in einer Schüttelmaschine, die auf 25° C thermostatisiert war, für Cer 12 Stunden und für TU-Elemente 48 Stunden geschüttelt. Nach Einstellung des Gleichgewichtes erfolgte die Probeentnahme (0,100 ml bei α -Strahlern, 5,00 ml bei γ -Strahlern) zur Radioaktivitätsbestimmung und die pH-Messung.

Der Verteilungskoeffizient ist nach folgender Formel berechnet:

$$q = \frac{A_V - A_N}{A_N} \cdot \frac{V_w}{m_H}$$

Es bedeuten A_V bzw. A_N die Aktivität der wäßrigen Phase vor und nach dem Austausch in Imp/min•ml

V_w das Volumen der wäßrigen Phase in ml m_H das Harzgewicht im Gramm

4.5 Radioaktivitätsmessung

Zur Radioaktivitätsmessung der α -Strahler wurden vor und nach dem Austausch 100 λ der Reaktionslösung auf Edelstahlschälchen pipettiert, die Flüssigkeit unter einer IR-Lampe bis zur Trockene eingedampft und dann die Schälchen auf dem Spiegelbrenner ca. 30 sec geglüht. Man erhält rückstandsfreie Präparate, da sich das zugesetzte NH₄ClO₄ beim Glühen quantitativ verflüchtigt. Für γ -Messungen wurde die wäßrige Phase direkt in Zählfläschchen pipettiert.

Die Messung der Zählraten erfolgte mit einem Zählgerät und automatischem Probenwechsler der Firma ACEC (Belgien), das mit einem Proportionalzähler (Methan-Durchflußzähler) für α -Strahler sowie einem Bohrlochkristall für γ -Messungen ausgerüstet ist.

4.6_pH-Messungen

Zur pH-Messung diente ein Knick-pH-Meter mit einer Glas/Kalomel-Elektrodenkette. Die Kette wird mit KCl/HCl- und Phosphat-Puffer (NBS-Standardpuffer) geeicht. Der pH-Wert der wäßrigen Phase mußte sowohl vor als auch nach dem Austausch gemessen werden, da die Aci-

- 31 -

dität der wäßrigen Phase während der Gleichgewichtseinstellung fast immer zunahm. Die Umrechnung des pH-Wertes in die Wasserstoffionenkonzentration erfolgte nach der Formel $|H^+| = \exp(-pH + 0,08)$ (68EBAL).

4.7 Spektralphotometrische Titration

Die Titration, die pH-Messung und das Umfüllen der Lösung in die Küvetten erfolgte in einer Glove-Box.

Zur photometrischen Titration werden abgemessene Volumina frisch hergestellter (frei von radiolytisch entstandenem H₂O₂!) Am(III)-Lösung, Ligandenlösung, Perchlorsäure und O, 1M NaClO₄-Lösung in einen 25 ml Meßkolben gegeben, mit dest. Wasser zur Marke aufgefüllt und diese Titrationslösung in einem thermostatisierten Rührgefäß (25±0,2°C) mit gesättigter Natronlauge schrittweise neutralisiert. Bei den vorgesehenen pH-Werten entnimmt man mit einer Pipette einen Teil der Lösung, gibt ihn in eine Küvette, nimmt das Absorptionsspektrum auf und gibt zuletzt den Küvetteninhalt vor Einstellung des nächsten pH-Wertes wieder in das Titriergefäß zurück.

Durch Verwendung stets derselben Pipette und Küvette wird ein Verlust von Titrationslösung vermieden. Die Verdünnung durch die zugesetzte Natronlauge beträgt am Ende der Titration ca. 0,5%. Sie bleibt bei den Rechnungen unberücksichtigt.

Die Extinktionsmessungen erfolgten in 1 cm Quarzküvetten im auf 25,0°C thermostatisierten Spektrographen (Cary 14R) (außerhalb der Glove-Box) gegen eine mit 0,1N HClO₄ gefüllte 1 cm Vergleichsküvette aus Quarz.

TABELLEN 5.

TABELLE 5-1

TABELLE 5-2

System Ce(III)/H₃NHÄDTE/Dowex50-X12 System Am(III)/H₃NHÄDTE/Dowex50-X12

Wäßrige	Phase :	7,8.10 ⁻⁴ m H ₃ NHÄDTE $\mu = 0,1$ (NH ₄ C10 ₄)	Wäßrige	Phase :	7,8.10 ⁻⁴ m H ₃ NHÄDTE $\mu = 0,1$ (NH ₄ C10 ₄)
Ansatz	:	20 ml wäßrige Phase + 20 mg Harz	Ansatz	:	20 ml wäßrige Phase + 50 mg Harz
	Q ₀ =	9,33·10 ⁵		Q ₀ =	7,26·10 ⁵
No.	рН	lg Q	No.	рH	1g Q
1	2,425	5,379	1	2,235	4,742
2	2,585	5,029	2	2,380	4,345
3	2,790	4,591	3	2,545	3,909
4	3,00	4,091	4	2,710	3,476
5	3,135	3,792	5	2,960	2,855
6	3,275	3,466	6	3,130	2,433
7	3,500	3,004	7	3,250	2,166
8	3,660	2,663	8	3,455	1,622
9	3,860	2,305			
10	4,005	2,229	:		
11	4,085	1,997			

TABELLE 5-3

TABELLE 5-4

System Cm(III)/H₃NHÄDTE/Dowex50-X12 System Cf(III)/H₃NHÄDTE/Dowex50-X12

Wäßri	ge Phase	$7,8.10^{-2}$ $\mu = 0,1$	m H ₃ NHÄDTE (NH ₄ ClO ₄)	Wäßrige	Phase :	$7, 8 \cdot 10^{-4} \text{ m H}_{3}^{1}$ $\mu = 0, 1 \text{ (NH}_{4}^{2}\text{ C}$	NHÄDTE 10 ₄)
Ansat	.2	: 20 m1 wa + 50 mg	ißrige Phase Harz	Ansatz		20 ml wäßrige + 50 mg Harz	Phase
	Qo	= 8,25·10 ⁻	,		Q=	4,92.10	
No.	рH		lg Q	No.	рH	1g Q	
1	2,17	5	4,689	1	2,205	4,059	-
2	2,31)	4,331	2	2,330	3,753	
3	2,46)	3,428	3	2,435	3,373	
4	2,59)	3,643	4	2,545	3,142	
5	2,75)	3,249	5	2,640	2,863	
6	2,940)	2,775	6	2,735	2,608	
7	3,100)	2,436	7	2,870	2,270	
8	3,420) .	1,669	8	3,020	1,923	y
				9	3,150	1,550	
				10	3,250	1,177	

TABELLE 5-5

TABELLE 5-6

System Cm(III)/DTPA/Dowex50-X12

System Am(III)/DTPA/Dowex50-X12

Wäßrige	Phase :	$2 \cdot 10^{-4} \text{m DTPA}$ $\mu = 0, 1 (\text{NH}_4 \text{C10}_4)$	Wäßrige	Phase :	$2 \cdot 10^{-4} \text{ m DTPA}$ $\mu = 0, 1 (\text{NH}_4 \text{C10}_4)$
Ansatz	:	10 ml wäßrige Phase + 20 mg Harz	Ansatz	:	10 ml wäßrige Phase + 20 mg Harz
	Q =	6,831• 10 ⁵		Q ₀ =	8,407.10 ⁵
No.	рH	lg Q	No.	рH	lg Q
1	1,905	4,890	1	1,840	5,445
2	2,010	4,412	2	2,020	5,010
3	2,110	4,193	3	2,175	4,415
4	2,180	3,940	4	2,285	3,947
5	2,285	3,565	5	2,395	3,521
6	2,370	3,257	6	2,540	2,951
7	2,465	2,2867	7	2,840	1,796
8	2,550	2,572	8	2,955	1,270
9	2,665	2,128			
10	2,750	1,736			
11	2,860	1,323			

System Ce(III)/H ₆ TTHA/Dowex50-X12			System Am(III)/H ₆ TTHA/Dowex50-X12			
Wäßrige	e Phase :	$4 \cdot 10^{-4}$ m H ₆ TTHA $\mu = 0, 1$ (NH ₄ C10 ₄)	Wäßrige	Phase :	$4 \cdot 10^{-4} \text{ m H}_{\text{TTHA}}$ $\mu = 0, 1 (\text{NH}_{4}\text{C10}_{4})$	
Ansatz	:	10 ml wäßrige Phase + 100 mg Harz	Ansatz	:	20 ml wäßrige Phase + 100 mg Harz	
	Q ₀ =	9,397·10 ⁵		Q ₀ =	8,407·10 ⁵	
No.	рH	1g Q	No.	рH	1g Q	
1	2,430	5,508	1	2,285	4,552	
2	2,645	5,258	2	2,410	4,076	
3	2,810	4,594	3	2,500	3,788	
4	2,900	4,262	4	2,595	3,446	
5	2,990	3,917	5	2,690	3,126	
6	3,100	3,602	6	2,785	2,777	
7	3,190	3,264	7	2,875	2,467	
8	3,290	3,042	8	2,960	2,228	
9	3,325	2,787	9	3,050	1,944	
10	3,420	2,478	10	3,205	1,512	
11	3,480	2,270	11	3,380	1,113	
12	3,510	2.057				

TABELLE 5-7

ö

TABELLE 5-8

Syst	em Cm(III)/1	H6 ^{TTHA/Dowex50-X12}	System	Ce(III)/	H ₄ AGAT/Dowex50-X12
Wäßr	ige Phase :	$4 \cdot 10^{-4} \text{ m H}_{6} \text{TTHA}$ $\mu = 0, 1 \text{ (NH}_{4} \text{C10}_{4}\text{)}$	W ä ßrige	Phase :	$1,320 \cdot 10^{-3} \text{ m H}_{4}\text{AGAT}$ $\mu = 0,1 (\text{NH}_{4}\text{ClO}_{4})$
Ansa	utz : Q _o =	10 m1 wäßrige Phase + 20 mg Harz 7,809·10 ⁵	Ansatz	: Q ₀ =	20 ml wäßrige Phase + 20 mg Harz 5,758·10 ⁵
No.	рH	lg Q	No.	рH	1g Q
1	2,310	4,344	1 .	2,380	5,852
2	2,510	3,684	2	2,700	5,489
3	2,630	3,251	3	2,875	5,157
4	2,740	2,916	4	3,000	4,915
5	2,805	2,655	5	3,150	4,532
6	2,910	2,285	6	3,305	4,150
7	2,970	2,084	7	3,480	3,815
8	3,030	1,948	8	3,600	3,574
9	3,100	1,714	9	3,930	2,782
10	3,180	1,436			
11	3,250	1,276			
12	3,315	1,134			

TABELLE 5-9

TABELLE 5-10

TABELLE 5-11

System Eu(III)/H₄AGAT/Dowex50-X12

Wäßrige	Phase : 1,	$320 \cdot 10^{-3}$ m H ₄ AG	AT $\mu = 0, 1$	(NH ₄ C10 ₄)	
Ansatz	: 20) ml wäßrige Pha	se + 20 mg	, Harz	
	$Q_0 = 5,$	758·10 ⁵			
No.	рH	lg Q	No.	рH	lg Q
1	2,180	5,427	7	3,120	3,144
2	2,345	5,128	8	3,240	2,859
3	2,435	4,929	. 9	3,390	2,561
4	2,950	4,492	10	3,540	2,314
5	2,800	3,905	11	3,710	2,818
6	3,020	3,390	· · · · · · · · · · · · · · · · · · ·		

- 36 -

TABELLE	5-12			TABELLE	5-13	
System	Am(III)/H	4 ₄ agat/do	wex50-X12	System	Cm(III)/H	44GAT/Dowex50-X12
Wäßrige	Phase :	1,320.10 $\mu = 0,1$	-3 m H ₄ AGAT (NH ₄ C10 ₄)	Wäßrige	Phase :	$1,320 \cdot 10^{-3}$ m H ₄ AGAT $\mu = 0,1$ (NH ₄ C10 ₄)
Ansatz	: Q ₀ =	20 m1 wä + 20 mg 6,823 · 10	Brige Phase Harz 5	Ansatz	; Q _o =	20 ml wäßrige Phase + 20 mg Harz 5,650·10 ⁵
No.	рH		lg Q	No.	рH	lg Q
1	2,330		4,936	1	2,360	4,799
2	2,480		4,514	2	2,480	4,514
3	2,660		4,020	3	2,660	4,148
4	2,855		3,539	4	2,855	3,539
5	2,985		3,202	5	2,985	3,202
6	3,115		2,915	6	3,115	2,915
7	3,305		2,487	7	3,305	2,487
8	3,450		2,186	8	3,450	2,186

- 37 -

.

TABELLE 5-14

Am(III)/H₂IDE

2,608

2,941

3,235

3,525

3,823

4,143

4,428

4,753

5,025

5,323

5,616

5,924

6,456

3

4

5 6

7

8

9

10

11

12

13

14

15

0,533

0,526

0,513

0,491

0,462

0,407

0,343

0,273

0,218

0,169

0,144

0,113

0,079

0,314

0,320

0,329

0,345

0,365

0,400

0,442

0,481

0,505

0,504

0,482

0,430

0,309

0,203

0,205

0,213

0,224

0,235

0,250

0,285

0,323

0,354

0,398

0,435

0,491

0,585

TABELLE 5-15

Spektralphotometrische Titration Spektralphotometrische Titration Am(III)/H₂MIDE

Ansatz : 46 mg H IDE 0,01 m, $\mu = 0,1 + 5 \text{ m1 } 0,1 \text{ m}$ HC10 ₄ + 153 mg NaC10 ₄ 1,252 · 10 ⁻³ M Am-241 in 25 ml Meßkolben aufge- füllt					Ansatz : $1,02 \cdot 10^{-2}$ m H ₂ MIDE, $\mu = 0,1$ + 5 ml 0,1 m HCl0 ₄ + 2,325 \cdot 10 ⁻³ m Am-241 mit 0,1 m NaCl0 ₄ auf 250 ml aufgefüllt					0,1
Vergleichslösung : 0,1 m NaClO ₄					Vergleichslösung : 0,1 m NaClO ₄					
Tem	peratur	•	25,0 <u>+</u> 0	,2°C	Tem	peratur	:	25,0 <u>+</u> 0	,2°C	
No.	рH	E 1 5031 Å	^Е 2 5049А	^Е 3 5068Å	No.	рH	E 1 5031Å	^Е 2 50 5 1 Å	^Е з 5063А	
1	1,957	0,538	0,309	0,201	1	2,223	0,998	0,592	0,483	
2	2,335	0,536	0,309	0,201	2	2,557	1,000	0,597	0,481	

3

4

5

6

7

8

9

10

11

12

13

14

15

16 17 2,843

3,143

3,444

3,887

4,196

4,522

4,723

4,941

5,133

5,375

5,593

5,981

6,253

6,495

6,872

0,999

0,990

0,973

0,912

0,840

0,731

0,649

0,589

0,490

0,421

0,360

0,284

0,241

0,213

0,181

0,603

0,607

0,623

0,661

0,707

0,773

0,818

0,868

0,904

0,937

0,948

0,909

0,854

0,780

0,695

0,490

0,492

0,502

0,527

0,562

0,612

0,648

0,683

0,730

0,770

0,813

0,877

0,921

0,969

1,017

TABE	TABELLE 5-16						TABELLE 5-17					
Syst	em A	Am(III)/1	H2 ^{IDE/Dow}	rex50-X	12	System Cm(III)/H ₂ IDE/Dowex50-X12						
Wäßr	ige	Phase :	$5 \cdot 10^{-3}$ m $\mu = 0, 1$	H ₂ IDE (NH ₄ C10) ₄)	Wäßrige Phase : $5 \cdot 10^{-3}$ m H ₂ IDE $\mu = 0, 1$ (NH ₂ C10 ₄)					.0,)	
Ansatz : 20 ml wäßrige Phase + 20 mg Harz $Q_0 = 8,407 \cdot 10^5$				Ansatz : 20 ml wäßrige Phase + 20 mg Harz Q ₀ = 6,381·10 ⁵					Phase			
No.	,	рH		lg Q		No.	· .	рН		lg Q		
1		2,820		5,921		1		2,810		5,783		
2		3,000		5,904		2		3,180		5,747		
3		3,230		5,900		3		3,605		5,628		
4		3,490		5,858		4	t i v	3,920		5,545		
5		3,730		5,826		5		4,020		5,531		
6		4,050		5,708		6		4,510		5,285		
7		4,430		5,571		7		4,720		5,079		
8		4,820		5,343		8		4,770		5,017		
9		4,890		5,303		9		4,995		4,902		
10		5,250		4,992		10		5,660		3,419		
11		5,490		4,751	· .	11		6,50		3,094		

TABELLE 5-18

System Ce(III)/H2NHIDE/Dowex50-X12

Wäßrige	Phase : 1,0	· 10 ⁻² m H ₂ NHII	DE μ = 0,1	(NH ₄ C10 ₄)	
Ansàtz	: 20	g H arz			
	°0 , , , , , , , , , , , , , , , , , , ,				
No.	pH	lg Q	No.	рH	lg Q
1	2,270	5,846	7	3,450	4,793
2	2,450	5,788	8	3,770	4,428
3	2,640	5,563	9	3,990	4,136
4	2,820	5,389	10	4,130	3,925
5	3,000	5,197	11	4,305	3,669
6	3,210	5,028	12	4,410	3,542

Syst	em Am(III)/H	2 ^{NHIDE/Dowex50-X12}	Syst	System Cm(III)/H ₂ NHIDE/Dowex50-X12				
Wäßr	ige Phase :	Wäßr	Wäßrige Phase : $1 \cdot 10^{-2}$ H ₂ NHIDE $\mu = 0, 1$ (NH ₄ C10					
Ansatz : 20 ml wäßrige Phase + 20 mg Harz Q ₀ = 6,823·10 ⁵				Ansatz : 20 ml wäßrige + 20 mg Harz Q ₀ = 5,653·10 ⁵				
No.	рH	lg Q	No.		рH	lg Q		
1	2,530	4,995	1		2,510	4,926		
2	2,730	4,700	2		2,700	4,607		
3	2,915	4,378	3		2,890	4,256		
4	3,030	4,219	4		3,035	4,026		
5	3,140	4,026	5		3,150	3,820		
6	3,285	3,740	6		3,280	3,556		
7	3,395	3,541	7		3,415	3,326		
8	3,505	3,368	8		3,630	2,942		
9	3,610	3,157	9		3,760	2,712		

10 11

12

TABELLE 5-20

3,850

3,935

4,090

2,524

2,316

2,144

TABELLE 5-19

3,745

10

2,883

Wäßr	ige	Phase : 2	$2 \cdot 10^{-3} \text{ m H}_2 \text{PIDH}$ = 0,1 (NH ₄ C10	5) ₄)	Wäßrige Phase : $2 \cdot 10^{-3}$ m H ₂ PIDE $\mu = 0, 1$ (NH ₄ C10 ₄)				
Ansatz : 20 ml wäßrige Phase + 20 mg Harz $Q_0 = 1,220 \cdot 10^6$						Ansatz : 20 ml wäßrige Phase + 20 mg Harz Q ₀ = 8,407 · 10 ⁵			
No.	4	рH	lg Q		No.	рН	lg Q		
1		2,690	5,893		1	2,170	5,336		
2		2,995	5,633		2	2,325	5,776		
3		3,165	5,472		3	2,390	5,508		
4		3,360	5,249		4	2,540	5,346		
5		3,560	5,022		5	2,680	5,186		
6		3,705	4,671		6	2,875	4,780		
7		3,900	4,457		7	3,060	4,349		
8		4,055	4,148		8	3,235	3,922		
					9	3,390	3,568		
			``		10	3,540	3,327		
					11	3,773	2,742		
					12	3,930	2,200		

- 41 -

TABELLE	5-23		TABEL	LE <u>5-24</u>				
System	Cm(III)/H	2 ^{PIDE/Dowex50-X12}	System	System Ce(III)/H ₃ ADE/Dowex50-X12				
Wäßrige	Phase :	$2 \cdot 10^{-3} \text{ m H}_2 \text{PIDE}$ $\mu = 0, 1 (\text{NH}_4 \text{C10}_4)$	Wäßri	Wäßrige Phase : $3,333 \cdot 10^{-3}$ m H ₃ ADE μ = 0,1 (NH ₆ C10 ₆)				
Ansatz	: Q _o =	20 ml wäßrige Pha + 20 mg Harz 5,760·10 ⁵	se Ansat	z : 20 + Q ₀ = 7,	ml wäßrige Phase 20 mg Harz 810 · 10 ⁵			
No.	рH	lg Q	No .	рH	lg Q			
1	2,420	5,520	1	2,460	5,778			
2	2,590	5,127	2	2,465	5,493			
3	2,890	4,322	3	2,815	5,055			
4	3,050	4,208	4	2,940	4,986			
5	3,230	3,752	5	3,085	4,782			
6	3,385	3,419	6	3,220	4,571			
7	3,550	2,974	7	3,470	4,219			
8	3,710	2,642	8	3,620	4,030			
9	3,805	2,486	9	3,730	3,880			
10	4,000	2,048	10	3,875	3,697			
			11	4,145	3,389			
<u></u>			12	4,300	3,191			

TABELLE	5-25		TABELLE	5-26	
System	Am(III)/1	H ₃ ADE/Dowex50-X12	System	Cm(III)/I	^A 3 ^{ADE/Dowex50-X12}
Wäßrige	Phase :	$3,333\cdot10^{-3}$ m H ₃ ADE μ = 0,1 (NH ₄ C10 ₄)	Wäßrige	Phase :	$3,333\cdot10^{-3} \text{ m H}_{3}\text{ADE}$ $\mu = 0,1 (\text{NH}_{4}\text{C10}_{4})$
Ansatz	:	20 ml wäßrige Phase + 20 mg Harz	Ansatz	:	20 ml wäßrige Phase + 20 mg Harz
	$Q_0 =$	8,407·10 ⁵ (No.1-10)		Q. =	6,381·10 ⁵ (No.1-10)
	Q_ =	6,820·10 ⁵ (No.11-22)).	Q ₀ =	5,650 · 10 ⁵ (No.11-23)
No.	рН	lg Q	No.	рН	lg Q
1	2,790	5,023	1	2,540	4,892
2	2,930	4,810	2	2,660	4,749
3	3,060	4,574	3	2,980	4,325
4	3,235	4,275	4	3,150	4,086
5	3,370	4,114	5	3,260	3,921
6	3,515	3,901	6	3,420	3,703
7	3,675	3,678	7	3,550	3,547
8	3,820	3,531	8	3,690	3,385
9	3,960	3,303	9	3,850	3,191
10	4,145	3,051	10	3,960	3,072
11	2,315	5,600	11	4,140	2,945
12	2,520	5,436	12	2,645	4,699
13	2,725	5,041	13	2,785	4,481
14	2,855	4,855	14	2,980	4,147
15	3,060	4,505	15	3,110	3,982
16	3,130	4,346	16	3,220	3,834
17	3,310	4,166	17	3,350	3,647
18	3,555	3,790	18	3,480	3,459
19	3,695	3,611	19	3,605	3,380
20	3,860	3,407	20	3,760	3,092
21	4,035	3,188	21	3,870	2,994
22	4,270	2,933	22	4,000	2,571
			23	4,150	2,593

Т	A	В	Ε	L	L	Е	5-	27

TABELLE 5-28

System Ce(III)/H₂MPIDE/Dowex50-X12 System Am(III)/H₂MPIDE/Dowex50-X12

Wäßrige	Phase :	$1 \cdot 10^{-2}$ m H ₂ MPIDE $\mu = 0, 1 (NH_4C10_4)$	Wäßrige	Phase :	$1 \cdot 10^{-2}$ m H ₂ MPIDE $\mu = 0, 1$ (NH ₄ C10 ₄)
Ansatz	:	20 ml wäßrige Phase + 20 mg Harz	Ansatz	:	20 ml wäßrige Phase + 20 mg Harz
:	Q =	9,39.10		Q _o =	8,407 10
No.	рH	lg Q	No.	рH	lg Q
1	2,660	6,085	1	2,490	5,789
2	2,835	5,953	2	2,630	5,726
3	2,970	5,941	3	2,800	5,658
4	3,100	5,851	4	2,960	5,468
5	3,285	5,786	5	3,120	5,328
6	3,540	5,608	6	3,250	5,034
7	3,760	5,308	7	3,400	4,788
8	3,900	5,127	8	3,585	4,620
9	4,360	4,911	9	3,775	4,331
			10	3,980	4,223

TABELLE 5-29

System Ce(III)/H₃TDE/Dowex50-X12

Wäßrige Phase : $4 \cdot 10^{-5}$ m H ₃ TDE μ = 0,1 (NH ₄ ClO ₄) Ansatz : 20 ml wäßrige Phase + 20 mg Harz Q ₀ = 9,390 \cdot 10 ⁵									
No.	рH	lg Q	No.	рH	lg Q				
1	3,570	5,533	7	4,420	4,886				
2	3,780	5,540	8	4,520	4,822				
3	3,960	5,302	9	4,620	4,723				
4	4,030	5,272	10	4,720	4,619				
5	4,195	5,130	11	4,870	4,463				
6	4,240	5,053							

TABELLE	5-30		TABELLE 5-31			
System Am(III)/H ₃ TDE/Dowex50-X12			System Cm(III)/H ₃ TDE/Dowex50-X12			
Wäßrige	Phase :	$4 \cdot 10^{-3} \text{ m H}_{3} \text{TDE}$ $\mu = 0, 1 (\text{NH}_{4} \text{C10}_{4})$	Wäßrige	Phase :	$4 \cdot 10^{-3}$ m H ₃ TDE $\mu = 0, 1$ (NH ₄ C10 ₄)	
Ansatz	:	20 ml wäßrige Phase + 20 mg Harz	Ansatz	. •	20 ml wäßrige Phase + 20 mg Harz	
· · ·	Q ₀ =	7,760·10 ⁵		Q ₀ =	5,653·10 ⁵	
No.	рH	1g Q	No.	рH	lg Q	
1	2,340	5,728	1	2,260	5,336	
2	2,430	5,725	2	2,765	5,327	
3	2,540	5,602	3	2,980	5,168	
4	2,660	5,538	4	3,035	5,123	
5	2,815	5,404	5	3,165	5,022	
6	2,970	5,289	6	3,275	4,910	
7	3,125	5,180	7	3,385	4,845	
8	3,295	5,056	8	3,545	4,716	
9	3,395	4,993	9	3,680	4,607	
10	3,540	4,884				
11	3,710	4,751				

- 45 -

6. LITERATUR

64RAMA	K.S. Rajan, A.E. Martell	J.Inorg.Nucl.Chem. <u>26</u> ,789(1964)
63T0	L.C. Thompson	Inorg.Chem. <u>3</u> , 1015(1963)
50Wi	A. Willi	Dissertation Zürich 1950
49SAA	G. Schwarzenbach et al.	Helv.Chim.Acta <u>32</u> , 1175(1949)
61MOFE	T. Moeller, R. Ferrus	J.Inorg.Nucl.Chem. 20,261(1961)
57SASA	G. Schwarzenbach, H. Senn, G. Anderegg	Helv.Chim.Acta <u>40</u> , 1886(1957)
65BOMA	T.A. Bohigian, A.E. Martell	Inorg.Chem. <u>4</u> ,1264(1965)
68EB	S.H. Eberle	Rechenprogramm JONAS4 ProgNr. 05920 (1968)
7 0 E B	S.H. Eberle	Habilitationsschrift Universität Karlsruhe (1970)
69BADE	R. Baybarz, A. DelleSite	J.Inorg.Nucl.Chem. <u>31</u> ,2201(1969)
69 EBBA	S.H. Eberle, I. Bayat	Inorg.Nucl.Chem.Lett. <u>5</u> ,229(1969)
68EBAL	S.H. Eberle, S.A. Ali	Z.A11g.Anorg.Chem. <u>361</u> ,1(1968)
66M0	F.L. Moore	Anal.Chem. <u>38</u> , 905(1966)
6 7 E B B A	S.H. Eberle, I. Bayat	Radiochim.Acta <u>7</u> , 214(1967)
62MAMP	J.L. Makey, M.A. Miller, J.E. Powell	J.Phys.Chem. <u>66</u> , 311(1962)
59HI	M.A. Hiller	Dissertation Iowa State Univ. 1959
65BA	R.D. Baybarz	J.Inorg.Nucl.Chem. 27,1831(1965)
70M0	F. Moattar	priv. Mitteilung nähere Angaben in 70EB
67FU	E.D. Fultz	UCRL-50200 (1967)
65HOLL	J.L. Hoard, B. Lee, M.D.Lind	dJ.Am.Chem.Soc. <u>87</u> , 1612(1965)
65FUCU	J. Fuger, B.B. Cunningham	J.Inorg.Nucl.Chem. 27,1079(1965)
67TSEM	L.C. Thompson, B.L. Shafer, J.A. Edgar, K.D. Mannila	Advance Chem.Ser. <u>71</u> ,169(1967)
63IRSI	H. Irving, J.J.F. daSilva	J.Chem.Soc. (1963), 945
58FU	J. Fuger	J.Inorg.Nucl.Chem. <u>5</u> , 332(1958)9
58HAOW	H.S. Harned, B.B. Owen	"The Phys.Chem. of Electrolyte Solution" New York 1958
70 E B	S.H. Eberle	Habilitationsschrift
70EBRO	S.H. Eberle, W. Robel	Inorg.Nucl.Chem.Lett. i.Druck
70EBRI	S.H. Eberle, S. Rifai	priv. Mitteilung 1970

- 46 -