

KERNFORSCHUNGSZENTRUM

KARLSRUHE

September 1970

KFK 1298

Institut für Radiochemie

Über die Bildung von Chelaten und Adduktchelaten bei der Extraktion von dreiwertigem Americium und Californium

D. Feinauer

Kernforschungszentrum Karlsruhe

September 1970

KFK 1298

Institut für Radiochemie

ÜBER DIE BILDUNG VON CHELATEN UND ADDUKTCHELATEN BEI DER EXTRAKTION VON DREIWERTIGEM AMERICIUM UND CALIFORNIUM

von

Dieter Feinauer

Gesellschaft für Kernforschung m.b.H., Karlsruhe und Lehrstuhl für Radiochemie der Universität Karlsruhe

*** A state of the state of the

n te sa an air an teor ann an thathair an teoraichte ann an t

المحمد المحمد المحمد في المحمد إلى المعرف المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحم المحمد المحمد

INHALTSVERZEICHNIS

1.	EINLE	SITUNG			1
	1.1.	Problem	stellung		l
	1.2.	Die Eig der Add	enschaften uktbildner	der Chelatbildner, und des Lösungsmittels	2
		1.2.1.	Die Chela	tbildner	2
			1.2.1.1.	Das 2-Thenoyltrifluoraceton	2
			1.2.1.2.	Oxin und 5,7-Dichlor-8- hydroxychinolin	3
			1.2.1.3.	Physikalisch-chemische Daten der Chelatbildner	4
		1.2.2.	Die Adduk	tbildner	4
		1.2.3.	Die organ	ische Phase	6
	1.3.	Elektro Actinid	nenstruktu: en und Lan	r und Komplexchemie der thaniden	6
2.	THEOR	ETISCHE	GRUNDLA GEN	DER EXTRAKTION	9
	2.1.	Konstan	ten und De:	finitionen	9
	2.2.	Mathema eines C	tische Beha helats vom	andlung der Extraktionskurve Typ ML _N	10
	2.3.	Berechn	ung der An:	ionenkonzentration	12
	2.4.	Allgeme	ine Gesetzr	näßigkeiten der Chelatextraktion	14
		2.4.1.	Der Einflu	uß des Zentralatoms	14
		2.4.2.	Abhängigke Chelatbile	eit von der Substitution des Iners	15
		2.4.3.	Der Einflu	uß der Ionenstärke	17
		2.4.4.	Der Einflu	uß der Temperatur	18
	2.5.	Synergi	stísche und	l antagonistische Effekte	19
		2.5.1.	Der syner	gistische Effekt	19
		2.5.2.	Der antago	onistische Effekt	19
		2.5.3.	Ermittlung gebildeter	g der Zusammensetzung der n Adduktchelate ML ₃ •2A	20
	2.6.	Bestimm	ung der Sta	abilitätskonstanten	21

Seite

		2.6.1.	Allgemein Stabilitä	es über die Bestimmung von tskonstanten	21
		2.6.2.	Bestimmun ML_ nach	g von ßz und Kex der Chelate einer numerischen Methode	22
		2.6.3.	Bestimmun grafische	g von β_1 , β_2 und β_3 nach einer n Methode	23
		2.6.4.	Bestimmun konstante grafische	g der Adduktstabilitäts- n B¦ und B' nach der n "curve fitting" Methode	23
3.	ERGEB	NISSE UN	D DISKUSSI	ON DER EXTRAKTIONSVERSUCHE	25
	3.1.	Nicht-s	ynergistis	che Systeme	25
		3.1.1.	Extraktio 0,04M HDC	n von Cf(III) mit O,1M HOX und O (52)	25
		3.1.2.	Extraktio O,1M HTTA	n von Am(III) und Cf(III) mit	28
	3.2.	Synergi M (III)/ bildner	stische Ef O,1M HTTA/ n	fekte bei der Extraktion von CHCl ₃ mit verschiedenen Addukt-	29
		3.2.1.	Extraktio	n mit Hexon (MIBK)	29
			3.2.1.1.	Am(III) und Cf(III)	29
			3.2.1.2.	Extraktion von Am(III) mit HTTA in Gegenwart von Hexon bei ver- schiedener Ionenstärke μ	30
		3.2.2.	Synergist bildner i	ische Wirksamkeit anderer Addukt- m System Am(III)/HTTA	32
			3.2.2.1.	Stereochemische Einflüsse bei der Extraktion mit den Äthern DBE, DIBE und DPhE	33
			3.2.2.2.	Einfluß des Dipolmoments bei der Extraktion mit den Nitrover- bindungen NBu und NBe	36
			3.2.2.3.	Einfluß der Stellung des Zentral- atoms der Adduktbildner im Periodensystem der Elemente bei der Extraktion mit DPhE, DPhS und DPhSe	38
			3.2.2.4.	Einfluß der Koordinierung des Zentralatoms der Adduktbildner bei der Extraktion mit DBS, DBSO und DBSO ₂	41

Seite

Seite

			3.2.2.5. Zus der mit	ammenfassende Beurteilung in Abschnitt 3.2.2. er- telten Extraktionsergebnisse	43
	3.3.	Thermod Am(III)	ynamische Unte /HTTA und Am (I	rsuchungen bei den Systemen II)/HTTA-MIBK	44
		3.3.1.	Temperaturabh von Am(III) m	ängigkeit bei der Extraktion it HTTA	44
		3.3.2.	Temperaturabh schen Extrakt	ängigkeit bei der synergisti- ion von Am(III) mit HTTA-MIBK	47
		3.3.3.	Vergleich der beiden Extrak 3.3.2.	thermodynamischen Daten der tionssysteme in 3.3.1. und	49
4.	PRÄPA	RATIVE D	ARSTELLUNG VON	LANTHANIDENCHELATEN	51
	4.1.	Allgeme	ines		51
	4.2.	Darstel	lung von wasse	rfreien Acetylacetonaten	51
	4.3.	Darstel	Lung des Gd(DB	M) 3.2MIBK-Adduktchelats	51
5.	EXPER	IMENTELL	R TEIL		53
	5.1.	Die ver	vendeten Radio	nuklide	53
	5.2.	Die Her	stellung der V	orratslösungen	53
		5.2.1.	Americium-241		53
		5.2.2.	Californium-2	52	53
		5.2.3.	Die Konzentra	tion der aktiven Lösungen	54
	5.3.	Die Meß	einrichtungen		54
		5.3.1.	Die Radioakti	vitätsmessung	54
			5.3.1.1. Die	a-Messung	55
			5.3.1.2. Die	γ-Messung	55
		5.3.2.	Die pH-Messun	g	55
	5.4.	Arbeits	veise bei der l	Extraktion	56

6. ZUSAMMENFASSUNG

57

7.	LITERA TURANGABEN				62
8.	ZUSAMMENSTELLUNG	DER	VERWENDETEN	KURZBEZEICHNUNGEN	66

Seite

Inhaltsübersicht

In folgenden Systemen wurde die Chelatbildung durch Extraktion untersucht und die Stabilitätskonstanten der gebildeten Chelate berechnet:

- a) Cf(III)/Oxin (HOX): Hierbei wurde das basische Chelat Cf(OH)₂(OX) gebildet.
- b) Cf(III)/5,7-Dichlor-8-hydroxychinolin (HDCO): Es entstand das normale 1:3-Chelat Cf(DCO)₃.
- c) Am(III) und Cf(III)/Thenoyltrifluoraceton (HTTA): Dabei entstanden die 1:3-Chelate M(TTA)₃.

Im System Am(III)/Thenoyltrifluoraceton wurde die synergistische Wirksamkeit verschiedener Adduktbildner (A) mit Sauerstoff, Stickstoff, Schwefel und Selen als Zentralatomen untersucht. Die Adduktstabilitätskonstanten der gebildeten 1:1- und 1:2-Addukte Am(TTA)₃·A und Am(TTA)₃·2A wurden grafisch bestimmt.

Bei Diphenyläther und Diphenylselenid entstanden nur l:l-Addukte, bei Di-n-butyläther, Di-iso-butyläther und den eingesetzten Sulfiden ergaben sich l:4-Addukte, während die anderen Adduktbildner l:2-Verbindungen bildeten. Die Stabilitätskonstanten der l:2-Addukte gingen von -0,26 bei l-Nitrobutan bis +4,78 bei Di-n-butylsulfoxid.

Für die Bildung der Chelate und Adduktchelate in den Systemen Am(III)/HTTA und Am(III)/HTTA/Methylisobutylketon wurden in Abhängigkeit der Extraktion von der Temperatur die thermodynamischen Größen Freie Enthalpie, Reaktionsenthalpie und Reaktionsentropie ermittelt.

Abstract

In the following systems the chelate formation was studied by extraction measurements and the stability constants of the formed chelates were calculated:

- a) Cf(III)/oxine (HOX): In this case the basic chelate Cf(OH)₂(OX) was formed.
- b) Cf(III)/5.7-dichloro-8-hydroxyquinoline (HDCO): Here was formed the normal 1:3-chelate Cf(DCO)₃.
- c) Am(III) and Cf(III)/thenoyltrifluoroacetone (HTTA): In this case the 1:3-chelates M(TTA)₃ were formed.

The synergic efficiency of various adduct-forming agents (A) with oxygen, nitrogen, sulfur and selenium as central atoms was also studied in the system Am(III)/HTTA. The stability constants of the 1:1- and 1:2-adducts $Am(TTA)_{3} \cdot A$ and $Am(TTA)_{3} \cdot 2A$ were determined graphically. With diphenyl ether and diphenyl selenide, 1:1-adducts were formed. With di-n-butylether, di-isobutylether and the used sulfides, 1:4-adducts were obtained. All the other agents used formed 1:2-compounds. The stability constants calculated for the 1:2-adducts ranged from -0.26 for the compound with 1-nitrobutane to +4.78 for that with di-n-butylsulfoxide.

For the systems Am(III)/HTTA and Am(III)/HTTA/methylisobutylketone the Gibbs free energy, enthalpy and entropy of the chelating and adduct formation reactions were determined by extraction measurements at various temperatures.

1. EINLEITUNG

1.1. Problemstellung

Die Extraktion - ein bekanntes Trennverfahren der analytischen Chemie wurde in den letzten Jahren besonders in der Kerntechnik in starkem Maße vorangetrieben, da sie sich als eine ausgezeichnete Methode zur Aufarbeitung bestrahlter Brennelemente und zur Abtrennung von Transuranen erwiesen hat. Dabei zeigte sich, daß die Extraktion von Metallionen mit Komplexbildnern bedeutend verbessert werden kann, wenn man spezielle Lösungsmittelgemische verwendet. Seit längerer Zeit sind Verfahren bekannt, bei denen solche Systeme zur Trennung von Metallionen benutzt werden, wobei derartige Lösungsmittelkombinationen zum Teil so gut extrahieren, daß starke Verdünnungen angewendet werden können oder müssen.

Bei der Plutoniumgewinnung aus bestrahlten Brennelementen (Purex-Prozeß) findet beispielsweise folgendes System Verwendung: Tributylphosphat (als verdünnte Lösung in Kerosin) als organische Phase und halbkonzentrierte Salpetersäure als wäßrige Phase, wobei das Nitration als Komplexbildner und Tributylphosphat (TBP) als "Extraktionshilfe" fungiert. Die extrahierte Species ist dabei $Pu(NO_3)_4$ ·2TBP. Analoge Systeme werden auch für TBP und Tributylphosphinoxid (TBPO) in Verbindung mit 2-Thenoyltrifluoraceton (HTTA) als Chelatbildner beschrieben.

Eine derartige positive Einwirkung des Lösungsmittels auf die Extraktion wird als "synergistischer Éffekt" bezeichnet (1). Dieser Ausdruck ist dem theologischen Gedankengut entlehnt, wobei man darunter die "Kopplung von menschlichem Bemühen mit göttlicher Gnade zur Läuterung der Seele" versteht (2,3). Das Gegenteil wird als Antisynergismus oder antagonistischer Effekt bezeichnet.

In dieser Arbeit wird die Extraktion von Am(III) und Cf(III) vor allem mit dem 1950 von Reid und Calvin (4) eingeführten 2-Thenoyltrifluoraceton als Chelatbildner in Chloroform als Lösungsmittel beschrieben und die Stabilitätskonstanten der gebildeten Chelate bestimmt. Die synergistische Verbesserung der Extraktion wird im genannten System eingehend mit Methylisobutylketon (MIBK, Hexon) in Abhängigkeit von verschiedenen Parametern wie Temperatur und Ionenstärke untersucht. Neben Hexon werden im System Am(III)/HTTA/CHCl₃ noch zehn andere polare Verbindungen mit Schwefel, Stickstoff, Sauerstoff und Selen als Zentralatom auf ihre synergistische Wirksamkeit als Adduktbildner geprüft. Hierbei sollen Zusammenhänge zwischen Extraktionsverhalten und Moleküleigenschaften der Adduktbildner gefunden und die Stabilitätskonstanten der gebildeten Adduktchelate grafisch bestimmt werden.

1.2. Die Eigenschaften der Chelatbildner, der Adduktbildner und des Lösungsmittels

1.2.1. Die Chelatbildner

1.2.1.1. Das 2-Thenoyltrifluoraceton

1,3-Diketone - wie das HTTA - liegen in zwei tautomeren Formen, der Keto- und der Enol-Form vor, wobei der jeweilige Anteil von der Beweglichkeit des Wasserstoffs am mittleren C-Atom abhängt. Die Bildung der Enol-Form kann durch Konjugation und H-Brückenbildung gefördert werden und hängt darüber hinaus vom Aggregatzustand und dem Lösungsmittel ab. Bei Acetylaceton ergeben sich zum Beispiel folgende Anteile des Enols (5):

in flüssiger Form:	76 %
gasförmig:	93,7 %
in Wasser gelöst:	15,5 %

Die Enol-Form ist eine schwache Säure, die durch Zugabe von OH-Ionen in das Enolat-Anion überführt werden kann. Dieses bildet mit Metallionen Chelatsechsringe von hoher Stabilität:

Keto-Enol-Tautomerie:

(Chelatsechsring)

Die pH-Abhängigkeit der Extraktion und Fällung wird oft für analytische Trennungen verwendet.

1.2.1.2. Oxin und 5,7-Dichlor-8-hydroxychinolin

Das Oxin(8-Hydroxychinolin, HOX) ist seit 1882 als Fällungsreagens in der analytischen Chemie bekannt. Von über 55 Metallen sind inzwischen Chelate und Salze des Oxins und seiner Derivate beschrieben worden. Hierbei begünstigen der koordinativ ungesättigte tertiäre Stickstoff und die Mesomeriemöglichkeit innerhalb des gebildeten Chelatringes die Komplexbildung, wobei das Metall koordinativ an den Stickstoff gebunden wird:

- 3 -

Die meisten Metalloxinate sind in Wasser schwer und in organischen Lösungsmitteln relativ gut löslich. Die Chelatbildung geht hier ebenfalls vom Anion aus und ist somit pH-abhängig. Durch Substitution können die chemischen Eigenschaften des Grundkörpers wesentlich abgewandelt werden: So nimmt die Wasserlöslichkeit des Chelatbildners und der betreffenden Chelate bei Halogenierung des Oxins zu 5,7-Dichlor-8-hydroxychinolin (HDCO) erheblich ab.

1.2.1.3. Physikalisch-chemische Daten der Chelatbildner

Mit Ausnahme des HDCO, das durch wiederholtes Umkristallisieren gereinigt werden mußte, konnten die anderen Chelatbildner, die von p.a.-Qualität waren, ohne weitere Reinigung eingesetzt werden.

Chelat- bildner	Summen- formel	Moleku- largew.	Fp. [°C]	pK ₁ (μ = 0,1;	^{рК} 2 25 ⁰ С)	Verteilungskoeffizient lg λ (CHCl ₃ /H ₂ 0)
HTTA	C8H502SF3	222,16	42- 43	6,23 (6)		1,84 (7)
HOX	C9H7ON	145,15	73- 74	5,004	9,658	2,66 (8)
HDCO	C9H5ONC12	214,05	17 3-1 76	2,89	7,47	3,86 (9)

Tabelle 1: Zusammenstellung der verwendeten Chelatbildner

1.2.2. Die Adduktbildner

Die Adduktbildner konnten bis auf die von der Firma Fluka mit dem Reinheitsgrad "pract." gelieferten ohne vorhergehende Reinigung eingesetzt werden. Letztere wurden destillativ beziehungsweise durch Umkristallisieren gereinigt. Das Diphenylselenid wurde nach einer Vorschrift von Loevenich und Sipmann (10) aus $\operatorname{Se}_2\operatorname{Br}_2$, Benzol und AlBr₃ dargestellt und dünnschichtehromatografisch auf Reinheit überprüft. Die Ausbeute betrug etwa 20 %, da neben dem gewünschten Produkt Verluste durch Kernbromierung und Umsetzung zu Diphenyldiselenid auftraten.

Tabelle 2: Zusammenstellung der verwendeten Adduktbildner

Adduktbildner	Kurzbe- zeichnung	Summen- formel	Bezugs- quelle	Reinheits- grad	Moleku- largew.	Aggregat- zustand bei Raumtemp.	Fp. [°c]	кр. [°с]	Dipol- moment [D] (11)
Methylisobutylketon (Hexon)	MIBK	^C 6 ^H 12 ⁰	Merck	zur Extrak- tionsanalyse	100,16	flüssig		114-117	
Diphenyläther	DPhE	^C 12 ^H 10 ^O	Fluka	purum	170,21	fest	26-27		1,17/25°C
Di-n-butylsulfid	DBS	$C_8^{H_{18}S}$	Fluka	purum	146,30	flüssig	- 79 , 7	182	1,57/20 ⁰ C
Di-n-butylsulfoxid	DBSO	C8H18OS	Fluka	pract.	162,30	fest	32	Zers.	
Di-n-butylsulfon	DBS02	C8H1802S	Fluka	pract.	178,29	fest	43		
l-Nitrobutan	NBu	C4H902N	Fluka	purum	103,12	flüssig		148-152	3,29/20 [°] C
1-Nitrobenzol	NBe	^C 6 ^H 5 ^{ON} 2	Merck	zur Synthese	123,11	flüssig	5	208-211	3,93/22 ⁰ 0
Di-n-butyläther	DBE	C8H180	Fluka	puriss.	130,23	flüssig		140-142	1,16/ 112-182°C
Di-iso-butyläther	DIBE	C8H180	Fluka	pract.	130,23	flüssig		116-122	
Diphenylsulfid	DPhS	C ₁₂ H ₁₀ S	Fluka	purum	186,28	flüssig	-40	296	1,50/25°C
Diphenylselenid	• DPhSe	^C 12 ^H 10 ^{Se}			2 33, 18	flüssig		301-303	1,38/20,3 [°] C

ŧ,

יט ו

1.2.3. Die organische Phase

Als Lösungsmittel für die Chelat- und Adduktbildner wurde Chloroform eingesetzt, welches nachweislich die Extraktion nicht beeinflußt. Das von der Firma Merck gelieferte p.a.-Produkt wurde durch mehrmaliges Schütteln mit Wasser von dem zur Stabilisierung zugesetzten Äthylalkohol (0,6-1,0 %) befreit.

1.3. Elektronenstruktur und Komplexchemie der Actiniden und Lanthaniden

Das chemische Verhalten der Lanthanidenelemente La...Lu wird durch die Elektronenkonfiguration [Xe] 4fⁿ5d¹6s² (0 \le n \le 14) bestimmt. Durch das Auffüllen der inneren 4f-Schale, die bei Lutetium mit 14 Elektronen voll besetzt ist, treten die Lanthaniden wegen der Konfiguration 5d¹6s² vorwiegend dreiwertig in ihren Verbindungen auf, da die 4f-Elektronen stark nach außen hin abgeschirmt sind. Bei den Actiniden Ac...Lr werden, beginnend beim Thorium, die vierzehn 5f-Elektronen eingebaut, so daß diese Schale bei Lawrencium, Z = 103, abgeschlossen ist. Das darauffolgende Element 104 (Kurchatovium) gehört nicht mehr zu den Actiniden und ähnelt in seinen chemischen Eigenschaften dem Hafnium (Eka-Hafnium), was von einer russischen Forschergruppe eindrucksvoll gezeigt werden konnte (12). Durch die analoge [Rn] 5fⁿ6d¹7s²-Konfiguration ($0 \le n \le 14$) sollten die Actiniden in ihrem chemischen Verhalten den Lanthaniden nahe kommen, doch deutet die Polyvalenz der ersten Glieder (Th...Am) auf Abweichungen vom regelmäßigen Aufbau der 5f-Schale hin, da im Bereich dieser Elemente die Energien der 5f-, 6d-, 7s- und 7p-Niveaus vergleichbar sind und die zur Verlagerung eines Elektrons von einem Niveau zu einem anderen erforderlichen Energien innerhalb der Größenordnung chemischer Bindungen liegen (siehe Tab. 3).

Durch ähnliche Redoxpotentiale ergibt sich beispielsweise bei Plutonium der in der Chemie einzig dastehende Fall, daß von Pu(III) bis Pu(VI) alle Oxidationsstufen in einer Lösung in vergleichbaren Konzentrationen nebeneinander thermodynamisch stabil vorliegen können. Pu(VII) scheint dagegen nur in alkalischem Medium existent zu sein, während Np(VII) auch in saurem Medium möglich ist (14,15). Erst ab Americium hat das 5f-Niveau gegenüber dem 6d- und dem 7s-Niveau derart an Stabilität gewonnen, daß

- 6 -

die darauffolgenden Elemente durch die jetzt beginstigte 6d¹7s²-Konfiguration vorwiegend dreiwertig auftreten.

Ordnungs-Elektronenkonfiguration (13) Wertigkeit Element zahl $6d^{1}7s^{2}$ 89 Ac 3 $6d^2 7 s^2$ (2) 3 4 90 Th $5f^26a^17s^2 \longrightarrow 5f^16a^27s^2$ (3) 4 591 Pa $5f^{3}6d^{1}7s^{2}$ 3 4 5 6 92 U 5f⁵7s² 3 4 5 6 7 93 Np $5f^{6}7s^{2}$ 3 4 5 6 7 94 Pu $5f^{7}7s^{2}$ 3 4 5 6 (7) 95 Am 2 $5f^7 6d^1 7s^2$ 96 Cm 4 3 $5f^{8}6d^{1}7s^{2} \equiv$ \ge 5f⁹7s² 3 4 97 Bk $5f^{10}7s^2$ 98 Cf 2 2 $5f^{11}7s^2$ 99 Es 2 3 $5f^{12}7s^2$ 3

2

2

2

3

3

3

Tabelle 3: Wertigkeiten und Elektronenkonfigurationen der Actiniden

nicht eindeutig nachgewiesen Werte in Klammern: unterstrichene: stabilste Wertigkeitsstufe

5f¹³7s²

5f¹⁴7s²

 $5f^{14}6d^{1}7s^{2}$

Fm

Md

No

Lr

100

101

102

103

Neben der Fähigkeit, in verschiedenen Wertigkeitsstufen aufzutreten, unterscheiden sich die Actiniden von den Lanthaniden durch die größere Neigung zur Komplexbildung. Während die letzteren fast ausschließlich ionische Verbindungen bilden, kennt man bei den Actiniden eine Vielzahl von Komplexen mit Halogeniden, Sulfat und selbst mit \mathfrak{N} -bindenden Liganden, wie Alkylphosphinen, Thioäthern und Cyclopentadienylderivaten. Dieser Unterschied zur Lanthanidenchemie wird gewöhnlich der kovalenten Hybridbindung unter Einbeziehung der 5f-Elektronen zugeschrieben.

Über die Bildung von Komplexionen in Lösungen wurden im Zusammenhang mit Lösungsmittelextraktion, Ionenaustauschverfahren und Fällungs-

reaktionen außerordentlich viele Daten zusammengetragen, da dies für die Technologie der Actiniden von sehr großem Interesse war. Die allgemeine Tendenz zur Komplexbildung wird durch Faktoren wie Ionengröße und Ladung bestimmt und nimmt bei den Actinidenionen in der Reihenfolge $M^{4+}>MO_2^{2+}>$ M^{3+} MO_{2}^{+} ab. Bei den Anionen ist die Abstufung der Komplexierungsfähigkeit im allgemeinen: einfach negative Ionen, $F > NO_3 > CI > CIO_4$, zweifach negative Ionen, $CO_3^2 > C_2O_4^2 > SO_4^2$. Auch mit neutralen Liganden bilden die Actiniden Komplexe, doch sind in auffälligem Gegensatz zu den d-Übergangsmetallen (weiche Komplexbildner) nur sehr wenige Komplexe mit W-bindenden Liganden (außer Sauerstoff) bekannt. So gibt es keinen Hinweis dafür, daß CO, NO oder Olefine an Actinidenionen gebunden werden, wie das in großem Maße bei den d-Übergangsmetallen der Fall ist. Im Gegensatz zu diesen kann man daher die Actiniden als harte Komplexbildner bezeichnen. Die einzigen bekannten Organoactinidenverbindungen sind die Cyclopentadienyle $(C_5H_5)_3$ Am und $(C_5H_5)_3$ UCl und das Uranocen $(C_8H_6)_2$ U, eine Verbindung mit dem Dianion des Cyclooctatetraens. Hierbei konnte eine dem Ferrocen analoge Sandwich-Struktur nachgewiesen werden.

Diese Unterschiede im chemischen Verhalten ermöglichen und erleichtern die Trennung von Actiniden und Lanthaniden.

- <u>8</u>

2. THEORETISCHE GRUNDLAGEN DER EXTRAKTION

2.1. Konstanten und Definitionen

Die Reaktion eines Metallions M^{N+} mit Ligandenanionen L⁻ zur Komplexverbindung ML_{M} erfolgt stufenweise über folgende Gleichgewichtszustände:

- 9" -

$$M^{N+} + N(L^{-}) \stackrel{K_{1}}{\longrightarrow} ML^{(N-1)^{+}} + (N-1)(L^{-}) \stackrel{K_{2}}{\longrightarrow} \dots \stackrel{K_{(N-1)}}{\longrightarrow} (ML)^{+}(N-1) + (L^{-})$$

$$\stackrel{K_{N}}{\longrightarrow} ML_{N} .$$

In wäßriger Lösung liegen alle diese Komplexe in wechselnder Konzentration nebeneinander vor. Bei der Extraktion mit organischen Lösungsmitteln lösen sich im wesentlichen die neutralen Komplexe in der wenig polaren organischen, die ionischen Komplexe in der polareren wäßrigen Phase. Diese Verhältnisse ermöglichen die Ableitung mathematischer Funktionen für verschiedene Spezialfälle (16) und bei Übereinstimmung der theoretisch berechneten Kurven mit den experimentell ermittelten Daten die Bestimmung der Zusammensetzung der extrahierten Komplexe und deren Stabilitätskonstanten.

Zur Benennung der Gleichgewichtsparameter werden die in (17) angegebenen Bezeichnungen verwendet. Hierbei bedeuten:

Runde Klammern: Konzentrationen

o: Indizierung der organischen Phase

w: Indizierung der wäßrigen Phase

Die Ladungszeichen der Ionen werden, wenn nicht unbedingt erforderlich, weggelassen.

- L = Ligandenanion
- M = Metallion
- N = maximale Ligandenzahl
- q = Verteilungsquotient, wobei gilt:

q = <u>Summe d. Konz. aller metallhaltig. Species i. d. org. Phase</u> Summe d. Konz. aller metallhaltig. Species i. d. wäßr. Phase

 K_{N} = sukzessive Stabilitätskonstante, aus: $ML_{(N-1)}$ + L $\longrightarrow ML_{N}$

$$K_{N} = \frac{(ML_{N})}{(ML_{N-1})(L)}$$
 (a)

 $\beta_{\rm N}$ = Summenstabilitätskonstante, aus M + NL \iff ML_N

$$\beta_{N} = \frac{(ML_{N})}{(M)(L)^{N}} \qquad (b)$$

Zwischen Summenstabilitäts- und sukzessiven Konstanten besteht demnach folgender Zusammenhang:

$$B_{N} = K_1 \cdot K_2 \cdot \dots \cdot K_N$$

$$\lambda_{N}^{}$$
 = Verteilung des Neutralkomplexes $\text{ML}_{N}^{}$ zwischen den beiden Phasen.

$$\lambda_{\rm N} = \frac{(\rm ML_N)_o}{(\rm ML_N)_w} \qquad (c)$$

Für die in das Chelatbildungsgleichgewicht eingehende Konzentration des Ligandenanions gilt dabei:

$$HL \rightleftharpoons H^{+} + L^{-};$$

$$K_{d} = \frac{(H^{+})(L^{-})}{(HL)} \qquad (d)$$

2.2. Mathematische Behandlung der Extraktionskurve eines Chelats vom Typ ML_N

Falls die Liganden am Metallion ausschließlich Anionen des Chelatbildners sind und die Komplexbildung stufenweise ohne Hydrolyse bis zur Endform ML_N führt, läßt sich folgende Beziehung ableiten:

$$(M)_{W} = \sum_{i=0}^{N} (ML_{i})$$
$$(M)_{O} = (ML_{N})_{O}$$

Daraus ergibt sich der Verteilungsquotient des Metalls zu:

$$q = \frac{(ML_N)_o}{\sum_{i=0}^{N} (ML_i)}$$

Aus den Gleichungen (a), (b), (c) und (d) erhält man folgendes Polynom:

$$q = \frac{\lambda_N \beta_N (L)^N}{\sum_{i=0}^{N} \beta_i (L)^i}$$

Zur grafischen Auswertung verwendet man den logarithmierten Ausdruck: $\lg q = \lg(\lambda_N \beta_N) + N \cdot \lg(L) - \lg(1 + \beta_1(L) + \beta_2(L)^2 + ... + \beta_N(L)^N)$.

Trägt man die Versuchdaten in der Form

$$\lg q = f(-\lg L)$$

auf, so gelten für die dabei auftretenden Hilfsgeraden folgende Grenzbedingungen:

I.) Bei sehr kleiner Anionenkonzentration (L) kann das Subtraktionsglied vernachlässigt werden, und man erhält die lineare Beziehung:

$$lg q = lg(\lambda_N \beta_N) + N lg(L)$$

Dabei gibt die Steigung N der Hilfsgeraden bei geringer Anionenkonzentration, also kleinen pH-Werten, die Zahl der Liganden pro Metallion im extrahierten Komplex an.

II.) Ist (L) groß, das heißt $\mathrm{ML}_{_{\mathrm{N}}}$ vorherrschend, so gilt:

$$\mathbf{a} = \frac{\lambda_{N} \mathbf{B}_{N}(\mathbf{L})^{N}}{\mathbf{B}_{N}(\mathbf{L})^{N}} = \lambda_{N} .$$

Der Ordinatenwert bei hoher Ligandenkonzentration ist also gleich dem Verteilungsquotienten des Metallchelats. Im mittleren Bereich der Kurve ist die Steigung N jeweils der mittleren Ligandenzahl pro Metallion proportional. Hier treten nacheinander die intermediären Komplexe auf.

Die Bildung eines Chelats vom Typ ML_N in einem Zweiphasensystem (o/w) läßt sich folgendermaßen beschreiben:

$$(M^{N+})_{W} + N(HL)_{O} \longrightarrow (ML_{N})_{O} + N(H^{+})_{W}$$

Dabei gilt laut Definition:

$$q = \frac{(ML_N)_o}{(M^{N+})_w},$$

woraus sich die Extraktionskonstante K ergibt:

$$K_{ex} = q \frac{(H^+)^{N}}{(HL)^{N}}$$

Diese ist eine für ein bestimmtes System charakteristische Größe, die nur von der Temperatur, dem Lösungsmittel und der Ionenstärke abhängt.

Eine anschauliche Darstellung der Extraktionsergebnisse erhält man, wenn der prozentuale Anteil des extrahierten Metalls E % der gesamten Metallkonzentration über dem pH-Wert aufgetragen wird (Abb. 4,6). Dabei gilt für den Fall der Volumengleichheit beider Phasen:

$$E \% = \frac{100 q}{q + 1}$$
.

2.3. Berechnung der Anionenkonzentration

Aus den bei der Extraktion in der wäßrigen Phase gemessenen pH-Werten läßt sich die Anionenkonzentration des Chelatbildners (L⁻) wie folgt bestimmen:

Für die Verteilung des undissoziierten Chelatbildners zwischen den zwei Phasen (o/w) gilt:

- 12 -

$$\lambda = \frac{(\text{HL})_{\circ}}{(\text{HL})_{w}}$$

Mit der Definition der Dissoziationskonstanten K_d (d) gelangt man unter der Bedingung der Volumengleichheit beider Phasen zu folgendem Ausdruck:

$$(\text{HL})_{\text{gesamt}} = (\text{HL})_{0} + (\text{HL})_{W} + (\text{L}^{-})$$
$$= \frac{(\text{H}^{+})(\text{L}^{-})}{K_{d}} + \frac{(\text{H}^{+})(\text{L}^{-})}{K_{d}} + (\text{L}^{-})$$
$$= (\text{L}^{-})\frac{(\text{H}^{+})}{K_{d}} (\lambda + 1 + \frac{K_{d}}{(\text{H}^{+})})$$

$$(L^{-}) = \frac{(HL)_{gesamt}}{1 + \frac{(H^{+})(\lambda + 1)}{K_{d}}}$$

Durch Logarithmieren und Umformen kommt man zu folgender Beziehung zwischen (L^{-}) und (H^{+}) :

$$pA = -lg(L^{-}) = pK - pH - lg(HL)_{gesamt} + lg(l + \lambda + \frac{K_d}{(H^{+})})$$

Bei den hier verwendeten Chelatbildnern ist $K_d \leq 10^{-6}$ und (H⁺) erreicht bei der Extraktion Werte von $< 10^{-5}$, so daß in Anbetracht der großen λ -Werte das letzte Glied der obigen Gleichung als hinreichend klein angesehen werden kann und folgende Vereinfachung möglich wird:

$$pA = -lg(L) = const. - pH$$
.

Diese lineare Beziehung erlaubt es, die direkt aus den gegen die pH-Werte aufgetragenen Kurven ermittelte Steigung N zur Bestimmung der Zusammensetzung der extrahierten Komplexe heranzuziehen.

2.4. Allgemeine Gesetzmäßigkeiten der Chelatextraktion

2.4.1. Der Einfluß des Zentralatoms

Die Stabilität eines Komplexes steht in engem Zusammenhang mit den Eigenschaften des Zentralatoms, wie bereits eingehend untersucht wurde (18,19, 20,21). Dyrssen (6) zeigte dabei, daß für die Gibbs'sche Freie Energie einer Komplexverbindung gilt:

 $-\Delta G = \text{const.} \frac{z}{r}$ z = Ladung des Metallionsr = Ionenradius in A.

Diese Beziehung läßt sich überprüfen, indem man die bei der Extraktion mit einem bestimmten Komplexbildner ermittelten pH_{1/2}-Werte (siehe Kurzbezeichnungen) einer homologen Reihe von Elementen über 1/r aufträgt. Wie Genow und Kassabow (22) bei der Extraktion von Seltenen Erden mit HTTA nachweisen konnten, gilt dieser Zusammenhang nur in erster Näherung, da auch die Struktur der Elektronenhülle einen erheblichen Einfluß ausübt. Damit erklärt sich die Abnahme des Trennfaktors zweier benachbarter Seltener Erden mit zunehmender Ordnungszahl entsprechend dem durch Abschirmung immer geringer werdenden Einfluß der zusätzlichen 4f-Elektronen. Bei den in dieser Arbeit untersuchten Elementen Americium und Californium ist also aufgrund des durch den kleineren Ionenradius bedingten höheren z/r-Wert des Cf hier eine größere Stabilität der gebildeten Komplexe zu erwarten als bei Am.

Zahl der f-Elektronen	Lanthaniden- element	Radius [A]	Actiniden- element	Radius [Å]
0	La	1,061	Ac	1,11
1	Ce	1,034	Th	1,07
2	Pr	1,013	Pa	(1,05)
3	Nd	0,995	U	1,03
4	Pm	(0,979)	Np	1,01
5	Sm	0,964	Pu	1,00
б	Eu	0,950	Am	0,99

Tabelle 4: Ionenradien der dreiwertigen Actiniden und Lanthaniden

Zahl der f-Elektronen	Lanthaniden- element	Radius [A]	Actiniden- element	Radius [A]
7	Gd	0,938	Cm	0,98
8	Tb	0,923	Bk	0,97
9	Dy	0,908	Cf	0,96
10	Но	0,894	Es	
11	Er	0,881	Fm	
12	Tm	0,869	Md	
13	Yb	0 , 858	No	
14	Lu	0,848	Lr	

Tabelle 4: Fortsetzung

2.4.2. Abhängigkeit von der Substitution des Chelatbildners

In der homologen Reihe der 1,3-Diketone erniedrigt der Ersatz einer CH_3 -Gruppe durch eine elektronenziehende den pK-Wert und erhöht die Wasserlöslichkeit. Das zeigt sich sehr deutlich bei der Einführung der CF_3 -Gruppe am Beispiel des Acetylacetons:

Tabelle 5: Beeinflussung von pK- und lg λ -Wert durch Einführung der CF₃-Gruppe bei HAa

Chelatbildner	pK-Wert	lg λ-Wert (Benzol/Wa sser)
Acetylaceton (HAa)	8,82	0,76 (23)
Trifluoracetylaceton (HTAa)	6,30	0,18 (24)

Wählt man statt CF_3 -Gruppe einen aromatischen Substituenten, so wird der pK-Wert nur wenig geändert, doch lg λ steigt durch die Hydrophobie des aromatischen Restes stark an:

Chelatbildner	pK-Wert	lg λ -Wert (CHCl ₃ /H ₂ 0; μ = 0,1)
Acetylaceton (HAa)	8,82	1,37
Benzoylaceton (HBAa)	8,96	3,44
Dibenzoylmethan (HDBM)	9,35	5,40

Tabelle 6:Beeinflussung von pK- und lg λ -Wert durch Einführung eines
aromatischen Substituenten

Durch Kombination beider Arten von Substituenten in einem Molekül können Komplexbildner erhalten werden, deren Chelate bereits bei relativ niedrigen pH-Werten entstehen und die eine hohe Löslichkeit in der organischen Phase aufweisen.

Es erscheint zweckmäßig, die Chelatextraktion in zwei Stufen aufzuteilen, wobei der Einfachheit halber nur die Bildung des Chelats vom Typ ML_N berücksichtigt wird:

 a) Die Bildung des Chelats in der wäßrigen Phase:
 Diese wird durch die Stabilitätskonstante β_N und bei konstanter
 Metallionenkonzentration durch die Konzentration der Ligandenanionen (L) bestimmt, wobei gilt:

$$\beta_{\rm N} = \frac{(\rm ML_N)}{(\rm M)(L)^{\rm N}} .$$

b) Die Extraktion der Komplexe in die organische Phase: Diese hängt von der Löslichkeit in beiden Medien ab und steht in engem Zusammenhang mit dem Verteilungskoeffizienten λ des Chelatbildners. Verbindungen mit stärker polarem Charakter werden somit weniger gut in die organische Phase überführt als unpolarere.

Das hier verwendete HTTA erweist sich deswegen als ein vielen anderen 1,3-Diketonen überlegenes Extraktionsmittel, weil es einerseits einen nicht zu hohen Verteilungskoeffizienten λ besitzt und dadurch in der wäßrigen Phase genügend Ligandenanionen zur Chelatbildung vorliegen, und andererseits durch den hydrophoben Thiophenring die gebildeten Chelate nahezu vollständig in die organische Phase übergehen.

2.4.3. Der Einfluß der Ionenstärke

Während der Extraktion ändert sich laufend die Ionenstärke und damit der Aktivitätskoeffizient der Lösung. Um konstante, wenn auch unbekannte Aktivitäten aufrechtzuerhalten, versetzt man die wäßrige Phase mit einem Überschuß eines Inertsalzes, allgemein NaClO₄ oder $\rm NH_4ClO_4$, da das Perchloration von allen Anionen die geringste Tendenz zur Komplexbildung zeigt und daher am wenigsten störend wirkt. Der größte Teil der Extraktionsversuche dieser Arbeit wurde bei einer Ionenstärke von $\mu = 0,1$ ($\rm NH_4ClO_4$) durchgeführt, während in Abschnitt 3.2.1.2. das Extraktionsverhalten eines Systems bei verschiedener Ionenstärke untersucht wurde. Dabei zeigt sich in Abbildung 9, daß die Stabilitätskonstanten bei zunehmender Ionenstärke zunächst stark ansteigen und ab $\mu = 1,0$ asymptotisch einem Grenzwert zustreben, während bei der Extraktionskurven bei gegebener Hexonkonzentration mit steigender Ionenstärke im Diagramm nach links verschoben werden (Abb. 8).

Diese verbesserte Extraktion in die organische Phase infolge größerer Ionenkonzentration wird durch die Verminderung des "freien Wassers" bedingt und in der organischen Chemie oft zum Aussalzen von Substanzen benutzt. Sie erklärt sich im wesentlichen aus der veränderten Dissoziation des Chelatbildners, wie sich theoretisch zeigen läßt (25):

Die Dissoziation einer schwachen Säure ist definiert:

$$K_{d} = \frac{(H^{+})(L^{-})}{(HL)} \cdot \frac{f_{H^{+}} \cdot f_{L^{-}}}{f_{HL}}$$

$$-\lg K_{d} = pK = pH + \lg \frac{(HL)}{(L^{-})} + \lg \frac{f_{HL}}{f_{H} + f_{L}^{-}} \cdot$$

Setzt man für die einzelnen Aktivitätskoeffizienten die Debye-Hückel^tsche Gleichung ein,

$$-\ln f_{i} = \frac{z_{i}^{2} \alpha \sqrt{\mu}}{1 + \beta a_{i} \sqrt{\mu}}$$

$$z = \text{Ionenwertigkeit}$$

$$a_{i} = \text{Abstand vom Nachbarion}$$

$$\alpha, \beta = \text{Konstanten für Tempe-ratur und Lösungsmittel}$$

- 17 -

so ergibt sich:

$$pK = pH + lg \frac{(HL)}{(L)} - 2\alpha (z - 1) \sqrt{\mu'}$$
.

Daraus ist zu ersehen, daß der pK-Wert mit wachsender Ionenstärke abnimmt.

Für den Verteilungskoeffizienten λ zwischen Chloroform und Wasser und den pK-Wert des Benzoyltrifluoracetons wurden bei $\mu = 0,1$ und 1,0 folgende Werte gefunden, die obige Aussage bestätigen:

Tabelle 7: Beeinflussung von pK- und λ -Wert durch Variieren der Ionenstärke bei HBTA (26)

μ	pK	λ
0,1	6,30	519
1,0	6,22	698

2.4.4. Der Einfluß der Temperatur

Wie bereits Keller und Schreck (26) bei der Extraktion von Am(III) mit O,1M HBTA in CHCl₃ bei μ = O,1 und konstantem pH-Wert gezeigt haben, nimmt der Verteilungsquotient lg q mit steigender Temperatur merklich zu, was sie mit steigender Dissoziation des Chelatbildners bei wachsender Temperatur erklärten. Diese Temperaturabhängigkeit der Extraktion wurde in der vorliegenden Arbeit in Abschnitt 3.3. noch eingehender untersucht. Dabei ergab sich im System Am(III)/O,1M HTTA eine Abnahme der pH 1/2-Werte und eine Zunahme der lg $\lambda_{\rm N}$ -Werte bei steigender Temperatur (Abb. 24). Bei der Zugabe von Hexon zu diesem System verschoben sich die "synergistischen " Extraktionskurven bei Erhöhung der Temperatur von 20°C über 25°C auf 30°C bei gleicher Adduktbildnerkonzentration zu höheren Verteilungsquotienten (Abb. 25). Alle anderen Extraktionen dieser Arbeit wurden dagegen bei der konstanten Temperatur von (25 ± 0,5)°C durchgeführt (Thermostat).

2.5. Synergistische und antagonistische Effekte

2.5.1. Der synergistische Effekt

Wie bereits in der Einleitung angeführt, entstammt der Begriff Synergismus dem theologischen Gedankengut. Seine Rolle in der Flüssig-Flüssig-Extraktion wurde inzwischen durch eine Reihe von Autoren eingehend untersucht (27,28,29). In dieser Arbeit wird in Erweiterung der am hiesigen Institut durchgeführten "synergistischen" Extraktionen (26,30,31,32) HTTA als Chelatbildner eingesetzt und das Extraktionsverhalten mit Hexon als Adduktbildner bei verschiedenen Temperaturen (Abschnitt 3.3.) und verschiedenen Ionenstärken (Abschnitt 3.2.1.2.) studiert. Darüberhinaus werden andere polare O-, S-, N- und Se-haltige Verbindungen auf ihre synergistische Wirksamkeit untersucht (Abschnitt 3.2.2.).

2.5.2. Der antagonistische Effekt

Bei einem Überschuß an Adduktbildner A ist oft eine dem Synergismus entgegengesetzte Abnahme von lg q zu beobachten. Dieses Phänomen bezeichnete Healy (33) als antisynergistischen, Irving (34) als antagonistischen Effekt, wobei sich die letztere Bezeichnung heute allgemein durchgesetzt hat. Über das Zustandekommen des antagonistischen Effektes gibt es verschiedene Deutungen der einzelnen Autoren: Irving und Wang (34, 35,36) erklären beispielsweise die "Zerstörung des Synergismus" im Falle des Systems $\operatorname{Cu}^{2+}/4$ -Methylpyridin mit der Ausbildung von $(\operatorname{CuA}_j)^{2+}$ -Kationkomplexen (j = 1,2...), wodurch die Konzentration an freien Cu²⁺-Ionen für den Extraktionsvorgang vermindert wird. Nach Ferraro und Peppard (37) beruht der antagonistische Effekt einfach auf einer direkten Wechselwirkung zwischen dem Chelat- und dem Adduktbildner, wobei Assoziationsprodukte entstehen, die dem Extraktionsvorgang entzogen werden. Zu dieser Annahme kommt auch Zangen bei der Extraktion von Am(III) und Am(VI) mit Tributylphosphat (38).

2.5.3. Ermittlung der Zusammensetzung der gebildeten Adduktchelate ML_2A

- 20 -

Die Extraktion eines dreiwertigen Metallions M³⁺, wie Am(III) oder Cf(III), mit einem Chelatbildner – zum Beispiel HTTA – in einem nichtadduktbildenden Lösungsmittel (CHCl₃) kann durch die Reaktion

$$M^{3+} + 3L^{-} \rightleftharpoons (ML_{3})_{w} \rightleftharpoons (ML_{3})_{o}$$

beschrieben werden. In dem hier postulierten Chelat würde das Metallion die Koordinationszahl KZ = 6 besitzen. Da die Actiniden in Chelatverbindungen höhere Koordinationszahlen, vor allem KZ = 8, bevorzugen, muß man annehmen, daß zwei weitere Koordinationsstellen mit Wasser besetzt sind, so daß man formulieren kann:

$$M^{3+} + 3L^{-} + 2H_{2}^{0} \rightleftharpoons (ML_{3} \cdot 2H_{2}^{0})_{W} \rightleftharpoons (ML_{3} \cdot 2H_{2}^{0})_{0}$$

Die Löslichkeit derartiger Chelate in der organischen Phase wird naturgemäß durch die angelagerten Wassermoleküle herabgesetzt. Fügt man nun dem System einen Adduktbildner A - beispielsweise Hexon - zu, so kann dieser statt des Wassers an das Chelat angelagert werden und verbessert durch die gesteigerte Hydrophobie des gebildeten Adduktchelates die Extraktion in die organische Phase:

$$M^{3+} + 3L^{-} + 2A \implies (ML_3 \cdot 2A)_w \implies (ML_3 \cdot 2A)_o$$

Diese Anlagerung von zwei Molekülen Hexon an die Chelate $Am(TTA)_{\vec{j}}$ und $Cf(TTA)_{\vec{j}}$ zeigt sich dann in der Steigung N = 2 bei den Extraktionskurven in Abbildung 7. Dabei werden bei konstantem pH-Wert die lg q-Werte über dem dekadischen Logarithmus der Adduktbildnerkonzentration (MIBK) aufgetragen, wobei erstere schon bei geringer Zugabe von Adduktbildner über den lg q_o-Wert ansteigen. Unter lg q_o versteht man dabei den Verteilungsquotienten des Systems ohne Adduktbildner bei gegebenem pH-Wert. Betrachtet man nun ein derartiges System aus Metallion, Chelat- und Adduktbildner, so kann man die Adduktbildung als zweistufigen Prozeß auffassen. Bei geringer Konzentration an Adduktbildner liegt vorwiegend ein 1:1-Addukt vor, welches bei steigender Konzentration an A ein zusätzliches Molekül zum 1:2-Addukt anlagert:

a)
$$ML_3 + A \rightleftharpoons ML_3 \cdot A$$

b) $ML_3 \cdot A + A \rightleftharpoons ML_3 \cdot 2A$
 $a + b) ML_3 + 2A \rightleftharpoons ML_3 \cdot 2A$

Daraus ergeben sich definitionsgemäß die sukzessiven und die Summenadduktstabilitätskonstanten K^{\dagger} und β^{\dagger} :

a)
$$K_{1}^{t} = B_{1}^{t} = \frac{(ML_{3} \cdot A)}{(ML_{3})(A)}$$

a + b) $K_{1}^{t} \cdot K_{2}^{t} = B_{2}^{t} = \frac{(ML_{3} \cdot 2A)}{(ML_{3})(A)^{2}}$
b) $K_{2}^{t} = \frac{(ML_{3} \cdot 2A)}{(ML_{3} \cdot A)(A)}$

2.6. Bestimmung der Stabilitätskonstanten

2.6.1. Allgemeines über die Bestimmung von Stabilitätskonstanten

Die am häufigsten angewandte und genaueste Methode verläuft über die potentiometrische Titration einer wäßrigen Lösung des Chelatbildners und des Metallions. Diese Methode wurde von Bjerrum (39) ausführlich erörtert. Sie wurde auch auf solche wasserhaltige Lösungsmittel ausgedehnt, bei denen mit entsprechenden Korrekturen pH-Messungen durchgeführt werden können (40). Darüber hinaus sind noch folgende Verfahren gut geeignet: Ionenaustausch (41), optische Messungen (42), polarografische Messungen (43), Bestimmung der Oxidationspotentiale (44) und Löslichkeitsmessungen (45).

Die Verwendung von Extraktionsdaten wurde erstmals von J. Rydberg beim System Thorium/Acetylaceton (HAa) eingeführt (46,47). Später folgten U(IV) und Pu(IV) mit HAa (48,49), wobei die Stabilitätskonstanten aller dabei auftretender Komplexe grafisch bestimmt werden konnten.

- 21 -

2.6.2. Bestimmung von ß und K der Chelate ML nach einer numerischen Methode

Zur Berechnung von β_3 bei Chelaten dreiwertiger Metalle kann im Bereich der konstanten Steigung N = 3 der Extraktionskurve (Abb. 3,5) folgende Vereinfachung vorgenommen werden:

Man kann statt der Definitionsgleichung

$$q = \frac{\lambda_{N} \beta_{3}(L)^{3}}{1 + \beta_{1}L + \beta_{2}(L)^{2} + \beta_{3}(L)^{3}}$$

auch schreiben

$$q = \frac{\lambda_N \beta_3(L)^3}{1 + \beta_3(L)^3},$$

da in diesem Bereich gilt:

$$B_{1}L + B_{2}(L)^{2} \ll B_{3}(L)^{3};$$

daraus ergibt sich dann durch Umformen:

$$B_{3} = \frac{-q}{(L)^{3} (q-\lambda_{N})} \cdot$$

Die Extraktionskonstante K bekommt man direkt aus der Definitionsgleiex chung:

$$K_{ex} = \frac{q(H^+)^3}{(HL)^3_o}$$

 $lg(H^+)_w = - pH$ und

$$(\mathrm{HL})_{\mathrm{O}} = (\mathrm{HL})_{\mathrm{ges}} - (\mathrm{L})_{\mathrm{W}}$$
.

Mit diesen Ausdrücken werden die Stabilitätskonstanten \mathcal{B}_{3} und die Extraktionskonstanten K aus den Meßkurven errechnet (Tab. 9,10).

mit:

- 22 -

2.6.3. Bestimmung von β_1 , β_2 und β_3 nach einer grafischen Methode

Bei dieser grafischen "limiting value" Methode (16) erhält man im Gegensatz zu Abschnitt 2.6.2. neben β_3 auch noch β_1 und β_2 . Dazu wird die allgemeine Extraktionsgleichung (siehe Abschnitt 2.2.) folgendermaßen umgeformt:

$$q^{-1}(L)^{N} = f^{-1} + f^{-1}\beta_{1}L + f^{-1}\beta_{2}(L)^{2} + \dots + f^{-1}\beta_{N}(L)^{N} = F_{0}$$

$$F_{1} = \frac{F_{0} - f^{-1}}{(L)} = f^{-1}\beta_{1} + f^{-1}\beta_{2}L + \dots$$

$$F_{2} = \frac{F_{1} - f^{-1}\beta_{1}}{(L)} = f^{-1}\beta_{2} + f^{-1}\beta_{3}L + \dots$$

$$f = \beta_{N}\lambda_{N} .$$

Die Werte von F_0 , F_1 ... werden gegen (L) aufgetragen und bei bekanntem λ_N die β_N -Werte aus den Ordinatenabschnitten und den Steigungen der Kurven für lim. F ermittelt. (L) - 0

Beim Vergleich der grafisch ermittelten β_3 -Werte mit den nach Abschnitt 2.6.2. errechneten ergeben sich erhebliche Abweichungen, wie aus Tabelle 9 zu ersehen ist.

2.6.4. Bestimmung der Adduktstabilitätskonstanten Bⁱ und Bⁱ nach der grafischen "curve fitting" Methode

Bei diesem von Sillén (50) angegebenen Verfahren wird lg q/q_0 über dem Logarithmus der Adduktbildnerkonzentration aufgetragen. Bei den Systemen mit Steigung N = 2 werden die Extraktionskurven mit einer normierten Kurvenschar verglichen, welche unter Verwendung der Hilfsvariablen v mit x = lg v und y = lg (l + pv + v²) konstruiert wird. Aus dieser Schar sucht man nun die Kurve heraus, die mit der experimentell ermittelten am besten übereinstimmt und kann, da deren Parameter bekannt sind, die Stabilitätskonstanten bestimmen. Nach dem Eliminieren von p und v erhielt Sillén folgende Beziehungen für β_1^i und β_2^i :

$$p_{1} = 1/2 \ \lg \ \beta_{2}^{t}$$

$$p_{2} = \beta_{1}^{t} \ \beta_{2}^{t-1/2}$$

$$\lg \ p_{2} + p_{1} = \lg \ \beta_{1}^{t}$$

Bei Steigung N = 1 wurde β_1^i durch Anpassen der experimentell gefundenen Kurven an die Hilfskurve y = lg (l + v), x = lg v erhalten (51).

<u>Abbildung 1:</u> Errechnete Kurvenschar zur Ermittlung von B_1^t und B_2^t

3. ERGEBNISSE UND DISKUSSION DER EXTRAKTIONSVERSUCHE

3.1. Nicht-synergistische Systeme

3.1.1. Extraktion von Cf(III) mit 0,1M HOX und 0,04M HDCO (52)

Bei der Extraktion von Am(III) und Cf(III) mit HOX erhielten Keller, Eberle und Mosdzelewski (53) Extraktionskurven mit der Steigung N = 2, was auf die Bildung basischer Chelate der Zusammensetzung $M(OX)_2(OH)$ schließen läßt. Diese Hydrolysetendenz scheint bei Cf(III) noch stärker ausgeprägt zu sein, denn die Steigung N≈l der hier erhaltenen Extraktionskurve deutet auf einen Komplex der Form Cf(OX)(OH)₂ hin.

<u>Abbildung 2:</u> Extraktion von Cf(III) mit 0,1M HOX/CHCl₃ ($\mu = 0,1$; 25^oC)

Dagegen zeigt die Steigung N = 3 im System Cf(III)/HDCO die Bildung des normalen $Cf(DCO)_3$ -Chelats an, was sich mit einer Zurückdrängung der Hydrolyse zugunsten der Chelatbildung bei der Substitution des Oxins mit dem elektrophilen Chlor zu 5,7-Dichlor-8-hydroxychinolin erklären läßt.

- 25 -

Abbildung 3: Extraktion von Cf(III) mit 0,04M HDCO/CHCl₃ ($\mu = 0,1; 25^{\circ}C$)

Beim System Cf(III)/HDCO wurde im Gegensatz zu allen anderen Extraktionen in dieser Arbeit mit einer Konzentration von 0,04M Chelatbildner gearbeitet, da sich nicht mehr HDCO im Chloroform löste. In allen anderen Fällen wurde 0,1M eingesetzt. Aus Abbildung 3 ergaben sich folgende Extraktionsdaten:

Tabelle 8: Verteilungskoeffizienten lg λ_N und pH 1/2-Werte der Cf- und Am(DCO)₃-Chelate

	Cf(DCO)3	Am(DCO) ₃ (53)
lg $\lambda_{\rm N}$	2,37	2,1
pH 1/2	4,42	4,71

Nach Abschnitt 2.6.2. wurden $\lg \beta_3$ und $\lg K_{ex}$ errechnet und nach 2.6.3. $\lg \beta_1$, $\lg \beta_2$ und $\lg \beta_3$ grafisch bestimmt:
19.	Cf (DCO) ₃	Am(DCO) ₃ (53)
lg K _{ex}	-9,06 <u>+</u> 0,12	-9,88 <u>+</u> 0,05
lg K _l	6,5	
lg B _l	6,5	
lg K	8,6	
lg B ₂	15,1	
lg K ₃	7,4	
$\lg \beta_3$ (graf.)	22,5	
$\lg \beta_{\overline{3}}$ (num.)	22,586 <u>+</u> 0,161	21,93 <u>+</u> 0,05

Tabelle 9: Extraktions- und Stabilitätskonstanten der Cf- und Am(DCO)3-Chelate

Die bessere Extrahierbarkeit des Californiums gegenüber Americium deckt sich mit der in Abschnitt 2.4.1. angeführten Beziehung von Dyrssen und zeigt sich auch anschaulich in Abbildung 4:

Abbildung 4: Extrahierte Metallmenge in Abhängigkeit vom pH-Wert im System 0,04M HDCO/CHCl₃ ($\mu = 0,1$; 25°C)

3.1.2. Extraktion von Am(III) und Cf(III) mit 0,1M HTTA

Die Steigung N = 3 der Extraktionskurven dieser beiden Systeme zeigt die Bildung von normalen $M(TTA)_3$ -Chelaten an.

<u>Abbildung 5:</u> Extraktion von Am(III) und Cf(III) mit 0,1M HTTA/CHCl₃ $(\mu = 0,1; 25^{\circ}C)$

Aus dem Verlauf der Kurven konnten folgende Daten entnommen beziehungsweise berechnet werden:

	Cf(TTA) ₃	Am(TTA) ₃ (26)
lg λ_N	2,0	1,8
pH 1/2	3,75	4,05
lg K _{ex}	-8,31 <u>+</u> 0,12	-9,13 <u>+</u> 0,14
lg B ₃	14,73 <u>+</u> 0,2	13,20 <u>+</u> 0,15

Tabelle 10: Extraktionsdaten der Cf- und Am(TTA)3-Chelate

Auf die grafische Bestimmung von lg β_1 und lg β_2 wurde wegen der Ungenauigkeit dieses Verfahrens in diesem Falle verzichtet. Ebenfalls wie bei der Extraktion in Abschnitt 3.1.1. wird auch hier Cf(III) aufgrund des größeren z/r-Verhältnisses besser in die organische Phase extrahiert als Am(III).

<u>Abbildung 6:</u> Extrahierte Metallmenge in Abhängigkeit vom pH-Wert im System 0,1M HTTA/CHCl₃ ($\mu = 0,1$; 25^oC)

3.2. Synergistische Effekte bei der Extraktion von M(III)/0,1M HTTA/CHCl mit verschiedenen Adduktbildnern

3.2.1. Extraktion mit Hexon (MIBK)

3.2.1.1. Am(III) und Cf(III)

Bei der Zugabe definierter Mengen von Hexon zur organischen Phase ergab die Extraktion in beiden Systemen bei konstantem pH-Wert 3,60 Kurven mit der Steigung N = 2, wenn die lg q-Werte über dem Logarithmus der Hexonkonzentration aufgetragen wurden. Somit kann man auf die Bildung von Adduktchelaten mit der Zusammensetzung M(TTA)₃·2MIBK schließen (Abb. 7).

Die Adduktstabilitätskonstanten $\lg \beta_1^i$ und $\lg \beta_2^i$ ergaben sich nach der in Abschnitt 2.6.4. beschriebenen grafischen "curve fitting" Methode.

- 29 -

Tabelle ll: Adduktstabilitätskonstanten von Am(TTA)₃ und Cf(TTA)₃ mit MIBK

Stabilitätskonstanten	Am	Cf
lg B _l	0,90	0,95
lg ^B ₂	1,20	1,30

Abbildung 7: Synergistischer Effekt im System 0,1M HTTA/CHCl_-MIBK ($\mu = 0,1$; 25^oC; pH = 3,60)

3.2.1.2. Extraktion von Am(III) mit HTTA in Gegenwart von Hexon bei verschiedener Ionenstärke μ

Nach dem in Abschnitt 2.4.3. erwähnten "Aussalzeffekt" ist in einem Extraktionssystem rein qualitativ bei steigender Ionenstärke eine zunehmende Extraktion in die organische Phase zu erwarten. Im vorliegenden System Am/HTTA-Hexon ergibt sich dabei mit steigender Ionenstärke eine Verschiebung der Extraktionskurven zu höheren 1g q-Werten bei gegebener Hexonkonzentration. Dabei fällt der Abstand zwischen den Kurven mit den kleinsten μ -Werten am größten aus, während die Kurven bei größeren Ionenstärken enger zusammenrücken. Darüberhinaus zeigt sich ein analoges Ansteigen der lg q_o-Werte, da die Extrahierbarkeit im System ohne Adduktbildner in entsprechender Weise mit der Ionenstärke verbessert wird.

Abbildung 8: Synergistischer Effekt in Abhängigkeit von der Ionenstärke im System 0,1M HTTA/CHCl₃-MIBK ($25^{\circ}C$; pH = 3,60) a) $\mu = 0,05$ b) $\mu = 0,1$ c) $\mu = 0,5$ d) $\mu = 1,0$

Für die vier verschiedenen Ionenstärken ergaben sich folgende Adduktstabilitätskonstanten:

Tabelle 12: Adduktstabilitätskonstanten von Am(TTA)₃·iMIBK in Abhängigkeit von der Ionenstärke

Ionenstärke µ	lg B <mark>'</mark>	lg B ¹ ₂
0,05	0,80	1,10
0,1	0,90	1,20

- 31 -

Ionenstärke µ	lg ß <mark>i</mark>	lg B ¹ ₂
0,5	1,05	1,40
1,0	1,15	1,50

Trägt man diese Adduktstabilitätskonstanten in einem Diagramm über der Ionenstärke auf, so zeigt sich das oben Gesagte noch einmal in auffälliger Weise, wobei die lg β^{t} -Werte bei den kleinen Ionenstärken relativ stark anwachsen und im Bereich von $\mu = 1,0$ asymptotisch einem Grenzwert zustreben.

<u>Abbildung 9:</u> Abhängigkeit der Adduktstabilitätskonstanten von der Ionenstärke im System Am(III)/0,1M HTTA/CHCl₃-MIBK (μ = 0,1; 25^oC; pH = 3,60) a) lg β^t₂ b) lg β^t₁

3.2.2. Synergistische Wirksamkeit anderer Adduktbildner im System Am(III)/HTTA

Im System Am(III)/0,1M HTTA/CHCl₃ ($\mu = 0,1$; 25^oC; pH = 3,60) wurde die synergistische Wirksamkeit von zehn verschiedenen Adduktbildnern in Abhängigkeit von deren molekularem Bau studiert. Es wurde versucht, Gesetzmäßigkeiten zwischen Extraktionsverhalten einerseits und Dipol-

- 32 -

moment, sterischer Hinderung der Adduktbildner beziehungsweise der Einflüsse ihrer Zentralatome andererseits aufzufinden.

Abbildung 10:

Synergistischer Effekt bei der Extraktion mit Di-n-butyläther (DBE) im System Am(III)/ O, IM HTTA/CHCl₃ ($\mu = 0,1$; 25[°]C; pH = 3,60)

Abbildung 11:

Synergistischer Effekt bei der Extraktion mit Di-iso-butyläther (DIBE) im System Am(III)/ 0, IM HTTA/CHCl₃ ($\mu = 0, 1; 25^{\circ}C; pH = 3,60$)

Abbildung 12:

Synergistischer Effekt bei der Extraktion mit Diphenyläther (DPhE) im System Am(III)/ 0,1M HTTA/CHCl₃ ($\mu = 0,1$; 25[°]C; pH = 3,60)

Bei der Extraktion mit Di-n-butyläther, Di-iso-butyläther und Diphenyläther ergeben sich Kurven mit der Steigung N = 4 bei den ersteren und N = 1 bei DPhE. Die hohen Steigungen bei den beiden aliphatischen Äthern und damit die Bildung von Am(TTA)₃.4A-Addukten überrascht, da die Dipolmomente aller dieser drei Äther mit 1,10-1,20 D wesentlich unter dem des Wassers von 1,84 D liegen. Man sollte daher annehmen, daß statt der Adduktbildnermoleküle bevorzugt Wasser an das Am(TTA)₃-Chelat angelagert wird. Wie sich im Laufe des Abschnitts 3.2.2. jedoch wiederholt zeigen wird, wird der Einfluß der Polarität eines Adduktbildners in Form des Dipolmoments oft wesentlich durch andere Parameter überlagert. So scheint hier vor allem die relative hohe Donorwirkung der Äther von Bedeutung zu sein, die sich beispielsweise auch in der Anlagerung von HCl an Diäthyläther zu der tertiären Oxoniumverbindung

- 34 -

$$\begin{bmatrix} c_2 H_5 - \overline{0} - c_2 H_5 \\ H \end{bmatrix} + c_1 - c_2 H_5 \end{bmatrix}$$

oder bei der Bedeutung dieses Äthers zur Darstellung von Grignard-Verbindungen zeigt. Dieser Donoreffekt ergibt sich bei den aliphatischen Äthern aus der Hyperkonjugation der freien Elektronenpaare des Sauerstoffs mit den σ -Elektronen der Alkylgruppen, wobei jene in Richtung der freien π -Elektronen des Sauerstoffs verschoben werden. Bei den resonanzstabilisierten π -Systemen am Diphenyläther ist eine derartige Verlagerung in diesem Maße nicht zu erwarten. Darüberhinaus scheint hier gegenüber den aliphatischen Äthern DBE und DIBE die erhebliche sterische Hinderung durch die zwei sperrigen Phenylreste ausschlaggebend zu sein.

Abbildung 13:

Synergistischer Effekt bei der Extraktion mit DBE, DIBE und DPhE in Abhängigkeit von der sterischen Hinderung im System Am(III)/0,1M HTTA/CHCl₃ (µ = 0,1; 25^oC; pH = 3,60)

Die schlechtere Extraktion mit DIBE gegenüber DBE kann damit allein durch die größere sterische Hinderung beim ersteren erklärt werden. Die beiden n-Butylgruppen des DBE beanspruchen als relativ dünne, in die äußere Koordinationssphäre hinausragende "Fäden" weniger Platz in der unmittelbaren Nachbarschaft des Zentralatoms als die sperrigeren verzweigten iso-Butylgruppen des DIBE. Beim DPhE geht dann die sterische Hinderung durch die voluminösen Phenylreste so weit, daß nur mehr ein Adduktmolekül an das Chelat angelagert werden kann. Ein analoges Verhalten erkennt man auch beim Vergleich der Extraktion von Di-n-butylsulfid und Diphenylsulfid, wo zwar in beiden Fällen die Steigung N = 4 erreicht wird, doch die Stabilitätskonstanten des DPhS erheblich unter denen des DBS liegen.

Bei obigen Äthern ergaben sich die Adduktstabilitätskonstanten zu:

- 35 -

lg B ¹ ₁ 0,27 0,18	0,28
lg B ^î / ₂ 0,54 0,36	

Tabelle 13: Adduktstabilitätskonstanten von Am(TTA) 3. iL mit DBE, DIBE und DPhE

Vergleicht man die obigen Addukstabilitätskonstanten mit denen der folgenden Thioäther und die lg β_1^{\dagger} -Werte von Diphenyläther und Diphenylselenid miteinander, so scheinen die der Äther relativ hoch zu liegen. Dieses Phänomen läßt sich damit erklären, daß das Americium als Actinidenelement den "harten" Acceptoren zugeordnet werden muß, die mit "harten" Liganden die stabilsten Verbindungen eingehen (Abschnitt 1.3.). In diesem Falle werden vor allem Bindungen mit stark elektrostatischem Charakter betätigt, während Verbindungen von "weichen" Acceptoren (d-Übergangsmetalle) mit "weichen" Liganden im wesentlichen kovalenter Natur sind (54). Das durch das hohe z/r-Verhältnis in diesem Sinne harte Am(III) bildet daher stabilere Addukte mit den härteren Äthern (O als Zentralatom) als mit den weicheren Thioäthern oder Seleniden.

3.2.2.2. Einfluß des Dipolmoments bei der Extraktion mit den Nitroverbindungen NBu und NBe

Abbildung 14:

Synergistischer Effekt bei der Extraktion mit Nitrobutan (NBu) im System Am(III)/0,1M HTTA/CHCl₃ $(\mu = 0,1; 25^{\circ}C; pH = 3,60)$

Abbildung 15:

Synergistischer Effekt bei der Extraktion mit Nitrobenzol (NBe) im System Am(III)/0,1M HTTA/CHCl₃ $(\mu = 0,1; 25^{\circ}C; pH = 3,60)$

Nitrobenzol sollte aufgrund der sperrigen Phenylgruppe stärker sterisch gehindert sein als Nitrobutan und daher schlechter extrahieren als dieses. Durch die große räumliche Ausdehnung der die Anlagerung bewirkenden Nitrogruppe macht sich jedoch der verschiedene Raumbedarf von n-Butyl- und Phenylrest bei der Adduktbildung hier nicht entscheidend bemerkbar. Diese Reste werden durch die am Chelat angreifende Nitrogruppe aus der unmittelbaren Nachbarschaft des Zentralatoms herausgedrückt. Dadurch kommt im Vergleich zwischen Nitrobutan und Nitrobenzol einzig das höhere Dipolmoment des NBe (3,93D) zur Geltung und bewirkt die bessere Extraktion gegenüber NBu (3,23D).

Die gegenüber den anderen Adduktbildnern in Abschnitt 3.2.2. relativ niedrigen Stabilitätskonstanten erklären sich dann aus der großen sterischen Hinderung der n-Butyl- und Phenylreste plus der der Nitrogruppe.

Tabelle 14: Adduktstabilitätskonstanten von Am(TTA), iL mit NBu und NBe

Stabilitätskonstanten	NBu	NBe
lg ß _l	-0,50	-0,40
lg ß ^t 2	-0,26	-0,22

- 37 -

- Abbildung 16: Synergistischer Effekt in Abhängigkeit vom Dipolmoment bei der Extraktion mit NBu und NBe im System Am(III)/ 0,1M HTTA/CHCl₃ (μ = 0,1; 25°C; pH = 3,60)
- 3.2.2.3. Einfluß der Stellung des Zentralatoms der Adduktbildner im Periodensystem der Elemente bei der Extraktion mit DPhE, DPhS und DPhSe

Abbildung 17: Synergistischer Effekt bei der Extraktion mit Diphenylsulfid (DPhS) im System Am(III)/0,1M HTTA/CHCl₃ $(\mu = 0,1; 25^{\circ}C; pH = 3,60)$

- 38 -

-39

<u>Abbildung 18:</u> Synergistischer Effekt bei der Extraktion mit Diphenylselenid (DPhSe) im System Am(III)/O,1M HTTA/CHCl₃ $(\mu = 0,1; 25^{\circ}C; pH = 3,60)$

Im Periodensystem der Elemente nimmt die Elektronegativität von oben nach unten ab, da die Elektronenhüllen durch das Auffüllen zusätzlicher Schalen immer größer werden. Bei den Chalkogenen Sauerstoff, Schwefel und Selen nehmen dadurch die Radien der formellen 0²⁻-, S²⁻- und Se²⁻-Ionen von 1,40 über 1,84 auf 1,98 D zu (13). In den Diphenylverbindungen sollte sich damit bei abnehmender Elektronegativität des Zentralatoms von Sauerstoff zu Selen eine wachsende Donorwirkung ergeben, da deren freie Elektronenpaare immer lockerer gebunden werden. Das zeigt sich sehr deutlich bei Sauerstoff und Schwefel am Beispiel der tertiären Oxoniumsalze, die bei Gegenwart von Thioäthern leicht eine Alkylgruppe abspalten, die sich an ein freies Elektronenpaar des Schwefels unter Ausbildung eines tertiären Sulfoniumsalzes anlagert:

$$\begin{bmatrix} R-\overline{O}-R\\ I\\ R^{\dagger} \end{bmatrix}^{\dagger} \begin{bmatrix} BF_{4} \end{bmatrix}^{-} + R-\underline{\overline{S}}-R \longrightarrow \begin{bmatrix} R-\overline{S}-R\\ I\\ R^{\dagger} \end{bmatrix}^{\dagger} \begin{bmatrix} BF_{4} \end{bmatrix}^{-} + R-\underline{\overline{O}}-R$$

Die in Abschnitt 3.2.2.1. erwähnte Donorwirkung der Äther wird also, wie diese Reaktion erweist, bei den Thioäthern wesentlich übertroffen. (Abb. 19).

Beim Vergleich der Extraktionskurven überrascht die sehr hohe Steigung von N = 4 des Diphenylsulfids. Andererseits beginnt hier die synergistische Extraktion erst bei wesentlich höherer Adduktbildnerkonzentration als bei Diphenyläther und führt zu recht niedrigen $\lg \beta_1^i$ und $\lg \beta_2^i$ -Werten. Zum einen ergibt sich aus der starken Donorwirkung des Schwefels eine

größere Steigung der Kurve, trotz sterischer Hinderung durch zwei Phenylgruppen, während andererseits der relativ weiche Ligand DPhS mit dem harten Acceptor Am(III) nur mäßig stabile Addukte bildet. Eine weitere Abnahme der synergistischen Wirksamkeit gegenüber Am(III) findet sich dann bei dem als Ligand noch weicheren Diphenylselenid.

Stabilitätskonstanten	DPhE	DPhS	DPhSe
lg B _l	0,28	-0,22	0,13
lg \mathfrak{g}_2^1		-0,12	

Tabelle 15: Adduktstabilitätskonstanten von Am(TTA)₃.iL mit DPhE, DPhS und DPhSe

Abbildung 19: Synergistischer Effekt in Abhängigkeit vom Zentralatom der Adduktbildner bei der Extraktion mit DPhE, DPhS und DPhSe im System Am(III)/0,1M HTTA/CHCl.3 $(\mu = 0,1; 25^{\circ}C; pH = 3,60)$

- 40 -

Abbildung 20:

Synergistischer Effekt bei der Extraktion mit Di-n-butylsulfid (DBS) im System Am(III)/ 0,1M HTTA/CHCl₃ ($\mu = 0,1$; 25^oC; pH = 3,60)

Synergistischer Effekt bei der Extraktion mit Di-n-butylsulfoxid (DBSO) im System Am(III)/ O,1M HTTA/CHCl₃ (µ = 0,1; 25[°]C; pH = 3,60)

Abbildung 22:

Synergistischer Effekt bei der Extraktion mit Di-n-butylsulfon (DBSO₂) im System Am(III)/ 0, IM HTTA/CHCl₃ ($\mu = 0,1$; 25°C; pH = 3,60)

An die freien Elektronenpaare des Schwefels der Thioäther können weitere Liganden angelagert werden, da der Schwefel hier noch nicht koordinativ abgesättigt ist. Daraus leitet sich die leichte Oxidierbarkeit von Thioäthern zu Sulfoxiden und Sulfonen ab:

- 42 -

Während die Thioäther durch den nur leicht gewinkelten Bau des Moleküls niedrige Dipolmomente besitzen (DBS: 1,57 D), steigen diese bei den Sulfoxiden erheblich an (Diphenylsulfoxid: 3,97 D) und erreichen in dieser Reihe einen Höchstwert bei den Sulfonen, hervorgerufen durch die noch polarere

Konstellation (Diphenylsulfon: 5,04 D). Im Extraktionsverhalten zeigt sich das in den niedrigen Adduktstabilitätskonstanten des DES-Adduktes gegenüber denen mit DESO und DESO₂. Während bei DES durch die oben angeführte Donorwirkung des Thioäthers die Steigung der Extraktionskurve N = 4 beträgt und damit ein 1:4-Addukt entsteht, extrahieren die Adduktbildner DESO und DESO₂, mit höher koordiniertem Schwefel als Zentralatom, nur mit Steigung N = 2. Dabei ergibt das stark polare DESO gegenüber den anderen hier verwendeten Adduktbildnern extrem hohe lg β_1^i - und lg β_2^i -Werte, während die im Vergleich hierzu niedrigeren bei DESO₂ auf die gegenüber der funktionellen SO-Gruppe des Sulfoxids stärkere sterische Hinderung der SO₂-Gruppe zurückzuführen sind (Abb. 23).

Tabelle 16: Adduktstabilitätskonstanten von Am(TTA)₃.iL mit DBS, DBSO und DBSO₂

Stabilitätskonstanten	DBS	DBSO	DBS02
lg B ^t l	0,14	3,17	1,08
lg B_2^1	0,28	4,78	1,36

Sekine und Dyrssen (55) gaben für das System Am(III)/HTTA/DBSO wesentlich höhere Werte an:

lg $B_1^{!} = 4,97$ lg $B_2^{!} = 8,48$

Diese lassen sich mit den hier gefundenen Werten nicht vergleichen, da die genannten Autoren CCl_4 statt $CHCl_5$ als Lösungsmittel verwendeten und mit der höheren Ionenstärke 1,0 gearbeitet hatten.

<u>Abbildung 23:</u> Synergistischer Effekt in Abhängigkeit von der Koordinationszahl des Zentralatoms der Adduktbildner bei der Extraktion mit DBS, DBSO und DBSO₂ im System Am(III)/ 0,1M HTTA/CHCl₃ ($\mu = 0,1$; 25^oC; pH = 3,60)

3.2.2.5. Zusammenfassende Beurteilung der in Abschnitt 3.2.2. ermittelten Extraktionsergebnisse

Aufgrund des ermittelten Tatsachenmaterials konnten folgende Zusammenhänge zwischen molekularem Bau der Adduktbildner und ihrem Extraktionsverhalten abgeleitet werden:

 Harte Adduktbildner (Äther) bilden relativ stabile Adduktchelate mit dem harten Am(III).

- 43 -

- Die Thioäther, als starke Donormoleküle, ergeben Extraktionskurven mit N = 4, selbst bei Diphenylsulfid, jedoch relativ niedrige Stabilitätskonstanten, bedingt durch verminderte Härte.
- 3. Hohe Dipolmomente bedingen im allgemeinen große Adduktstabilitätskonstanten (Sulfoxid, Sulfon). Eine direkte Abhängigkeit der Extraktion vom Dipolmoment kann jedoch nur bei sterisch ähnlich gebauten Adduktbildnern gezeigt werden (Nitroverbindungen).
- 4. Zunehmende sterische Hinderung verschlechtert die Extraktionswirkung der Adduktbildner.

3.3. Thermodynamische Untersuchungen bei den Systemen Am(III)/HTTA und Am(III)/HTTA-MIBK

Das System Am(III)/0,1M HTTA/CHCl₃ (Abschnitt 3.1.2.) und das "synergistische" System mit Hexon als Adduktbildner (Abschnitt 3.2.1.1.) wurden außer bei 25°C noch bei 20°C und 30°C extrahiert. Aus den gemessenen Kurven ergaben sich die Stabilitätskonstanten für das Am(TTA)₃-Chelat und die Adduktstabilitätskonstanten für das Adduktchelat Am(TTA)₃·2MIBK in Abhängigkeit von der Temperatur. Aus diesen Ergebnissen konnten anschließend über die Van't Hoff'sche Gleichung die Reaktionsenthalpien und -entropien der betreffenden Gleichgewichte ermittelt werden.

3.3.1. Temperaturabhängigkeit bei der Extraktion von Am(III) mit HTTA

Bei steigender Temperatur werden die Extraktionskurven, wie Abbildung 24 zeigt, bei gegebenem pH-Wert zu höheren lg q-Werten verschoben und die lg λ_N -Werte nehmen zu.

Tabelle 17: Extraktionsdaten des Am(TTA)₃-Chelats in Abhängigkeit von der Temperatur

	20 ⁰ C	25 [°] C	30 ⁰ C
lg λ_{N}	1,70	1,80	1,88
pH 1/2	4,12	4,05	3,97

- 44 -

Die fallenden pH 1/2-Werte bei zunehmender Temperatur ergeben sich aus der steigenden Dissoziation des Chelatbildners HTTA, wie sich aus dessen pK-Werten zeigt. Für die Ausrechnung der Stabilitätskonstanten lg β_3 mußten jene für 20°C und 30°C bestimmt werden, da nur der für 25°C be-kannt war (6).

Abbildung 24: Extraktion von Am(III) mit 0,1M HTTA/CHCl₃ bei verschiedener Temperatur ($\mu = 0,1$)

Die Bestimmung der pK-Werte des HTTA erfolgte nach (4) durch potentiometrische Titration einer wäßrigen 10^{-2} -molaren HTTA-Lösung ($\mu = 0,1$) mit n/10-NaOH. Über die Gleichung

$$pK = pH + lg \frac{(HL)}{(L)}$$

wobei (HL) bekannt war und (L) sich aus der zugegebenen Menge der Lauge ergab, wurden die pK-Werte ermittelt:

Tabelle 18: pK-Werte des HTTA in Abhängigkeit von der Temperatur

	20°C	25°C	30 ⁰ C
рK	6,30	6,23 (6)	6,14

Die Stabilitätskonstanten lg β_3 wurden nach der numerischen Methode von Abschnitt 2.6.2 berechnet und ergaben sich zu:

Tabelle 19: lg B₃-Werte des Am(TTA)₃-Chelats in Abhängigkeit von der Temperatur

	20 [°] C	25°C	30°C
lg ß ₃	13,36 <u>+</u> 0,15	13,20 <u>+</u> 0,15 (26)	13,11 <u>+</u> 0,23

Aus diesen Werten wurden die thermodynamischen Größen Freie Enthalpie Δ G, Reaktionsenthalpie Δ H und die Reaktionsentropie Δ S ermittelt. Die Freie Enthalpie ist definitionsgemäß

$$\Delta G = - RT lnK$$

Für die Gesamtreaktion

bei 25[°]C (298 K) gilt somit:

$$\Delta G_{ges.}(298 \text{ K}) = -RT \ln K_1 K_2 K_3 = -RT \ln S_3$$

Aus lg $\beta_3 = 13,20$ ergab sich folglich:

$$\Delta G_{ges.}(298 \text{ K}) = -17,9 \text{ [kcal/mol]}$$

Zwischen Δ G, Δ H und Δ S besteht folgende Beziehung:

$$\Delta G = \Delta H - T \Delta S$$
.

Zur Bestimmung von Δ H wurde die Van't Hoff'sche Gleichung herangezogen, wobei gilt:

$$\ln K = \frac{-\Delta H}{RT}$$
 beziehungsweise $\lg K = \frac{-\Delta H}{2,303 RT}$

Trägt man nun lgK über 1/T in einem Diagramm auf, dann ergibt die Steigung der Kurve eine Beziehung zur Bestimmung von ΔH

Steigung =
$$-\frac{\Delta H}{2,303 R}$$
.

Zur Bestimmung der Gesamtreaktionsenthalpie $\Delta H_{ges.}$ (298 K) wurden dann die lg β_3 -Werte über 1/T $[K^{-1}]$ aufgetragen und die Steigung bestimmt. Dabei ergab sich:

$$\Delta H_{ges.}(298 \text{ K}) = -14,1 \text{ [kcal/mol]}$$

Über die Gleichung

$$\Delta S = \frac{\Delta H - \Delta G}{T}$$

konnte die Reaktionsentropie bestimmt werden:

$$\Delta S_{ges.}(298 \text{ K}) = + 13,1 \text{ [cal/grd. mol]}$$

Tabelle 20: Thermodynamische Daten des Am(TTA)₃-Chelats bei 25°C

$$\Delta G_{ges.} = -17,9 \text{ [kcal/mol]}$$

$$\Delta H_{ges.} = -14,1 \text{ [kcal/mol]}$$

$$\Delta S_{ges.} = +13,1 \text{ [cal/grd. mol]}$$

3.3.2. Temperaturabhängigkeit bei der synergistischen Extraktion von Am(III) mit HTTA - MIBK

Wie aus Abbildung 25 zu ersehen ist, werden bei der Extraktion des Systems Am(III)/O,1M HTTA mit Hexon die synergistischen Extraktionskurven mit zunehmender Temperatur bei gegebener Hexonkonzentration zu höheren 1g q-Werten verschoben. Nach der grafischen "curve fitting" Methode (Abschnitt 2.6.4.) wurden die Adduktstabilitätskonstanten für die einzelnen Temperaturen ermittelt:

Tabelle 21:	Adduktstabilitätskonstanten von Am(TTA) ₃ ·iMIBK i	in Ab-
	hängigkeit von der Temperatur	·

Stabilitätskonstanten	20 ⁰ C	25 ⁰ 0	30 ⁰ C
lg B ¹	0,92	0,90	0,88
lg β_2^{\prime}	1,24	1,20	1,16

<u>Abbildung 25:</u> Synergistischer Effekt im System Am(III)/0,1M HTTA/CHCl₃-MIBK in Abhängigkeit von der Temperatur ($\mu = 0,1$; pH = 3,60)

Aus lg B_1^{\dagger} und lg B_2^{\dagger} für 25°C wurden die Freien Enthalpien für die einzelnen Stufen der Adduktbildung und die Gesamtreaktion bestimmt:

a)
$$\operatorname{Am}(\operatorname{TTA})_{3} + \operatorname{MIBK} \Longrightarrow \operatorname{Am}(\operatorname{TTA})_{3} \cdot \operatorname{MIBK}$$
; $\operatorname{lg} K_{1}^{t} = \operatorname{lg} \mathfrak{G}_{1}^{t}; (\Delta G_{1})$
b) $\operatorname{Am}(\operatorname{TTA})_{3} \cdot \operatorname{MIBK} + \operatorname{MIBK} \Longrightarrow \operatorname{Am}(\operatorname{TTA})_{3} \cdot \operatorname{2MIBK};$ $\operatorname{lg} K_{2}^{t}; (\Delta G_{2})$
 $\operatorname{a+b}$ $\operatorname{Am}(\operatorname{TTA})_{3} + \operatorname{2MIBK} \Longrightarrow \operatorname{Am}(\operatorname{TTA})_{3} \cdot \operatorname{2MIBK};$ $\operatorname{lg} K_{1}^{t} + \operatorname{lg} K_{2}^{t} = \operatorname{lg} \mathfrak{G}_{2}^{t}; (\Delta G_{\operatorname{ges}})$

Die Freien Enthalpien sind dann:

$$\Delta G_1 = -RTlnK_1^{\dagger} = -RTlnB_1^{\dagger}$$
$$\Delta G_2 = -RTlnK_2^{\dagger} = -RT(lnB_2^{\dagger}-lnB_1^{\dagger})$$
$$\Delta G_{ges.} = \Delta G_1 + \Delta G_2 = -RTlnB_2^{\dagger}$$

Durch Einsetzen der Zahlenwerte ergab sich:

$$\Delta G_{1}(298 \text{ K}) = -1,22 \text{ [kcal/mol]}$$
$$\Delta G_{2}(298 \text{ K}) = -0,41 \text{ [kcal/mol]}$$
$$\Delta G_{ges}(298 \text{ K}) = -1,63 \text{ [kcal/mol]}$$

Über die Van't Hoff'sche Gleichung wurden dann die Reaktionsenthalpien ermittelt:

$$\Delta H_{1}(298 \text{ K}) = -1,72 \text{ [kcal/mol]}$$

$$\Delta H_{2}(298 \text{ K}) = -1,56 \text{ [kcal/mol]}$$

$$\Delta H_{ges}(298 \text{ K}) = -3,28 \text{ [kcal/mol]}$$

Aus obigen Δ G- und Δ H-Werten ergaben sich die Reaktionsentropien:

$$\Delta S_1(298 \text{ K}) = -1,67 \text{ [cal/grd. mol]}$$

 $\Delta S_2(298 \text{ K}) = -3,86 \text{ [cal/grd. mol]}$
 $\Delta S_{ges.}(298 \text{ K}) = -5,53 \text{ [cal/grd. mol]}$

3.3.3. Vergleich der thermodynamischen Daten der beiden Extraktionssysteme in 3.3.1. und 3.3.2.

Tabelle 22: Unterschiede der thermodynamischen Daten bei Chelat- und Adduktbildung

	Chelatbildung	Adduktbildung
$\Delta G_{ges.}$ [kcal/mol]	- 17,9	- 1,63
$\Delta H_{ges.}$ [kcal/mol]	- 14,1	- 3,28
$\Delta s_{ges.}$ [cal/grd. mol]	+ 13,1	- 5,53

- 49 -

Die wesentlich negativeren Δ G- und Δ H-Werte bei der Chelatbildung sind durch die weit festere Bindung des HTTA an das Am(III) in Form stabiler Chelatsechsringe gegenüber der lockeren Adduktanlagerung des Hexons an das Chelat zu verstehen. Während die Chelatbildung mit einem Entropiegewinn verbunden ist, da ein Molekül Chelatbildner mehr als ein Wassermolekül aus der geordneten Hydratsphäre um das Americiumion verdrängt und damit den Unordnungsgrad im Sinn einer Entropiezunahme vermehrt, scheint bei der Adduktbildung genau das Gegenteil der Fall zu sein.

- 50 -

4. PRAPARATIVE DARSTELLING VON LANTHANIDENCHELATEN

4.1. Allgemeines

Urbain (56) stellte 1886 die ersten Acetonylacetate von einigen Seltenen Erden dar. Seine Methode wurde von Stites verbessert, wobei dieser mit Ammoniak die betreffenden Acetylacetonate aus einer wäßrigen Lösung von Selten-Erd-Chlorid und überschüssigem Acetylaceton bei pH \approx 6,5 ausfällte, um so die Bildung basischer Produkte zu verhindern. Die Chelate fielen dabei in hydratisierter Form an (57).

4.2. Darstellung von wasserfreien Acetylacetonaten

Die Trocknung dieser hydratisierten Produkte erweist sich als sehr problematisch, da hierbei oft Polymerisation oder Bildung basischer Chelate erfolgt. Daher wurde versucht, direkt durch wasserfreie Umsetzung zum Ziel zu gelangen: Nach einer Vorschrift von Koehler (58) wurden dabei Lanthanidenhydride, die durch Hydrieren der betreffenden Metallpulver dargestellt worden waren, mit überschüssigem Acetylaceton bei 75°C längere Zeit umgesetzt. Es war erforderlich, in einer absolut wasserfreien Atmosphäre (Argon) zu arbeiten und die Reaktionsprodukte unter trockenem Argon als Schutzgas aufzubewahren. Die so dargestellten wasserfreien Acetylacetonate von Europium und Dysprosium hatten anfänglich Schmelzpunkte von 100-105°C (58), die jedoch bei Luft- und Feuchtigkeitszutritt innerhalb kurzer Zeit um 20-30° anstiegen und damit die in der Literatur angegebenen Werte der Hydrate erreichten (59,60).

4.3. Darstellung des Gd(DBM) - 2MIBK-Adduktchelats

Um die aufwendigen Feuchtigkeitsschutzmaßnahmen zu umgehen, wurde bei der Umsetzung zum Chelat von vornherein Hexon als Adduktbildner zugesetzt, damit dieses statt Wasser an das Chelat angelagert werden sollte.

Bei der Darstellung von $Gd(DBM)_{3}$ ·2MIBK wurde in Abwandlung einer Vorschrift von Sacconi (61) $Gd(NO)_{3}$ in absolutem Äthanol gelöst und Dibenzoylmethan und Hexon zugegeben. Nach vollständiger Auflösung des HDBM wurde tropfenweise alkoholisches Ammoniak zugegeben und das Produkt bei pH 6,5-7 gefällt. Der zitronengelbe kristalline Stoff wurde über konzentrierter Schwefelsäure im Vakuumexsikkator getrocknet und anschließend untersucht:

	gefunden:	theoretisch:
C	66,0%	66,6%
Н	5,4 %	5,55 %

Tabelle 23: Analysenwerte des Gd(DBM) 3.2MIBK

Fp. 218-220°C

5. EXPERIMENTELLER TEIL

5.1. Die verwendeten Radionuklide

Die bei den Extraktionsversuchen eingesetzten schweren Elemente Americium und Californium sind beide radioaktiv. Da sie jedoch nur in Spurenmengen ("Tracer"-Konzentrationen) zur Markierung der Extraktionslösungen eingesetzt wurden, genügten einfache Strahlenschutzmaßnahmen, um Kontaminationen und Inkorporationen zu vermeiden. So konnten diese Arbeiten in normalen chemischen Abzügen ausgeführt werden. Beim Umgang mit Milligrammengen (Am-241) und Submikrogrammengen (Cf-252) zur Bereitung der hochaktiven Vorratslösungen mußte in einer Glove-Box gearbeitet werden, die über ein Filter an das Laborentlüftungssystem angeschlossen war und in der ein geringer Unterdruck herrschte. Zum Schutz gegen die γ -Strahlung mußte die Glove-Box zusätzlich mit einem Bleiblech versehen werden.

5.2. Die Herstellung der Vorratslösungen

5.2.1. Americium-241

Das Nuklid war von der USAEC als AmO_2 geliefert worden. Zur Entfernung eventuell von der Abtrennung her noch vorhandener α -Hydroxy-isobuttersäure wurde das Dioxid wiederholt mit Perchlorsäure in einer Glove-Box abgeraucht und anschließend mit halbkonzentrierter HClO₄ aufgenommen. Diese hochradioaktive Lösung wurde als Vorratslösung aufbewahrt.

5.2.2. Californium-252

Von der USAEC waren etwa 0,08 µg des Nuklids geliefert worden, die elektrolytisch als Oxid auf einem kleinen Platinblech niedergeschlagen waren. Die Aufarbeitung erfolgte hier ähnlich wie im vorhergehenden Abschnitt. Die Überprüfung auf radiochemische Reinheit durch ein α -Spektrum ergab einen Gehalt von 3 Gew.-% Curium-244, das als Zwischenprodukt beim Aufbau des Californiums aus Plutonium in Hochflußreaktoren entsteht.

5.2.3. Die Konzentration der aktiven Lösungen

10 λ der Vorratslösung des Americium-241 ergaben 1,73·10⁷ Zerf./min, so daß die Konzentration dieser Lösung etwa 10⁻³ mol/1 Am betrug. Entsprechend der höheren spezifischen Aktivität des Cf-252 konnte hier auf 10⁻⁶-10⁻⁷ mol/1 verdünnt werden. Bei der Extraktion wurden dabei die wäßrigen Phasen jeweils nur mit einigen Tropfen Vorratslösung pro Liter markiert, so daß die Molaritäten hierbei noch einige Zehnerpotenzen niedriger lagen.

Tabelle 24: Konzentration und radiochemische Daten der verwendeten Nuklide

	Am-241	Cf-252
Konzentration der Vorratslösung [mol/l]	≈ 10 ⁻³	≈10 ⁻⁶
Konzentration bei der Extraktion [mol/1]	≈10 ⁻⁶	≈10 ⁻⁸
Spezifische Aktivität [Zerf./min µg] (62)	7,587.10 ⁶	1,189.109
[Ci/µg] (62)	3,449·10 ⁻⁶	5,405.10-4
Halbwertszeit (T 1/2)	433 a	2,65 a
Zerfallsart	α , SF (1,5·10 ⁻¹⁰ %) (SF = Spontanspaltung)	α, SF (3,2 %)

5.3. Die Meßeinrichtungen

5.3.1. Die Radioaktivitätsmessung

Sowohl Americium-241 als auch Californium-252 sind α -Strahler, was für die Extraktionsauswertung ausgenützt wurde. Für α -Messungen stand ein Zählgerät mit Probenwechsler und ZnS-Szintillationsdetektor der Firma Frieseke und Höpfner zur Verfügung. Die bei nur einem Extraktionsversuch angewendete γ -Auszählung erfolgte mit einem NaJ(T1)-Szintillationsdetektor und Zählgerät der gleichen Firma.

5.3.1.1. Die α -Messung

Sie wurde sowohl bei den Extraktionen mit Americium als auch bei denen mit Californium angewandt. Dazu wurden von jeder Phase je 0,5 ml auf Edelstahlschälchen pipettiert, die Flüssigkeit eingedampft und die Schälchen auf dem Spiegelbrenner geglüht. So entstanden rückstandsfreie Präparate, da sich das als Inertsalz zugesetzte Ammoniumperchlorat beim Glühen quantitativ zersetzte.

5.3.1.2. Die γ -Messung

Wegen der hohen Konzentration an NH_4ClO_4 und der damit verbundenen heftigen Reaktion beim Verglühen wurde bei der Extraktion von Americium mit HTTA/MIBK (Abschnitt 3.2.1.2.) und der Ionenstärke $\mu = 1,0$ die Aktivität über γ -Auszählung bestimmt. Dazu wurden aus beiden Phasen Proben von je 1 ml in sogenannte Bohrlochröhrchen pipettiert und die schwache γ -Aktivität (60 keV) somit direkt aus der Flüssigkeit heraus gemessen. Dabei mußte die Aktivität der organischen Phase mit dem Faktor 1,15 (26) multipliziert werden, um die stärkere Absorption der niederenergetischen γ -Quanten in der schwereren organischen Flüssigkeit zu kompensieren.

5.3.2. Die pH-Messung

Zur pH-Messung wurde ein Knick-pH-Meter mit einer Glas-Kalomel-Elektrode (Einstabmeßkette der Firma Schott und Gen.) benutzt, das mit Puffern nach National Bureau of Standards, Washington, geeicht wurde. Die Messungen in der wäßrigen Phase mußten vor und nach der Extraktion durchgeführt werden, da während der Extraktion stets eine Verschiebung des pH-Werts, meist zu niedrigeren Werten, eintrat. In den Extraktionskurven wurde der pH-Wert, der nach durchgeführter Extraktion abgelesen wurde, angegeben.

5.4. Arbeitsweise bei der Extraktion

Zur Herstellung der organischen Phase wurde der Chelatbildner in Chloroform gelöst, welches zuvor mit Wasser mehrmals ausgeschüttelt worden war, um den enthaltenen Äthylalkohol zu entfernen. Dadurch sollten Verfälschungen der Extraktionsergebnisse vermieden werden. In dem so behandelten Chloroform wurde dann die gewünschte Menge Chelatbildner gelöst beziehungsweise bei synergistischen Extraktionen zusätzlich eine definierte Menge des Adduktbildners. Als wäßrige Phase diente eine 0,1 molare $NH_{\mu}ClO_{\mu}$ -Lösung (μ = 0,1) mit Ausnahme von Abschnitt 3.2.1.2., wo auch andere Ionenstärken eingesetzt wurden. Nach dem Markieren der wäßrigen Phase mit Am- oder Cf-Lösung wurden von beiden Phasen je 10 ml in Glaskölbchen einpipettiert und hier durch Tüpfeln mit Ammoniak oder Perchlorsäure der gewünschte pH-Wert ungefähr eingestellt. Die verschließbaren Kölbchen kamen in ein Thermostatisiergefäß, in dem die Temperatur auf + 0,5° stabil gehalten werden konnte. Bei der gewünschten Temperatur wurden mit Magnetrührern die beiden Phasen etwa zwei Stunden kräftig gerührt. Nach Einstellung des Extraktionsgleichgewichts konnten die beiden Phasen durch Zentrifugieren wieder getrennt werden und die Messung der endgültigen pH-Werte in der wäßrigen Phase erfolgen. Zur Bestimmung der Verteilungsquotienten q wurden jeweils 0,5 ml einer Phase auf Edelstahlschälchen pipettiert und nach 5.3.1. die Aktivitäten gemessen. Dabei mußte sehr vorsichtig gearbeitet werden, um Vermischungen und Kontaminationen der beiden Phasen untereinander zu vermeiden.

6. ZUSAMMENFASSUNG

- Die Chelatbildung des dreiwertigen Californiums mit Oxin (HOX) und 5,7-Dichlor-8-hydroxichinolin (HDCO) wurde untersucht. Während mit HOX das basische Chelat Cf(OX)(OH)₂ gebildet wurde, entstand mit HDCO die normale 1:3-Verbindung.
- Mit 2-Thenoyltrifluoraceton (HTTA) bilden Am(III) und Cf(III) normale
 1:3-Chelate. Cf(TTA)₃ ist hierbei erwartungsgemäß das stabilere Chelat.
- 3. Im System Am(III)/0,1M HTTA/CHCl₃ wurde der Einfluß verschiedener polarer Verbindungen als Adduktbildner und ihr synergistisches Verhalten bei der Extraktion untersucht. Die Adduktstabilitätskonstanten wurden nach einer grafischen Methode ermittelt.
- 4. Mit Methylisobutylketon (Hexon, MIBK) bildet Am(TTA) mäßig stabile
 1:2-Addukte Am(TTA) 2MIBK.
- 5. Bei steigender Ionenstärke nehmen die Adduktstabilitätskonstanten von Am(TTA)_z·iMIBK zu (Aussalzeffekt).
- 6. Mit folgenden Adduktbildnern reagiert Am(TTA)₃ zu Adduktchelaten verschiedener Zusammensetzung:

Di-n-butyläther (DBE) Di-iso-butyläther (DIBE) Di-n-butylsulfid (DBS) Diphenylsulfid (DPhS) Di-n-butylsulfoxid (DBSO) Di-n-butylsulfon (DBSO₂) Nitrobenzol (NBe) 1-Nitrobutan (NBu) Diphenyläther (DPhE) Diphenylselenid (DPhSe) Am(TTA) 3.4DBE Am(TTA) 3.4DBE Am(TTA) 3.4DBS Am(TTA) 3.4DBS Am(TTA) 3.4DPhS Am(TTA) 3.2DBSO Am(TTA) 3.2DBSO Am(TTA) 3.2NBe Am(TTA) 3.2NBe Am(TTA) 3.2NBu Am(TTA) 3.0PhE Am(TTA) 3.0PhSe

Die Adduktstabilitätskonstanten der 1:1- und 1:2-Verbindungen wurden bestimmt.

7. Die Anlagerung von vier Molekülen des Adduktbildners an das Am(TTA)₃-Chelat zeigt die Erhöhung der Koordinationszahl des Am(III) auf KZ = 10 an, während sie im allgemeinen 8 beträgt. 8. Bei der Extraktion mit verschiedenen Äthern, Nitroverbindungen und schwefel- und selenhaltigen Adduktbildnern konnten Aussagen über den Zusammenhang zwischen synergistischer Wirksamkeit und molekularem Bau der Adduktbildner, wie Donoreigenschaft, Dipolmoment und sterischer Hinderung gemacht werden.

- 58 -

- 9. Am(III) bildet als harter Acceptor die stabilsten Addukte mit harten Adduktbildnern.
- 10. Für die Bildung der Chelate und Adduktchelate in den Systemen Am(III)/HTTA und Am(III)/HTTA-MIBK wurden über die Abhängigkeit der Extraktion von der Temperatur die thermodynamischen Größen ΔG_i (298 K), ΔH_i (298 K) und ΔS_i (298 K) bestimmt.
- 11. Die in dieser Arbeit ermittelten Extraktionsdaten, Stabilitätskonstanten und thermodynamischen Werte sind in den Tabellen 25-30 zusammengefaßt.

<u>Tabelle 25:</u> Extraktionsdaten des Cf(III) mit 0,1 molarem 2-Thenoyltrifluoraceton (HTTA) und 0,04 molarem 5,7-Dichlor-8-hydroxychinolin (HDCO) (CHCl₃; $\mu = 0,1$; 25^oC)

	Chel	Chelatbildner		
	HTTA	HDCO		
lg λ_N	2,0	2,37		
pH 1/2	3,75	4,42		
lgKex	-8,31 <u>+</u> 0,12	-9,06 <u>+</u> 0,12		
lg B ₃	14,73 <u>+</u> 0,2	22,586 <u>+</u> 0,161		

<u>Tabelle 26:</u> Adduktstabilitätskonstanten lg β_{i}^{t} von Am(TTA)₃·iMIBK in Abhängigkeit von der Ionenstärke μ (0,1M HTTA/CHCl₃; 25^oC; pH = 3,60)

μ	lg B ^t l	lg ß ¹ ₂
0,05	0,80	1,10
0,1	0,90	1,20
0,5	1,05	1,40
1,0	1,15	1,50

<u>Tabelle 27:</u> Adduktstabilitätskonstanten lg B_i^t von Am(TTA)₃ mit verschiedenen Adduktbildnern (0,1M HTTA/CHCl₃; $\mu = 0,1$; 25^oC; pH = 3,60)

Adduktbildner	lg B <mark>1</mark>	lg B ^t ₂
MIBK	0,90	1,20
DBE	0,27	0,54
DIBE	0,18	0,36
DBS	0,14	0,28

Tabelle 27: Fortsetzung

Adduktbildner	lg B <mark>1</mark>	lg B ^t ₂
DPhS	-0,22	-0,12
DBSO	3,17	4,78
DBSO2	1,08	1,36
NBe	-0,40	-0,22
NBu	-0,50	-0,26
DPhE	0,28	
DPhSe	0,13	· · · · · · · · · · · ·

Tabelle 28:Temperaturabhängigkeit der Extraktion von Am(III) mit0,1M HTTA/CHCl3 $(\mu = 0,1)$

	20 ⁰ C	25°c	30 [°] C
lg $\lambda_{_{\rm N}}$	1,70	1,80	1,88
pH 1/2	4,12	4,05	3,97
pK	6,30	6,23	6,14
lg B ₃	1 3,3 6 <u>+</u> 0,15	13,20 <u>+</u> 0,15	13,11 <u>+</u> 0,23

Tabelle 29:Temperaturabhängigkeit der Adduktstabilitätskonstantenlg β_1^i bei der synergistischen Extraktion mit Hexon (MIBK)im System Am(III)/0,1M HTTA/CHCl3 ($\mu = 0,1$; pH = 3,60)

Stabilitätskonstanten	20 ⁰ C	25 [°] C	30°C
lg B ^t	0,92	0,90	0,88
lg B ^t ₂	1,24	1,20	1,16

Tabelle 30:Thermodynamische Daten des $Am(TTA)_3$ -Chelats und des $Am(TTA)_3$ ·2MIBK-Adduktchelats (0,1M HTTA/CHCl_3; $\mu = 0,1$)

Chelatbildung: Adduktbildung bei Zugabe von Hexon (MIBK): Am³⁺ + 3TTA ==== $Am(TTA)_3 + 2MIBK \implies$ Am(TTA)₃ Am(TTA) .2MIBK -17,9 [kcal/mol] ∆с (298 к) -1,63 [kcal/mol] ∆н (298 к) -14,1 [kcal/mol] -3,28 [kcal/mol] ∆s (298 K) +13,1 [cal/grd. mol] -5,53 [cal/grd. mol]

- 61 -

7. LITERATURANGABEN

C.A. Blake, C.F. Baes,
 K.B. Brown, C.F. Coleman,
 J.C. White

2. H.M.N.H. Irving

Proc. 2nd U.N. Intern. Conf. Peaceful Uses Atomic Energy, 28, 289 Geneva (1958)

"Solvent Extraction Chemistry", North Holland, Amsterdam (1967)

J.Am.Chem.Soc. 72, 2948 (1950)

"Einführung in die theoretische

organische Chemie", Verlag Chemie,

3. Webster's Dictionary, 2nd Edition, Springfield, Mass. (1957)

4. J.C. Reid, M. Calvin

5. H.A. Staab

6. D. Dyrssen

- 7. T. Sekine, D. Dyrssen
- D. Dyrssen, M. Dyrssen,
 E. Johansson

9. D. Dyrssen

10. J. Loevenich, K. Sipmann

J.Inorg.Nucl.Chem. 26, 1727 (1964)

Svensk.Kem.Tidskr. 68, 212 (1956)

Acta Chem.Scand. 10, 341 (1956)

Svensk.Kem.Tidskr. <u>65</u>, 213 (1953)

J.prakt.Chem. <u>124</u>, 127 (1930)

Weinheim (1964)

11. Landolt-Börnstein, Zahlenwerte und Funktionen 3. Teil, Molekeln II, Springer Verlag, Berlin-Göttingen-Heidelberg (1951)

12. J. Zvara, Yu. Churbukov, Dubna Report D-2710 (1966) R. Caletka, T.S. Zwararowa, M.R. Shalayesky, B.V. Shilov

13. F.A. Cotton, G. Wilkinson "Anorganische Chemie", Verlag Chemie, Weinheim (1967)
15. C. Keller, H. Seiffert

16. J. Stary

17. J. Bjerrum, G. Schwarzenbach, L.G. Sillén

18. D.P. Mellor, L. Maley

19. H. Irving, R.J.P. Williams

20. H. Irving

21. C.M. Callahan

22. L. Genow, G. Kassabow

23. N.P. Rudenko, J. Stary

24. E.M. Larsen, G. Terry

25. A.A. Frost, R.G. Pearson

26. C. Keller, H. Schreck

27. T.V. Healy

28. H. Irving, D.N. Edgington

29. T.V. Healy

Inorg.Nucl.Chem. Letters <u>5</u>, 51 (1969)

Angew.Chem. <u>81</u>, 294 (1969)

"The Solvent Extraction of Metal Chelates", Pergamon, London (1964)

"Stability Constants", The Chemical Society, London (1957)

Nature <u>161</u>, 436 (1948)

J.Chem.Soc. 3192 (1952)

J.Chem.Soc. 3494 (1954)

Anal.Chim.Acta 16, 101 (1957)

Monatsh. <u>98</u>, 2 (1967)

Trud.Kom.Analit.Khim <u>9</u>, 28 (1958), ref. nach (16)

J.Am.Chem.Soc. 75, 1560 (1953)

"Kinetics and Mechanism", Wiley and Sons, London (1960)

Kernforschungszentrum Karlsruhe Bericht KFK-672 (1967)

Nucl.Science Eng. <u>16</u>, 413 (1963)

J.Inorg.Nucl.Chem. 15, 158 (1960)

J.Inorg.Nucl.Chem. 19, 314 (1961)

30. C. Keller, H. Schweizer

31. J. Groß

32. W. Bacher

- 33. T.V. Healy, D.F. Peppard, G.W. Mason
- 34. H.M.N.H. Irving, N.S.Al-Niami
- 35. S.M. Wang, W.R. Walker, N.C. Li
- 36. S.M. Wang, D.Y. Park, N.C. Li
- 37. J.R. Ferraro, D.F. Peppard
- 38. M. Zangen
- 39. J. Bjerrum
- 40. L.G. van Uitert
- 41. J. Schubert

42. R.T. Foley, R.C. Anderson

43. J. Lingane

44. H.L. Riley, V. Gallafent

Kernforschungszentrum Karlsruhe Bericht KFK-766 (1968)

Diplomarbeit Universität Stuttgart (1968)

Diplomarbeit Universität Stuttgart (1969)

J.Inorg.Nucl.Chem. 24, 1429 (1962)

J.Inorg.Nucl.Chem. <u>27</u>, 717 (1965)

J.Inorg.Nucl.Chem. 28, 875 (1966)

"Solvent Extraction Chemistry", North Holland, Amsterdam (1967)

J.Phys.Chem. 65, 539 (1961)

J.Inorg.Nucl.Chem. 28, 1693 (1966)

"Metal Ammine Formation in Aqueous Solution", P. Haase und Sohn, Kopenhagen (1941)

Thesis, Penn. State College (1951) J.Phys.Colloid.Chem. <u>52</u>, 340 (1948) J.Am.Chem.Soc. <u>70</u>, 1195 (1948)

Chem.Rev. <u>29</u>, 1 (1941)

J.Chem.Soc. 2029 (1931)

45.	R.M. Keefer	J.Am.Chem.Soc. <u>62</u> , 2951 (1940)
46.	J. Rydberg	Acta Chem.Scand <u>4</u> , 1503 (1950)
47.	J. Rydberg	Arkiv Kemi <u>5</u> , 413 (1953)
48.	J. Rydberg, B. Rydberg	Arkiv Kemi <u>9</u> , 81 (1955)
49.	J. Rydberg	Arkiv Kemi <u>9</u> , 109 (1955)
50.	L.G. Sillén	Acta Chem.Scand. <u>10</u> , 186 (1956)
51.	D. Dyrssen	Nucl.Science Eng. <u>16</u> , 448 (1963)
52.	D. Feinauer, C. Keller	Inorg.Nucl.Chem.Letters <u>5</u> , 625 (1969)
53.	C. Keller, S.H. Eberle, K. Mosdzelewski	Radiochim.Acta <u>5</u> , 185 (1966)
54.	S. Ahrland	Helv.Chim.Acta <u>50</u> , 1 (1967)
55.	T. Sekine, D. Dyrssen	J.Inorg.Nucl.Chem. <u>29</u> , 1481 (1967)
56.	G. Urbain	Bull.Soc.Chim. (3) <u>15</u> , 338 (1896)
57•	J.G. Stites, C.N. Mc Carthy,	J.Am.Chem.Soc. 70, 3142 (1948)
58.	J.M. Koehler, W.G. Bos	Inorg.Nucl.Chem. Letters 3, 545 (1968)
59.	E.W. Berg, J.J. Chiang Acosta	Anal.Chim.Acta <u>40</u> , 101 (1968)
60.	D. Purushotham, V. Ramachandra Rao, BH.S.V. Raghava Rao	Anal.Chim.Acta <u>33</u> , 182 (1965)
61.	L. Sacconi, R. Ercoli	Gazz.Chim.Ital. 731 (1949), ref. nach (60)
62.	W. Schirmer, N. Wächter	Actinides Rev. 1, 130 (1968)

- 65 **-**

8. ZUSAMMENSTELLUNG DER VERWENDETEN KURZBEZEICHNUNGEN

DBE	= '	Di-n-butyläther
DBS	=	Di-n-butylsulfid
DBSO	= `	Di-n-butylsulfoxid
DBS02		Di-n-butylsulfon
DIBE	=	Di-iso-butyläther
DPhE	=	Diphenyläther
DPhS	=	Diphenylsulfid
DPhSe	=	Diphenylselenid
E (%)	=	extrahierte Metallmenge in Prozent
HAa	=	Acetylaceton
HBAa	-	Benzoylaceton
HBTA	==	Benzoyltrifluoraceton
HDBM	=	Dibenzoylmethan
HDCO	=	5,7-Dichlor-8-hydroxychinolin
HOX	=	8-Hydroxychinolin (Oxin)
HTAa	=	Trifluoracetylaceton
HTTA	-	2-Thenoyltrifluoraceton
K	=	Extraktionskonstante
K,	=	Dissoziationskonstante
K _N	=	sukzessive Stabilitätskonstante
K ¹	=	sukzessive Adduktstabilitätskonstante
L .	=	Anion des Chelatbildners
М		Metallion
MIBK	=	Methylisobutylketon
N	=	Steigung der Extraktionskurve
NBe	=	Nitrobenzol
NBu	=	Nitrobutan
O,	=	der organischen Phase zugeordnet
pÅ	=	-lg(L)
pH 1/2	· =	pH-Wert, bei dem die Metallkonzentration
		beider Phasen gleich groß ist
q	=	Verteilungsquotient
q	=	Verteilungsquotient in synergistischen
U		Systemen ohne Zugabe von Adduktbildner
TBP	=	Tributylphosphat
TBPO	· 🚍	Tributylphosphinoxid

- 66 **-**

W	=	der wäßrigen Phase zugeordnet
ß _N		Summenstabilitätskonstante
B ^t _N	=	Summenadduktstabilitätskonstante
λ	=	Verteilungskoeffizient des Chelatbildners
λ _N	-	Verteilungskoeffizient des Metallchelats
μ		Ionenstärke