

KERNFORSCHUNGSZENTRUM

KARLSRUHE

August 1971

KFK 1439

Institut für Kernverfahrenstechnik

Abhängigkeit der Trennarbeitskosten einer Trenndüsenanlage zur Uran^{2 3 5} -Anreicherung vom Lastzustand

K. Schubert

Als Manuskript vervielfältigt

Für diesen Bericht behalten wir uns alle Rechte vor

GESELLSCHAFT FÜR KERNFORSCHUNG M.B.H. KARLSRUHE August 1971

KFK 1439

Institut für Kernverfahrenstechnik

Abhängigkeit der Trennarbeitskosten einer Trenndüsenanlage zur Uran²³⁵-Anreicherung vom Lastzustand

von

K. Schubert

Von der Fakultaet fuer Maschinenbau der Universitaet (T.H.) Karlsruhe genehmigte Dissertation

Gesellschaft für Kernforschung m.b.H., Karlsruhe

·

Zusammenfassung

Beim Trenndüsenverfahren sind die Hauptaufwendungen durch den Energieverbrauch der elektrisch angetriebenen Stufenverdichter bedingt. Da sich der für einen Großverbraucher maßgebliche Strompreis besonders niedrig halten läßt, wenn der Verbraucher seinen Strombedarf in gewissen Grenzen der jahreszeitlich wechselnden Netzauslastung anpassen kann, wird untersucht, durch welche Maßnahmen sich der Lastzustand und damit der Stromverbrauch einer Trenndüsenanlage mit wirtschaftlichem Erfolg verändern läßt. Die für die Untersuchungen erforderlichen Verdichterkennlinien werden experimentell an einem 2-stufigen, UF₆-festen Radialverdichter mit einem nominellen Ansaugvolumen von 1.10⁵ m³/h bestimmt. Die daneben benötigten Trenndüsenkennlinien werden in Laborversuchen mit kurzen Trennelementabschnitten ermittelt. Es wird gezeigt, daß eine gleichsinnige Veränderung von Gasdruck und Gastemperatur eine besonders wirtschaftliche Maßnahme zur Anpassung der Stromaufnahme einer Trenndüsenanlage an die Netzauslastung ist.

Abstract

In the separation nozzle method, the main expense is caused by the energy consumption of electrically driven stage compressors. Since the price of electricity for large scale consumers can be kept particularly low if that consumer is able to adapt his electricity requirement, within certain limits, to the utilization of the electricity grid, which is subject to certain seasonal variations, measures are investigated by which the load conditions and, hence, the electricity consumption of a separation nozzle plant can be modified with economic success. The compressor characteristics required for these studies are determined experimentally on a two-stage radial compressor fit for UF use with a nominal suction capacity of $1 \times 10^5 \text{ m}^3/\text{h}$. The characteristics of the separation nozzle required in addition are determined in laboratory scale tests with short sections of separation elements. It is shown that a change of gas pressure and gas temperature in the same direction is a particularly economical measure to adapt the electricity requirement of a separation nozzle plant to the utilization of the grid.

Inhaltsverzeichnis

		Seite
1.	Einleitung	3
2.	Formulierung der Aufgabe	5
	2.1 Grundlagen des Verfahrens und Sollbetriebs- bedingungen	5
	2.2 Aufbau der Trenndüsenkaskade	5
	2.3 Einschränkung der für die Leistungsvariation infrage kommenden Maßnahmen auf Druck- und Temperaturänderungen	11
3.	Bestimmung der Verdichterkennlinien	12
	3.1 Versuchsaufbau	12
	3.2 Ergebnisse	18
4.	Bestimmung der Trenndüsenkennlinien an Labor- elementen	21
	4.1 Meßverfahren	21
	4.2 Ergebnisse	22
5.	Die Einflüsse von Druck und Temperatur auf den Betriebszustand der Trenndüsenstufen	28
	5.1 Molarer Stufendurchsatz, Druckverhältnis und Verdichterwirkungsgrad	28
	5.2 Elementareffekt der Trennung	32
6.	Die wirtschaftlichen Auswirkungen der Druck- und Temperaturänderungen	33
	6.1 Spezifische Aufwandsgrößen	33
	6.2 Trennarbeitskosten	35
7.	Schlußfolgerung	38

1. Einleitung

Im Institut für Kernverfahrenstechnik wurde in den letzten Jahren eine neue Methode zur Anreicherung von Uran 235 entwickelt, die als "Trenndüsenverfahren" bezeichnet wird¹⁾. Sie beruht auf der teilweisen räumlichen Entmischung der Uranisotope in einer expandierenden, auf gekrümmten Bahnen verlaufenden Gasströmung aus einem UF₆/Helium- oder UF₆/Wasserstoff-Gemisch. Wie bei den anderen U²³⁵-Anreicherungsverfahren²⁾ muß der elementare Entmischungseffekt durch Zusammenschalten einer größeren Zahl von Trennstufen in einer Kaskade vervielfacht werden.

Nach der Erprobung des Verfahrens in einer 10-stufigen Versuchskaskade³⁾ wurden erste Entwicklungs- und Planungsarbeiten für eine Trenndüsendemonstrationsanlage durchgeführt⁴⁾. Sie wird etwa 1/10 der Trennarbeitsleistung einer amerikanischen Diffusionsanlage haben und eine Anschlußleistung von einigen hundert MW_{el} benötigen.

Wirtschaftlichkeitsuntersuchungen⁵⁾ haben gezeigt, daß die Hauptaufwendungen beim Trenndüsenverfahren durch den Energieverbrauch der elektrisch angetriebenen Stufenverdichter bedingt sind. Der Preis der Trennarbeitseinheit hängt beim Trenndüsenverfahren also stark vom Strompreis ab. Nun läßt sich der für einen Großverbraucher maßgebliche Strompreis bekanntlich besonders niedrig halten, wenn der Verbraucher

- E.W. Becker, K. Bier, W. Bier, R. Schütte, D. Seidel, Angew. Chemie internat. Edit. 6, 507 (1967) Diese Arbeit enthält eine Zusammenstellung der früheren Veröffentlichungen über das Trenndüsenverfahren.
- 2) E.W. Becker, Z. Kerntechnik 11, 129 (1969)
- 3) E.W. Becker, G. Frey, R. Schütte, D. Seidel, Z. Atomwirtschaft, <u>13</u>, 359 (1968)
- 4) E.W. Becker, W. Bier, G. Frey, R. Schütte, Z. Atomwirtschaft 14, 249 (1969)
- 5) E.W. Becker, Atoomenergie en haar toepassingen, <u>11</u>, S. 272-276 (1969). Vgl. auch 4)

- 3 -

seinen Strombedarf in gewissen Grenzen der jahreszeitlich wechselnden Netzauslastung⁶⁾ anpassen kann. In der vorliegenden Arbeit wird daher untersucht, durch welche Maßnahmen sich der Lastzustand und damit der Stromverbrauch einer Trenndüsenanlage mit wirtschaftlichem Erfolg verändern läßt.

Die für die Untersuchungen erforderlichen Verdichter-Kennlinien werden experimentell an einem 2-stufigen UF₆-festen Radialverdichter bestimmt, der ein Ansaugvolumen von $1 \cdot 10^5 \text{ m}^3/\text{h}$ besitzt. Die daneben benötigten Trenndüsen-Kennlinien werden in Laborversuchen mit kurzen Trennelementabschnitten ermittelt.

Für die experimentellen Untersuchungen wird ein Gemisch aus etwa 5 Mol% UF₆ und 95 Mol% He verwendet, für das der Verdichter ausgelegt ist. Die Ergebnisse lassen sich jedoch praktisch unverändert auch auf Trenndüsenanlagen übertragen, die mit Wasserstoff als Zusatzgas arbeiten.

Aus der Untersuchung geht hervor, daß eine gleichsinnige Veränderung von Gasdruck und Gastemperatur eine besonders wirtschaftliche Maßnahme zur Anpassung der Stromaufnahme einer Trenndüsenanlage an die Netzauslastung ist.

- 4 -

⁶⁾ Wegen der Abhängigkeit des Stromverbrauches der Bundesrepublik Deutschland von der Jahreszeit vgl. z.B. Die Elektrizitätswirtschaft in der Bundesrepublik Deutschland, Bericht Nr. 2351 des Referats Elektrizitätswirtschaft im Bundesministerium für Wirtschaft, Jg. 1969, Heft 16

2. Formulierung der Aufgabe

2.1 Grundlagen des Verfahrens und Sollbetriebsbedingungen

Abb. 1a zeigt den Querschnitt der verwendeten schlitzförmigen Trenndüsenanordnung, die senkrecht zur Zeichenebene beliebig ausgedehnt sein kann. Sie besteht aus einem Düsenblech, einer Umlenkwand und einem Abschälerblech. Das als Ausgangsgas verwendete He/UF₆-Gemisch mit der UF₆-Molkonzentration N_o wird mit der Molstromstärke L unter dem Einlaßdruck p_o der gekrümmten Düse zugeführt. In der Düse expandiert das Gasgemisch auf den Druck p_M. Am Ende der Umlenkung wird der Strahl durch das Abschälerblech in die leichte Fraktion mit der Molstromstärke \Im L und die schwere Fraktion mit der Molstromstärke (1- \Im)L aufgeteilt, die getrennt abgesaugt werden. In der leichten Fraktion ist das Zusatzgas He gegenüber dem UF₆ und das leichte gegenüber dem schweren Uranisotop angereichert. Das umgekehrte gilt für die schwere Fraktion.

Abb. 1b zeigt das im folgenden benutzte Ersatzschaltbild des Trennelementes.

Für die Planung der Trenndüsendemonstrationsanlage wurde der UF₆-Gehalt N_o des Verfahrensgases auf 5 Mol %, das Expansionsverhältnis p_o/p_M auf 4, der Düsenvordruck p_o auf 600 Torr, die Gastemperatur T_o in der Düsenzuleitung auf 308^oK und das Uran-Abschälverhältnis

$$\vartheta_{\rm U} = \frac{\rm UF_6 - Stromstärke in der leichten Fraktion}{\rm UF_6 - Stromstärke im Ausgangsgas}$$
 (1)

auf 1/3 festgelegt.

2.2 Aufbau der Trenndüsenkaskade

Abb. 2 zeigt das Prinzipschaltbild eines Ausschnittes aus einer Trenndüsenkaskade, die mit dem vorgesehenen Uran-Abschälverhältnis ϑ_{II} = 1/3 arbeitet.

Abb. 1b: Ersatzschaltbild für das Trennelement.

- 6 -

Abb. 3: Schema der als Planungsgrundlage angenommenen Trenndüsen-Demonstrationsanlage. Die Höhe der als Blöcke gezeichneten Kaskadenabschnitte ist ein Maß für die Stufenzahl, die Breite ein Maß für den Stufendurchsatz des Kaskadenabschnittes.

- 7 -

Damit die vermischten Gasströme gleiche Isotopenzusammensetzung haben⁷⁾, wird die leichte Fraktion des Trennelementes "S" über den zu dieser Stufe gehörenden Verdichter und Gaskühler der übernächsten Stufe "S+2" zugeleitet, während dieser Verdichter gleichzeitig die schwere Fraktion des Trennelementes "S+3" ansaugt. Die schwere Fraktion des Trennelementes "S' wird über den Verdichter der Stufe "S-3" in das Trennelement "S-1" eingespeist. Da die Druckverluste zwischen den Stufen vernachlässigt werden können, sind Düsenvordruck und Verdichtergegendruck identisch. Sie werden gemeinsam mit P_0 bezeichnet. Dasselbe gilt für den Verdichteransaugdruck und den Druck der leichten Fraktion, die beide P_M genannt werden.

Mit Hilfe des in der Absaugleitung der schweren Fraktion liegenden Drosselventils läßt sich das Uran-Abschälverhältnis durch Erhöhen des Druckes p_K ("Rückstau") innerhalb gewisser Grenzen nahezu verlustfrei auf den Sollwert einregeln. Voraussetzung ist dabei, daß \mathcal{P}_U ohne Rückstau <u>unterhalb</u> des Sollwertes liegt.

Abb. 3 zeigt das Schema der als Planungsgrundlage angenommenen Trenndüsendemonstrationsanlage⁴⁾, in der die Kaskadenabschnitte entsprechend Abb. 2 aufgebaut sind. Im Basisabschnitt wurde das Ansaugvolumen der Stufenverdichter auf $1 \cdot 10^5 \text{ m}^3/\text{h}$, in den Kopf- und Fußabschnitten auf $3, 3 \cdot 10^4 \text{ m}^3/\text{h}$ festgelegt. Einzelheiten der vorgesehenen Stufenkonstruktion sind in 4) beschrieben.

Das leichte Zusatzgas Helium muß am Kopf und an der Abstufung der Kaskade im Anreicherungsteil vom UF₆ abgetrennt und zum Fuß bzw. zur Abstufung im Abstreifteil der Kaskade

- 8 -

⁷⁾ Vgl. z.B. K. Cohen: The Theory of Isotope Separation as Applied to the Large Scale Production of U²³⁵, Mc Graw Hill, New York (1951)

zurückgeführt werden. Da der auf die UF₆-Abscheidungseinheiten entfallende Kostenanteil relativ gering ist⁸), kann er bei den folgenden Untersuchungen unberücksichtigt bleiben.

Mit dem am Kaskadenkopf entnommenen Produktstrom P und der von den U²³⁵-Konzentrationen n_D im Produkt, n_F im Ausgangsmaterial und n_{W} im Abfallmaterial abhängenden Wertfunktion $V(n_{p}, n_{F}, n_{W})^{77}$, läßt sich die effektive Trennleistung ΔU der Trenndüsenkaskade berechnen

$$d U = P \cdot V(n_{p}, n_{F}, n_{W})$$

Dividiert man ⊿U durch die Summe der Trennleistungen δU der Einzelelemente, so erhält man den Kaskadenwirkungsgrad $\eta_{\rm K}$

$$\eta_{\rm K} = \frac{\Delta U}{\Sigma \delta U} = \frac{\Delta U}{(s_1 + \frac{1}{3} s_2) \delta U}$$
(3)

(s1 bzw. s2 = Zahlen der im Basisabschnitt bzw. in den Kopf- und Fußabschnitten eingesetzten Trennstufen, deren Trennleistungen sich um den Faktor 3 unterscheiden (s. oben)). Er beträgt bei der angenommenen Kaskadenabstufung für optimales Verhältnis von Produktstrom P zu Stufendurchsatz L etwa 90%.

Bei der vorgesehenen Leistungsänderung muß mit einer Verschiebung der Produktkonzentration gerechnet werden, die in gewissen Grenzen durch Anpassen des Produktstromes P kompensiert werden kann. Wenn die dabei auftretende Verminderung des Kaskadenwirkungsgrades zu vernachlässigen ist, kann die Änderung der effektiven Trennleistung \varDelta U der Kas-

(2)

⁸⁾ Vgl.: H.J. Fritsch, Trennung von UF₆ und Zusatzgas bei Trenndüsenanlagen mit einer Kombination von Vorabschei-dungs-Trenndüse und Tieftemperatur-Feinabscheidung, Dissertation Universität Karlsruhe (1971)

kade der Änderung der Trennleistung δ U der Einzelstufe

$$\delta U = \frac{1}{2} L N_0 \varepsilon_A^2 \vartheta_U (1 - \vartheta_U)$$
(4)

(L Stufendurchsatz, N_o UF₆-Molenbruch, ε_A Elementareffekt für die Trennung der Uranisotope, ϑ_U Uran-Abschälverhältnis)

proportional gesetzt werden.

Da der Leistungsbedarf für Hilfsanlagen gering ist, gilt für den elektrischen Leistungsbedarf W_{el} der Anlage in ausreichender Näherung

$$W_{el} = (s_1 + \frac{1}{3} s_2) \frac{1}{\eta_{el} \cdot \eta_V} LRT_0 \ln p_0 / p_M$$
(5)

 $(\eta_{el} \text{ elektrischer Wirkungsgrad des Antriebes}, \eta_V \text{ iso-thermer Verdichterwirkungsgrad}, R allgemeine Gaskonstante). W_{el} ist dem Energieverbrauch einer Einzelstufe proportional.$

Durch den Quotienten aus dem Leistungsbedarf W_{el} und der effektiven Trennleistung \varDelta U ist der spezifische Energieverbrauch E_s definiert, der für die Beurteilung der Wirtschaftlichkeit der angestrebten Leistungsänderung verwendet wird.

Da bei einer vorgegebenen Anlage die Investierungskosten festliegen, kann die für die Beurteilung der Wirtschaftlichkeit außerdem benötigte spezifische Investierung I der effektiven Trennleistung \varDelta U umgekehrt proportional gesetzt werden.

- 10 -

2.3 <u>Einschränkung der für die Leistungsänderung infragekommen-</u> den Maßnahmen

Eine Veränderung der Zahl der ausschließlich hintereinandergeschalteten Trennstufen soll ausgeschlossen werden, da sie bei dem angestrebten Umfang der Leistungsvariation zu einer zu starken Veränderung der Produktkonzentration bzw. zu einem zu starken Absinken des Kaskadenwirkungsgrades führen würde (vgl. dazu 2.2).

Eine Anpassung der Drehzahl der Verdichter wird nicht in Erwägung gezogen, da für die technische Trenndüsenanlage aus wirtschaftlichen Gründen Getriebemotoren mit einer starren Versorgungsfrequenz von 50 Hz vorgesehen sind⁹⁾. Da der Wirkungsgrad der für ein bestimmtes Verfahrensgas ausgelegten Radialverdichter bei fester Drehzahl gegen Veränderungen der Gaszusammensetzung sehr empfindlich ist, werden die Untersuchungen für konstanten UF_6 -Gehalt N_o des Verfahrensgases durchgeführt.

Als Maßnahme zur Veränderung des elektrischen Leistungsbedarfs verbleibt damit die Variation des Düsenvordruckes P_O in Kombination mit der Gastemperatur T_O .

Zur Ermittlung der wirtschaftlichen Auswirkungen von Veränderungen dieser beiden Betriebsvariablen muß ihr Einfluß auf den Betriebszustand einer Trenndüsenstufe ermittelt werden. Dazu ist eine experimentelle Bestimmung der Kennlinien des Stufenverdichters und der Trennelemente erforderlich.

⁹⁾ Abschätzungen haben gezeigt, daß die Drehzahlvariation als Maßnahme zur Leistungsänderung selbst dann keine Vorteile gegenüber den weiter unten angegebenen Maßnahmen bieten würde, wenn man die durch die Drehzahlvariationsmöglichkeit verursachten zusätzlichen Investitionskosten vernachlässigen könnte.

3. Bestimmung der Verdichterkennlinien

3.1 Versuchsaufbau

Für die großen Trennstufen der Demonstrationsanlage wurde von der Firma Hispano-Suiza, Bois-Colombes (Frankreich), der Prototyp eines zweistufigen, UF₆-festen Radialverdichters mit einem nominellen Ansaugvolumen von $1 \cdot 10^5 \text{ m}^3$ /h gebaut. Das in den beiden Verdichterstufen erhitzte Verfahrensgas wird in einem von der Firma SNECMA, Paris, gelieferten Zwischen- und Endkühler jeweils auf die Ansaugtemperatur T_o zurückgekühlt.

Zur Bestimmung der Kennlinien des Verdichters¹⁰⁾ wurde im Institut für Kernverfahrenstechnik der in Abb. 4 dargestellte Versuchskreislauf errichtet. Über dem zweistufigen Radialverdichter, der ein fliegend gelagertes, doppelflutiges Rad besitzt, ist der Zwischen- und Endkühler angeordnet. Die Kühler bestehen aus konzentrisch um das Ansaugrohr des Verdichters gewickelten Rippenrohrbündeln, die von einem gemeinsamen zylindrischen Gehäuse umgeben sind. Der Aufbau wird ergänzt durch das mit einer schrägliegenden Zwischenwand geteilte Kreuzstück und die zur Durchsatzmessung erforderliche Kurzschlußschleife mit Venturidüse¹¹⁾. Das Drosselventil zur Einstellung des Druckverhältnisses p_{O}/p_{M} und damit des Verdichteransaugvolumenstromes V ist am Ende der Kurzschlußschleife vor dem Eintritt des Gases in das Kreuzstück angebracht. Das Kreuzstück ist nach oben durch einen Deckel verschlossen, in dem sich ein mit Löchern versehenes Blech zur Gleichrichtung des umgelenkten und in das Ansaugrohr strömenden Gases be-

11) Hersteller: Fa. Leybold-Heraeus, Hanau

- 12 -

¹⁰⁾ Der Kühler wird im folgenden als Bestandteil des Verdichters angesehen. Die Kennlinien und der Verdichterwirkungsgrad gelten also einschließlich Kühler. Als Kennlinien werden die bei verschiedenen Drucken und Temperaturen aufgenommenen Zusammenhänge zwischen Volumenansaugstrom und Druckverhältnis bezeichnet.

Abb. 4: Aufbau und Fließbild des Versuchskreislaufs zur Bestimmung der Verdichterkennlinien

findet. Bei der technischen Trennstufe wird der Deckel durch einen mit rohrförmigen Trennelementen gefüllten Tank ersetzt⁴⁾.

Obwohl für technische Trenndüsenanlagen Getriebemotoren mit fester Drehzahl und eine starre Versorgungsfrequenz von 50 Hz vorgesehen sind, wurde zur Aufnahme der Verdichter-Kennlinien der Prototypverdichter mit einem in der Drehzahl regelbaren Antrieb versehen. Die Drehzahl des verwendeten 4-poligen Mittelfrequenzmotors¹²⁾ kann über einen zwischen 230 und 300 Hz regelbaren rotierenden Umformersatz¹²⁾ zwischen 7200 und 9000 U/min verändert werden. Die aus Motor, Verdichter, Kühler und Kreuzstück bestehende Einheit ist über einen Tragrahmen auf einem Profilstahltisch montiert, der auf dem Boden der Grube in der Technikumshalle steht.

Abb. 5 zeigt eine Ansicht des oberen Teils des Versuchskreislaufs mit dem Kreuzstück, dem Hilfsdeckel und der Kurzschlußschleife mit Venturidüse. Am einen Ende der Kurzschlußschleife ist das Vakuumsystem angeschlossen. Im Hintergrund ist der Kontrollraum für die Steuerung und die Meßwerterfassung zu erkennen. Der Kühler, Verdichter und Motor befinden sich unterhalb des Hallenbodens.

Zur Bestimmung des Druckeinflusses auf die Verdichterkennlinien wird die Füllmenge des Gases in dem geschlossenen Versuchskreislauf geändert. Die im Kreislauf durch Einlassen von UF₆ und He im richtigen Partialdruckverhältnis angesetzte Gasfüllung wird dabei durch Nachspeisen von UF₆ und He auf der Sollkonzentration gehalten. Die UF₆-Konzentration kann mit einem auf der Messung der Schallgeschwindigkeit beruhenden Gerät überprüft werden¹³⁾.

12) Hersteller: Fa. Siemens A.G., Nürnberg13) Hersteller: Fa. Hispano-Suiza, Bois-Colombes (Frankreich)

Abb. 5: Ansicht des in Abb. 4 schematisch dargestellten Versuchsaufbaus. Im vorderen Teil der Kurzschlußschleife liegt die Venturidüse zur Durchsatzmessung. Der hintere Teil der Schleife trägt ein in der vorliegenden Arbeit nicht benutztes Testloop zur Erprobung einzelner rohrförmiger Trennelemente. н 5 Die maximale Füllung war durch eine vorläufige Begrenzung der Leistungsaufnahme des Motors auf 80% der Nennlast festgelegt. Nach unten war die Füllmenge durch die Anforderungen der gasgesperrten Wellendichtung des Verdichters auf 50% des Sollwertes begrenzt.

Die Ansaugtemperaturen der beiden Verdichterstufen konnten durch Verändern der Kühlwassertemperatur eingeregelt werden. Die maximale Ansaugtemperatur wurde auf 50° C gelegt, da bei der Verdichtung Temperaturerhöhungen von ca. $100 - 110^{\circ}$ C zu erwarten sind und die Gefahr einer UF₆-Zersetzung oberhalb von ca. $150 - 160^{\circ}$ C nicht mit Sicherheit ausgeschlossen werden kann. Die untere mit dem zur Rückkühlung des Kühlwassers verwendeten Verdunstungskühlturm während der Versuchszeit erreichte Verdichteransaugtemperatur lag bei 20° C ¹⁴⁾. Zur Vereinfachung der Versuchstechnik wird in einigen Fällen die Temperaturänderung durch eine Drehzahländerung simuliert¹⁵⁾.

Da wegen der hohen Geschwindigkeiten im Ansaugrohr der dynamische Druck nicht zu vernachlässigen ist, wird das Druckverhältnis p_0/p_M des Verdichters mit den totalen Drucken, d.h. mit der Summe aus den gemessenen statischen und den berechneten dynamischen Drucken, gebildet. Der mit der Venturidüse gemessene Ansaugvolumenstrom V wird ebenfalls auf den totalen Ansaugdruck p_M und die im Ansaugrohr gemessenen Ansaugtemperatur T_0 bezogen.

15) Vgl. dazu z.B.: VDI-Richtlinien 2045, Abnahme- und Leistungsversuche an Verdichtern, Teil I, April 1967

¹⁴⁾ Dies dürfte etwa auch die untere Grenze bei den für Trenndüsenanlagen infragekommenden großtechnischen Kühlwassersystemen sein.

Der isotherme Gesamtwirkungsgrad η_V des Verdichters ist definiert durch:

$$\eta_{\rm V} = \frac{p_{\rm M} \cdot \dot{\rm V} \cdot \ln p_{\rm O}/p_{\rm M}}{\eta_{\rm el} \cdot W_{\rm el,s}}$$

6)

($\eta_{\rm el}$ elektrischer Motorwirkungsgrad, W_{el,s} Leistungsaufnahme des Motors). Die Abhängigkeit des elektrischen Wirkungsgrades $\eta_{\rm el}$ vom Lastzustand war vom Motorhersteller angegeben. Die Antriebsleistung W_{el,s} wird mit einem die Wirkleistung anzeigenden Gerät unmittelbar an den Motorklemmen bestimmt.

Zur Druckmessung werden Druckaufnehmer¹⁶⁾ mit elektrischer Anzeige verwendet. Ansaug- und Gegendruck können zusätzlich mit Kapselfedermanometern¹⁷⁾ überprüft werden. Alle Druckmeßgeräte wurden mit einer Druckwaage geeicht (Genauigkeit der Eichung ± 0,5% des Skalenendwertes). Die Ansaugtemperaturen im Gasraum werden mit Widerstandsthermometern PT 100¹⁸⁾ nach DIN 3760 gemessen. Die Thermometer sind mit Edelstahl-Schutzrohren gegen das Verfahrensgas geschützt. Der an der Venturidüse liegende Differenzdruck wird gleichzeitig mit einem radizierenden Differenzdruckmeßumformer¹⁹⁾ und mit Absolutdruckaufnehmern bestimmt. Die Drehzahl der Verdichterwelle wird mit einem induktiven Impulsgeber an der Wellenkupplung zwischen Motor und Verdichter aufgenommen.

16) Hersteller: Fa. Bell & Howell, Pasadena (USA), Typ 4-327 und 4-366

- 17) Hersteller: Fa. Appleby & Ireland, Basingstoke (England) Typ A.I. 101
- 18) Hersteller: Fa. Degussa, Hanau und Fa. Hispano-Suiza, Bois-Colombes (Frankreich)
- 19) Hersteller: Fa. Hartmann & Braun A.G., Frankfurt, Typ TVE

- 17 -

3.2 Ergebnisse

Bei den Nennbetriebsbedingungen des Trenndüsenverfahrens beträgt die mit dem Durchmesser und der Umfangsgeschwindigkeit des Verdichterlaufrades sowie der Gasdichte auf der Ansaugseite gebildete Reynolds-Zahl etwa $3 \cdot 10^6$. Bei diesem relativ niedrigen Wert muß mit einem merklichen Einfluß des Absolutdrucks auf die Kennlinien und den Wirkungsgrad des Verdichters gerechnet werden²⁰⁾. Die Kennlinien und der Wirkungsgrad wurden daher unter Variation der Füllmenge aufgenommen. Als Maß für den Absolutdruck konnte dabei der Gegendruck p_o angesehen werden, der sich bei Variation des Druckverhältnisses nur unwesentlich ändert.

Abb. 6 zeigt das Ergebnis: Während bei einer Absenkung des Gegendruckes von 480 auf 420 Torr die Meßpunkte noch innerhalb der Fehlergrenze auf gemeinsamen Kurven liegen, werden bei einer weiteren Druckabsenkung auf 360 bzw. 300 Torr die Kurven zu deutlich niedrigeren Ansaugvolumina verschoben. Die maximale Verkleinerung des Ansaugvolumens beträgt bei dem Nenn-Druckverhältnis $p_o/p_M = 4$ ca 4%. Der relativ kleine Abstand des Auslegungspunktes $(p_o/p_M = 4)$ von der Pumpgrenze und der monotone Anstieg des Wirkungsgrades bis zur Pumpgrenze sind für Hochleistungsverdichter mit radial endenden Schaufeln typisch.²¹⁾. Beim Absolutwert des isothermen Wirkungsgrades, der für die vorliegende Untersuchung von untergeordneter Bedeutung ist, muß mit einer Fehlergrenze von \pm 5% absolut gerechnet werden.

Beispiele für den Einfluß der Ansaugtemperatur T_o auf die Kennlinien bei verschiedenen Füllmengen sind in Abb. 7 dargestellt: Die im linken Teil der Abbildung gezeigten Kurven für 50% Füllung wurden durch direkte Temperaturvariation bestimmt. Zusätzlich sind in diesem Teil der

²⁰⁾ Vgl. z.B.: W. Fister, Chem. Ing. Technik, <u>37</u>, 1055 (1965)

²¹⁾ Vgl. z. B.: Eckert/Schnell, Axial- und Radialkompressoren, Springer-Verlag, S. 367, (1961)

<u>Abb. 6:</u> Einfluß des Ansaugvolumenstromes \dot{V} auf das Druckverhältnis p/p_M und den isothermen Wirkungsgrad η_V des Verdichters bei verschiedenen Gegendrucken p_o. (Drehzahl 8500 min⁻¹, He/UF₆-Gemisch mit 5,0 Mol% UF₆, T_o = 308°K).

Abb. 7:

Einfluß der Temperatur auf den Zusammenhang zwischen dem Ansaugvolumenstrom V und dem Druckverhältnis p/p_M des Verdichters bei einer Gasfüllung von 50% (links) und 70% (rechts) des Auslegungswertes. In der linken Abbildung geben die Kreise die mit verschiedenen Temperaturen gewonnenen Meßpunkte wieder. Die Punkte in der Kurve für 293°K wurden mit 308°K und einer im Verhältnis der Wurzel aus den Temperaturen erhöhte Drehzahl erhalten. In der rechten Abbildung wurde die gesamte Temperaturänderung durch Drehzahlvariation simuliert. (He/UF₆-Gemisch mit 5,0 Mol% UF₆, p₀ bei 308°K links 300 Torr, rechts 420 Torr). - 20

Abbildung für $T_o = 293^{\circ}K$ auch Meßpunkte eingezeichnet, die mit 308°K unter entsprechender Erhöhung der Drehzahl aufgenommen wurden (vgl. Abschnitt 3.1). Im rechten Teil der Abbildung wurde die Temperaturänderung ausschließlich durch Drehzahlveränderung simuliert. Ein möglicher Einfluß der Temperatur auf den Wirkungsgrad lag innerhalb der Fehlergrenze.

4. Bestimmung der Trenndüsenkennlinien

4.1 Meßverfahren

Zur Bestimmung des Betriebsverhaltens der Trennstufe muß, neben den Verdichterkennlinien, die Abhängigkeit des Trenndüsendurchsatzes vom Einlaßdruck p_0 und von der Einlaßtemperatur T_0 bekannt sein. Der Ansaugdruck p_M hat bei den in der Praxis benutzten Expansionsverhältnissen keinen Einfluß auf den Durchsatz. Weiter werden die Abhängigkeiten des Elementareffektes ε_A und des Uran-Abschälverhältnisses ϑ_U vom Druck, von der Temperatur und vom Expansionsverhältnis p_0/p_M benötigt. Die genannten Abhängigkeiten werden im folgenden als Trenndüsenkennlinien bezeichnet.

Da beim Trenndüsenverfahren ein reziproker Zusammenhang zwischen dem optimalen Einlaßdruck und den kritischen Abmessungen der Düsensysteme besteht¹⁾, sind die gegen das Produkt aus Einlaßdruck und Düsenweite aufgetragenen Trenndüsenkennlinien von der absoluten Größe des Trennelementes unabhängig. Um den Einfluß der bei der Herstellung der technischen Trennelemente auftretenden Fertigungsschwankungen auszuschließen, wurden daher für die folgenden Untersuchungen die in 1) beschriebenen Trennelemente X und XIII verwendet, deren kritische Abmessungen um den Faktor 15 bzw. 7,5 größer als die Sollabmessungen der technischen Trennelemente sind (engste Düsenweite a = 0,4 mm bei System X und a = 0,2 mm bei System XIII). Für die Messungen²²⁾ wurde die in 1) beschriebene Apparatur benutzt, die folgendermaßen arbeitet: Aus einem Vorratsbehälter strömt das Helium/UF₆- Gemisch zur Düse des Trennsystems. Die leichte und die schwere Fraktion werden über mit flüssigem Stickstoff gekühlte Ausfrierfallen, in denen die UF₆-Anteile der beiden Fraktionen ausgefroren werden, getrennt abgepumpt. Der Einlaßdruck wird mit einem vor der Trenndüse liegenden Ventil eingestellt. Mit den in den Ausfrierfallen gesammelten und nach dem Überfrieren in Pipetten gewogenen UF₆-Anteilen der leichten und der schweren Fraktion ergeben sich das durch Gleichung (1) definierte Uran-Abschälverhältnis ϑ_{II} und der UF₆-Durchsatz L_I. Der Heliumdurchsatz L_{He} kann mit Gaszählern bestimmt werden, wodurch auch der Gesamtdurchsatz L_o bekannt ist. Mit den Molenbrüchen n_M und n_K des leichten Uranisotops im UF₆ der leichten bzw. schweren Fraktion ergibt sich der Elementareffekt ε_{Λ} für die Trennung der Uranisotope

$$\varepsilon_{\rm A} = \frac{n_{\rm M}(1-n_{\rm K})}{n_{\rm K}(1-n_{\rm M})} - 1$$
 (7)

 \mathbf{n}_{M} und \mathbf{n}_{K} werden mit einem Massenspektrometer bestimmt.

4.2 Ergebnisse

Abb. 8 zeigt die Abhängigkeit des auf die Länge der schlitzförmigen Trenndüse²³⁾ bezogenen <u>Durchsatzes</u> L_o (spezifischer Durchsatz) vom Produkt aus Düsenvordruck p_o und Düsenweite a. Die Meßpunkte lassen sich im untersuchten Bereich durch eine Gerade verbinden, die die Abszisse bei $p_R \cdot a = 2,0$ Torr mm schneidet.

²²⁾ Die Messungen wurden unter der Leitung von Dr. W. Bier durchgeführt.

²³⁾ In Abb. 1a senkrecht zur Zeichenebene.

Abb. 8:

Der spezifische Durchsatz L der Trenndüse in Abhängigkeit vom Produkt aus Düsenvordruck p und Düsenweite a. (He/UF₆-Gemisch[°]mit 5,0 Mol% UF₆, T = 293[°]K; die Kreise sind mit System X, die Dreiecke mit System XIII gemessen).

Abb. 9:

Der spezifische Durchsatz L der Trenndüse in Abhängigkeit von dem durch die absolute Temperatur T dividierten Produkt aus Düsenvordruck p und Düsenweite a. (He/UF₆-Gemisch mit 5,8 Mol% UF₆, System⁶X). - 23

t

Der Einfluß der Düsengastemperatur T_o auf die Durchflußkennlinie der Trenndüsen geht aus Abb. 9 hervor, in der der Durchsatz L_o über dem Quotienten aus $p_o \cdot a$ und der absoluten Ausgangstemperatur T_o aufgetragen ist. Da die für die verschiedenen Temperaturen gemessenen Durchsatzkennlinien in dieser Auftragung praktisch zusammenfallen, kann die Änderung des Durchsatzes im interessierenden Bereich in guter Näherung umgekehrt proportional zur absoluten Temperatur T_o gesetzt werden.

Der Einfluß des Druckes p_0 und der Temperatur T₀ auf den spezif. Durchfluß L₀ durch die Trenndüsen läßt sich damit im interessierenden Bereich durch die Beziehung

$$L_o = 1,11 \cdot 10^7 \frac{(p_o - p_R)a}{T_o} \left[\frac{gMol}{h m} \right]$$

 $(p_0, p_R \text{ in Torr, } T_0 \text{ in } {}^{O}K, Düsenweite a in m)$ beschreiben.

In Abb. 10 ist die Abhängigkeit des <u>elementaren Trenneffek-</u> <u>tes</u> ε_A und des <u>Uran-Abschälverhältnisses</u> ϑ_U vom Düsenvordruck p_o für $T_o = 293^{\circ}$ K und $p_o/p_M = p_o/p_K = 4$ dargestellt. Bei diesen Messungen war das Abschälerblech des Trennsystems so eingestellt, daß ϑ_U bei der maximalen Entmischung mit 0,26 etwas unterhalb des für die technische Trenndüsenanlage vorgesehenen Sollwertes 1/3 liegt. Von 0,26 aus könnte das Uran-Abschälverhältnis im Kaskadenbetrieb durch Rückstau der schweren Fraktion noch nahezu verlustfrei auf den Sollwert eingeregelt werden (vgl. Abschnitt 2.2). Man entnimmt aus Abb. 10, daß sich der Bereich in dem ϑ_U unter 1/3 liegt, d.h. durch Rückstau auf den Sollwert eingeregelt werden kann, von $p_0 \cdot a = 9$ bis 27 Torr mm erstreckt.

In der technischen Trenndüsenanlage sind für die Einstellung des Sollwertes von $\vartheta_{\rm H}$ direkt anzeigende Kon-

(8)

Abb. 10:

Der Elementareffekt der Trennung der Uranisotope $\epsilon_{\rm A}$ und das Uranabschälverhältnis $\vartheta_{\rm U}$ in Abhängigkeit vom Produkt aus Düsenvordruck p. und Düsenweite a. Die Kreise sind die Originalmeßwerte. Die Kreuze wurden durch Umrechnen der Meßwerte auf $\vartheta_{\rm U}$ = 1/3 gewonnen.(He/UF₆-Gemisch mit 5,0 Mol% UF₆, T = 293°K, P₀/P_M = P₀/P_K = 4, System XIII)

Abb. 11:

Der Elementareffekt der Trennung der Uranisotope ε_A und das Uranabschälverhältnis ϑ_U in Abhängigkeit von dem durch das Quadrat der absoluten Temperatur T_o dividierten Produkt aus Düsenvordruck p₀ und Düsenweite a (He/UF₆-Gemisch mit 5,8 Mol% UF₆, p₀/p_M = $p_0/p_K \stackrel{6}{=} 4$, System X) 1

25

zentrationsmeßgeräte vorgesehen. Solche Geräte standen für die Laborexperimente noch nicht zur Verfügung. Zur Vermeidung der langwierigen \Im_U - Einstellung über die gravimetrischen Konzentrationsbestimmungen wurde bei den Experimenten auf eine empirische Anpassung von \Im_U verzichtet. Stattdessen wurde der gemessene Verlauf des Trenneffektes mit Hilfe des experimentell bestimmten Zusammenhangs zwischen ε_A und \Im_U^{24} auf den Sollwert umgerechnet. Aus den umgerechneten Meßwerten des Trenneffektes, die ebenfalls in Abb. 14 eingetragen sind, geht hervor, daß

 $\varepsilon_{\rm A}$ für konstantes $\vartheta_{\rm U}$ mit fallendem Druck zwar praktisch an der gleichen Stelle wie für variables $\vartheta_{\rm U}$ seinen Maximalwert erreicht. Bei einer weiteren Drucksenkung bleibt der Elementareffekt für konstantes $\vartheta_{\rm U}$ jedoch in dem untersuchten Bereich praktisch konstant ²⁵⁾, während er für variables $\vartheta_{\rm H}$ abnimmt.

Aus Abb. 11 geht hervor, daß sich Experimente, die mit verschiedenen absoluten Temperaturen T_o und verschiedenen Einlaßdrücken p_o durchgeführt wurden, annähernd durch eine gemeinsame Kurve darstellen lassen, wenn man die Meßpunkte für ε_A und ϑ_U gegen die Größe $a \cdot p_o / T_o^2$ aufträgt. Die Meßpunkte fallen noch dichter zusammen, wenn man sie für konstantes ϑ_U umrechnet. Die Auswirkungen einer Druckverminderung lassen sich also bei einem vorgegebenen Trennelement durch eine entsprechende Verminderung von T_o^2 praktisch kompensieren.

Der Einfluß des Expansionsverhältnisses p_0/p_M auf den Trenneffekt ε_A und das Uran-Abschälverhältnis ist in Abb. 12

25) Dieser in Abb. 10 nur durch einen Meßpunkt belegte Tatbestand hat sich auch bei anderen Meßreihen gezeigt.

²⁴⁾ F. Weis, Einfluß der geometrischen Parameter auf die Leistung von Trenndüsenelementen bei der Uran²³⁵-Anreicherung, Diss. Universität Karlsruhe (1971)

<u>Abb. 12:</u> Einfluß des Expansionsverhältnisses p_0/p_M auf den elementaren Trenneffekt ϵ_A und das Uran-Abschälverhältnis ϑ_U .

(p • a = 16 Torr mm; die übrigen Betriebsbedingungen sowie die Bedeutung der Kreise und Kreuze wie in Abb. 10) für $p_0 \cdot a = 16$ Torr mm dargestellt. Der für die Leistungsänderung maßgebliche obere Grenzwert von $\vartheta_U = 1/3$ wird bei einer Erniedrigung des Druckverhältnisses auf 3 erreicht.

Weitere Messungen haben gezeigt, daß der relative Anstieg des Trenneffektes mit dem Expansionsverhältnis im interessierenden Bereich sowohl vom Einlaßdruck p_o als auch von der Temperatur T_o praktisch unabhängig ist.

5. Die Einflüsse von Druck und Temperatur auf den Betriebszustand der Trenndüsenstufe

5.1 Molarer Stufendurchsatz, Druckverhältnis und Verdichterwirkungsgrad

Bei den technischen Trennstufen⁴⁾ ist der Deckel der in Abb. 4 dargestellten Anordnung durch einen Tank ersetzt, in dem so viele Trennelemente parallel geschaltet sind, daß mit dem vorgesehenen Düsenvordruck p_o und der Auslegungstemperatur T_o das vorgesehene Druckverhältnis p_o/p_M erreicht wird. Bei einer Variation des Düsenvordruckes und der Temperatur ändert sich im allgemeinen sowohl der molare Stufendurchsatz als auch das Druckverhältnis. Für die Änderungen sind die Durchflußkennlinie der Tankfüllung und die Verdichterkennlinien maßgeblich.

Der <u>molare Stufendurchsatz</u> folgt aus der Durchflußkennlinie der Tankfüllung, die sich aus (8) durch Multiplikation mit der effektiven Trenndüsenschlitzlänge der Tankfüllung ergibt. Die Konstante P_R in (8) beträgt bei der für die technischen Trenndüsensysteme vorgesehenen Düsenweite (0,027 mm) P_R = 74 Torr.

Das <u>Druckverhältnis p_0/p_M </u> läßt sich durch Kombination der Durchflußkennlinie der Tankfüllung mit den Verdichterkenn- 29 -

linien ermitteln. Zur Erläuterung des Verfahrens sind in Abb. 13a die Durchflußkennlinie der Tankfüllung und in Abb. 13b die auf Moldurchsatz umgerechneten Verdichterkennlinien für 308° K aufgetragen. Als gemeinsame Abszisse wird der auf den Auslegungswert L_N normierte molare Stufendurchsatz L verwendet. Das Druckverhältnis des gegen die Trennelemente arbeitenden Verdichters ergibt sich durch Projektion des bei vorgegebenen Düsenvordruck p_o nach Abb. 13a festliegenden Stufendurchsatzes auf die zu diesem Druck gehörende Verdichterkennlinie in Abb. 13b.

Man erkennt, daß das Druckverhältnis mit abnehmendem Düsenvordruck p_o größer wird, und daß sich dadurch der Stufendurchsatz der Pumpgrenze nähert. Der Anstieg des Druckverhältnisses, der durch die Abweichung der Trennelementkennlinie von der Druckproportionalität verursacht wird, ist in dem Bereich abgeschwächt, in dem die Verdichterkennlinien vom Druck abhängen. In Abb. 13a ist, neben der Durchflußkennlinie der Tankfüllung, die Verbindung der zu den Pumpgrenzen bei den jeweiligen Drucken gehörenden Gasdurchsätze eingetragen. Sie schneidet die Durchflußkennlinie bei einem Düsenvordruck p_o = 320 Torr. Dieser Wert ist die aus dem Stabilitätsverhalten der Stufe folgende untere Grenze für eine Druckabsenkung. Eine obere Grenze für die Druckerhöhung läßt sich aus dem Stabilitätsverhalten der Stufe nicht ableiten.

In Abb. 14 ist das Druckverhältnis p_0/p_M des gegen die Trennelemente arbeitenden Verdichters in Abhhängigkeit von dem Düsenvordruck p_0 für verschiedene Temperaturen gezeigt. Man sieht, daß sich die Kurven mit abnehmender Temperatur zu höheren Druckverhältnissen verschieben. Die Begrenzung der Kurven auf der Niederdruckseite ist wieder durch die Pumpgrenze des Verdichters bedingt.

- Abb. 13: Zur Ermittlung des Druckverhältnisses p_o/p_M des gegen die Trennelemente (Tankfüllung) arbeitenden Verdichters.
 - a) Durchflußkennlinie der Tankfüllung
 - b) auf Moldurchsatz umgerechnete Verdichterkennlinien.

Als gemeinsame Abszisse wird der auf den Auslegungswert L_N normierte molare Stufendurchsatz L verwendet. (He/UF₆-Gemisch mit 5,0 Mol% UF₆, T₀ = 308° K).

- 30 -

<u>Abb. 14:</u> Das zu erwartende Druckverhältnis p /p_M der technischen Trennstufe in Abhängigkeit^Mvom Düsenvordruck p_o für verschiedene Temperaturen.

<u>Abb. 15:</u> Der zu erwartende Elementareffekt der Trennung der Uranisotope ε_A der technischen Trennstufe in Abhängigkeit vom Düsenvordruck p. für verschiedene Temperaturen. ε_A ist bei den Auslegungsbedingungen auf 1 normiert. Uranabschälverhältnis $\vartheta_U =$ 1/3.

Durch Kombination der Abb.(6),(7) und (14) läßt sich die Änderung des <u>Verdichterwirkungsgrades</u> mit dem Druck und der Temperatur bestimmen. Es zeigt sich, daß der Verdichterwirkungsgrad bei einer Druckabsenkung im zugänglichen Bereich praktisch konstant bleibt, was auf der Kompensation der Wirkungsgradabnahme mit dem Druck durch die Wirkungsgradzunahme bei Annäherung an die Pumpgrenze bedingt ist. Eine Temperaturvariation bei abgesenkten Absolutdrucken beeinflußt den Verdichterwirkungsgrad ebenfalls praktisch nicht. Dagegen wird er bei hohen Absolutdrucken mit steigender Temperatur geringfügig besser.

Der Wirkungsgrad der für die technische Anlage vorgesehenen 50 Hz- Getriebemotore kann, im Gegensatz zum Wirkungsgrad des bei der vorliegenden Untersuchung benutzten 300 Hz-Motors, im interessierenden Bereich als Last- unabhängig angesehen werden²⁶⁾.

5.2 Elementareffekt der Trennung

Zur Bestimmung der Einflüsse von Druck und Temperatur auf den Elementareffekt der Trennung müssen die in den Abbildungen (10) - (12) und (14) dargestellten Ergebnisse miteinander kombiniert werden. Indem man die für $\vartheta_U = 1/3$ umgerechneten ε_A -Werte benutzt, erhält man den Elementareffekt der Trennstufe unmittelbar für den Sollwert des Uranabschälverhältnisses. Er muß bei größeren Veränderungen von Druck und Temperatur mit dem in der Leitung der schweren Fraktion liegenden Drosselventil nachgeregelt werden

Abb. 15 zeigt entsprechende Ergebnisse. Die Begrenzung der Kurven auf der Niederdruckseite ist im vorliegenden

- 32 -

²⁶⁾ Vgl. z. B.: Bödefeld-Sequenz, Elektrische Maschinen, Springer-Verlag (1966)

Fall durch das Ende des Regelbereichs für ϑ_U gegeben. Würde man zur Erweiterung des Regelbereichs die Abschälerweite der benutzten Trennelemente vergrößern, würde sich bei etwas niedrigeren Drucken eine Grenze durch das Stabilitätsverhalten der Stufe (Pumpgrenze des Verdichters) ergeben. Auf der Hochdruckseite wurden die Kurven der Abb. 15 in einem Bereich abgebrochen, der mit Sicherheit bereits außerhalb des wirtschaftlichen Betriebes liegt.

6. Die wirtschaftlichen Auswirkungen der Druck- und Temperaturänderungen

6.1 Spezifische Aufwandsgrößen

Zur Beurteilung der wirtschaftlichen Auswirkungen der Druck- und Temperaturänderungen wird zunächst ihr Einfluß auf die in Abschnitt 2.2 definierten spezifischen Aufwandsgrößen untersucht. Für den spezifischen Energieverbrauch E_s und die spezifische Investierung I_c gilt

$$E_{s} \sim \frac{T_{o} \ln p_{o}/p_{M}}{\varepsilon_{A}^{2} \cdot \eta_{V}}$$
(9)

$$I_{s} \sim \frac{1}{\Delta U} \sim \frac{1}{L \varepsilon_{A}^{2}} \sim \frac{T_{o}}{(p_{o} - p_{R}) \varepsilon_{A}^{2}}$$
(10)

Dabei ist p_0/p_M aus Abb. (14) und ϵ_A aus Abb. (15) zu entnehmen. Der Verdichterwirkungsgrad η_V ergibt sich durch Kombination der Abbildungen (6),(7) und (14) (vgl. Abschnitt 5.1).

Abb. 16 zeigt das Ergebnis: Demnach läßt sich der spezifische Energieverbrauch durch eine kombinierte Senkung, die spezifische Investierung - 34 -

Abb. 16: Änderung des spezifischen Energieverbrauchs E und der spezifischen Investierung I mit dem Düsenvordruck p und der Temperatur. Die gestrichelte Begrenzungslinie der Kurven folgt aus dem Stabilitätsverhalten der Stufe, die gepunktete Begrenzungslinie ist durch das Ende des Regelbereiches für ϑ_U bedingt. E und I sind auf die bei den Auslegungsbedingungen zu erwartenden Werte E_{SN} und I_{SN} normiert.

3.2 Trennarbeitskosten

Zur Ermittlung des Bereiches, in dem eine Veränderung der Leistungsaufnahme einer Trenndüsenanlage mit Aussicht auf wirtschaftlichen Erfolg möglich ist, muß das Verhältnis der zum spezifischen Energieverbrauch E_s und zur spezifischen Investierung I_s proportionalen Anteile der Trennarbeitskosten bekannt sein. Aus den in der Einleitung zitierten Wirtschaftlichkeitsuntersuchungen⁴⁾ ergibt sich im Auslegungspunkt der Trenndüsen-Demonstrationsanlage für dieses Verhältnis der Wert

b ≈ 2

Mit b lassen sich die Auswirkungen der in Abb. 16 gezeigten Veränderungen der spezifischen Aufwandsgrößen auf die Trennarbeitskosten K berechnen nach

$$\frac{K}{K_{N}} = \frac{1}{1+1/b} - \frac{E_{s}}{E_{sN}} + \frac{1}{1+b} - \frac{I_{s}}{I_{sN}}$$
(11)

Abb. 17 zeigt den Einfluß des Düsenvordruckes p_0 auf die Trennarbeitskosten K,die Trennarbeitsleistung $\varDelta U$ und den elektrischen Leistungsbedarf W_{el} der Trenndüsenanlage für die 3 untersuchten Temperaturen. K, $\varDelta U$ und W_{el} sind auf die bei den Auslegungsbedingungen zu erwartenden Werte normiert.

Auf der Niederdruckseite ist der zugängliche Bereich der Kurven durch den Regelbereich des Uranabschälverhältnisses, oder, falls dieser durch eine andere Abschälerstellung erweitert wird, durch die Pumpgrenze des Verdichters limitiert.

- 35 -

Abb. 17: Einfluß des Düsenvordruckes p_auf die Trennar-beitskosten K, die Trennarbeitsleistung⊿U und den elektrischen Leistungsbedarf W_{el} der Trenndüsenan-lage bei verschiedenen Temperaturen. Die Bedeutung der gestrichelten und gepunkteten Begrenzungs-linien wie in Abb. 16. K, \varDelta U und W_{el} sind auf die bei den Auslegungsbedingungen zu erwärtenden Werte K_N , ΔU_N und $W_{el,N}$ normiert.

1,4

Auf der Hochdruckseite endet der diskutable Bereich der Kurven spätestens bei den zu den einzelnen Temperaturen gehörenden Maximalwerten der Trennarbeitsleistung ⊿U, da die weitere Drucksteigerung zu einer Erhöhung der Trennarbeitskosten und des elektrischen Leistungsbedarfs bei <u>fallender</u> Trennarbeitsleistung führen würde. Der diskutable Bereich der Leistungsaufnahme liegt also zwischen etwa 50% bei 300 Torr und 20[°]C und 120% bei 730 Torr und 50[°]C. An der unteren Grenze liegen die Trennarbeitskosten um etwa 18% an der oberen um etwa 10% über dem Wert bei Auslegungsbedingungen.

In der Jahreszeit, in der sich die Temperatur mit dem vorhandenen Kühlsystem von dem Auslegungswert 35°C auf 20°C senken läßt, können die Trennarbeitskosten durch eine gleichzeitige Verminderung des Druckes auf 500 Torr um etwa 5% gesenkt werden. Die Leistungsaufnahme der Anlage fällt dabei auf 85% und die Trennleistung auf etwa 93% des Auslegungswertes. Durch eine weitere Absenkung des Druckes auf 400 Torr werden dieselben Trennarbeitskosten wie im Auslegungspunkt mit einer Leistungsaufnahme von 65% und einer Trennarbeitsleistung von etwa 75% des Auslegungswertes erreicht.

Durch eine <u>Steigerung</u> der Temperatur lassen sich die Trennarbeitskosten nicht vermindern, da von einer solchen Möglichkeit bereits bei der Auslegung Gebrauch gemacht worden wäre. Durch eine kombinierte Steigerung von Temperatur und Druck kann jedoch die Trennarbeitsleistung der Anlage geringfügig vergrößert werden (um etwa 4% bei 50[°]C und 730 Torr),wobei die elektrische Leistungsaufnahme um etwa 20% und die Trennarbeitskosten um etwa 10% steigen.

7. Schlußfolgerung

In der kalten Jahreszeit ist der mittlere Stromverbrauch der Bundesrepublik um rund 30% höher als in der heißen⁶⁾. Der in der Einleitung erwähnte Strompreisbonus wird daher an die Forderung gebunden **sein**, daß der Verbraucher seine Leistungsaufnahme in der kalten Jahreszeit reduziert.

Die vorliegende Untersuchung zeigt, daß eine Absenkung der Stromaufnahme einer Trenndüsenanlage in der kalten Jahreszeit um bis zu 35% bereits ohne Strompreisbonus zu einem geringfügigen wirtschaftlichen Gewinn führt. Ein Strompreisbonus würde also bei diesem Umfang der Leistungsabsenkung den Trennarbeitskosten voll zugutekommen. Die Frage, ob eine noch stärkere Änderung des Lastzustandes, z.B. durch Erhöhen von Druck und Temperatur während der heißen Jahreszeit, wirtschaftlich sinnvoll wäre, kann nur bei Kenntnis der Bonus-Höhe entschieden werden.

Der Bereich der mit wirtschaftlichem Erfolg durchführbaren Laständerung ließe sich erheblich erweitern, wenn man in dem Verdichter-Kühler-Aggregat einen dritten Teilkühler auf der Ansaugseite des Verdichters vorsehen würde. Die größere Variationsbreite käme bei dieser Anordnung dadurch zustande, daß die Temperatur der Trennelemente unabhängig von der des Verdichters eingestellt werden könnte.

Durch eine separate Temperaturerhöhung der Trennelemente ließe sich im übrigen wegen der in Abb.11 gezeigten Abhängigkeit des Elementareffektes von p_0/T_0^2 , der optimale Düsenvordruck proportional zum Quadrat der absoluten Temperatur erhöhen. Eine genauere Analyse zeigt, daß sich dadurch die spezifische Investierung bei konstantem spezifischen Energieverbrauch etwa umgekehrt proportional zur absoluten Temperatur vermindern würde. Ob eine solche

- 38 -

Maßnahme wirtschaftlich sinnvoll ist, wird insbesondere vom Langzeitverhalten der Trennelemente bei erhöhter Temperatur abhängen, über das bisher noch keine Erfahrungen vorliegen.

Herrn Prof. Dr. E.W. Becker danke ich sehr für die Anregung und stete Förderung dieser Arbeit. Auch gilt ihm sowie meinen Kollegen am Institut für Kernverfahrenstechnik mein besonderer Dank für wertvolle Diskussionen.

Literaturverzeichnis

- E.W. Becker, K. Bier, W. Bier, R. Schütte, D. Seidel, Angew. Chemie internat. Edit. 6, 507 (1967) Diese Arbeit enthält eine Zusammenstellung der früheren Veröffentlichungen über das Trenndüsenverfahren.
- 2) E.W. Becker, Z. Kerntechnik 11, 129 (1969)
- 3) E.W. Becker, G. Frey, R. Schütte, D. Seidel, Z. Atomwirtschaft, 13, 359 (1968)
- 4) E.W. Becker, W. Bier, G. Frey, R. Schütte, Z. Atomwirtschaft <u>14</u>, 249 (1969)
- 5) E.W. Becker, Atoomenergie en haar toepassingen, <u>11</u>, S. 272-276 (1969). Vgl. auch 4).
- 6) Die Elektrizitätswirtschaft in der Bundesrepublik Deutschland, Bericht Nr. 2351 des Referats Elektrizitätswirtschaft im Bundesministerium für Wirtschaft, Jg. 1969, Heft 16
- 7) K. Cohen: The Theory of Isotope Separation as Applied to the Large Scale Production of U²³⁵, Mc Graw Hill, New York (1951)
- 8) H.J. Fritsch, Trennung von UF₆ und Zusatzgas bei Trenndüsenanlagen mit einer Kombination von Vorabscheidungs-Trenndüse und Tieftemperatur-Feinabscheidung, Dissertation Universität Karlsruhe (1971)
- 9) VDI-Richtlinien 2045, Abnahme- und Leistungsversuche an Verdichtern, Teil I, April 1967
- 10) W. Fister, Chem.Ing.Technik, 37, 1055 (1965)
- 11) Eckert/Schnell, Axial- und Radialkompressoren Springer-Verlag, 1961, S. 367
- 12) F. Weis, Einfluß der geometrischen Parameter auf die Leistung von Trenndüsenelementen bei der Uran²³⁵-Anreicherung, Diss. Universität Karlsruhe (1971)
- 13) Bödefeld-Sequenz, Elektrische Maschinen, Springer-Verlag (1966)