

KERNFORSCHUNGSZENTRUM

KARLSRUHE

Juli 1972

KFK 1647

Institut für Kernverfahrenstechnik

Experimentelle Untersuchung des Stabilitätsverhaltens einer 10-stufigen Trenndüsen-Kaskade bei periodischen Störungen der Betriebsbedingungen

G. Linder R. Schütte

Als Manuskript vervielfältigt

Für diesen Bericht behalten wir uns alle Rechte vor

GESELLSCHAFT FÜR KERNFORSCHUNG M.B.H. KARLSRUHE

KERNFORSCHUNGSZENTRUM KARLSRUHE

KFK 1647

Institut für Kernverfahrenstechnik

EXPERIMENTELLE UNTERSUCHUNG DES STABILITÄTSVERHALTENS EINER 10-STUFIGEN TRENNDÜSEN-KASKADE BEI PERIODISCHEN STÖRUNGEN DER BETRIEBSBEDINGUNGEN

von

G. Linder+) R. Schütte

Gesellschaft für Kernforschung m.b.H., Karlsruhe

+) Von der Fukultät für Maschinenbau der Universität Karlsruhe (T.H.) genehmigte Dissertation

Zusammenfassung:

Es wurden die Auswirkungen periodischer Störungen aller wesentlichen Betriebsgrößen auf das Betriebsverhalten der 10-stufigen Pilot-Anlage für das Trenndüsenverfahren gemessen. Dazu wurden unter Benutzung der Regler in der UF₆-Abscheidung am Kaskadenkopf dem UF₆-Rückspeisestrom U₃, dem Helium-Transport \boldsymbol{z}_{Z} und dem Austragungsdruck p12 periodische Istwertänderungen (sinus- und rampenförmig) mit Frequenzen zwischen 0,0005 Hz und 0,5 Hz aufgeprägt. Außerdem wurden im gleichen Frequenzbereich rechteckimpulsförmige Änderungen des "Kerngas-Rückstaus" einer Trenndüse und des Kompressionsverhältnisses eines Verdichters in Einzelstufen in der Kaskadenmitte erzeugt. Als Auswirkung wurden die Frequenzgänge der Düsenvordrucke p₀ in allen Stufen der Kaskade gemessen.

In den Untersuchungen wurde bei keiner Frequenz eine Resonanzüberhöhung beobachtet. Gegenüber periodischen Änderungen ihrer Betriebsgrößen reagiert die Trenndüsenkaskade wie ein über-aperiodisch gedämpftes System, in dem die Störungsamplituden mit wachsender Erregerfrequenz und mit wachsendem Abstand von Ort der Störungseinleitung abnehmen. Ähnlich wie bei stationären Änderungen bleiben periodische Störungen an einer Einzelstufe in ihren Auswirkungen auf wenige Nachbarstufen oberhalb und unterhalb der Störstelle beschränkt. Diese Lokalisierung wird mit wachsender Frequenz weiter eingeengt, wobei die Störamplituden etwa reziprok zur Frequenz abnehmen, aber eine frequenzunabhängige Fortpflanzungsgeschwindigkeit von ca. 0,3 Stufen/sec bei Änderungen des Kompressionsverhältnisses und ca. 1,8 Stufen/sec für Änderungen des Kerngasrückstaus aufweisen. Etwa gleich groß sind die Unterschiede in den Zeitkonstanten der Störungsausbreitung zwischen Störungen -Rückspeisestroms U₃ und des Austragungsdrucks p12 einerdes UF, seits mit 0,01...0,2 Stufen/sec und periodischen Störungen des Heliumtransport r_7 mit ca. 0,7 Stufen/sec andererseits. Im ersten Fall werden bei stätionärer Störung etwa 10 Stufen und bei einer Frequenz von 1/100 Hz noch 4 Stufen am Kaskadenkopf von den Störungen betroffen. Im Fall des gestörten Heliumtransports, wo bei stationärer Sollwertabweichung alle Stufen einer Kaskade praktisch gleich stark beeinflußt werden, konnte gezeigt werden, daß bereits bei mäßigen Frequenzen die Störungsauswirkungen auf die Stufen am Kaskadenfuß beschränkt bleiben, beispielsweise bei 0,1 Hz auf die sechs unteren Stufen eines Kaskadenabschnitts.

Abstract

The influence of periodic disturbances of all essential plant operating variables on the stability of the 10-stage separation nozzle pilot-plant was examined. Therefore sinus and triangular shaped periodic variations in the values of the UF₆-feed back rate U₃, the He-feed back rate \mathcal{Z}_{7} and the UF₆-separation feed pressure p12 were performed with frequencies from 0.0005 to 0.5 cycles per second by means of the regulators in the UF₆-separation system at the top of the square cascade. Futhermore rectangular shaped periodic changes of the stage cut and of the compression ratio of a compressor were produced in single stages in the middle of the cascade within the same frequency range. As a measure for the periodic disturbances, a frequency analysis of the inlet pressures p_o in all stages of the pilot-plant was performed.

In the course of the measurements no resonance frequencies were observed. During the periodic variations of the plant operating variables, the separation nozzle cascade is behaving as a stable, extremely damped system, in which the amplitudes are decreasing with increasing frequency and with increasing distance from the disturbance point. The influence of the periodic disturbances in a single stage is confined to a few neighbour stages above and below the disturbance point according to the effects of stationary changes. This confinement is more pronounced with increasing frequency, whilst the amplitudes are decreasing reciprocally with frequency approximately. However the propagation of these disturbance effects proceeds independently of frequency with a short range velocity of about 0.3 stages per second for changes in the compression ratio and of about 1.8 stages per second for changes in the cut. About the same ratio is observed in the propagation velocities of disturbance effects due to periodic changes of the UF_c -feed back rate U, and the UF_c -separation pressure p12 (0.01 to 0.2 stages per second) on the one feed hand and periodic disturbances of the He-feed back rate \varkappa_Z with about 0.7 stages per second on the other hand. In the first case a stationary disturbance influences about 10 stages, whilst e.g. a periodic disturbance with 0.01 cycles per second only affects 4 stages at the top of the plant. In case of the disturbed He-feed back rate \mathcal{Z}_{7} , where a stationary change in the flow rate influences all stages of a cascade almost equally, it was possible to show that the effects of periodic disturbances are limited to the stages at the base of the cascade already for relatively low frequencies, for instance at 0.1 cycles per second to the stages 1-6 at the base of a square cascade.

Inhaltsverzeichnis

Seite

1.	Einleitung und Zusammenfassung			
2.	Das Verfahrensschema und die Steuerung der Trenndüsen-Kaskade	6		
	2.1 Die Soll-Betriebsbedingungen der Pilot- Anlage	6		
	2.2 Die Regelgrößen und die Stellglieder der Pilot-Anlage	9		
3.	Die Methoden und die Durchführung der Frequenzgangmessungen	13		
	3.1 Die Erzeugung periodischer Änderungen der Eingangsgrößen und die Messung des Frequenzganges mit einem Frequenz- gang-Analysator	14		
	3.2 Ermittlung des Frequenzganges aus der Registrierung der Eingangs- und Aus- gangsgrößen mit Mehrkanal-Linien- schreibern	17		
	3.3 Die Ausführung der Versuche mit der Pilot-Anlage	19		
ц.	Die Auswirkungen periodischer Änderungen der Eingangsgrößen am Kaskadenkopf	22		
-	4.1 Periodische Änderungen des UF ₆ -Rück- speisestromes U ₃	22		
	4.2 Periodische Änderungen des Austra- gungsdruckes p12	34		
5.	Die Auswirkungen periodischer Änderungen der Eingangsgröße "Helium-Rückspeise- strom $\tau_{\rm Z}$ " am Kaskadenfuß	36		
6.	Die Auswirkungen periodischer Störungen in einer Einzelstufe in der Kaskadenmitte	41		
	6.1 Änderungen des Kerngasrückstaus in Stufe 4	41		
	6.2 Änderungen des Expansionsverhältnisses in Stufe 5	42		
7.	Diskussion der Meßergebnisse	44		
Nor	Nomenklaturverzeichnis 51			

1. Einleitung und Zusammenfassung

In den letzten Jahren wurde am Institut für Kernverfahrenstechnik ein neues Verfahren zur Anreicherung von Uran 235 entwickelt¹⁾, das als "Trenndüsenverfahren" bezeichnet wird. Diese Methode beruht auf der teilweisen räumlichen Entmischung der Uranisotope in einem auf gekrümmten Bahnen expandierenden Gasstrahl aus einem UF₆/Helium- oder UF₆/Wasserstoff-Gemisch. Aus Wirtschaftlichkeitsbetrachtungen² geht hervor, daß das Trenndüsenverfahren für die großtechnische Gewinnung des in den meisten Kernreaktoren verwendeten angereicherten Urans in Betracht kommt und eine Alternative zum Gasdiffusions- und Zentrifugenverfahren³ darstellt.

Der elementare Trenneffekt muß beim Trenndüsenverfahren wie auch bei den anderen Verfahren zur Anreicherung des leichten Uranisotops U-235 durch Hintereinanderschalten von Trennelementen in einer Trennkaskade vervielfacht werden. Zur experimentellen Untersuchung des Betriebsverhaltens einer Trenndüsenkaskade wurde eine 10-stufige Pilot-Anlage gebaut⁴⁾, mit der die vorliegenden Untersuchungen durchgeführt wurden.

Die vorausgegangenen experimentellen und theoretischen Untersuchungen des stationären Betriebsverhaltens der Pilot-An-

- E.W. Becker, K. Bier, W. Bier, R. Schütte, D. Seidel Angew. Chemie internat. Edit. 6, 507 (1967) Diese Veröffentlichung enthält eine zusammenfassende Darstellung der früheren Arbeiten über das Trenndüsenverfahren.
- 2) E.W. Becker, W. Bier, G. Frey, R. Schütte, Z. Atomwirtschaft 14, 249 (1969)
- 3) E.W. Becker, Z. Kerntechnik 11, 129 (1969)
- 4) E.W. Becker, G. Frey, R. Schütte, D. Seidel, Z. Atomwirtschaft <u>13</u>, 359 (1968)

lage⁵⁾⁶⁾⁷⁾ waren dadurch gekennzeichnet, daß die Übergänge zwischen beliebigen stationären Betriebszuständen in der Trenndüsen-Kaskade im allgemeinen asymptotisch verlaufen, und daß nur in einigen Ausnahmefällen ein einfaches Überschwingen einzelner Betriebsgrößen erfolgte⁶⁾. Insgesamt wurden bei diesen Untersuchungen keinerlei instabilen Betriebszustände der Kaskade beobachtet⁷⁾.

Durch die vorliegende experimentelle Untersuchung des Stabilitätsverhaltens der Pilot-Anlage sollte vor allen Dingen festgestellt werden, ob in einer Trenndüsen-Kaskade infolge periodischer Anregung oszillatorische Instabilitäten auftreten können, d.h. ob bei periodischen Störungen bestimmter Betriebsgrößen und bei bestimmten Störfrequenzen Resonanzüberhöhungen auftreten. Zu diesem Zweck wurden allen infrage kommenden Betriebsgrößen der Kaskade periodische Änderungen mit Frequenzen zwischen 0,0005 Hz und 0,5 Hz aufgeprägt und der Einfluß dieser Störungen auf sämtliche Stufen der Kaskade gemessen.

Bei den Messungen wurden mit den in der Pilot-Anlage eingesetzten Proportional-integralen Reglern (PI-Reglern) periodische Istwertänderungen der drei wesentlichen äußeren Betriebsgrößen der Kaskade (UF₆-Rückspeisestrom U₃, He-Rücktransport τ_Z , Austragungsdruck p12) erzeugt (sinus- und rampenförmig). Hiermit ergab sich zugleich die systematische Erfassung aller Rückwirkungen aus den Regeleinrichtungen, die in einer Trenndüsen-Kaskade am Kaskadenkopf und an den Abstufungsstellen des Kaskadendurchsatzes eingesetzt werden. Außerdem wurden periodische, sprunghafte Änderungen der Stellgrößen des Kerngasrückstauventils (Regelung des UF₆-Abschälverhältnisses \mathcal{N}_U) und des Verdichter-Nebenschlußventils (Regelung des Expansionsverhältnisses p_0/p_M) an einer Einzelstufe in der Kaskadenmitte vorgenommen und ihre Auswirkungen gemessen.

- 6) P. Hoch, Berechnung des Übergangsverhaltens einer 10-stufigen Trenndüsen-Kaskade, Diplomarbeit, Karlsruhe (1970).
- 7) R. Schütte, D. Seidel, W. Fritz, D. Plesch, G. Linder, H.J. Fritsch, Experimentelle und theoretische Untersuchungen des stationären Betriebsverhaltens von Trenndüsen-Kaskaden für die U235-Anreicherung, Chemie Ing. Technik (erscheint demnächst).

⁵⁾ W. Fritz, Berechnung des stationären Betriebsverhaltens einer 10-stufigen Trenndüsen-Kaskade, Dissertation, Karlsruhe (1970).

Bei den Messungen wurden keine Resonanzüberhöhungen beobachtet. Gegenüber allen aufgeprägten periodischen Störungen reagiert die Trenndüsen-Kaskade als ein stabiles, extrem gedämpftes System, in dem die Störungsamplituden mit wachsender Erregerfrequenz und mit wachsendem Abstand von der Stelle der Störungseinleitung monoton abnehmen. Die Wirkungen der Störungen des Kerngasrückstaus und des Expansionsverhältnisses in einzelnen Stufen sind ebenso wie bei stationären Störungen auf wenige Stufen beschränkt und nehmen kaskadenaufwärts besonders rasch ab. Insbesondere haben die Messungen gezeigt, daß im Falle der Beeinflussung des die Kaskade durchlaufenden Heliumtransportes \mathcal{T}_{τ} (wo durch stationäre Sollwertabweichungen sämtliche Stufen der Kaskade praktisch gleich stark betroffen werden⁵⁾⁷⁾) periodische Störungen bereits bei verhältnismäßig niedrigen Frequenzen (etwa ab 0,04 Hz aufwärts) auf eine kleine Zahl von Trenndüsenstufen in der Nähe des Kaskadenfußes begrenzt bleiben.

Da die Zeitkonstanten der Pilot-Anlage (2sec...1,5min⁶⁾) praktisch übereinstimmen mit denen einer technischen Anlage in der Ausführungsform der in der Erprobung befindlichen Prototypstufe, kann aus den vorliegenden Meßergebnissen die Schlußfolgerung gezogen werden, daß in Trenndüsen-Kaskaden mit der gleichen Schaltung und mit ähnlichen Eigenschaften der Trenndüsen und der Verdichter auch in dynamischer Hinsicht keine Regelungsschwierigkeiten zu erwarten sind. Da je Kaskadenabschnitt nur für drei Betriebsgrößen Regeleinrichtungen erforderlich sind und die zu fordernden Periodendauern mit 25 sec und weniger dem technischen Standard⁸⁾ entsprechen, werden die Aufwendungen für die Kaskadenregelung dementsprechend niedrig sein.

⁸⁾ So können z.B. die Nachstellzeiten handelsüblicher stetiger PI-Regler vom Sekunden- bis zum Minutenbereich eingestellt werden, die Periodendauern der Regelschwingungen liegen bei PI-Regelung etwa zwischen 30 und 2 sec. (G. Pressler, Regelungstechnik, Bibliographisches Institut, Mannheim, Bd. 1, S. 46 und 132, 1967).

2. Das Verfahrensschema und die Steuerung der Trenndüsen-Kaskade

2.1 Die Soll-Betriebsbedingungen der Pilot-Anlage

Die Abb. 1a zeigt einen Schnitt durch die in der Pilot-Anlage verwendete Trenndüse zusammen mit den Soll-Betriebsbedingungen. Ein Gemisch aus 5 Mol-% UF₆ und 95 Mol-% Helium wird mit der Stromstärke Lo unter dem Düsenvordruck p_o = 40 Torr einer gekrümmten schlitzförmigen Düse zugeführt. Diese besteht aus einer Umlenkwand mit einem Krümmungsradius von r = 1,5 mm und einem dazu exzentrisch angeordneten Vollzylinder mit einem Durchmesser von d = 1,8 mm. Die kleinste Düsenweite beträgt 0,4 mm. In der Trenndüse expandiert das Gasgemisch auf den Druck $p_M = 11,5$ Torr bzw. p_{K} = 18 Torr. Am Ende der Umlenkung befindet sich in ungefähr 0,2 mm Abstand von der Wand eine messerförmige Schneide, die Abschäler genannt wird. Durch den Abschäler wird der Gasstrahl in eine leichte Fraktion mit der molaren Stromstärke $L_{M} = \mathcal{V}_{G} \cdot L_{O}$ und eine schwere Fraktion mit der molaren Stromstärke $L_{K} = (1 - \mathcal{V}_{G}) \cdot L_{O}$ zerlegt⁹⁾. Abb. 1b zeigt das Ersatzschaltbild des Trennelements.

Der mit den Molenbrüchen n_M und n_K des U²³⁵ in der leichten bzw. schweren Fraktion gebildete Elementareffekt der Isotopentrennung

$$\epsilon_{A} = \frac{n_{M}(1-n_{K})}{(1-n_{M})n_{K}} - 1$$
 (1)

beträgt unter den in Abb. 1a angegebenen Betriebsbedingungen

⁹⁾ Die leichte Fraktion wird auch als Mantelgas, die schwere Fraktion auch als Kerngas bezeichnet.

a) Querschnitt einer Trenndüse mit den Soll-Betriebsbedingungen der Pilot-Anlage b) Ersatzschaltbild der Trenndüsen

<u>Abb. 1:</u> Querschnitt und Ersatzschaltbild der Trenndüsen mit ihren Betriebsgrößen: Absolutdrucke p; UF₆-Molenbrüche N im Helium/UF₆-Gemisch; Gemischstromstärken L, UF₆-Stromstärken U; Gesamtabschälverhältnis \mathcal{Z}_G ; UF₆-Abschälverhältnis \mathcal{Z}_U , Heliumabschälverhältnis \mathcal{Z}_Z .

Die Indizes 0,M,K kennzeichnen die Betriebsgrößen im Ausgangsgas und in der leichten bzw. schweren Fraktion. Das Uranabschälverhältnis \mathscr{V}_U , das Aufteilungsverhältnis zwischen dem Uranstrom in der leichten Fraktion U_M und dem Uranstrom im Ausgangsgas U_o,

$$\mathcal{V}_{U} = \frac{U_{M}}{U_{o}}$$
(2)

kann durch Verändern der Abschälerstellung beliebig eingestellt werden. Für die praktische Isotopentrennung wählt man einen Wert \mathcal{V}_U , bei dem das günstigste Verhältnis der für den Betrieb des Trennelements erforderlichen Aufwendungen zu seiner Trennarbeitsleistung erzielt wird. Werden die Trennelemente jedoch in einer Kaskade zusammengeschaltet, so muß ihr Uranabschälverhältnis einen rationalen Wert einnehmen, der sich aus der Kaskadenschaltung aufgrund der "Nichtvermischungsbedingung für die Isotope" ergibt¹⁰⁾. In den früheren Arbeiten¹⁾ wurde gezeigt, daß beim Trenndüsenverfahren voraussichtlich eine Schaltung mit $\mathcal{V}_{u} = 1/3$ wirtschaftlich optimal sein wird.

Für die Pilot-Anlage wurde die einfachste Kaskaden-Schaltung mit $\mathcal{V}_U = 0,5$ gewählt, bei der die Zusammenschaltung der Stufen so erfolgt, daß die leichte Fraktion eines Trennelements über den zu dieser Stufe gehörenden Verdichter¹¹⁾ der <u>folgenden Stufe</u> zugeleitet wird, während dieser Verdichter gleichzeitig die schwere Fraktion der <u>übernächsten</u> <u>Stufe</u> ansaugt. Abb. 2 zeigt das entsprechende Fließschema der Pilot-Anlage mit den zugehörigen Betriebsgrößen. Die Soll-Betriebsbedingungen sind für alle Stufen die gleichen und gelten für den <u>Betrieb ohne Materialentnahme (U_p=U_w=0)</u>, bei dem die Messungen durchgeführt wurden.

- 10) K. Cohen, The Theory of Isotope Separation as Applied to the Large Scale Production of U²³⁵, Mc Graw Hill, New York (1951).
- 11) Die Pilot-Anlage ist mit Rootsverdichtern der Fa. Leybold's Nachf. ausgerüstet.

Unter den in Abb. 1a angegebenen Soll-Betriebsbedingungen $(\mathcal{V}_U = 0,5)$ ergibt sich aufgrund der starken Entmischung zwischen dem Helium und dem UF₆ das Abschälverhältnis des Gemisches zu $\mathcal{V}_G = 0,83$ und das Abschälverhältnis des leichten Zusatzgases zu $\mathcal{V}_Z = 0,85^{5)7}$.

Aus einer Stromstärkebilanz in Abb. 2 erkennt man⁵⁾⁷⁾, daß infolge dieser Gemischtrennung ein erheblicher Nettostrom an leichtem Zusatzgas zum Kaskadenkopf transportiert wird, der die Abtrennung eines entsprechenden Heliumstromanteils \mathcal{T}_{7} aus der leichten Fraktion der Kopfstufe (Stufe 10) erforderlich macht, wenn eine Anreicherung des leichten Zusatzgases am Kaskadenkopf verhindert werden soll. Diese Funktion übernimmt eine aus Tieftemperaturkühlfallen bestehende UF₆-Abscheidungsanlage. Das vom UF₆ befreite Helium wird zur Aufrechterhaltung der Materialbilanz zum Kaskadenfuß (Stufe 1) zurückgespeist. Der aus dem Verfahrensgas abgeschiedene UF₆-Anteil U₁ wird zur Vereinfachung der Versuchsdurchführung durch neues UF₆ aus einem Vor-ratsbehälter ersetzt $(U_3)^{12}$. Durch das neue UF₆ wird die Isotopenkonzentration des U²³⁵ am Kaskadenkopf konstant gehalten, so daß sich eine maximale Abreicherung des leichten Isotops U²³⁵ am Kaskadenfuß ergibt. Die Betriebsverhältnisse in der Pilot-Anlage entsprechen somit denen im Abstreifteil einer Produktionsanlage.

2.2 Die Regelgrößen und die Stellglieder der Pilot-Anlage

Die Einstellung und Überwachung des vorbeschriebenen Soll-Betriebszustandes in allen Stufen der Kaskade kann anhand einer reduzierten Anzahl ausgewählter Betriebsgrößen erfolgen⁷⁾, die als die <u>Regelgrößen der Trenndüsen-Kaskade</u>

¹²⁾ Bei einer produzierenden Kaskade würde der in der UF₆-Abscheidungsanlage ausgeschiedene UF₆-Strom U₁ nach Entnahme der Produktstromstärke U in die Kopfstufe zurückgespeist werden $(U_3=U_1-U_p)$.

<u>Abb. 2:</u> Fließschema der Pilot-Anlage. Es sind die bei den vorliegenden Untersuchungen benutzten Ventile und Meßwertaufnehmer eingezeichnet. Gemessen wurden der Düsenvordruck p₀ und der UF₆-Molenbruch N₀ im Ausgangsgas aller Trenndüsen, die UF₆-Molenbrüche N_{K,10} und N_{M,10} der Stufe 10, die Meßblendenvordrucke p2 und p3'sowie der Austragungsdruck p12. Abstreifbetrieb ohne Materialentnahme (U_p = U_w = 0).

bezeichnet werden. Für die Steuerung der Pilot-Anlage genügt eine Auswahl von 24 Regelgrößen. In den einzelnen Stufen sind dies die Düsenvordrucke $P_{0,1}$... $P_{0,10}$ und die UF₆-Molenbrüche im Ausgangsgas N_{0,1}....N_{0,10}, sowie der UF₆-Molenbruch N_{K,10} im Kerngas der Kopfstufe (Stufe 10). An den Anschlußstellen der Kaskade an die UF_s-Abscheidungsanlage sind drei weitere Regelgrößen erforderlich, nämlich die Stromstärke au_{7} des Zusatzgastransports, die Stromstärke U3 des UF6-Rückspeisestromes und der Austragungsdruck p12, über den der Materialinhalt der Kaskade pauschal beeinflußt wird. Als Meßgrößen für die beiden Stromstärken dienen die Meßblendenvordrucke p2 und p3 der überkritischen Meßblenden D2 bzw. D3. Aus der Kenntnis dieser 24 Betriebsgrößen lassen sich alle weiteren gasdynamischen Größen, vor allem alle Ströme und Abschälverhältnisse in den Stufen, ableiten⁷⁾.

Entsprechend dieser Auswahl der Regelgrößen wird die Pilot-Anlage durch insgesamt <u>24 Stellglieder</u> gesteuert, die in Abb. 2 eingezeichnet sind. Diese Stellglieder sind die <u>Kerngasrückstauventile</u> V4, KV2, RV1-RV8¹⁴⁾, die <u>Verdichter-</u>

- 13) Aufgrund der Durchflußkennlinien der Trenndüsen ist der Gemischdurchsatz L eine eindeutige Funktion des Düsenvordruckes p und des UF -Molenbruches N. Bei identischen Trenndüsen in den Stufen liefert die Einstellung der Werte p =40 Torr und N =0,05 also auch gleiche Gesamtdurchsätze L =50gMol/h und gleiche Urandurchsätze U =2,5gMol/h in allen Stufen. Die Trenndüsen der Pilot-Anlage sind jedoch aus Gründen der Fertigungstoleranzen nicht identisch bezüglich der mittleren Düsenweiten. In diesem Falle wurde die Einhaltung des konstanten Düsendurchsatzes L =50gMol/h bei einem 5%-igem He/UF -Gemisch und gleichen Abschälverhältnissen VU und VZ in ällen Stufen (Kriterium der ungestörten Rechteckkaskade) der Einhaltung eines optimalen Druckes p =40 Torr übergeordnet und für jede Trenndüse s ein individueller Sollwert p fest-9, s
- 14) Da sich die zu dem Uranabschälverhältnis V_U=0,5 gehörende Position der Abschälerschneide bei der Herstellung der Trenndüsen nur mit einer gewissen Fehlergrenze einstellen ließ, wurden die Abschälerschneiden bei der Montage der Trenndüsen so justiert, daß bei gleich großen Expansionsverhältnissen p/p_M=p₀/p_K=3,5 ein Uranabschälverhältnis von V_U≈0,45 zu erwarten war. Der Feinabgleich der Uranabschälverhältnisse auf V_U=0,5 erfolgte dann während des Betriebes durch Einstellung des Expansionsverhältnisses p/p_k in der schweren Fraktion mit Hilfe der Kerngasrückstauventile⁵)7).

<u>Nebenschlußventile</u> NV1-NV10, das <u>Stromaufteilungsventil V15</u>, das <u>He-Rückspeiseventil R2</u>, das <u>UF₆-Rückspeiseventil R3</u> und das <u>Austragungsventil R1</u>. Die Ventile R1, R2 und R3 sind mit PI-Reglern ausgerüstet.

Die experimentelle Untersuchung des stationären Regelungsverhaltens der Pilot-Anlage in der Umgebung des Soll-Betriebszustandes zeigte⁵⁾⁷⁾, daß die 24 Regelgrößen im allgemeinen von allen 24 Stellgrößen abhängig sind. Dadurch wird deutlich, daß eine einzelne Stellgrößenänderung entweder direkt oder über Koppelglieder auf eine größere Zahl von Regelgrößen einwirkt, was bei der vorliegenden Art der Zusammenschaltung der physikalischen Einzelprozesse in der Kaskade nicht anders zu erwarten ist. Diese Tatsache bedeutet, daß die untersuchte Trenndüsen-Kaskade unter dem Gesichtspunkt der Regelungstechnik ein Mehrfachsystem mit inneren Koppelungen darstellt¹⁵⁾¹⁶⁾. Für derartige Mehrfachsysteme sind selbst für einfache Zusammenhänge zufriedenstellende Behandlungen mit mathematisch analytischen Methoden bisher offensichtlich noch nicht erfolgreich durchgeführt worden¹⁵⁾. Daher war durch die im folgenden beschriebenen Frequenzgangmessungen mit der Pilot-Anlage der experimentelle Nachweis zu erbringen, daß die Koppelungseigenschaften in der Trenndüsen-Kaskade bei periodischer Erregung kritischer Eingangsgrößen weder eine Neigung zu oszillatorischer 17 18 19 Instabilität hervorrufen , noch daß Resonanzüberhöhungen von Betriebsgrößen auftreten.

- 15) G. Pressler, Regelungstechnik, Bibliographisches Institut, Mannheim, Bd. 1, S. 316-345 (1967).
- 16) W. Oppelt, Kleines Handbuch technischer Regelvorgänge, Verlag Chemie, Weinheim, S. 478-492 (1964).
- 17) W. Oppelt, E. Wicke, Grundlagen der chemischen Prozeßregelung, Oldenbourg Verlag, München-Wien, S. 133-137 (1964).
- 18) J. Hajek, Vereinfachte Stabilitätskriterien für Regelsysteme, Regelungstechnik, Bd. 7, H.5, S. 170-174 (1959).
- 19) R. Starkermann, Gegenseitige Beeinflussung der Regelgrößen in Mehrfachsystemen, Regelungstechnik, Bd. 7, H. 9, S. 301-306 (1959).

Für die folgende Beschreibung der Frequenzgangmessungen werden die Pilot-Anlage als Regelstrecke und die Düsenvordrucke $p_{0,1} \cdots p_{0,10}$ als die <u>Ausgangsgrößen x</u> dieser Regelstrecke betrachtet²⁰⁾.

Als <u>Eingangsgrößen x</u> wurden einerseits die Stromstärken τ_z des Zusatzgases und U₃ des UF₆-Rückspeisestromes (gemessen durch die Meßblendenvordrucke p2 und p3) sowie der Austragungsdruck p12 benutzt, denen unter Benutzung der vorhandenen Regler periodische Änderungen aufgeprägt werden konnten.

Andererseits wurden als representative Beispiele für die Eingangsgrößen "Kerngasrückstau" und "Expansionsverhältnis" in den einzelnen Stufen der Kaskade die als Stellgrößen gekennzeichneten Durchflußziffern a_{RV2} und a_{NV5} der Regulierventile RV2 und NV5 zweier in der Kaskadenmitte liegender Stufen periodischen Änderungen unterworfen. Dazu wurde den handbetätigten Ventilen RV2 und NV5 jeweils ein Magnetventil mit geeigneter Durchflußziffer parallel geschaltet, so daß durch deren Betätigung sprunghafte, periodische Änderungen dieser Eingangsgrößen erzeugt werden konnten.

Durch die ausschließliche Benutzung von Drucken als Ausgangsgrößen x_a konnten auch verhältnismäßig hochfrequente Vorgänge untersucht werden. Da die Druckaufnehmer²¹⁾ der

²⁰⁾ Wegen der relativ niedrigen Ansprechgeschwindigkeit der zur Messung der UF₆-Konzentration benutzten Wärmeleitungs-Meßzellen (Zeitkonstante ca. 1 min) konnten die Regelgrößen N₀ 1...N₀ im oberen Frequenzbereich als Ausgangsgrößen meßtechnisch nicht erfaßt werden. Für die hier vorliegende Aufgabenstellung ist ihre Messung insofern nicht erforderlich, als p und N über den Düsendurchsatz verknüpft sind, so daß alle Konzentrationsänderungen auch über die Druckänderungen sichtbar werden.

²¹⁾ Hersteller Fa. CEC, Typ 4-353.

Pilot-Anlage sehr kleine Zeitkonstanten unter 100 msec besitzen,wurde die obere Grenze des zugänglichen Frequenzbereiches auf der Nachweisseite durch die Zeitkonstanten der Meßverstärker (ca. 0,5 sec) und der Registriergeräte bestimmt und lag bei etwa 0,5 Hz.

3.1 Die Erzeugung periodischer Änderungen der Eingangsgrößen und die Messung des Frequenzganges mit einem Frequenzgang-Analysator

Für die Untersuchungen stand ein Frequenzgang-Analysator "Digital Transfer Function Analyser JM 1600" von Solartron zur Verfügung. Dieses Gerät besteht aus einem Frequenzgenerator und einem Correlator. Der Generator kann Wechselspannungen (Sinusschwingungen, Rechteck- und Rampenfunktionen) mit Frequenzen von 10⁻⁵ bis 160 Hz und Amplituden von 0 bis 10 Volt erzeugen. Der Correlator ist in der Lage, das Amplitudenverhältnis R und den Phasenverschiebungswinkel Ø zwischen einer im Generator erzeugten und in ein System eingegebenen Sinusspannung und einem aus dem System herauskommenden und dem Correlator zugeführten Meßsignal mit einer Empfindlichkeit von 100 mV bis 300 V auf digitale Weise zu berechnen.

Zur Erzeugung der gewünschten periodischen Änderung einer Eingangsgröße wurde der konstanten Sollwertspannung des entsprechenden Reglers die im Generator erzeugte sinusförmige Wechselspannung entsprechender Amplitude und Frequenz überlagert. Abb. 3 zeigt das Prinzip-Schaltbild der Meß- und Regeleinrichtung für das Beispiel der Frequenzgangmessung bei periodischer Störung der UF₆-Rückspeisestromstärke U₃. Parallel zu der Messung mit dem Frequenzgang-Analysator konnten die Meßsignale der betrachteten Eingangsgröße und ausgewählter Ausgangsgrößen mittels eines Mehrkanal-Linienschreibers registriert werden.

- 14 -

<u>Abb. 3:</u> Meßschaltung zur Aufnahme des Frequenzganges für das im Text erläuterte Beispiel einer periodischen Störung der UF₆-Rückspeisestromstärke U₃.

н СЛ І Wegen der begrenzten Verstellgeschwindigkeit der Regelventilantriebe tritt bei den Versuchen eine zusätzliche, unerwünschte frequenzabhängige Phasenverschiebung zwischen der Sollwertvorgabe und dem Istwert der Eingangsgröße auf, so daß die gesuchte, tatsächliche Phasenverschiebung in Abhängigkeit von der Frequenz im Differenzmeßverfahren ermittelt werden mußte. Dazu wurden in einer 1. Meßreihe beispielsweise zunächst der Phasenwinkel \emptyset_1 (\vee_U) zwischen der im Generator erzeugten sinusförmigen Sollwertschwankung für den Regler R3 und der am Druckaufnehmer vor der Meßblende D3 gemessenen Istwertschwingung p3_{ist} ermittelt, wozu das Druckmeßsignal des Meßblendenvordruckes p_{3ist} in den Correlator eingegeben wurde. Aus einer Reihe von zeitlich nacheinander erfolgten Meßwert-Anzeigen am Correlator wurde ein Mittelwert $\overline{\emptyset_1}(\underline{v}_U)$ gebildet.

In einer 2. Meßreihe wurde dann die Gesamtphasenverschiebung zwischen der Sollwertschwingung am Regler R3 und der dem Correlator zugeführten Meßspannung der betrachteten Ausgangsgröße, z.B. des Düsenvordruckes $p_{0,10}$ der Stufe 10, nach derselben Methode zu $\overline{\emptyset_2(\nabla_{U_3})}$ bestimmt. Die Differenz aus den beiden Meßwerten ergab den tatsächlichen Phasenwinkel Ø zwischen Eingangsgröße und Ausgangsgröße, in diesem Beispiel die Phasenverschiebung $\emptyset_{(U_3,p_0,10)}(\nabla_{U_3})$ zwischen dem Meßblendenvordruck p3 (bzw. dem UF₆²Rückspeisestrom U₃) und dem Düsendruck der Stufe 10 $p_{0.10}$.

Die normierten Amplitudenverhältnisse, im vorliegenden Beispiel $(\overline{\Delta p_0}, 10/p_0, 10)/(\overline{\Delta p_3}/p_3)$, wurden aus direkten Ablesungen der Ausgangsamplitude $\overline{\Delta p_0}, 10$ und der Eingangsamplitude $\overline{\Delta p_3}$ mit dem Digital-Voltmeter der Meßwerterfassung der Pilot-Anlage ermittelt. Für die Normierung wurden der Sollwert der betrachteten Eingangsgröße, hier des Meßblendenvordruckes p3, und der Sollwert des Düsenvordruckes $p_{0.5}$ der betrachteten Stufe s verwendet.

3.2 Ermittlung des Frequenzganges aus der Registrierung der Eingangs- und Ausgangsgrößen mit Mehrkanal-Linienschreibern

Gleichzeitig zu den Messungen mit dem Frequenzgang-Analysator und in allen Fällen, wo wegen nicht mehr ausreichender Größe der Ausgangsamplituden dessen Benutzung nicht möglich war, wurde der zeitliche Verlauf der Eingangsgröße und einer oder aller zehn Ausgangsgrößen P_{0,s} mit Hilfe eines Zweikanal-Schreibers vom Typ Moseley 7100 B oder mit einem Zwölfkanal-Schreiber vom Typ Linseis L 660 aufgezeichnet.

Ein typisches Beispiel für eine solche Registrierung mit dem Zweikanal-Schreiber ist in Abb. 4 gezeigt. Aufgezeichnet wurde der Meßblendenvordruck p3 (Eingangsgröße, Sollwert 45,8 Torr) und der Düsenvordruck $p_{0,10}$ (Ausgangsgröße, Sollwert 40,7 Torr). Die Störfrequenz $\sqrt{}$ betrug bei diesem Versuch 0,006 Hz und die Amplitude der Eingangsschwingung erreichte mit $\overline{\Delta p3} = \pm 8,8$ Torr ca. 20 % Abweichung vom Sollwert.

Aus diesen Diagrammstreifen wurde die Phasenverschiebung zwischen Eingangs- und Ausgangsgröße unabhängig vom rechnerischen Ergebnis des Correlators graphisch ermittelt, wobei die mechanische Versetzung der Schreibernadeln gegeneinander berücksichtigt wurde. Auf diese Weise standen bei sinusförmigen Vorgängen für die Auswertung 2 Meßwerte der Phasenverschiebung $\emptyset(\mathcal{V})$ bei einer Frequenz zur Verfügung. Um die Schreiberdiagramme der Linien-Schreiber genauer auswerten zu können, wurde bei höheren Frequenzen der Nullpunkt unterdrückt und die Empfindlichkeit erhöht.

Bei der graphischen Bestimmung des Phasenwinkels Ø wurde der Mittelwert aus den Ergebnissen 4 verschiedener Auswertungen gebildet, nämlich den Zeitdifferenzen zwischen den Maxima, den Minima, den Nulldurchgängen von + nach und von - nach +, die an verschiedenen, beliebig ausgewählten Stellen der Registrierkurven gewonnen wurden.

Abb. 4. Beispiel einer Registrierung der Eingangsgröße Meßblendenvordruck p3 und der Ausgangsgröße Düsenvordruck p_{0,10} bei sinusförmiger Störung des UF₆-Rückspeisestromes U₃ mit 0,006 Hz (Probenentnahmebehälter geschlossen).

18

3.3 Die Ausführung der Versuche mit der Pilot-Anlage

A.) Die periodischen Änderungen der Eingangsgrößen

In den Vorversuchen hatte sich gezeigt, daß es aufgrund des geringen Volumens der UF₆-Abscheidung nicht möglich war, bei periodischen Änderungen des Meßblendenvordrukkes p2 den Austragungsdruck p12 mit dem Regler R1 konstant zu halten. Ebenso war es nicht möglich, den Meßblendenvordruck p2 mit dem Regler R2 bei periodischen Änderungen des Austragungsdruckes p12 konstant zu halten. Um dies zu erreichen, wurde für die in dieser Arbeit beschriebenen Versuchsreihen ein He-Vorratsbehälter VB mit 10001 Inhalt als reines He-Puffer-Volumen der UF₆-Abscheidung nachgeschaltet (s. Abb. 2). Damit war es möglich, für jede der "äußeren" Eingangsgrößen p2, p3, p12 rückwirkungsfreie periodische Änderungen mittels der vorstehend beschriebenen Aufschaltung der vom Frequenzganganalysator gelieferten Führungsgröße x_e* auf den Sollwerteingang des betreffenden Reglers zu erzeugen, da nunmehr die beiden übrigen Regler in der Lage waren, die vorgeschriebenen Sollwerte ihrer Regelgrößen innerhalb der Nachweisgenauigkeit einzuhalten. Dies galt für den gesamten erfaßten Frequenzbereich, da insbesondere bei hohen Störungsfrequenzen nur relativ kleine Störamplituden auszuregeln waren.

Für diese drei Eingangsgrößen konnten aufgrund der Verstellgeschwindigkeiten der betreffenden Stellglieder sinusförmige Änderungen bis zu einer oberen Frequenz von ca. 0,02 Hz erzeugt werden. Bei höheren Frequenzen ergaben sich rampenförmige Änderungen, worauf bei der Diskussion der einzelnen Untersuchungsergebnisse zurückzukommen ist.

Diese Methode konnte für die Untersuchungen periodischer Änderungen des Kerngasrückstaus und des Expansionsverhältnisses nicht verwendet werden, da die beiden Stellglieder, das Kerngasrückstauventil RV2 und das Verdichter-Nebenschlußventil NV5, nicht mit einem Regler versehen werden konnten. Als Form der Störungen wurden deshalb periodische, sprunghafte "Änderungen ihrer Ventilstellungen" gewählt.

Zur Erzeugung dieser gewünschten "Stellgrößenänderungen" wurden parallel zu den Ventilen RV2 und NV5 elektro-pneumatische Ventile der Fa. VAT eingebaut (siehe Abb. 2). Diese elektro-pneumatischen Ventile können vom Schaltpult der Kontrollwarte aus über eine Fernbedienung betätigt werden. Im Normalzustand sind diese Ventile geschlossen. Öffnet man die Ventile, so entspricht dies einer plötzlichen Erhöhung des durchströmten Querschnitts der Ventile RV2 bzw. NV5, was gleichbedeutend ist mit einer plötzlichen Erhöhung ihrer Durchflußziffern a_{RV2} bzw. a_{NV5} um einen konstanten Betrag. Eine Periode mit der Schwingungsdauer au (sec) wird in 2 gleich große Zeitabschnitte aufgeteilt. Im ersten Zeitabschnitt ist das elektro-pneumatische Ventil (EV) geöffnet, im zweiten geschlossen, so daß sich eine Folge symmetrischer Rechteckimpulse um den mittleren Wert der Durchflußziffer ergibt. Als typisches Beispiel ist hierfür in Abb. 5 die sich ergebende periodische Änderung des Kerngasdruckes $P_{K,4}$ bei einer Frequenz von 0,00417 Hz (Impulsdauer 2 min) gezeigt.

B.) Veränderungen des Stufenvolumens

Zur Entnahme von Gasproben für Meßzwecke sind in jeder Stufe der Kaskade sogen. Probenentnahmebehälter parallel zu den Verfahrensgasleitungen angeschlossen, die durch Ventile absperrbar sind, so daß die Proben ohne Störung des Kaskadenbetriebs entnommen werden können²². Das Volumen der Behälter für die Proben des Ausgangsgases (Druck p_0) und der schweren Fraktion (Druck p_K) beträgt jeweils etwa 2 Liter, die Behälter für die Proben der leichten Fraktion

²²⁾ E.W. Becker, G. Frey, R. Schütte, Planung und Bau einer 10-stufigen Pilot-Anlage für das Trenndüsenverfahren KFK 702 (1968).

<u>Abb. 5:</u> Aufzeichnung des zeitlichen Verlaufs der Eingangsgröße Kerngasdruck $p_{K,4}$ der Stufe 4 und der Ausgangsgröße Düsenvordruck $p_{0,3}$ der Stufe 3 bei einer periodischen, sprunghaften Änderung der Durchflußziffer des zur Stufe 4 gehörenden Kerngasrückstauventils RV2 mit einer Periodendauer T = 4 min (Probenentnahmebehälter geschlossen).

- 21 -

(Druck p_M) haben ca. 10 Liter Inhalt. Das Gesamtvolumen und der Inhalt an Verfahrensgas der drei Behälter jeder Stufe entsprechen ungefähr dem Volumen und Gasinhalt der Stufe selbst, so daß durch das Zuschalten aller drei Behälter das Stufenvolumen und der Stufeninhalt fast genau verdoppelt werden können. Alle folgenden Messungen der Frequenzgänge in der Kaskade wurden sowohl mit geschlossenen als auch mit geöffneten Probenbehältern durchgeführt. Es bleibt dabei zu beachten, daß die Probenbehälter über Probenentnahmeleitungen NW 10 angeschlossen sind²², durch deren Strömungswiderstand neben dem reinen Volumeneffekt noch eine zusätzliche Dämpfung hervorgerufen wird.

4. Die Auswirkungen periodischer Änderungen der Eingangsgrößen am Kaskadenkopf

4.1 Periodische Änderungen des UF₆-Rückspeisestromes U₃

Bis zu Frequenzen von 0,02 Hz betrug die relative Erregeramplitude $\overline{\Delta U_3}/U_3$ des UF₆-Rückspeisestromes U₃ bei den Messungen etwa ± 20 % und es konnten sinusförmig verlaufende Stromstärkeänderungen erzeugt werden.

Bei Frequenzen oberhalb 0,02 Hz konnte der Motor des Reglers R3 wegen seiner begrenzten Drehzahl der aufgeprägten Sollwertänderung nicht mehr schnell genug folgen, so daß der Meßblendenvordruck p3 anstelle einer harmonischen Schwingung eine nicht völlig symmetrische Rampenfunktion beschrieb und die Eingangsamplitude $\overline{\Delta}$ U3 zugleich mit zunehmender Frequenz kleiner wurde.

Bei Frequenzen oberhalb von 0,06 Hz versagte der Correlator bei der Berechnung des Gesamt-Phasenwinkels \emptyset_2 wegen der zu kleinen Ausgangsamplitude der Druckmeßsignale, so daß bei höheren Frequenzen nur der aus der graphischen Auswertung der Schreiberdiagramme gewonnene Meßwert für den Phasenwinkel $\emptyset_{(U_3, P_{0.10})}$ verwendet werden konnte.

A.) Der Frequenzgang des Düsendruckes p_{0,10} in der Kopfstufe

Zunächst wurde nur der Düsenvordruck p_{0,10} in der Kopfstufe beobachtet (s. z.B. Abb. 4) und die in Abb. 6 wiedergegebene Abhängigkeit der normierten Störungsamplitude und des Phasenwinkels gemessen.

Das normierte Amplitudenverhältnis (Abb. 6a) zeigt für geschlossene wie für geöffnete UF₆-Probenentnahmebehälter einen monotonen Abfall mit anwachsender Frequenz. Das normierte stationäre Amplitudenverhältnis (V_{U_3} =0) wurde aus der im stationären Zustand der Pilot-Anlage aufgenommenen statischen Kennlinie (Abb. 7) ermittelt, bei der die Ausgangsgröße Düsenvordruck p_{0,10} über der Eingangsgröße Meßblendenvordruck p3 aufgetragen ist, wobei von dem in Kap. 2.1 angegebenen Soll-Betriebszustand ausgegangen wurde. Bei einer Frequenz von 0,05 Hz ist die Auswirkung der Störungen bei geschlossenen UF₆-Probenentnahmebehältern auf etwa 1/3 des stationären Wertes abgesunken und bei 0,2 Hz sind keine Störungsamplituden mehr meßbar.

Betrachtet man den Verlauf des Phasenwinkels Ø (Abb. 6b), so stellt man fest, daß dieser bei den Versuchen mit geschlossenen und offenen UF₆-Probenentnahmebehältern mit relativ großer Anfangssteigung aus dem Ursprung herausläuft, wie es für stark gedämpfte Systeme typisch ist. Schon bei 0,01 Hz erreicht der Phasenwinkel bei geschlossenen UF₆-Probenentnahmebehältern einen Wert von 30° und bei 0,12 Hz einen Winkel von 90° . Oberhalb von 0,1 Hz war eine Winkelbestimmung nicht mehr sicher ausführbar, weil

- 23 -

- 24 -

Abb. 6: Frequenzganganalyse am Kaskadenkopf

- a) <u>Amplitudengang</u>: Die Frequenzabhängigkeit der normierten Störungsamplitude (△p0,10/p0,10)/(△U₃/U₃) des Düsenvordruckes p0,10 in der Stufe 10 (Kopfstufe) bei periodischer Variation des UF₆-Rückspeisestromes U₃ mit der Erregerfrequenz V_{U3}.
- b) <u>Phasengang</u>: Die Abhängigkeit des Phasenwinkels Ø(U₃, p₁₀) zwischen dem UF -Rückspeisestrom U₃ und dem Düsenvordruck p_{0,10}in der Kopfstufe von der Erregerfrequenz √U₃.
 o---- o Probenentnahmebehälter geschlossen, g--- o geöffnet.

<u>Abb. 7:</u> Im stationären Zustand der Pilot-Anlage aufgenommene statische Kennlinie mit dem Meßblendenvordruck p3 als Eingangsgröße und dem Düsenvordruck P_{0,10} der Stufe 10 als Ausgangsgröße. die auftretenden Amplitudenwerte zu niedrig lagen. In der Ortskurvendarstellung dieses Frequenzganges (Abb. 8) ist der Bereich der höheren Phasenwinkel graphisch extrapoliert worden.

Aus beiden Darstellungsarten wird erkenntlich, daß die Pilot-Anlage bei Versuchen mit geöffneten UF₆-Probenentnahmebehältern eine noch stärkere Abnahme der Störungsamplitude und ein noch schnelleres Anwachsen des Phasenwinkels mit zunehmender Frequenz aufweist, was durch eine, die Dämpfung erhöhende Speicherwirkung der zu den Düsen-, Mantel- und Kerngasleitungen parallel geschalteten Volumina bewirkt wird.

Eine genauere Analyse der beobachteten Druckänderungen $P_{0,10}$ zeigt, daß die Druckschwankungen leicht unsymmetrisch verlaufen und im eingeschwungenen Zustand auch unsymmetrisch zu ihrem Ausgangswert liegen. Die zur Kontrolle aufgenommene statische Kennlinie in Abb. 7 läßt im untersuchten Änderungsbereich der UF₆-Stromstärke U₃ bzw. des Meßblendenvordruckes p3 eine nur geringfügige Nichtlinearität erkennen, die für den beobachteten Effekt allenfalls zum Teil verantwortlich gemacht werden kann. Hieraus ergibt sich ein Hinweis, daß über die stationären Nichtlinearitäten hinaus erwartungsgemäß dynamische Nichtlinearitäten auftreten²³⁾. Da diese Unsymmetrien die Auswertung der Versuche nicht beeinträchtigten, wurde den Ursachen nicht weiter nachgegangen.

- 26 -

²³⁾ W. Oppelt, Kleines Handbuch technischer Regelvorgänge, Verlag Chemie, Weinheim, S. 493-527 (1964).

Abb. 8: Ortskurve des Frequenzganges am Kaskadenkopf gemäß Abb. 6. Aufgetragen ist das normierte Amplitudenverhältnis (\$\Delta P0,10/P0,10) / (\$\Delta U_3/U_3\$) als Zeiger mit dem Phasenwinkel \$\Omega(U_3,P0,10)\$. o----o Probenentnahmebehälter geschlossen, \$\Delta ---- geöffnet. B) Die Fortpflanzung periodischer Störungen der UF₆-Rückspeisestromstärke U₃ vom Kopf zum Fuß der Trenndüsen-Kaskade

In den folgenden Messungen wurde ermittelt, wie sich die periodischen Störungen des UF₆-Rückspeisestromes U₃, ausgehend von der Eingriff-Stelle am Kaskadenkopf, auf den Betriebszustand der übrigen Trenndüsenstufen auswirken. Die Linienschreiberregistrierung in Abb. 9 zeigt als typisches Beispiel den zeitlichen Verlauf der Düsenvordrucke $P_{0,s}$ aller Stufen 1-10 bei einer sinusförmigen Änderung von U₃ mit der Frequenz V = 0,004 Hz. Man erkennt, daß der im vorstehenden Abschnitt ausführlich betrachtete Düsenvordruck $P_{0,10}$ der Stufe 10 von den Störungen am stärksten betroffen wird. Kaskadenabwärts klingen die Störungsamplituden sehr rasch ab, so daß die Auswirkungen der Störungen in der Fußstufe um etwa eine Größenordnung kleiner sind.

Das Ergebnis der entsprechenden Messungen bei anderen Frequenzen ist in Abb. 10 dargestellt. Abb. 10a zeigt die Abhängigkeit der normierten Störungsamplitude der Düsenvordrucke $p_{o,s}$ von der Stufenzahl s für fünf verschiedene Periodendauern τ der Störungen. Die Messungen zeigen, daß die in Abb. 9 (τ = 4 min) erkennbare Abnahme des Störungseinflusses in Richtung zum Kaskadenfuß hin mit zunehmender Frequenz noch ausgeprägter wird, so daß mit wachsender Störfrequenz die Zahl der betroffenen Stufen unterhalb der Eingriff-Stelle monoton abnimmt. Der steile Abfall der Störungsamplituden zeigt das hohe Dämpfungsmaß der Trenndüsen-Kaskade.

Die Auftragung des Phasenverlaufs über der Stufen-Nr. s in Abb. 10b zeigt einen nahezu linearen Anstieg des Phasenwinkels Ø vom Kaskadenkopf zum Kaskadenfuß hin, dessen Steigung mit wachsender Störfrequenz zunimmt.

Periodische Störung der UF6-Rückspeisung U3 (V=0,004Hz)

<u>Abb. 9:</u> Registrierung der Düsenvordrucke p₀ der Stufen 1-10, des Meßblendenvordruckes p3 und der aufgeschalteten Sollwertänderung x^{*} bei einer sinusförmigen Variation des UF₆-Rückspeisestromes U₃ mit einer Frequenz von 0,004 Hz ($\tau \approx 4$ min, Probenentnahmebehälter geschlossen). 29

Eingriff-Stelle

- <u>Abb. 10:</u> Der Einfluß periodischer Störungen des UF₆-Rückspeisestromes U₃ am Kaskadenkopf auf den Betriebszustand der Trenndüsenstufen
 - a) Die normierte Störungsamplitude (△p_{0,s}/p_{0,s})/ (△U₃/U₃) der Düsenvordrucke p_{0,s} in Abhängigkeit von der Stufennummer s. Parameter ist die Periodendauer τ der aufgeprägten periodischen Sollwertabweichung des UF₆-Rückspeisestromes U₃.
 - b) Der Phasenwinkel Ø(U3, po.s) zwischen dem UF6-Rückspeisestrom U3 und dem Düsenvordruck po,s in Abhängigkeit von der Stufennummer s für verschiedene Periodendauern T der Störungen.

o-----o Probenentnahmebehälter geschlossen; --- geöffnet. Bei geöffneten UF₆-Probenentnahmebehältern tritt dieses Anwachsen des Phasenwinkels noch verstärkt hervor. Ein linearer Anstieg des Phasenwinkels Ø über der Stufen-Nr. s bedeutet, daß die Laufzeit der Störungen vom Kaskadenkopf in Richtung Kaskadenfuß der durchlaufenen Stufenzahl proportional ist. Damit läßt sich eine Fortpflanzungsgeschwindigkeit c der Störungen des UF₆-Rückspeisestromes U₃ aus der Stufenzahl s, der Schwingungsdauer τ der Störungen und dem gemessenen Phasenwinkel Ø nach folgender Beziehung bestimmen:

$$c = \frac{s}{\tau \cdot \theta} \cdot 2\pi$$
 (3)

In Abb. 11 ist die Fortpflanzungsgeschwindigkeit c der durch periodische Änderungen des UF₆-Rückspeisestromes U₃ verursachten Störungen in Abhängigkeit von der Frequenz der Störungen aufgetragen. Es ergibt sich, daß die Fortpflanzungsgeschwindigkeit mit wachsender Störfrequenz zunimmt. Da die Anzahl der betroffenen Stufen jedoch mit steigender Frequenz abnimmt, dürfte dieser Effekt keine zusätzlichen Probleme aufwerfen. Andererseits läßt sich ablesen, daß sehr langsame und dafür weiterreichendere Störungen etwa 100 sec benötigen, um sich in einer Nachbarstufe voll auszuwirken.

Die Spiralform des an der Stufe 1 gemessenen Frequenzganges des Düsenvordruckes p_{0,1} in der Ortskurvendarstellung (Abb. 12) ist aufgrund der gleichsinnigen Auswirkungen des frequenzabhängigen Dämpfungsmaßes und der frequenzabhängigen Fortpflanzungsgeschwindigkeit c gegenüber der des reinen Laufzeiteffektes durch eine mit wachsender Frequenz monoton zunehmende Krümmung gekennzeichnet.

- 32

<u>Abb. 12:</u> Ortskurve des Frequenzganges am Kaskadenkopf mit dem normierten Amplitudenverhältnis $(\Delta P_0, 1/P_0, 1)/(\Delta U_3/U_3)$ als Zeiger und dem Phasenwinkel $\emptyset_{(U_3, P_0, 1)}$ zwischen dem Düsenvordruck $P_{0,1}$ der Stufe 1 (Fußstufe) und dem UF₆-Rückspeisestrom U_3 in Abhängigkeit von der Errégerfrequenz V_{U_3} . Order Probenentnahmebehälter geschlossen; **G---G** geöffnet. ၊ ယ ယ Die Versuche zum Betriebsverhalten bei periodischen Störungen des Austragungsdruckes p12 wurden bis zu Frequenzen von 0,02 Hz mit einer relativen Erregeramplitude $\overline{\Delta p12}/p12$ von ca. \pm 5 % ausgeführt, wegen der mechanischen Trägheit des Reglers R1 nahm dieser Wert jedoch bei höheren Erregerfrequenzen $\sqrt{}$ etwas ab.

Die Frequenzganganalyse ergab auch hier, daß bei den Düsenvordrucken $p_{0,s}$ sämtlicher Stufen keinerlei Resonanzüberhöhungen auftreten. Die Abb. 13 gibt einen Überblick über den Einfluß der Störungen auf den Betriebszustand der Trenndüsen-Kaskade. Aufgetragen ist das Verhältnis der relativen Störungsamplitude $\Delta p_{0,s}/p_{0,s}$ zur relativen Erregeramplitude $\Delta p12/p12$ über der Stufen-Nr. s für vier Periodendauern τ . Der Düsenvordruck $p_{0,10}$ der Kopfstufe weist wiederum die größte Störungsamplitude auf. Man beobachtet hier eine noch raschere Abnahme der Störungsauswirkung vom Kaskadenkopf zum Kaskadenfuß hin, die sich mit zunehmender Frequenz verstärkt, so daß mit anwachsender Störfrequenz ebenfalls eine abnehmende Anzahl von Trenndüsenstufen von den Störungen betroffen wird.

Wegen der sehr niedrigen Absolutwerte der Störamplitude war die Messung der Phasenwinkel in den unteren Stufen der Kaskade sehr erschwert. Zunächst ist festzustellen, daß in Übereinstimmung mit dem stationären Antwortverhalten ⁵⁾⁷⁾ die UF₆-Konzentrationen N_{0,1-10} aller Stufen und die Düsendrücke p_{0,1-9} der Stufen 1-9 in ihren Phasen um mehr als 180° gegenüber der erregenden Schwingung des Druckes p12 verschoben sind, während für den Düsendruck p_{0,10} Phasenwinkel zwischen 0 und 100° gemessen wurden, deren Frequenzabhängigkeit praktisch quantitativ mit dem Phasengang in Abb. 6b übereinstimmt.

- 34 -

Kaskaden-Fuß

<u>Abb. 13:</u> Der Einfluß periodischer Störungen des Austragungsdruckes p12 am Kaskadenkopf auf den Betriebszustand der <u>Trenndüsen-Kaskade</u>. Aufgetragen ist das normierte Amplitudenverhältnis $(\Delta p_{0,s}/p_{0,s})/(\Delta p12/p12)$ der Düsenvordrukke p_{0,s} in Abhängigkeit von der Stufenzahl s für vier Periodendauern τ der Störungen bei geschlossenen Probenentnahmebehältern. н 35

Eingriff-Stelle

5. Die Auswirkungen periodischer Änderungen der Eingangsgröße "Helium-Rückspeisestrom $\overline{\tau_{\rm Z}}$ " am Kaskadenfuß

Mit Hilfe des Reglers R2 konnten bei diesen Versuchen sinusförmige Änderungen der Eingangsgröße mit konstanter Amplitude $\overline{\Delta \tau_Z}/\tau_Z \approx \pm 6$ % bis herauf zu einer Frequenz von 0,1 Hz erzeugt werden. Oberhalb 0,1 Hz nahm die Eingangsgröße die Gestalt einer unsymmetrischen, sägezahnförmigen periodischen Änderung an. In diesem Bereich waren jedoch die Amplituden der Ausgangsgrößen so niedrig, daß eine Auswertung in jedem Fall nicht sinnvoll gewesen wäre.

A.) Die Reichweite der Störungsauswirkungen vom Fuß zum Kopf der Trenndüsen-Kaskade

Aus den Untersuchungen des stationären Betriebsverhaltens der Pilot-Anlage ist bekannt, daß sämtliche Stufen der Kaskade von bleibenden Änderungen des Helium-Transports τ_Z praktisch gleich stark betroffen werden⁵⁾⁷⁾. Aus numerischen Berechnungen des stationären Verhaltens entsprechender Trenndüsen-Kaskaden mit größeren Stufenzahlen geht hervor, daß dies offensichtlich für Kaskaden mit beliebigen Stufenzahlen gültig ist und daß sich hieraus eine verfahrenstechnisch vorteilhafte Möglichkeit für die Steuerung des Lastzustandes einer Trenndüsen-Kaskade ergibt⁷⁾.

Der in Abb. 14a wiedergegebene Registrierstreifen zeigt, daß von einer sinusförmigen Änderung des Helium-Transports \mathcal{T}_Z mit einer Frequenz $\mathbf{v} = 0,004$ Hz (Schwingungsdauer $\mathcal{T} \approx 4$ min) ebenfalls alle Stufen der Pilot-Anlage praktisch gleich stark beeinflußt werden. Bei weiterer Erhöhung der Störfrequenzen zeigte sich jedoch eine kontinuierliche Abnahme der Störamplituden und schließlich eine eindeutige Abnahme der Störungsreichweite. Als Beispiel hierfür zeigt Abb. 14b, daß bei einer Frequenz von

Ap 2 [forn] 20 Sollwert pa (Xe) ω Istwert pz. •0 Stule 10 Apos [torr] ٥ ţ5 ø (a)a5 Zeit [min] 15 10 Periodische Störung des Heliumtransports au_Z (v=0,004 Hz) Ap2 [Torr] 2,0 Sollwert pz (Xe) 1,0 ert p2 Stute 10 a APas [Torr] 1,5 6 D ¢ -1,0 3 0,5 2 1 1, Zoit [sec] 120 : 90 60 30 - L. 1....

<u>Abb. 14:</u> Registrierung der Düsenvordrucke p_o der Stufen 1-10, des Meßblendenvordruckes p2 und der aufgeprägten Sollwertänderung x^{*} bei sinusförmiger Variation des Helium-Transports \mathcal{T}_Z mit zwei unterschiedlichen Frequenzen $\mathcal{V}_{\mathcal{T}_Z}$, aber gleicher Amplitude $\Delta \mathcal{T}_Z$.

a.)
$$\nabla_{\tau_z} = 0,004 \text{ Hz}, \tau \approx 4 \text{ min}$$

b.) $\nabla_{\tau_z} = 0,1 \text{ Hz}, \tau = 10 \text{ sec}$

0,1 Hz die Auswirkungen der gleichen Störung mit fortschreitender Stufenzahl bereits so schnell abklingen, daß in der Kopfstufe 10 praktisch kein Effekt mehr zu erkennen ist.

Aus der Übersichtsdarstellung der Versuchsergebnisse in Abb. 15a wird diese Abnahme der Störungsreichweite quantitativ ersichtlich. Im Hinblick auf die für den Betrieb technischer Kaskaden hieraus zu ziehenden Schlußfolgerungen hat man sich zu vergegenwärtigen, daß die bei stationärer Änderung (𝒫 =∞) erkennbare Amplitudenabnahme in den Stufen 7-10 aus der Tatsache resultiert, daß außer ${m au}_7$ alle übrigen Betriebsbedingungen am Kaskadenkopf konstant gehalten werden, d.h., daß z.B. in einer 100-stufigen Kaskade lediglich die Stufen 97-100 diese Abweichung zeigen würden. Da andererseits bei einer Frequenz von 0,08 Hz (2 = 12,5 sec) bereits die fünf oberen Stufen der Pilot-Anlage von der Störung unberührt bleiben, kann man ausschließen, daß hierfür die regelungstechnischen Eigenheiten des Kaskadenkopfes verantwortlich sein könnten. Es ist vielmehr sicher, daß auch in Kaskaden mit größeren Stufenzahlen nicht mehr als etwa fünf Fußstufen von Störungen des Heliumtransports ${\mathcal T}_7$ betroffen werden, sofern deren Periodendauer unter 10 sec liegt. Da Durchflußregelungen mit wesentlich kleineren Zeitkonstanten technisch ohne weiteres möglich sind, würde eine betriebsmäßige Beeinflussung aller Stufen über den stationären Wert des Heliumtransportes ${m au}_{7}$ nicht durch dynamische Probleme erschwert sein.

B.) Die Fortpflanzungsgeschwindigkeit der Störungsauswirkungen

Bei der Auftragung der Phasenverschiebungen Ø über der Stufenzahl s (Abb. 15b)ergibt sich bei dieser Eingriffsart ein linearer Anstieg vom Kaskadenfuß zum Kaskadenkopf, aus dem nach dem Vorgang in Abschnitt 4.1, B die in Abb. 16 eingezeichneten

- <u>Abb. 15:</u> Der Einfluß periodischer Störungen des He-Rückspeisestromes τ_Z am Kaskadenfuß auf den Betriebszustand der Trenndüsenstufen.
 - a) Über der Stufennummer s ist die normierte Störungsamplitude ($\Delta p_0, s/p_0, s$)/($\Delta \tau_Z / \tau_Z$) der Düsenvordrucke p_0, s für Periodendauern zwischen $\tau = \infty$ und $\tau = 12,5$ sec aufgetragen.
 - b) Der Phasenwinkel Ø(𝔅Z,Po,s) zwischen dem He-Rückspeisestrom 𝔅Z und dem Düsenvordruck Po,s in Abhängigkeit von der Stufenzahl s für drei verschiedene Periodendauern 𝔅 der Störungen.
 o----o Probenentnahmebehälter geschlossen;□---□ geöffnet.

<u>Abb. 16:</u> Die Fortpflanzungsgeschwindigkeit c der Störungen bei periodischen Änderungen des He-Rückspeisestromes τ_Z (ausgehend vom Kaskadenfuß in Richtung zum Kaskadenkopf) mit der Frequenz τ_Z . Order Probenentnahmebehälter geschlossen; $\Box - - \Box$ geöffnet.

Fortpflanzungsgeschwindigkeiten errechnet wurden. Es stellt sich heraus, daß bei geschlossenen Probenbehältern die Fortpflanzungsgeschwindigkeit fast frequenzunabhängig ist, daß ihr Betrag jedoch um etwa eine Größenordnung über den Werten liegt, die bei der Ausbreitung der vom Kaskadenkopf kommenden Störungsauswirkungen gemessen wurden. Dem gegenüber ergeben sich bei geöffneten Probenentnahmebehältern Fortpflanzungsgeschwindigkeiten, die bei niedrigen Frequenzen nur etwa 50 % des obigen Wertes erreichen, mit anwachsender Frequenz jedoch monoton ansteigen und bei sehr hohen Störfrequenzen offenbar dem gleichen Grenzwert zustreben.

6. Die Auswirkungen periodischer Störungen in einer Einzelstufe in der Kaskadenmitte

6.1 Änderungen des Kerngasrückstaus in Stufe 4

Durch das periodische Öffnen und Schließen des zum Kerngasrückstau-Ventil RV 2 parallelgeschalteten Magnetventils wurde eine praktisch verzögerungsfreie Änderung des Kerngasrückstaus in Stufe 4 erzielt (s. Abb. 5). Wie im Fall stationärer Eingriffe⁵⁾⁷⁾ wird auch hier die darunter liegende Stufe 3 am stärksten betroffen und zwar im Sinne eines sehr schnell jedem Ventilöffnen folgenden steilen Druckanstiegs p_{0.3} als auch im Sinne der stärksten Anhebung des Mittelwertes dieses Druckes im Vergleich zu den übrigen Stufen. Die darunter liegenden Stufen zeigen diesen Effekt in monoton abnehmendem Ausmaß. In den Stufen 5-10 zeigt sich demgegenüber eine jeder Ventilöffnung relativ schnell folgende Druckabsenkung, deren Amplituden zur Stufe 10 hin monoton abnehmen. Dort sinken aber die mittleren Drucke nur wenig ab. Die unmittelbar betroffene Stufe 4 nimmt bei diesen Vorgängen eine Mittelposition mit schwacher positiver Druckänderung ein.

Dieses Verhalten kommt dadurch zustande, daß bei dieser periodischen Störung das zum Druckaufbau in den unteren Stufen benutzte Material den oberhalb der Eingriff-Stelle liegenden Stufen offenbar mit hoher Transportgeschwindigkeit entzogen und auch wieder zurückgespeist werden kann. Die Größenordnung dieser Transportgeschwindigkeit zeigte

sich deutlich bei Versuchen mit Periodendauern von 20 sec. wo bei voller Amplitude der Eingangsgröße p_{K,4} die Störungsauswirkungen in den Stufen 1 und 7 um eine Größenordnung niedriger sind als bei π = 4 min. Bei Schwingungsdauern von 4 sec ist der Bereich der meßbaren periodischen Störungen bereits auf die Stufen 2-6 begrenzt. Der als representatives Beispiel ausgemessene Frequenzgang des Düsenvordruckes p_{0.3} in Stufe 3 (Abb. 17) zeigt neben dem raschen Abfallen der Ausgangsamplituden und dem dämpfenden Einfluß der zusätzlichen Volumina einen linearen Anstieg des Phasenwinkels mit der Frequenz. Daraus läßt sich ablesen, daß für die Fortpflanzung der Störung von der Eingriff-Stelle in Stufe 4 zur Düse 3 eine im erfaßten Bereich frequenzunabhängige Ausbreitungsgeschwindigkeit wirksam ist, die bei geschlossenen Probenbehältern den beachtlichen Wert von 1,8 Stufen/sec besitzt und bei geöffneten Behältern 1,6 Stufen/sec beträgt.

6.2 Änderungen des Expansionsverhältnisses in Stufe 5

Während sich bei entsprechenden Versuchen mit periodischen Änderungen des Expansionsverhältnisses $p_{0,5}/p_{M,5}$ qualitativ ähnliche Erscheinungen der zunehmenden Störungslokalisierung mit wachsender Störfrequenz ergaben, zeigen die quantitativen Angaben im Frequenzgang der Abb. 17 zwischen der Eingangsgröße $p_{M,5}$ und der am stärksten betroffenen Ausgangsgröße $p_{0,4}$, daß in den wirksamen Transportmechanismen offensichtlich erhebliche Unterschiede möglich sind. Die aus dem linearen Verlauf des Phasenwinkels Ø berechneten Ausbreitungsgeschwindigkeiten betrugen hier nämlich nur 0,29 Stufen/sec bzw. 0,24 Stufen/sec bei geschlossenen bzw. geöffneten Probenbehältern.

- 42 -

- <u>Abb. 17:</u> Frequenzganganalyse bei periodischen Änderungen des Kerngasexpansionsverhältnisses p₀/p_K (Kerngasrückstauänderung) und des Expansionsverhältnisses p₀/p_M in einer Trenndüsenstufe in der Mitte der Kaskade.
 - a.) <u>Amplitudengang</u>: Die normierten Störamplituden des Düsenvordruckesp in der jeweils am stärksten betroffenen Nachbarstufe in Abhängigkeit von den Erregerfrequenzen V_{PK,4} bzw. V_{PM,5}

- 43 -

7. Diskussion der Meßergebnisse

Wie in der vorausgehenden Darstellung der Messungen zum Teil bereits geschehen, bietet es sich an, die zusammenfassende Diskussion der Ergebnisse ebenso nach den Gesichtspunkten der <u>Anlagenstabilität</u>, der <u>Fortpflanzung von Störungen</u> und ihrer <u>Rückwirkungen auf den Betriebszustand</u> der Trenndüsen-Kaskade zu untergliedern.

A.) Das Stabilitätsverhalten der Trenndüsen-Kaskade

In den Untersuchungen wurde bei keiner Frequenz eine Resonanzüberhöhung festgestellt. Gegenüber periodischen Änderungen ihrer Betriebsgrößen reagiert die Trenndüsen-Kaskade wie ein über-aperiodisch gedämpftes System, in dem die Störungsamplituden mit wachsender Erregerfrequenz und mit wachsendem Abstand vom Ort der Störungseinleitung monoton abnehmen.

Dieses gilt sowohl für die vom Betrieb der UF₆-Abscheidungsanlage abhängigen Betriebsgrößen, die Stromstärke τ_Z des leichten Zusatzgases (Störungseinleitung am Kaskadenfuß), die UF₆-Stromstärke U₃ und den Austragungsdruck p12 (Störungseinleitung am Kaskadenkopf), als auch für Änderungen des Kerngasrückstaus p_k/p₀ und des Expansionsverhältnisses p₀/p_M in einzelnen Stufen der Kaskade. Daraus ergibt sich, daß die bei der Messung der Übergangsfunktionen der Kaskade gelegentlich zu beobachtenden "Überschwingvorgänge"⁶⁾ ihre Ursache nicht in einer systemeigenen Resonanzfrequenz haben, sondern durch Überlagerung der Sprungantworten verschiedener Vorgänge mit deutlich unterschiedlichen Zeitkonstanten entstehen.

- 44 -

B.) Die Fortpflanzungsgeschwindigkeiten periodischer Störungen in der Trenndüsen-Kaskade

Die Beobachtung sehr unterschiedlicher Zeitkonstanten in den Sprungantworten und sehr unterschiedlicher Ausbreitungsgeschwindigkeiten für verschiedene Arten der periodischen Störungen wirft die Frage nach den zugrunde liegenden Mechanismen auf. Wenn zwar im Rahmen der vorliegenden Arbeit eine quantitative Beantwortung nicht möglich ist, so sollen zumindest einige Modellvorstellungen entwickelt werden.

Der Ansatz zu einer qualitativen Interpretation der Ergebnisse findet sich in einer detaillierten Analyse des stationären Antwortverhaltens der Trenndüsen-Kaskade. Dabei stellt sich heraus, daß sich die stationären Betriebszustände der Kaskade als Folge einer bleibenden Änderung der in den vorhergehenden Abschnitten untersuchten Betriebsgrößen einerseits im Hinblick auf den Materialinhalt in den einzelnen Stufen in charakteristisicher Weise unterscheiden. Beispielsweise ist nach einer Erhöhung des UF₆-Rückspeisestromes U₃ um 5 % der UF₆-Inhalt I₁₁ der 10 oberen Stufen einer Kaskade im Mittel um etwa 2,4 % angestiegen, der Heliuminhalt I₇ dagegen nur um 0,5 % ²⁴⁾. Demgegenüber bewirkt eine Erhöhung des Heliumtransports \mathcal{T}_{z} um 5 % einen Anstieg des Heliuminventars von fast 4 % in allen Stufen, dagegen sinkt der UF₆-Inhalt der Stufen im Mittel um 0,9 % ²⁴⁾. Die unmittelbare Schlußfolgerung, daß der im Mittel etwa eine Zehnerpotenz betragende Unterschied zwischen den Ausbreitungsgeschwindigkeiten (vgl. Abb. 11 und 16) auf unterschiedlichen Transportmechanismen beruht, bestätigt sich in folgender Betrachtung.

24) Die Zahlenangaben stammen aus unveröffentlichten Berechnungen des stationären Betriebsverhaltens einer 100-stufigen Rechteck-Kaskade, die mit den Komponenten der Pilot-Anlage ausgerüstet ist: W. Fritz, R. Schäfer, R. Schütte, Interner Bericht des Instituts für Kernverfahrenstechnik der Universität und des Kernforschungszentrums Karlsruhe (1971).

Bei Erhöhung des UF₆-Rückspeisestroms U₃ steigen von allen Strömen in der Kaskade die Urandurchsätze U der betroffenen Stufen am stärksten an und zwar relativ stärker als deren UF₆-Abschälverhältnisse \mathscr{V}_{H} .Da die Sprungantworten einen monotonen Verlauf besitzen, gilt dies in etwa gleichem Ausmaß für alle Phasen des Zeitablaufs. Also ist die Akkummulation von UF6 in diesen Stufen die Folge eines Differenzeffekts zwischen UF₆-Strömen, der als zeitbestimmendes Element des Gesamtvorganges wirkt.Nimmt man hierbei an, daß der bei einer Störung resultierende UF₆-Transport von der Störfrequenz unabhängig ist, so ergibt sich in qualitativer Übereinstimmung mit dem experimentellen Befund eine zur Störfrequenz reziproke Amplitudenabnahme und eine näherungsweise frequenzproportionale Ausbreitungsgeschwindigkeit, die im Rahmen des Modelles unabhängig vom Stufenvolumen ist. Eine weitgehend gleichartige Beschreibung trifft bei Änderungen des Austragungsdrucks p12 zu. Hier ist im wesentlichen die Verschiebung von UF₆ zwischen der Stufe 10 und den Nachbarstufen der zeitbestimmende Schritt mit einer ähnlichen Zeitkonstanten, worauf man aus der nahezu gleichstarken Dämpfung mit wachsender Frequenz in Abb. 13 schließen kann.

Grundsätzlich anders verlaufen offensichtlich die <u>Materialver-</u> schiebungen bei Änderung des Heliumtransports. Da hier keine Änderungen der Abschälverhältnisse stationär auftreten und der zur Erhöhung des Heliuminventars benötigte He-Zustrom die Störungsursache selbst ist, ist hier mit einer Fortpflanzungsgeschwindigkeit zu rechnen, die durch die Verweilzeit des Verfahrensgases in einer Stufe

$$\theta = (I_{U} + I_{Z})/L_{o}$$
(4)

bestimmt wird, denn die etwa fünfmal kleinere Erniedrigung des UF₆-Inventars kann offensichtlich durch die gleichzeitig erfolgende Erhöhung der UF₆-Stromstärken mittransportiert werden. Bei geschlossenen Probenbehältern beträgt die Verweilzeit $\theta = (2,2\cdot10^{-2} \text{ gMol/Stufe})/(1,39\cdot10^{-2} \text{ gMol/sec}) = 1,58 \text{ sec/Stufe},$ woraus eine Fortpflanzungsgeschwindigkeit von 0,64 Stufen/sec folgen würde. Bei geöffneten Probenbehältern ist $\theta = 2,89$ sec/ Stufe und es wäre eine Ausbreitungsgeschwindigkeit c = 0,35Stufen/sec zu erwarten. Da die zusätzlichen Behälter jedoch nur von einem Teilstrom durchspült werden,ist es nicht verwunderlich, daß der erwartete Effekt nur bei sehr niedrigen Frequenzen voll in Erscheinung tritt und bei sehr hohen Frequenzen offentsichtlich nur der voll durchströmte Stufenanteil wirksam bleibt. Da die Ankopplung der Behälter für Druckänderungen praktisch trägheitslos ist, können hier nur die Konzentrationsänderungen zeitbestimmend sein.

Bei den periodischen Störungen des Kerngasrückstaues und des Expansionsverhältnisses wird überwiegend UF₆ durch die unmittelbar betroffene Stufe auf und ab transportiert und da bei Schwingungsdauern unter 2 min eine Nachlieferung von UF₆ vom Kaskadenkopf her nicht mehr zur Wirkung kommt, pendelt eine gewisse UF₆-Menge zwischen den Nachbarstufen der Eingriff-Stelle hin und her.

Der Unterschied in der Störungsausbreitung bei Änderungen des Kerngasrückstaus und des Expansionsverhältnisses in einer Stufe liegt deutlich erkennbar in der unterschiedlichen Beeinflussung der Abschälverhältnisse in der betroffenen Stufe. Im Falle der <u>Kerngasrückstau-Änderung</u> werden die Abschälverhältnisse für UF₆ und Zusatzgas etwa im erforderlichen Ausmaß gleichsinnig beeinflußt und man erwartet eine Ausbreitungsgeschwindigkeit der Größenordnung $1/\theta$.

Daß die für diese Pendelbewegung maßgebende Geschwindigkeit im Fall der Kerngasrückstauänderung etwa das doppelte der aus den Verweilzeiten θ errechneten Werte erreicht, kann nur daran liegen, daß ein wesentlicher Teil der Störungswirkung in dem trägheitslosen Druckeffekt Δp_{K_4} liegt, durch den die Abschälverhältnisse in Stufe 4 nahezu verzögerungsfrei und gleichsinnig beeinflußt werden. Infolge der hohen Ausbreitungsgeschwindigkeit ist auch die Reichweite dieser Störung kaskadenaufwärts relativ groß. Im Falle der <u>Änderungen des Expansionsverhältnisses</u> bleibt das Heliumabschälverhältnis praktisch unbeeinflußt und die Änderungen des UF₆-Abschälverhältnisses betragen weniger als die Hälfte, so daß eine deutlich niedrigere Ausbreitungsgeschwindigkeit resultiert.

C.) Die Auswirkungen von Störungen auf den Betrieb technischer Trenndüsen-Kaskaden

Kaskadenabschnitte in technischen Trenndüsenanlagen werden aus etwa 50...300 identischen Trenndüsenstufen bestehen²,²)²⁵⁾ deren Betriebseigenschaften einerseits wie in der Pilot-Anlage durch die statischen Elemente Trenndüse und Drosselventil für Kerngasrückstau bei etwa gleicher Verweilzeit des Gases in den Stufen bestimmt werden, so daß ähnliche Zeitkonstanten zu erwarten sind. Unterschiede liegen in der Anwendung einer Kaskadenschaltung für $\mathcal{V}_U = 1/3$ und der Verwendung von Strömungsverdichtern anstelle der in der Pilot-Anlage benutzten Rootsverdichter.

Aus Berechnungen des Übergangsverhaltens von Trenndüsen-Kaskaden mit einer Schaltung für $\mathcal{V}_U = 1/3$ geht hervor, daß deren Sprungantworten sowohl im zeitlichen Verlauf wie in der Verteilung der resultierenden stationären Sollwertabweichungen auf die Stufen in der Nachbarschaft der Eingriff-Stellen mit dem in der Pilot-Anlage mit $\mathcal{V}_U = 1/2$ beobachteten Verhalten bei nur geringfügigen Abweichungen übereinstimmen²⁶⁾. Obwohl entsprechende Rechnungen bei aufgeprägten periodischen Störungen bisher nicht ausgeführt wurden, kann man wahrscheinlich auch hier im wesentlichen das gleiche Verhalten erwarten.

- 25) E.W. Becker et al, The Separation Nozzle Process for Enrichment of U235. IV. UN Internat. Conf. Peaceful Uses Atomic Energy, Genf (1971), A/383.
- 26) F. Kronenberger, Berechnung des Übergangsverhaltens von Trenndüsen-Kaskaden mit dem Uranaufteilungsverhältnis $\mathscr{V}_{\mathrm{II}}$ = 0,33, Diplom-Arbeit, Karlsruhe (1971).

Die Unterschiede der Kennlinien zwischen Rootsverdichtern und Strömungsmaschinen bei Anschluß eines Verbrauchers mit druckproportionalem Moldurchsatz, wie es bei Trenndüsen der Fall ist, liegen in einer stärkeren Molekulargewichts-Abhängigkeit und einer geringeren Durchsatzabhängigkeit des Kompressionsverhältnisses von Strömungsmaschinen, solange die Betriebsbedingungen unterhalb der Pumpgrenze bleiben. In diesem Bereich sind gewisse quantitative Unterschiede in der Störungsausbreitung zu erwarten, jedoch dürften wie im Fall der mit Rootsverdichtern bestückten Kaskade alle vom Betrieb der UF_c-Abscheidung auf den Kaskadenkopf einwirkenden Störungen auf wenige Kopfstufen beschränkt bleiben und bei möglichen Unterschieden in den Störungsamplituden durch die gleiche Frequenzabhängigkeit der Störungsreichweiten gekennzeichnet sein. Auch für die Auswirkungen der Störungen des Heliumtransports auf die Fußstufen eines Kaskadenabschnitts ist weitgehende Übereinstimmung mit dem in dieser Arbeit gemessenen Verhalten zu erwarten.

In einer Trenndüsen-Kaskade sind Störungen an einer Einzelstufe (außer bei mechanischen Schadensfällen) nur bei Einregelungsarbeiten (Verstellen des Kerngasrückstau-Ventils) zu erwarten. Wie die Messungen gezeigt haben, werden die Auswirkungen einer solchen Ventilstellungsänderung relativ schnell auf die Nachbarstufen übertragen, bei vorübergehenden Fehleinstellungen unter 20 sec Dauer werden sie jedoch noch nicht über den Bereich der stationären Störungslokalisierung hinausgreifen.

Führt eine Fehlbedienung bei diesen Einstellarbeiten oder eine der sonstigen Störungsursachen zum Pumpen eines Verdichters, so sind, wie Abb. 17 zeigt, die Ausbreitungsgeschwindigkeit und Amplitude der aus dieser sekundären Störung (Erniedrigung des Kompressionsverhältnisses) folgenden Wirkungen besonders klein. Zusammenfassend läßt sich feststellen, daß alle in einer Trenndüsen-Kaskade der untersuchten Art auftretenden Störungen in ihren Auswirkungen auf eine kleine Zahl von Stufen lokalisiert bleiben und daß sich aus der Dynamik der Störungsausbreitung in einem Kaskadenabschnitt keine besonderen regelungstechnischen Probleme ergeben.

Wir danken Herrn Prof. Dr. E.W. Becker für das fördernde Interesse an dieser Arbeit.

Herrn J. Dröge und Herrn A. Mayer danken wir für die Unterstützung bei der Durchführung der Versuche und für die Mithilfe bei der Anfertigung der Zeichnungen.

Nomenklaturverzeichnis

Symbol	Maßeinheit	Bezeichnung
P _o , P _M , P _K	Torr	Düsengas-, Mantelgas-, Kerngasdruck
p12	Torr	Austragungsdruck
p2, p3	Torr	Vordruck der Meßblende D2 bzw. D3
L _o ,L _M ,L _K	gMol/h	Gemischstromstärke des Düsen-, Mantel-, Kerngases
U ₀ ,U _M ,U _K	gMol/h	UF ₆ -Stromstärke im Düsen-, Mantel-, K ern gas
z _o , z _M , z _K	gMol/h	Stromstärke des leichten Zusatzgases im Düsen-, Mantel-, Kerngas
$ au_{ m z}$	gMol/h	Heliumrückspeisestrom durch die Meßblende D2
U ₃ ,U _p ,U _w	gMol/h	UF ₆ -Rückspeise-, Produkt-, Abfall- stromstärke
$\mathcal{V}_{_{\mathrm{U}}}, \mathcal{V}_{_{\mathrm{Z}}}, \mathcal{V}_{_{\mathrm{G}}}$	1	UF ₆ -, Helium-, Gemisch-Abschälverhältnis
ε _A	1	Elementareffekt der Isotopentrennung
N _o , N _M , N _K	1	Molenbruch des UF ₆ im Gemisch
n _o ,n _M ,n _K	1	Isotopen-Molenbruch des Uran235 im UF ₆
n ₃ ,n _p ,n _w	1	Isotopen-Molenbruch im Rückspeise-, Produkt-, Abfallstrom
NV		Nebenschlußventile der Verdichter
V4,KV2,RV		Kerngasrückstauventile
V15		Stromaufteilungsventil
R1		Austragungsventil
R2		Helium-Rückspeiseventil
R3		UF ₆ -Rückspeiseventil
a _{RV} ,a _{NV}	gMol/h.Torr	Durchflußziffer der Ventile RV,NV
S	1	Stufenzahl
v	Hz	Erreger- oder Störfrequenz
t	sec	Schwingungs- oder Periodendauer
t	sec	Zeit

Symbol	Maßeinheit	Bezeichnung
\bigtriangleup	Torr bzw. gMol/h	Amplitude
Ø	^o bzw. 1	Phasenwinkel
с	Stufen/sec	Fortpflanzungsgeschwindigkeit
×e*	Volt	Sollwert der Eingangsgröße
×e	Torr	Istwert der Eingangsgröße
×a	Torr	Ausgangsgröße
I _U , I _Z	gMol	Stufeninhalt an UF ₆ bzw. Zusatzgas
θ	sec	Verweilzeit