

KERNFORSCHUNGSZENTRUM

KARLSRUHE

Juni 1972

KFK 1620

Institut für Radiochemie

Über die Temperaturabhängigkeit von Komplexgleichgewichten der Transplutone

C. S. Grigorescu-Sabau

Als Manuskript vervielfältigt

Für diesen Bericht behalten wir uns alle Rechte vor

GESELLSCHAFT FÜR KERNFORSCHUNG M.B.H. KARLSRUHE

KERNFORSCHUNGSZENTRUM KARLSRUHE

Institut für Radiochemie

KFK 1620

Juni 1972

ÜBER DIE TEMPERATURABHÄNGIGKEIT VON KOMPLEXGLEICHGEWICHTEN DER TRANSPLUTONE

von

Carmen Sybile Grigorescu-Sabau*)

Gesellschaft für Kernforschung m.b.H., Karlsruhe

*) Von der Fakultät für Chemie der Universität (TH) Karlsruhe genehmigte Dissertation

.

na atéré de la tradición de la contra de la c

ZUSAMMENFASSUNG

Die Temperaturabhängigkeit der Komplexbildungsreaktionen von Am(III), Cm(III) und Cf(III) mit Nitrilotriessigsäure (H₃NTE), Iminodiessigsäure (H₂IDE), Diglykolsäure (H₂DGS) und Thiodiglykolsäure (H₂TDG) wurde untersucht.

Ionenaustauschversuche ergaben eine spezielle, nicht zu deutende Temperaturabhängigkeit der Stabilitätskonstanten. Offenbar sind diese durch Nebenreaktionen im System Ionenaustauscher/Komplexbildnerlösung verfälscht. Es wird zur Diskussion gestellt, daß es sich um temperaturbedingte Hydratationsänderungen der im Austauscher sorbierten Species handelt.

Mittels spektralphotometrischer Messungen konnten die Komplexbildungsreaktionen des Am(III) im Temperaturbereich 15[°]C bis 50[°]C aufgeklärt werden; die thermodynamischen Daten der identifizierten Komplexe sind:

an a		-∆G kcal/Mol	∆H kcal/Mol	∆S calMol•grd
Am^{3+} + NTE ³⁻	 Am(NTE) ⁰	16,3 <u>+</u> 0,04	0,7 <u>+</u> 0,5	56,1 <u>+</u> 0,2
$Am(NTE) \cdot aq + NTE^{3-}$	 $Am(NTE)\frac{3}{2}$	12,32 <u>+</u> 0,09	-5,7 <u>+</u> 0,8	22 <u>+</u> 3
Am^{3+} + HIDE	 Am(HIDE) ²⁺	1,8 <u>+</u> 0,1	-15,0 <u>+</u> 1,5	44 <u>+</u> 6
$Am^{3+} + IDE^{2-}$	 Am(IDE) ⁺	9,64 <u>+</u> 0,01	-1,2 <u>+</u> 0,3	2 8 <u>+</u> 1
$Am(IDE)^+ + IDE^{2-}$	 $Am(IDE)_2$	7,59 <u>+</u> 0,04	-3,1 <u>+</u> 1,4	15 <u>+</u> 6
$\operatorname{Am}(\operatorname{IDE})_{2}^{-}$ (+H ₂ 0)	 $Am(IDE)_{2}^{-}(OH)^{2-}+H^{+}$	-10,7 <u>+</u> 0,09	+ <u>11</u> <u>+</u> 1	
$Am^{3+} + DGS^{2-}$	 Am(DGS) ⁺	8,75 <u>+</u> 0,03	0,6 <u>+</u> 0,7!	31 <u>+</u> 2
$Am(DGS)^++DGS^{2-}$	 $Am(DGS)_{2}$	6,20 <u>+</u> 0,07	1,6+0,8	26 <u>+</u> 3
$\operatorname{Am}(\operatorname{DGS})_{2}^{-}+\operatorname{DGS}^{2}^{-}$	 $Am(DGS)\frac{3}{3}$	3,93 <u>+</u> 0,08	0,8 <u>+</u> 0,2	16 <u>+</u> 1
Am^{3+} + HTDG	 Am(HTDG) ²⁺	$2,7 \pm 0,2$	7,1 <u>+</u> 1,0	15 <u>+</u> 4
$Am^{3+} + TDG^{2-}$	 Am(TDG) ⁺	4,88+0,09	6,8 <u>+</u> 1,1	39 <u>+</u> 4
$Am(TDG)^++TDG^{2-}$	 $Am(TDG)_{2}$	2,8 +0,1	8,9 <u>+</u> 0,7	39 <u>+</u> 3

Summary

The temperature dependency of the complex formation reactions of Am(III), Cm(III) and Cf(III) with nitrilotriacetic acid (H_3NTE), iminodiacetic acid (H_2IDE), diglycollic acid (H_2DGS) and thiodiglycollic acid (H_2TDG) has been investigated.

By ion exchange a special, not yet understand temperature dependency of the stability constants was found. The stability constants seem to be severely influenced by secondary reactions in the system ion exchange resin/complex reagent solution. The secondary reaction is discussed to be a temperature dependent change of hydratation of the sorbed species.

By spectrophotometric measurements the complex reactions of Am(III) could be investigated in the region 15° C to 50° C. The thermodynamic data of the identified complexes are :

			-∆G kcal/mole	∆H kcal/mole	∆S cal/mole∙ grd
Am ³⁺ + NTE ³⁻		Am(NTE) [°]	16,3 <u>+</u> 0,04	0,7+0,5	56,1 <u>+</u> 0,2
$Am(NTE) \cdot aq + NTE^{3-}$		$Am(NTE)\frac{3}{2}$	12,32+0,09	-5,7 <u>+</u> 0,8	22 <u>+</u> 3
Am ³⁺ + HIDE ⁻		Am(HIDE) ²⁺	1,8 <u>+</u> 0,1 ·	-15,0 <u>+</u> 1,5	4 4 <u>+</u> 6
$Am^{3+} + IDE^{2-}$	<u> </u>	Am(IDE) [*]	9,64+0,01	-1,2 <u>+</u> 0,3	2 8 <u>+</u> 1
$Am(IDE)^+ + IDE^{2-}$		$Am(IDE)_2$	7,59 <u>+</u> 0,04	-3,1 <u>+</u> 1,4	15 <u>+</u> 6
$\operatorname{Am}(\operatorname{IDE})_{2}^{-}(+\operatorname{H}_{2}^{0})$		$Am(IDE)_{2}(OH)^{2-}+H^{+}$	$-10,7 \pm 0,09$	+11 <u>+</u> 1	
$Am^{3+} + DGS^{2-}$		Am(DGS) ⁺	8,75 <u>+</u> 0,03	0,6 <u>+</u> 0,71	31 <u>+</u> 2
$Am(DGS)^+ + DGS^{2-}$		$\operatorname{Am}(\mathrm{DGS})_{2}^{-}$	6, 20 <u>+</u> 0,07	1,6 <u>+</u> 0,8	26 <u>+</u> 3
$\operatorname{Am}(\operatorname{DGS})_{2}^{-}$ + DGS^{2-}		Am (DGS) 3-	3,93 <u>+</u> 0,08	0,8 <u>+</u> 0,2	16 <u>+</u> 1
$Am^{3+} + HTDG^{-}$		Am(HTDG) ²⁺	2,7 <u>+</u> 0,2	7,1 <u>+</u> 1,0	15 <u>+</u> 4
$Am^{3+} + TDG^{2-}$		Am(TDG) ⁺	4,88 <u>+</u> 0,09	6,8 <u>+</u> 1,1	39 <u>+</u> 4
$Am(TDG)^+ + TDG^{2-}$		$Am(TDG)_2$	2,8 <u>+</u> 0,1	8,9 <u>+</u> 0,7	39 <u>+</u> 3

Inhaltsverzeichnis

1.	Einl	eitung							• • •	• • •	• • •	••	••		. 1
	1.1	Aufgab	enste 11	un g			• • • •		•••	• • •	• • •	••	• • •	• • •	. 1
	1.2	Eigens	chaften	der	studi	ierten	Ele	ment	e.		• • •	••	• •	• • •	. 1
	1.3	Eigens	chaften	der	Komp	lexbil	dner	• • •	• • •	• • •		••	••	• • •	. 2
	1.4	Defini	tionen	der (Gleich	ngewic	htsk	onst	ant	en	• • •	• •	• • •	• • • •	• 4
2.	Ergel	onisse							• • •	• • •			• • •		• 5
	2.1	Vorbere	eitende	Unte	ersuch	nungen		· · · · ·		• • •	• • •	•	••	• • •	. 5
	2.2	Haupte	xperime	nte		• • • • • •			• • •		• • •				. 11
		2.2.1	Nitril	otrie	essigs	säurek	omp 1	e xe	•••			••	••	• • •	. 11
		2.2.2	Iminod	iessi	lgsäu	rekomp	le xe	• • •		• • •	•••	••	••	• • •	. 23
		2.2.3	Diglyk	olsäu	ırekoı	nplexe		• • • •			• • •	• •			. 27
		2.2.4	Thiodi	glyko	olsäu	re		• • • •	• • •	•••	• • •	b 4	••		. 29
3.	Disk	ussion		• • • •				••••	•••		•••	••	• •	• • • •	. 33
4.	Vers	uchsdur	chführu	ng ur	nd Mei	Swerte	• • •				• • •	• •		• • •	. 36
5.	Lite	ratur .	• • • • • • •		3 0 5 0 9 .		• • • •			• • •	• • •	••			• 49

Seite

1. Einleitung

1 -

<u>1.1 Aufgabenstellung</u>

Über die Temperaturabhängigkeit der Komplexbildung dreiwertiger Transuranionen ist auffällig wenig berichtet worden, ganz im Gegensatz zu den zahlreichen Publikationen über die Stabilitätskonstanten (1). Eine 1969 erschienene Zusammenfassung (2) führt nur eine diesbezügliche Literaturstelle an, worin über eine kalorimetrische Untersuchung von Am(III)-äthylendiamintetraacetat berichtet wird (3). Seitdem erschienen nur zwei weitere Arbeiten (4,5). Ein Grund für dieses Mißverhältnis von Gleichgewichtsdaten und thermodynamischen Daten ist sicher, daß infolge der begrenzten Materialmenge und der Radioaktivität bei den Transuranen nur die Methode des Temperaturgradienten für die Bestimmung der thermodynamischen Größen generell anwendbar ist und diese sehr genaue Messungen erfordert, um brauchbare Resultate zu erzielen.

Ziel dieser Arbeit war es, die Temperaturabhängigkeit der Komplexbildung von Am(III), Cm(III) und Cf(III) mit Nitrilotriessigsäure (H₃NTE), Iminodiessigsäure (H₂IDE), Diglykolsäure (H₂DGS) und Thiodiglykolsäure (H₂TDG) zu untersuchen.

1.2 Eigenschaften der studierten Elemente

Americium, Curium und Californium liegen in wäßriger Lösung bevorzugt (Am) bzw, ausschließlich (Cm, Cf) dreiwertig vor. Eine Veränderung der Wertigkeitsstufe durch Luftoxidation, wie sie bei Pu(III) leicht erfolgt, ist nicht zu befürchten. Die Actiniden gehören zum Chatt-Ahrland-Typ, sie bilden "harte" Kationen, die bevorzugt mit "harten" Donatoren koordinieren, d.h. mit Sauerstoff stärker als mit Stickstoff und am schwächsten mit Schwefel. Für Am(III) wurde die maximale Koordinationszahl neun wahrscheinlich gemacht (1). Für diese Arbeit wurden folgende Nuklide verwandt:

Am-241	α -Strahler	$t_{1/2}$	=	431	a
Cm-244	α -Strahler	$t_{1/2}$	=	18	a
Cf-252	a-Strahler	$t_{1/2}$	=	2,65	a

Am-241 stand in Multimilligrammengen zur Verfügung, Cm-244 und Cf-252 waren nur in Indikatormengen (100 µg bzw. 5 µg) zugänglich. Für die mit Americium ausgeführten spektralphotometrischen Messungen wurde zum Schutz vor der 60 keV γ -Strahlung der Handschuhkasten, in welchem die Meßeinrichtung aufgebaut war, mit einer 2 mm starken Pb-Folie abgedeckt. Die Dosisleistung von 10 mg Am-241 in 10 cm Abstand beträgt ca. 100 mrem/h. Der Cf-Vorrat (~ 5 µg) wurde in einem mit 40 cm Paraffin ausgekleideten Behälter aufbewahrt, um die Neutronendosisleistung abzuschirmen. Bei den Versuchen mit je ~0,1 µg Cf-252 war eine Abschirmung nicht erforderlich.

1.3 Eigenschaften der Komplexbildner

Nitrilotriessigsäure (H₃NTE) wurde in die Untersuchung als "Standardkomplexbildner" einbezogen, da hier die thermodynamischen Daten der Komplexe mit den Seltenen Erden bekannt sind und durch Vergleich damit die hier bestimmten thermodynamischen Daten der Transuran(III)-Komplexe kontrolliert werden können.

Die weiteren Komplexbildner wurden unter dem Gesichtspunkt ausgewählt, Sauerstoff, Schwefel und Stickstoff als Donatoratome bei gleicher Geometrie des Ligandenmoleküls vergleichen zu können.

Diglykolsäure	ноос-сн ₂ -о-сн ₂ -соон	H ₂ DGS
Thiodiglykolsäure	HOOC-CH ₂ -S-CH ₂ -COOH	H ₂ TDG
Iminodiessigsäure	HOOC-CH2-NH-CH2-COOH	H_2^{IDE}

Die Komplexe von H_2 IDE sind gewöhnlich erheblich stabiler als die von H_2 DGS und H_2 TDG. Der wesentliche Grund dafür ist, daß die pK-Werte der H_2 IDE sehr viel kleiner als die der Chalkogensäuren sind und die Komplexstabilität generell mit abnehmender Dissoziationsstärke des Liganden anwächst. Wie alle Aminosäuren sind H_2 IDE und H_3 NTE innere Salze (Betaine), ein Proton ist an den Stickstoff gebunden und dissoziiert nur schwer ab. Die pK-Werte der vier Säuren als Funktion der Temperatur sind in Tabelle 1 zusammengestellt. Für H_3 NTE und H_2 IDE konnten Werte im Temperaturbereich 10 bis 50°C der Literatur entnommen werden, für H_2 DGS und H_2 TDG wurden sie bei je vier Temperaturen bestimmt (s. Experimente und Tabellen). Die zu den jeweiligen Versuchstemperaturen der komplexchemischen Titrationen gehörenden pK's wurden durch graphische Interpolation in einem Diagramm pK $\sim 1/T$ ermittelt.

Die Chelatkomplexe der Transuran(III)-Ionen mit H_2DGS und H_2TDG waren zuvor nocht nicht untersucht worden, bei H_2IDE lagen einander widersprechende Angaben vor (4,7).

Säure	e Temperatur ^O C	pK ₁	pK ₂	pK ₃	Dissoziations- enthalpie (kcal/Mol)	Quelle
H ₃ NTE	15,0 20,8 24,6 30,0	1,889 1,889 1,889 1,889	2,490 2,490 2,490 2,490 2,490	9,853 9,796 9,749 9,701	∆H ₃ =4,68 <u>+</u> 0,11	a a a,c a
	40,1 50,0	1,899 1,899	2,490 2,490	9,580 9,457		b b
H ₂ IDE	20,1 26,0 30,8 39,2	2,570 2,580 2,592 2,603	9,476 9,382 9,276 9,180		$\Delta H_1 = -0,95$ $\Delta H_2 = 6,3$	d,e,f d,e,f d,e,f d,e,f d,e,f
H ₂ DGS	14,5 25,2 29,6 39,1 49,1	2,801 2,815 2,820 2,830 2,840	4,009 4,018 4,043 4,097 4,149		$-\Delta H_1 = 0, 47 \pm 0, 13$ $-\Delta H_2 = 2, 43 \pm 0, 87$	d. Arbeit
H ₂ TDC	20,4 25,6 30,4 38,3	3,094 3,166 3,208 3,285	4,301 4,310 4,316 4,326		$-\Delta H_{1} = 4,8 \pm 0,53$ $\Delta H_{2} = 0$	d. Arbeit
(a)	T. Moeller, R. Inorg.Chem. <u>1</u> ,	Ferrus 49 (196	2)		an de la segur d'arte d'arte de la segur de la segu	-
(b)	H. Ackermann, Helv.Chim.Acta	G. Schw <u>32</u> ,154	arzenba 3 (1949	ch)		
(c)	G. Schwarzenba "Stability Con	ch et a stants"	1. London	1964		
(d)	K.S. Rajan, A. J.Inorg.Nucl.C	E. Mart hem. <u>26</u>	ell ,789 (1	964)		
(e)	J.J.R.F. DaSil Rev.Port.Quim.	va, M.L 11,54	.S. Sim (1969)	0 e s		
(f)	J.T. Bell, R.D J.Inorg.Nucl.C	. Bayba hem. <u>33</u>	rz, D.M ,3077 (. Melton 1971)	n	

TABELLE 1 pK-Werte

1.4 Definitionen der Gleichgewichtskonstanten

M : hydratisiertes Metallkation
 L : Anion des Komplexbildners
 H_nL : undissoziierter Komplexbildner (Ligand)
 H_mL : partiell dissoziierter Komplexbildner

Komplexbildung durch Anlagerung des vollständig dissoziierten Liganden

a) $M + iL \longrightarrow ML$;

Bruttostabilitätskonstante

Stufenstabilitätskonstante

Komplexbildung durch Anlagerung des partiell dissoziierten Liganden und Elimination der Wasserstoffionen

b)
$$M + H_m L \longrightarrow ML + mH$$

Stufengleichgewichtskonstante

Dissoziationskonstante

$K_{i}^{*} = K$	i · K _D
-----------------	--------------------

 $K_{\rm D} = \frac{\left[{\rm L} \right] \left[{\rm H} \right]^{\rm m}}{\left[{\rm H} {\rm L} \right]}$

 $K^* = \frac{\left[ML_{i}\right]\left[H\right]^{m}}{\left[ML_{i-1}\right]\left[H_{m}L\right]}$

Alle Größen, die sich auf Reaktion b beziehen, werden mit einem Stern indiziert.

Bei Berechnung der Stabilitätskonstanten werden die Konzentrationen der Komponenten eingesetzt. Der pH wird nach der Formel $[H^+] = (10^{-pH})/a$ in die Wasserstoffionenkonzentration umgerechnet (0,1m NH₄C10₄: a = 0,80; 0,1m NaC10₄: a = 0,83).

$$B_{i} = \frac{[ML_{i}]}{[M] \cdot [L]^{i}}$$
$$K_{i} = \frac{[ML_{i}]}{[ML_{i-1}][L]}$$

2. Ergebnisse

Die Untersuchungen gliedern sich in vorbereitende Experimente und Hauptexperimente.

Vorbereitende Experimente sind: die Eichung der pH-Meßkette, die Untersuchung der Abhängigkeit des Am(III)-Spektrums von der Temperatur, die Bestimmung der Ionenaustauschverteilungskoeffizienten und die Ermittlung der erforderlichen Schüttelzeit bei den Ionenaustauschversuchen. In den Hauptexperimenten wurden die sich bildenden Komplexe identifiziert und die Komplexbildungskonstanten als Funktion der Temperatur gemessen.

2.1 Vorbereitende Untersuchungen

- Eichung der pH-Meßkette

Für alle Versuche fand dieselbe Meßkette Verwendung. Während eines Zeitraumes von 2 Monaten wurde insgesamt 28 mal die Steigung S $exp = \frac{d(mV)}{dpH}$ anhand der Eichpuffer 0,09m NaCl/0,01m HCl und 0,025m Na₂HPO₄/0,025m KH₂PO₄ gemessen. Wie Tabelle 2 zeigt, unterscheidet sich S exp um bis zu 0,5 mV/pH (=0,1 pH) von der aus der Nernstschen Formel berechneten Steigung S theor. Es war daher nicht möglich, die im pH-Meßgerät eingebaute Temperatureichung zu verwenden. Der pH wurde aus Messungen der EMK der betreffenden Lösung (E₁) sowie des Eichpuffers (E_p) bei gleicher Temperatur nach folgender Formel berechnet:

$$pH_{1} = pH_{e} + (E_{e} - E_{1})/S_{exp}$$
 (1)

Darin bedeutet pH_e den pH-Wert des Eichpuffers (0,01m HC1/0,09m NaC1, pH_e = 2,098) und S_{exp} die gemessene Elektrodensteigung für die betreffende Temperatur.

TABELLE 2 Steigung der verwendeten Glaselektrode

°c		· · · · · · · · · · · · · · · · · · ·	14,6	25,0	30,0	40,0	47,0	50,0
Sexp	(mV/pH)	<u> </u>	56,42	58,50	59 ,6 2	61,67	63,35	64,05
Sthee	or=RT/F	(mV/pH)	57,09	59,16	60,14	62,13	63,52	64,11

- 5 -

- Einfluß der Temperatur auf das Absorptionsspektrum perchlorsaurer Am(III)-Lösungen

Eine 0,00184 molare Am(III)-Lösung in 0,1m HC10₄ wurde bei verschiedenen Temperaturen spektralphotometriert. Wie die folgende Tabelle zeigt, hängt weder der molare Extinktionsmodul noch die Wellenlänge des Maximums der Hauptabsorptionsbande merklich von der Temperatur ab.

Temperatur ([°] C) Extinktion	λ_{max} (Å)	Halbwertsbreite $(\overset{\circ}{A})$
15	0,749	5032,5	38,4
18	0,751	5032,8	39,1
22	0,753	5032,6	39,1
26	0,748	5032,8	38,4
31	0,759	5032,3	38,4
39	0,749	5032,8	37,6
Mittel	0,751	5032,6	38,5

Für die komplexchemischen Messungen kann im Temperaturbereich 10 bis 50°C mit konstantem molaren Extinktionsmodul des Am(III)-Aquokations von 5000 bis 5200 Å gerechnet werden. Für $\varepsilon_{5032,6}$ wird 409 eingesetzt (6).

Etwas andere Verhältnisse zeigen sich im UV-Gebiet. Bei der Wellenlänge 2200 Å nimmt die Extinktion mit steigender Temperatur zu und zwar um ca. 0,27% je ^oC für 0,1m HCl0₄. Für das Medium 1m HCl0₄ ergab sich eine etwas stärkere Temperaturabhängigkeit der UV-Absorption. Da die komplexchemischen Messungen nur in 0,1m HCl0₄-Lösungen und nur an der 5032 Å-Bande erfolgen sollten, wurde dieser Erscheinung nicht weiter nachgegangen.

- Einstellgeschwindigkeit des Ionenaustauschgleichgewichtes Die ersten Versuche zur Bestimmung der Verteilungskonstanten von Am(III) zwischen 0,1m NH₄Cl0₄/HCl0₄-Lösung und DOWEX50-X12 50-100 mesh (NH₄-Form) wurden mit 6h Schüttelzeit ausgeführt, was nach (7) bei 25[°]C zur Einstellung des Gleichgewichtes genügt. Da jedoch bei niederen Temperaturen die Streuung zu groß und die Verteilungskonstanten zu nieder erschienen, war zu vermuten, daß die Einstellgeschwindigkeit des Ionenaustauschgleichgewichtes

stark von der Temperatur abhängt. Zur Aufklärung wurde aus Ansätzen von 20 ml wäßriger Phase (Am-241) und 100 mg Harz zu verschiedenen Zeiten Proben von je 50 µl entnommen und deren Aktivitätsrate gemessen. Die daraus berechneten Verteilungskoeffizienten zeigt Abbildung 1. Zwischen 20°C und 30°C besteht kein großer Unterschied in der Einstellzeit, bei 14,6°C ist sie jedoch erheblich länger. Eine Äquilibierzeit von mindestens 36 Stunden ist geeignet, bei allen angewandten Temperaturen das Verteilungsgleichgewicht zu erreichen.

Einstellung des Ionenaustauschgleichgewichtes ABBILDUNG 1 für Am(III) wäßrige Phase: 20 ml 0,1m NH,C10,

: 20 ml 0, 1m NH₂C10₂ pH \simeq 3 : 100 mg NH₂-DOWEX50-X12, 50-100 mesh Harz

- Ionenaustauschverteilungskoeffizienten

Zur Untersuchung der Temperaturabhängigkeit eines Komplexgleichgewichtes durch Kationenaustauschmessungen müssen die Verteilungskoeffizienten als Funktion der Temperatur bekannt sein.

> Mⁱ : Kation mit der Ladung i H: : Index für die Harzphase

: Index für die wäßrige Phase

- 7 -

Ferner muß ihr Verlauf mit dem pH der wäßrigen Phase bekannt sein. Am günstigsten ist es, wenn $\Delta Q_o / \Delta pH = 0$ ist.

Es wurden jeweils ca. 10 Messungen von Q_o für Temperaturen von 15 bis 50°C im pH-Bereich 2 bis 4 ausgeführt. Dabei ergab sich, daß Q_o im angegebenen pH-Bereich für die drei Kationen konstant ist. Die Mittelwerte sind in Tabelle 3 zusammengestellt.

Trägt man die 1g Q_o gegen die Temperatur auf, so entsteht bei allen drei Transuranionen keine stetige, sondern eine sägezahnförmige Kurve (Abbildung 2). Durch die beiden Schenkel (Äste) sind Temperaturbereiche abgegrenzt, innerhalb derer eine lineare Abhängigkeit des 1g Q von der Temperatur besteht. Der Abstand der beiden Schenkel beträgt ca. Δ 1g Q = 0,5, der Übergang vom einen zum anderen liegt zwischen 25 und 30^o.

ABBILDUNG 2 Variation des Verteilungskoeffizienten mit der Temperatur

Es wurden spezielle Experimente ausgeführt, um sicher zu stellen, daß dieses ungewöhnliche Verhalten der Transuran(III)-Ionen nicht durch Meßfehler nur vorgetäuscht wird. 50 ml wäßriger Phase (0,1m NH₄ClO₄ und Radioindikator) wurden mit 20 mg NH₄-DOWEX50-X12 versetzt, im geschlossenen Gefäß unter Rühren je 24 h auf verschiedene Temperaturen gehalten und dann jeweils 0,050 ml der wäßrigen Phase entnommen und deren Aktivität bestimmt. Jedes

- 8 -

C ^{emperatur}	Am(III) 1g Q _o	Cm(III) 1g Q _o	Cf(III) lg Q _o
14,0	5,422 <u>+</u> 0,013	5,437 <u>+</u> 0,009	
14,9	n an an an an an an an Araba an Araba. Iomraidh an an Araba	in an an grant an grant an grant an	5,0588
20,0	n an tha tha an tha Tha an tha an t	en en son de la companya de la comp En companya de la comp	5,144
20 , 5	5,724 <u>+</u> 0,007	an an an an Anna Anna Anna Anna Anna Anna - Thairte Anna Anna Anna Anna Anna Anna Anna Ann	
21,0	e da foi de la construcción de la c	5,679 <u>+</u> 0,010	· · · ·
25,0		5,865	5,167
25,6	5,919+0,005	ng da segura da segur Transferencia da segura da segur	
30,0	5,424+0,012	5,454	
30,4	en an trainn a tha <u>a</u> n trainn an trainn. T	e da la construcción de la constru Transferencia de la construcción de	4,903
35,0	5,536+0,012	n seren par en statue en statue en seren seren en seren En seren en s	
35,8	gente se statue d'Alexa. ■	5,467	
37,0	* <u>1997</u> an ang 2 − 198	en de la A- de la Constante de la	5,201
40,0	5,587 <u>+</u> 0,013	5,534	1
45,8	5,738 <u>+</u> 0,008	· 5 , 6 80 · · · · · · · · · ·	. ¹ . .

TABELLE 3Ionenaustausch-Verteilungskoeffizienten von
Am(III), Cm(III) und Cf(III)
HarzNH4-DOWEX50-X12Harz: NH4-DOWEX50-X12Härz: O lm NH C10

der bei verschiedenen pH-Werten ausgeführten Experimente bestätigte den sägezahnförmigen Kurvenverlauf.

Dieser spezielle Verlauf der Temperaturabhängigkeit eines Kationenaustauschverteilungskoeffizienten wird hiermit erstmals beschrieben. Eine Literaturdurchsicht ergab nur eine Literaturstelle über den thermischen Gradienten des Ionenaustauschverteilungskoeffizienten von Transuran(III)-Ionen (8), worin für Am(III) im System H-DOWEX50/0,1m HC10, folgendes angeführt ist:

```
0^{\circ}C 1g Q<sub>o</sub> = 5,588
25<sup>o</sup>C 1g Q<sub>o</sub> = 5,580
50<sup>o</sup>C 1g Q<sub>o</sub> = 5,638
```

Diese Q_o-Werte stimmen größenordnungsmäßig mit unseren überein. Da nur drei Punkte vorliegen, läßt sich bezüglich des stufenförmigen Verlaufs der 1gQ/T-Kurve nichts aussagen. Die Steigung der beiden Äste der Temperaturkurve der Transuran(III)-Ionenaustauschverteilungskoeffizienten stimmt mit dem überein, was man auch sonst von mehrwertigen Kationen kennt. Bei diesen nimmt Q_o mit der Temperatur zu (9), dagegen wird beim Wasserstoffion und den Alkalien Q_o mit steigender Temperatur kleiner (10, 11).

Als Versuch einer Interpretation der Stufen seien zwei Hypothesen zur Diskussion gestellt, die den Effekt als eine Folge der Temperaturabhängigkeit der Hydratation des Kations ansehen.

- 1.) Bei der Sorption erleidet das dreiwertige Kation eine Dehydratation um x Wassermoleküle, die sich im Bereich 25... 30° C auf x+y ändert. Aus den Δ H und den Q_o berechnet man für die beiden Äste der Sorptionskurve eine Entropiedifferenz von ca. 5 cal/grd. Nach (12) beträgt die Entropiedifferenz für die Entfernung eines Wassermoleküls aus der inneren Hydratationssphere 3R cal/grd. Demzufolge ändert sich die Dehydratation um y = -1.
- 2.) Die Hydrathülle des freien oder des sorbierten Kations ordnet sich bei einer zwischen 25 und 30°C liegenden Temperatur um.

Versuche zur weiteren Aufklärung des Stufeneffektes wurden nicht unternommen, da diese außerhalb der Aufgabenstellung gelegen hätten. Ob der stufenförmige Verlauf der Temperaturabhängigkeit von Q_o die Bestimmung von Komplexbildungsenthalpien verhindert, ließ sich aufgrund der bisher geschilderten Tatsachen nicht entscheiden, es waren entsprechende Versuche erforderlich.

2.2 Hauptexperimente

Die beiden in Betracht gezogenen Untersuchungsmethoden - Ionenaustausch und Spektralphotometrie-wurden im Falle der Nitrilotriessigsäure miteinander verglichen, deren Transuran(III)-Komplexe schon früher studiert wurden (16), jedoch nur bei 25°C. Aufgrund der Ergebnisse fand bei den anderen Liganden nur noch die Spektralphotometrie Anwendung.

2.2.1 Nitrilotriessigsäurekomplexe

- Spektralphotometrische Bestimmung der Stabilitätskonstanten der Am(III)-Komplexe

Americium(III) bildet mit Nitrilotriessigsäure die Komplexe Am(NTE)^o·aq und Am(NTE) $_2^{3-}$ ·aq (1). Im Absorptionsspektrum (Abbildung 3) geben sie sich durch ihre charakteristischen Absorptionsmaxima bei 5041 Å und 5077 Å zu erkennen, deren Höhe ein Maß für die Konzentration der betreffenden Komponente ist. Es ist dadurch leicht, die Richtung festzustellen, in der sich das Komplexgleichgewicht mit der Temperatur verlagert. Dazu wurde eine bei 25°C auf pH = 1,87 eingestellte Lösung auf verschiedene Temperaturen gebracht und jeweils im Spektralphotometer gemessen. Wie Abbildung 4 zeigt, wächst mit steigender Temperatur die 5041 Å-Bande an und die 5032 Å-Bande wird niedriger, d.h. das Gleichgewicht verschiebt sich im Sinne der Hinreaktion,der Komplexierungsgrad nimmt zu.

Die spektrale Änderung ist jedoch sehr klein, sie beträgt z.B. bei 5041 Å nur dE/dT \simeq 0,002 (grad⁻¹). Daher ist es nicht möglich, die Temperaturvariation der Stabilitätskonstanten durch Spektrometrieren weniger Lösungen bei verschiedenen Temperaturen zu ermitteln, sondern es müssen vollständige spektralphotometrische Titrationen bei mehreren Temperaturen ausgeführt werden. Dazu wird eine Lösung von Am(III) und H₃NTE schrittweise mit kleinen Mengen von konz. NaOH (\simeq 0,002 ml) versetzt und jeweils bei gleicher Temperatur ein Spektrum im Bereich 5200 - 4950 Å aufgenommen. Als "Meßwerte" liest man aus den Spektren für jeden pH die Extinktion bei den Wellenlängen der Absorptionsmaxima ab.

فحاف أحمدهم الأردار

- 11 -

- 12 -

ABBILDUNG 3

Absorptionsspektren einer Lösung von Am(III) und Nitrilotriessigsäure

Medium	:	0,1m NH4C104
Temperatur	:	24,6 [°] C
Am(III)	:	0,00155m
H ₃ NTE	:	0,0050 m

ABBILDUNG 4

Temperaturabhängigkeit des Absorptionsspektrums einer Am(III)/H₃NTE-Lösung

Medium : 0,1m NH₄C10₄

Der formelmäßige Zusammenhang der Extinktion mit den Stabilitätskonstanten ist:

$$E_{\lambda} = \left[Am(III)\right]_{0} \frac{\varepsilon_{Am} + \varepsilon_{AmNTE} \cdot \beta_{1} \left[NTE^{3-}\right] + \varepsilon_{Am(NTE)} 2^{-\beta_{2} \left[NTE^{3-}\right]^{2}}}{1 + \beta_{1} \left[NTE^{3-}\right] + \beta_{2} \left[NTE^{3-}\right]^{2}}$$
(2)
$$E_{\lambda} = f\left(\left[Am^{3+}\right], \left[NTE^{3-}\right], \beta_{1}, \beta_{2}, \varepsilon_{2}\right)$$

Hierin bedeutet ε_i den molaren Extinktionsmodul bei der Wellenlänge λ , β_i die Stabilitätskonstanten und $|\text{Am}^{3+}|_0$ die Einwaagekonzentration des Americiums (i = 1:Am³⁺, i = 2:AmNTE, i = 3:Am(NTE)³⁻₂). Die Stabilitätskonstanten wurden mit dem Rechenprogramm KOMPLEXI (1, 13) auf einer elektronischen Rechenmaschine berechnet. Unter "Berechnen" ist dabei ein iterativer Ausgleich zu verstehen, der die β_i liefert, die ein Minimum der Fehlerquadratsumme GFQS ergeben.

$$GFQS = \sum_{\lambda=\lambda_{1}}^{\lambda_{3}} \left[E_{exp} - f([Am^{3+}], [NTE^{3-}], B_{1}, B_{2}, \varepsilon_{i}) \right]^{2}$$
(3)

Es wurden Titrationen bei fünf Temperaturen zwischen 15 und 50°C ausgeführt. Die abgelesenen Extinktionen und weitere Versuchsparameter sind in Tabelle T1 zusammengestellt. Diese Daten wurden mit dem Programm KOMPLEX1 verarbeitet. In den meisten Fällen war mehr als ein Lauf erforderlich, weil anhand der Zwischenresultate die zur Angleichsrechnung erforderlichen Parametervorausschätzungen zu verbessern waren. Wenn diese zu weit vom "richtigen" Wert abweichen (Faktor > 100), findet das Programm kein Minimum. Eine Titration wurde nur dann akzeptiert, wenn GFQS nicht wesentlich größer war als der meßtechnisch bedingten Streuung entspricht. Da die Extinktion auf $\pm 0,005$ abgelesen werden kann, ist das RFQS = $n \cdot 0,005^2$, wobei n die Zahl der Extinktionen darstellt. Abbildung 5 zeigt einen endgültigen Ergebnisausdruck der Rechenmaschine für eine spektralphotometrische Titration des Systems Am(III)/H₃NTE. Die ermittelten Stabilitätskonstanten sind:

- 13 -

PROGRAMM KOMPLEXI PN05970 AF070671 BERECHNUNG VON GLEICHGEWICHTSKONSTANTEN NACH DER FEHLERQUADRATMETHODE

VERSUCH AM-241/H3NTE MED=0.1 VRS 25.10.71 CGS TEMP 24.6

RECHNUNG 3 DATUM22.02.1972

1

4

VERWENDETE-UNTERPROGRAMME

PHASE 4 ENDERGEBNIS MINIMUM VON GEQS GEFUNDEN KONTROLLZAHLEN NM NK NW IA NG IDIAG KDD KTR NUS ITR NS8 FH GEQS REQS NDA 1 1 2 1 1 8 965 0.834E 00 0.450F-02 0.989F-02 DISSKONST. LIGAND HNL NDL = 3 0.129F-01 0.324E-02 0.178E-09 LIGAND HNA NDA = 0 0.0 0.0 3 3 2.3 GLFICHGEWICHTSKONSTANTEN KOMPONENTE 1 2 3 4.16ANGS/FETF 1.000E 12 1.000E 18 ENDURETE 1 2 3 3.520F 10 6.160F 19 INKENNZIFFER 1 1 1 1 1 1 EW-FAXTOR 1.000E 00 3.273E 00 3.273E 00 3.273E 00 3.273E 00 3.277E 00 1 1 1 1 1 1 1 1 1 1 1 1 <th>ANIONS 05914 AF290770-KD FEQANS 05955 AF290770-KD MIKOQS 05956 AF290770-KD FMALER 05972 AF290770-KD ANFUNS 05971/1 AF100970 VE</th> <th>MPLEX MPLEX VFRW.MI MPLEX FUER FE MPLEX RSI/N KOMPLEX1/</th> <th>T MIKDQS QANS 05950 FUER ANFUN 290770</th> <th>BERECH ANGLEIC MINIMAL SZEICHNE KOMF</th> <th>UUNG DES QUDTE CH MITTELS DER ISIERUNG EINE ET DAS ERGEBNI PONENTEN M-ML-</th> <th>NTEN QL FEHLER R KONVE ISDIAGRA ML2</th> <th>I=L/HNI QUADRAT X-QUADR MM ML6</th> <th>EINER SAFU METHODE — PI AT.FUNKTION</th> <th>RE HNL DS.PARAMETER</th>	ANIONS 05914 AF290770-KD FEQANS 05955 AF290770-KD MIKOQS 05956 AF290770-KD FMALER 05972 AF290770-KD ANFUNS 05971/1 AF100970 VE	MPLEX MPLEX VFRW.MI MPLEX FUER FE MPLEX RSI/N KOMPLEX1/	T MIKDQS QANS 05950 FUER ANFUN 290770	BERECH ANGLEIC MINIMAL SZEICHNE KOMF	UUNG DES QUDTE CH MITTELS DER ISIERUNG EINE ET DAS ERGEBNI PONENTEN M-ML-	NTEN QL FEHLER R KONVE ISDIAGRA ML2	I=L/HNI QUADRAT X-QUADR MM ML6	EINER SAFU METHODE — PI AT.FUNKTION	RE HNL DS.PARAMETER
KONTROLLZAHLEN NM NK NM IA NG IDIAG KOO KTR NAUS ITR NSB FH GFOS RFOS DISSKONST. LIGAND HNL NDL = 3 0.129F-01 0.324E-02 0.178E-09 DISSKONST. LIGAND HNL NDL = 3 0.129F-01 0.324E-02 0.178E-09 GEFICHGEWICHTSKONSTANTEN KOMPONENTE 1 2 3 MARANGSVERTF 1.000F 12 1.000E 18 MOULETLER 9.764F 11 1.250E 21 MOULTETLER 3.520F 10 6.160F 19 MINKENNZIFFER 1 1 1 EXTMODULN 1 1 1 1 1. WELLENLAENGE 5032 A ANFANGSWERTE 4.090E 02 5.000F 01 2.500F 01 2. WELLENLAENGE 5032 A ANFANGSWERTE 0.0 3.237E 00 3.297E 00 2. WELLENLAENGE 5054 A ANFANGSWERTE 2.250E 02 101 1 1	PHASE 4 ENDERGEBNIS	MINIMUM VON G	FOS GEFUND	EŇ	,			- 22 •	
DISSKONST. LIGAND HNL LIGAND HNA NDA = 0 0.0 GLFICHGEWICHTSKONSTANTEN KOMPONENTE ANFAMGSWERTF NOU-FEHLER NOU-FEHLER NOU-FEHLER 1.000E 12 1.000E 12 1.000E 18 9.764E 11 1.250E 21 M.QU.FEHLER NOU-FEHLER NOU-FEHLER 1 1 1 1.WELLENLAENGE 5032 A ANFANGSWERTE 2.8WELLFNLAENGE 5054 A ANFANGSWERTE 2.WELLFNLAENGE 5054 A ANFANGSWERTE 2.WELLFNLAENGE 5054 A ANFANGSWERTE 2.2WELLFNLAENGE 5054 A ANFANGSWERTE 2.2SOE 02 MINKENNZIFFER 1 3.WELLENLAENGE 5077 A ANFANGSWERTE 1.238E 02 2.336F 02 MINKENNZIFFER 1 1 1 MESS- UND RECHENWERTE 1.238E 02 1.00E 1 1 1 1 1 1 1 1 1 1 1 1 1	KONTROLLZAHLEN NM NK 18 3	NW IA NG I 3 0 1	DIAG KDO I 1 2	KTR NAUS ITH	NSB FH 8 965 0.8345	G 00 0.4	FQS 50F-02	RFQS 0.989F-02	
LIGAND HNA NDA = 0 0.0 GLFICHGEWICHTSKONSTANTEN KOMPONENTE 1 2 3 ANFANGSMERTF 1.000E 12 1.000E 18 ENDWERTE 9.764E 11 1.250E 21 M.QU.FEHLER 3.520F 10 6.160F 19 MINKENNZIFFER 1 1 1. WELLENLAENGE 5032 A ANFANGSWERTE 4.090E 02 5.000E 01 2.500F 01 EXTMODULN 1. WELLENLAENGE 5032 A ANFANGSWERTE 4.090E 02 8.260F 31 2.501E 01 M.QU.FEHLER 0.0 3.273E 00 3.297E 00 MINKENNZIFFER 0 1 1 1 2. WELLFNLAENGE 5054 A ANFANGSWERTE 2.250F 02 4.000E 02 1.000E 02 GEWFAKTOR 1.000F 00 ENDWERTE 2.250E 02 4.523E 02 1.087E 02 M.QU.FEHLER 0.0 3.482F 00 3.547E 00 MINKENNZIFFER 0 1 1 3. WFLLENLAENGE 5077 A ANFANGSWERTE 1.238F 02 2.000E 02 6.000E 02 GEWFAKTOR 1.000E 00 ENDWERTE 1.238F 02 2.336F 02 6.475E 02 M.QU.FEHLER 0.0 3.527E 00 3.660F 00 MINKENNZIFFER 0 1 1 3. WFLLENLAENGE 5077 A ANFANGSWERTE 1.238F 02 2.336F 02 6.475E 02 M.QU.FEHLER 0.0 3.527E 00 3.660F 00 MINKENNZIFFER 0 1 1 3. WFLLENLAENGE 5077 A ANFANGSWERTE 1.238F 02 2.336F 02 6.475E 02 M.QU.FEHLER 0.0 3.527E 00 3.660F 00 MINKENNZIFFER 0 1 1 M.SKENNZIFFER 0 1 1 M.SKEN	DISS KONST. LIGAND HNL N	10! = 3 . 0.1	29E-01 0.3	24F-02 0.178E	-09				
GLFICHGEWICHTSKONSTANTEN KOMPONENTE 1 2 3 ANFANGSVERTE 1.000E 12 1.000E 18 ENDWERTE 9.764E 1 1.250E 21 M.QU.FEHLFR 3.520F 10 6.160F 19 MINKENNZIFFER 1 1 1 EXTMODULN 1 1 1 1. WELLENLAENGE 5032 A NFANGSWERTE 4.090E 02 5.000F 01 2.500F 01 GFWFAXTOR 1.000F 00 ENDWERTF 4.090E 02 8.260F 3.273E 00 3.297E 00 GEWFAXTOR 1.000F 00 3.273E 00 3.297E 00 1 1 2. WEILFNLAENGE 5054 A NFANGSWERTE 2.250F 02 4.500E 02 1.000F 02 GEWFAKTOR 1.000F 00 ENDWERTE 0.0 3.482E 00 3.547E 00 3. WFLLENLAENGE 5077 A NFANGSWERTE 1.238F 02 2.000E 02 6.000E 02 <tr< td=""><td>LIGAND HNA N</td><td>DA = 0 0.0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr<>	LIGAND HNA N	DA = 0 0.0							
GLFICHGEWICHTSKONSTANTEN KOMPONENTE 1 2 3 ANFANGSJERTF 1.000E 12 1.000E 18 ENDWERTF 9.764F 1 1.250E 21 MU.FEHLFR 3.520F 10 6.160F 19 I.WELLENLAENGE 5032 ANFANGSWERTE 4.090E 02 5.000E 01 2.500F 01 GFWFAXTOR 1.000E 00 ENDWERTF 4.090E 02 5.000E 01 2.501E 01 GWELFNLAENGE 5032 A ANFANGSWERTE 4.090E 02 8.260F 01 2.501E 01 GWU.FEHLFR 0.0 3.273E 00 3.297E 00 1 1 2.WELLFNLAENGE 5054 ANFANGSWERTE 2.250F 02 4.000E 02 1.000E 02 GEWFAKTOR 1.000F 00 ENDWERTE 0 1 1 1 3. WELLENLAENGE 5057 A ANFANGSWERTE 1.238F 02 1.000E 02 GEWFAKTOR 1.000F 0		and the provent							
ANFANGSWERTE ENDWERTE M.QU.FEHLER M.QU.FEHLER ANFANGSWERTE 1.000E 12 1.000E 18 9.764F 11 1.250E 21 3.520F 10 6.160F 19 1 1 EXTMODULN 1.WELLENLAENGE 5032 A ANFANGSWERTE 4.090E 02 5.000E 01 2.500F 01 ENDWERTF 4.090E 02 8.260F 01 2.501E 01 M.QU.FEHLFR 0.0 3.273E 00 3.297E 00 MINKENNZIFFER 0 1 1 2.WELLENLAENGE 5054 A ANFANGSWERTE 2.250F 02 4.000E 02 1.000E 02 GEWFAKTOR 1.000F 00 ENDWERTE 2.250E 02 4.523E 02 1.087E 02 M.QU.FEHLER 0.0 3.482F 00 3.547E 00 MINKENNZIFFER 0 1 1 3.WFLLENLAENGE 5077 A ANFANGSWERTE 1.238F 02 2.000E 02 6.000E 02 GEWFAKTOR 1.000F 00 FNDWERTE 1.238F 02 2.336F 02 6.475E 02 M.QU.FEHLER 0.0 3.527E 00 3.660F 00 MINKENNZIFFER 0 1 1 M.QU.FEHLER 0.0 3.527E 00 3.660F 00 MINKENNZIFFER 0 1 1 M.QU.FEHLER 0.0 3.527E 00 3.660F 00 MINKENNZIFFER 0 1 1 M.QU.FEHLER 0.0 1 1 M.QU.FEHLER 0.0 3.527E 00 3.660F 00 MINKENNZIFFER 0 1 1 MINKENNZIFFER 0 1 MINKENNZIFFER 0.0 0 MINKENNZIFFER 0.0 0 MINKENNZIFFER 0 1 MINKENNZIFFER 0 1 MINKENNZ	GLEICHGEWICHTSKONSTANTEN K	OMPONÈNTE	12 1	. 2	- 3			A State of the second	
ENDWERTE M.QU.FEHLER M.QU.FEHLER 1. UND RELENLAENGE GFWFAKTOR 1.000F 00 GFWFAKTOR 1.000F 00 3. WELLENLAENGE 5.004 01 1. UND RECHENWERTE 3.520F 10 1. 1 1.	A	NEANGSWERTE		1.000E 12	1.000E 18				
M.QU.FE-LER 3.520F 10 6.160F 19 MINKENNZIFFER 1 1 1. WELLENLAENGE 5032 A ANFANGSWERTE 4.090E 02 5.000E 01 2.500F 01 GFWFAKTOR 1.000E 00 ENDWFRTF 4.090E 02 8.260F 01 2.501E 01 M.QU.FEHLER 0.0 3.273E 00 3.297E 00 MINKENNZIFFER 0 1 1 2. WELLFNLAENGE 5054 A ANFANGSWERTE 2.250E 02 4.000E 02 1.000E 02 GEWFAKTOR 1.000F 00 ENDWFRTE 2.250E 02 4.523E 02 1.087E 02 3. WFLLENLAENGE 5077 A ANFANGSWERTE 1.238F 02 2.000E 02 6.475E 02 3. WFLLENLAENGE 5077 A ANFANGSWERTE 1.238E 02 2.336F 02 6.475E 02 GEWFAKTOR 1.000F 00 FNOWFRTE 1.238E 02 2.336F 02 6.475E 02 M.QU.FEHLER 0.0 3.527E 00 3.660F 00 MINKENNZIFFER 1	1. State 1.	NDWER TE		9.764E 11	1.250E 21				÷.,
MINKENNZIFFER 1 1 1. WELLENLAENGE 5032 A ANFANGSWERTE 4.090E 02 5.000E 01 2.500F 01 GFWFAKTOR 1.000E 00 ENDWERTF 4.090E 02 8.260F 01 2.501E 01 M.QU.FEHLER 0.0 3.273E 00 3.297E 00 MINKENNZIFFER 0 1 1 2. WELLENLAENGE 5054 A ANFANGSWERTE 2.250F 02 4.000E 02 1.000E 02 GEWFAKTOR 1.000F 00 ENDWERTE 2.250E 02 4.523E 02 1.087E 02 GEWFAKTOR 1.000F 00 ENDWERTE 0.0 3.482F 00 3.547E 00 MINKENNZIFFER 0 1 1 1 3. WFLLENLAENGE 5077 A ANFANGSWERTE 1.238F 02 2.000E 02 6.000E 02 GEWFAKTOR 1.000E 00 FNDWERTE 1.238E 02 2.336F 02 6.475E 02 M.QU.FEHLER 0.0 3.527E 00 3.660F 00 1 1	M	I.QU.FEHLFR		3.520F 10	6.160F 19			· · · · ·	
EXTMUDULN 1. WELLENLAENGE 5032 A ANFANGSWERTE 4.090E 02 5.000E 01 2.500F 01 GFWFAKTOR 1.000E 00 ENDWERTF 4.090E 02 8.260F 31 2.501E 01 M.QU.FEHLER 0.0 3.273E 00 3.297E 00 MINKENNZIFFER 0 1 1 2. WELLENLAENGE 5054 A ANFANGSWERTE 2.250E 02 4.000E 02 1.000E 02 GEWFAKTOR 1.000F 00 ENDWERTE 2.250E 02 4.523E 02 1.087E 02 M.QU.FEHLER 0.0 3.482E 00 3.547E 00 MINKENNZIFFER 0 1 1 3. WELLENLAENGE 5077 A ANFANGSWERTE 1.238E 02 2.000E 02 6.000E 02 GEWFAKTOR 1.000E 00 FNOWERTE 1.238E 02 2.336F 02 6.475E 02 M.QU.FEHLER 0.0 3.527E 00 3.660F 00 MINKENNZIFFER 0 1 1 M.QU.FEHLER 0.0 1 1 M.QU.FEHLER 0.0 3.527E 00 3.660F 00 MINKENNZIFFER 0 1 1 M.QU.FEHLER 0.0 1 1 M.QU.FEHLER 0.0 3.527E 00 3.660F 00 MINKENNZIFFER 0 1 1 M.QU.FEHLER 0.0 1 1 M.QU.FEHLER 0.0 1 1 M.QU.FEHLER 0.0 1 1 M.QU.FEHLER 0.0 0 MINKENNZIFFER 0 1 M.QU.FEHLER 0.0 0 MINKENNZIFFER 0 M.QU.FEHLER 0.0 0 MINKENNZIFFER 0 M.GU.FEHLER 0.0 0 MINKENNZIFFER 0 M.GU	M	IINKENNZIFFER	1	1	1				
1. WELLENLAENGE 5032 A ANFANGSWERTE 4.040E 02 5.000E 01 2.500F 01 GFWFAKTOR 1.000E 00 ENDWERTF 4.040E 02 8.260F 01 2.501E 01 M.QU.FEHLER 0.0 3.273E 00 3.277E 00 3.277E 00 2. WELLENLAENGE 5054 A ANFANGSWERTE 2.250E 02 4.000E 02 1.000E 02 GEWFAKTOR 1.000F 00 ENDWERTE 2.250E 02 4.523E 02 1.087E 02 GEWFAKTOR 1.000F 00 ENDWERTE 2.250E 02 4.523E 02 1.087E 02 GEWFAKTOR 1.000F 00 ENDWERTE 0.0 3.482F 00 3.547E 00 3. WFLLENLAENGE 5077 A ANFANGSWERTE 1.238E 02 2.336F 02 6.475E 02 GEWFAKTOR 1.000E 00 FNOWERTE 1.238E 02 3.527E 00 3.660F 00 MESS= UND R	EXTMUDULN		1 0005 00	5 0005 01	3.5005 01				
GFWFARTUR 1.000E 00 ENDWERT- 4.090E 02 8.250F 01 2.501E 01 M.QU.FEHLER 0.0 3.273E 00 3.297E 00 MINKENNZIFFER 0 1 1 2. WELLENLAENGE 5054 A ANFANGSWERTE 2.250F 02 4.000E 02 1.000E 02 GEWFAKTOR 1.000F 00 ENDWERTE 2.250E 02 4.523E 02 1.087E 02 M.QU.FEHLER 0.0 3.482F 00 3.547E 00 1 1 3. WFLLENLAENGE 5077 A ANFANGSWERTE 1.238F 02 2.000E 02 6.000E 02 GEWFAKTOR 1.000E 00 FNDWERTE 1.238E 02 2.336F 02 6.475E 02 M.QU.FEHLER 0.0 3.527E 00 3.660F 00 1 1	I. WELLENLAENGE 5032 A A	MEANGSWERTE	4.090E 02	5.0008 01	2.5000 01				
M.QU.FEHLER 0.0 3.273E 00 3.297E 00 MINKENNZIFFER 0 1 1 2. WELLENLAENGE 5054 A ANFANGSWERTE 2.250E 02 4.000E 02 1.000E 02 GEWFAKTOR 1.000F 00 ENDWERTE 2.250E 02 4.523E 02 1.087E 02 M.QU.FEHLER 0.0 3.482F 00 3.547E 00 MINKENNZIFFER 0 1 1 3. WFLLENLAENGE 5077 A ANFANGSWERTE 1.238F 02 2.000E 02 6.000E 02 GEWFAKTOR 1.000E 00 FNDWERTE 1.238E 02 2.336F 02 6.475E 02 M.QU.FEHLER 0.0 3.527E 00 3.660F 00 MINKENNZIFFER 0 1 1	GEW-FACTUR 1.0000 00 E	NUWERT-	4.090E 02	8.250F JI	2.5018 01				
2. WELLENLAENGE 5054 A ANFANGSWERTE 2.250F 02 4.000E 02 1.000E 02 GEWFAKTOR 1.000F 00 ENDWFRTE 2.250E 02 4.523E 02 1.087E 02 M.QU.FEHLER 0.0 3.482F 00 3.547E 00 MINKENNZIFFER 0 1 1 3. WELLENLAENGE 5077 A ANFANGSWERTE 1.238E 02 2.000E 02 6.000E 02 GEWFAKTOR 1.000E 00 ENDWERTE 1.238E 02 2.336F 02 6.475E 02 M.QU.FEHLER 0.0 3.527E 00 3.660F 00 MINKENNZIFFER 0 1 1 MESS- UND RECHENWERTE	5	LOQUOFEHLER	0.0	3.2/31 00	3.2978 00				
2. WELLENLAENGE 5034 A ANFANGSWERTE 2.230F 02 4.000E 02 1.000E 02 GEWFAKTOR 1.000F 00 ENDWFRTE 2.250F 02 4.523E 02 1.007E 02 M.QU.FEHLER 0.0 3.482F 00 3.547E 00 MINKENNZIFFER 0 1 1 3. WELLENLAENGE 5077 A ANFANGSWERTE 1.238F 02 2.000E 02 6.000E 02 GEWFAKTOR 1.000E 00 FNDWERTE 1.238E 02 2.336F 02 6.475E 02 MESS- UND RECHENWERTE 0 3.527E 00 3.660F 00	A HELLENDARNOR FORA A	NEANCOURD TE	2 2505 02	1	1 0005 02		. 3		
GewFARTOR 1.000F 00 ENDWERTE 2.230E 02 4.523E 02 1.007E 02 M.QU.FEHLER 0.0 3.482F 00 3.547E 00 3. WFLLENLAENGE 5077 A ANFANGSWERTE 1.238F 02 2.000E 02 6.000E 02 GEWFAKTOR 1.000E 00 ENDWERTE 1.238E 02 2.336F 02 6.475E 02 M.QU.FEHLER 0.0 3.527E 00 3.660F 00 MINKENNZIFFER 0 1 1	Z. WELLENLAENGE 5054 A A	NDUED TE	2.250E 02	4.0000 02	1.0075.02				
MINKENNZIFFER 0 1 1 3. WFLLENLAENGE 5077 A ANFANGSWERTE 1.238E 02 2.000E 02 6.000E 02 GEWFAKTOR 1.000E 00 FNDWERTE 1.238E 02 2.336F 02 6.475E 02 M.QU.FEHLER 0.0 3.527E 00 3.660F 00 MINKENNZIFFER 0 1 1 MESS- UND RECHENWERTE	GEW-FFARTUR I-OUVE OUS	NUWER IE	2.2902 02	9.0250 02	2 5475 00				
3. WFLLENLAENGE 5077 A ANFANGSWERTE 1.238F 02 2.000E 02 6.000E 02 GENFAKTOR 1.000E 00 FNDWERTE 1.238E 02 2.336F 02 6.475E 02 M.QU.FEHLER 0.0 3.527E 00 3.660F 00 MINKENNZIFFER 0 1 1 MESS- UND RECHENWERTE	M	IN PENNZIEED	0.0	2040ZE UU	5.5478 00				
3. WELLERLARNGE 5077 A ANFANGSWERTE 1.238E 02 2.000E 02 5.000E 02 GEWFAKTOR 1.000E 00 FNDWERTE 1.238E 02 2.336F 02 6.475E 02 MeQU.FEHLER 0.0 3.527E 00 3.660F 00 MINKENNZIFFER 0 1 1	D SELLENDE FORTA A	NEANCOUCD TE	1 2205 02	2 0005 02	4 000E 02		· · · ·		
M.QU.FEHLER 0.0 3.527E 00 3.660F 00 MINKENNZIFFER 0 1 1	S. WELLINLAENGE DUTTA A	NTANGOWEKIE	1 2305 02	2 336 02	6.4755 02				
MINKENNZIFFER 0 1 1	M STATE FARTUR INCOME OU	LOH FEHLER	1.2000 02	3.527F 00	3.660E 00		•	a de la composición d	
MESS- UND RECHENWERTE	Bara an		0	1	1	•			
MESS- UND RECHENWERTE		1.41369 17 12 19 12 14 12 17 17 12 17 17 17 17 17 17 17 17 17 17 17 17 17	U U		* 3				*
	MESS- UND RECHENWERTE					-			

~L J J	UND N	LUNDHARKI	_							· .			
IM	PH	EX(1)	EX(2)	EX(3)	FX(4)	CME	CHNL	CL	CHNA	CA	ED(1)	ED(2) ED(3)	ED(4)
1	1.104	6.155-01	3.64E-01	1.965-01	0.0	1.55E-03	5.00E-03	3.82E-14	0.0	0.0	-1.145-03 2	2.34E-03-2.14E-03	3 0.0
2	1.343	5.535-01	4.10E-01	2.14F-01	0.0	1.555-03	5.00E-03	1.75E-13	0.0	0.0	-7.31E-03 9	9.47E-03-2.93E-03	3 0.0
3	1.503	4.725-01	4.655-01	2.438-01	0.0	1.55E-03	5.00F-03	4.57E-13	0.0	0.0	-5.98E-03 3	7.21E-03-1.71E-0	3 0.0
4	1.620	4.3001	5.00F-01	2.535-01	0.0	1.55E-03	5.00E-33	8.89E-13	0.0	0.0	3.11E-02-1	L.26E-02-1.85F-02	2 0.0
5	1.656	3.77E-01	5.345-01	2.73F-01	0.0	1.55E-03	5.005-03	1.085-12	0.0	0.0	3.275-03	3.91E-03-7.09E-0	3 0.0
6	1.710	3.145-01	5.728-01	2.93E-01	0.0	1.55E-03	5.00E-03	1.46E-12	0.0	0.0	-2.28E-02 1	L.64E-02 2.79E-04	+ 0.0
7	2.151	1.59=-01	6.67E-01	3.645-01	0.0	1.558-03	5.00E-03	1.39E-11	0.0	0.0	+1.93E-03-2	2.06E-03 2.85F-03	3 0.0
8	2.426	1.406-01	6.60E-01	3.995-01	0.0	1.55E-03	5.00F-03	4.66E-11	0.0	0.0	6.54E-03-5	5.015-03 4.785-0	3 0.0
9	2.735	1.148-01	6.04E-01	4.78E-01	0.0	1.55E-03	5.005-03	1.44E-10	0.0	0.0	-3.338-03-1	L.31F-02 1.75E-02	2 0.0
10	2.886	1.125-01	5.84E-01	5.11=-01	0.0	1.55E-03	5.005-03	2.295-10	0.0	0.0	2.35E-03 4	+.21F-03 4.10F-03	3 0.0
11	3.040	1.01F-01	5.48F-01	5.45-01	0.0	1.55E-03	5.005-03	3.53F-10	0.0	0.0	-3.926-04 1	L.26F-02-1.62E-02	2 0.0
12	3.193	9.105-02	4.38E-01	6.12F-01	0.0	1.555-03	5.002-03	5.22E-10	0.0	0.0	-1.97F-03	7.60F-05-6.90F-0	3 0.0
13	3.360	8.205-02	4.345-01	6.805-01	0.0	1.55E-03	5.005-03	7.77E-10	0.0	0.0	-1.945-03-1	L.77E-03-2.04E-03	3 0.0
14	3.500	7.405-02	3.81E-01	7.50F-01	0.0	1.55E-03	5.005-03	1.078-09	0.0	0.0	-2.78F-03-1	L.29F-02 1.74E-02	2 0.0
15	3.936	6.00F-02	2.96E-01	8.51F-01	0.0	1.558-03	5.00F-33	2.745-09	0.0	0.0	1.37F-03	9.30E-03-1.09E-02	2 0.0
16	4.393	5.005-02	2.230-01	9.39F-01	0.0	1.55E-03	5.00E-03	7.37E-09	0.0	0.0	2.64-03 3	3.355-03-3.755-0	3 0.0
17	5.622	3.702-02	1.695-01	1.005 00	0.0	1.55F-03	5.008-03	1.185-07	0.0	0.0	-2.38F-03-3	3.08F-03-5.15F-09	5 0.0
18	6.198	4.105-02	1.685-01	1.015 00	0.0	1.555-03	5.00E-03	4.43F-07	0.0	0.0	2.055-03-1	L.51E-03 6.86E-03	3 0.0

ABBILDUNG 5

PHASE 5AUFRUF EMALER FUER ERGEBNISDIAGRAMM

тос	lg ß _l	lg ß ₂
15,0	11,90+0,02	21,04 <u>+</u> 0,03
20,8	11,93+0,02	20,96 <u>+</u> 0,03
24,6	11,99 <u>+</u> 0,03	21,10 <u>+</u> 0,04
30,0	11,97+0,02	21,08 <u>+</u> 0,03
40,1	11,87+0,03	20,75 <u>+</u> 0,04
50,0	11,71 <u>+</u> 0,03	20,39 <u>+</u> 0,04

Es ergibt sich, daß die Bildung der Am(III)-Nitrilotriacetate nur wenig von der Temperatur abhängt. Die maximale Variation der Stabilitätskonstanten im Intervall 15 bis 50°C ist $\Delta lg \ B_1 = 0,28$ bzw. $\Delta lg \ B_2 = 0,71$.

- Berechnung von ΔH und ΔS aus den spektralphotometrisch bestimmten Stabilitätskonstanten

Die Berechnung der thermodynamischen Größen nach der Temperaturgradientenmethode beruht auf folgenden Gleichungen:

∆_H	Ħ	2,3.R. $\frac{\delta \lg K}{\delta (1/T)}$	ta da composita da c A ser este de composita da composi	(4)
−∆G	=	2,3·R·T·1g K	Bertheller (1997) and Arthology (1997) An Arthology (1997) and Arthology (1997)	(5)
<u>∆</u> S	-	$\frac{\Delta H - \Delta G}{T}$	an a	(6)

Hierin ist K die Gleichgewichtskonstante der betrachteten Reaktion. Voraussetzung für die Gültigkeit von Gleichung (1) ist, daß die Funktion 1g K = f(1/T) linear ist, d.h., daß ΔH im angewandten Temperaturintervall konstant ist. Das wird kontrolliert, indem man 1g K gegen 1/T aufträgt, die Meßpunkte müssen auf einer Geraden liegen. Eine gekrümmte Kurve bedeutet, daß ΔH nicht konstant und die Differenz der spezifischen Wärmen der Anfangs- und Endprodukte der Komplexreaktion ungleich Null ist.

Zur Berechnung von ΔH ermittelt man die Steigung der Geraden im 1g K – 1/T – Diagramm und verfährt nach Gleichung (4). In dieser Arbeit wurde eine numerische Methode angewandt, die darin besteht, aus den Wertepaaren 1g K, 1/T die Parameter a und b der Gleichung 1g K = a + b/T nach der Gausschen Fehlerquadratmethode zu berechnen. Man erhält dabei sowohl b = δ 1g K/ δ (1/T) selbst, als auch den mittleren quadratischen Fehler von b.

Der Versuch, unmittelbar aus den β_i die Enthalpie auf der Basis von Gleichung (4) zu erhalten, schlug fehl. Trägt man 1gß über 1/T auf, so läßt sich nicht entscheiden, ob die Punkte auf einer Geraden liegen und welche Neigung diese gegebenenfalls hat, da sich die ßnur wenig mehr unterscheiden als ihre Fehlerbreite. Ähnliche Verhältnisse herrschen auch bei verschiedenen Aminopolykarbonaten der Seltenen Erden (14). Es hat sich dort als zweckmäßig erwiesen, zur Ermittlung von ΔH nicht die Konstanten ß, söndern die Konstanten K^{*} zu verwenden, also zunächst die Enthalpie der Protonendissoziationsreaktion zu berechnen. Im Falle der Am(III)-Nitrilotriacetate lauten die entsprechenden Reaktionsgleichungen:

 $Am^{3+} + HNTE^{2-} \xrightarrow{K_1^*} AmNTE + H^+$ $AmNTE + HNTE^{2-} \xrightarrow{K_2^*} Am(NTE)_2^{3-} + H^+$

Man vermeidet damit, daß die Streuung der pK-Werte auf die Steigung übertragen wird. In dem pH-Bereich, in welchem die hier mitgeteilten Versuche ausgeführt wurden, entsteht der Komplex auch tatsächlich durch Reaktion von Am³⁺·aq mit HNTE²⁻, d.h., über die Zwischenverbindung AmHNTE⁺. Das zeigt sich z.B. an der Abhängigkeit der Reaktionsgeschwindigkeitskonstanten vom pH-Wert (15).

Zur Berechnung der thermodynamischen Konstanten wurde wie folgt verfahren:

a.)	Berechnen	von	K [*] i	$K_{i}^{*} = K_{i} \cdot K_{D}$	(7.)
Ъ.)	Berechnen	der	Steigung	$(1g K_{i} = a_{i} + b_{i}/T)$	(8)
-	- - 			$b = \frac{\delta \lg K_i^*}{\delta(1/T)}$	(9)
c.)	Berechnen	von	∆H* i	$\Delta H_{i}^{*} = -2, 3 \cdot R \cdot b$	(10)
d.)	Berechnen	von	∆H _i	$\begin{array}{rcl} \Delta H_{i} &= & \Delta H_{i}^{*} &- & \Delta H_{D} \\ \Delta H_{D} &= & Dissoziationsenthalpie \\ & & von & H_{m}L \end{array}$	(11)

e.)	Berechnen von	ΔCi	$\Delta G_{i} = -2, 3 \cdot R \cdot T \cdot 1g K_{i(25°C)}$	(12)
f.)	Berechnen von	ΔS	$\Delta S = \frac{\Delta H - \Delta G}{T}$	(13)

Die Steigung erhielt man durch Berechnen der Parameter a und b der Gleichung einer Geraden, wobei x = 1g K^{*} und y = 1/T ist. Wie Abbildung 6 zeigt, ergeben 1g K^{*}₁ und 1g K^{*}₃ beim Auftragen gegen 1/T Geraden. Bei 1g K^{*}₂ ist die Streuung groß; offensichtlich hängt das damit zusammen, daß K₂ = β_2/β_1 mit der Summe der Fehler von β_1 und β_2 behaftet ist. Der Fehlerbereich ist in Abbildung 6 jeweils durch die senkrechten Balken angedeutet.

ABBILDUNG 6

Temperaturabhängigkeit der Konstanten K^{*} der Am(III)-H₃NTE-Komplexe aufgrund spektralphotometrischer Messungen

Der Fehler der Enthalpie bzw. Entropie ergibt sich aus dem Fehler der Steigung und der Dissoziationsenthalpie wie folgt:

$$\delta \Delta H_{i}^{*} = 2, 3 \cdot R \cdot \delta \left(\frac{\delta \lg K_{i}^{*}}{\delta 1/T} \right)$$
(14)

$$\delta \Delta H_{i} = \delta \Delta H_{i}^{*} + \delta \Delta H_{D}$$
(15)

$$\delta \Delta G_{:} = 2, 3 \cdot R \cdot T \cdot \delta (1g K_{:})$$
(16)

$$\delta \Delta S_{i} = (\delta \Delta H_{i} + \delta \Delta G_{i}) / T$$
(17)

- 17 -

Mit den vorstehend abgeleiteten Formeln erhält man aus den spektralphotometrisch bestimmten Stabilitätskonstanten die folgenden thermodynamischen Daten (für 25°C und μ =0,1):

 $Am^{3+} + NTE^{3-} \longrightarrow Am(NTE)^{\circ} \qquad \Delta G_{1} = -16, 31\pm0, 04 \text{ kcal/Mol} \\ \Delta H_{1} = 0, 67\pm0, 46 \text{ kcal/Mol} \\ \Delta S_{1} = 56, 1\pm0, 2 \text{ cal/Mol} \text{ grd} \\ Am(NTE)^{\circ} + NTE^{3-} \longrightarrow Am(NTE)_{2}^{3-} \qquad \Delta G_{1} = -12, 32\pm0, 09 \text{ kcal/Mol} \\ \Delta H_{1} = -5, 7\pm0, 8 \text{ kcal/Mol} \\ \Delta S_{1} = 22, 3\pm2, 8 \text{ cal/Mol} \text{ grd} \\ As_{1} = 22, 3\pm2, 8 \text{ cal/Mol} \text{ grd}$

Ein Vergleich mit Messungen der Lanthaniden-Nitrilotriacetate von Th. Moeller et al. (17) ergibt, daß die Am(III)-NTE-Komplexe ähnliche Enthalpien und Entropien wie diese haben. Es besteht weitgehende zahlenmäßige Gleichheit der Entropie bei Americium und Gadolinium (Gd: $\Delta S_1 = 56,2$; $\Delta S_2 = 22,9$).

- Bestimmung der Stabilitätskonstanten der H₃NTE-Komplexe von Am(III), Cm(III) und Cf(III) durch Ionenaustausch

Es wurden die Verteilungskoeffizienten der drei Kationen zwischen NH_4 -DOWEX50-X12 und Lösungen von H_3 NTE in 0,1m NH_4 ClO₄ bei verschiedenen pH-Werten gemessen. Wie Abbildung 7 zeigt, nimmt Q mit steigendem pH ab, d.h., daß zunehmend Metallionen durch Komplexbildung desorbiert werden. Die stabilsten Komplexe bildet offensichtlich das Californium. Auftragen von 1g Q/Q_o gegen 1g [NTE³⁻] liefert eine Kurve mit Asymptoten, deren Steigung d1g(Q/Q_o)/ d1g(NTE³⁻) den Wert eins bzw. zwei hat. Das bedeutet, daß die Komplexe M(NTE)^o und M(NTE)³⁻ vorliegen (1). Die Ionenaustauschmethode führt somit bei Am(III) zur Identifikation der gleichen Komplexe wie die Spektralphotometrie und zeigt, daß Cm(III) und Cf(III) sich wie Am(III) verhalten.

Der Verteilungskoeffizient hängt mit den Stabilitätskonstanten durch folgende Gleichung zusammen:

$$Q = \frac{Q_o}{1 + B_1 \cdot [NTE^{3-}] + B_2 [NTE^{3-}]^2}$$
(18)

Zur Berechnung von β_1 und β_2 nach dieser Gleichung wurde das Programm KOMPLEX1 verwandt. Dieses ist eigentlich für spektralphotometrische Daten bestimmt. Man kann jedoch auch Ionenaustauschdaten auswerten, indem man folgende Identitäten einführt: Zahl der Wellenlängen = 1 Extinktionsmodul von Am³⁺·aq = Verteilungskoeffizient Q_o alle anderen Extinktionsmoduln = 0 Einwaagekonzentration von Am(III) = 1 Extinktionen = Verteilungskoeffizienten Q

<u>ABBILDUNG 7</u> Verteilungskoeffizienten von Am(III), Cm(III) und Cf(III) im System NH₄-DOWEX50-X12/0,1m NH₄C10₄/H₃NTE

Abbildung 8 zeigt einen verkleinerten Maschinenausdruck von KOMPLEX1 für den Versuch mit Am(III) bei 25,6°C.

Die so ermittelten Stabilitätskonstanten sind in Tabelle 4 zusammengestellt. Für einen Vergleich zwischen Ionenaustausch und Spektralphotometrie seien folgende Zahlen angeführt (β_1 bei 25°C) $Am(NTE)^{0}$ $Am(NTE)_{2}^{3-}$ Spektralphotometrie 1g $\beta_1 = 11,99\pm0,03$ 1g $\beta_2 = 21,08\pm0,03$ Ionenaustausch 1g $\beta_1 = 11,91\pm0,01$ 1g $\beta_2 = 20,2\pm0,6$

PRUGRAMM KJMPLEX1 PNC5970 AFG70671 Berechnung vun gleichgewichtskonstanten nach der Fehlerg	JUADRALMET HODE
VERSUCH A4-241/H2DGS MEU=0.1 VRS 23.11.71 CGS TEMP 20.5	RECHNUNG 2 DATUM25.01.1972
VERWENDETE UNTERPROGRAMME Aniuns 65914 — Af29u770-Kumplex	BERECHNUNG DES QUOTENTEN QLI=L/HNL EINER SAEURE HNL
FEDANS (5955 AF29077C-KOMPLEX VERW.MIT MIKLQS	ANGLEICH MITTELS DER FEHLERQUADRAIMETHODE - POS.PARAMETER
MIKGQS C5956 AF29077C-KUMPLEX FUER FEGANS 00950	MINIMALISIERUNG EINER KÖNVEX-QUADRAT.FUNKTIUN
EVALER US972 AF29077C-KOMPLEX FUER ANFUNS	LEICHNEI DAS ERGEBNISDIAGKAMM
ANFUNS 05971/1 AF100970 VERSI/N KUMPLEX1/290770	KOMPONENTEN M-HL-ML2ML6
PHASE 4 ENDERGEBNIS MINIMUM VON GRUS GEFUNDEN	
KONTRULLZAHLEN NM NK NM IA NG IDIAG KUG KTR 21 4 4 0 1 1 2 1	NAUS ITK NSB FH GFQS KFQS 1 8 672 0.834E CO 0.102E-C2 0.385E-02
0155 - K0NST - 11000 - 101 = 2	.03
LIGAND HNA NDA = 0	
GLEICHGEWICHTSKUNSTANTEN KOMPONENTE 1	
ENDWERTE	1.644E 06 3.438E 10 1.695E 13
M.QU.FEHLER	4.775E 04 1.875E 09 1.048E 12
MINKENNZIEFER	i i i
EATS-RUDULY	
I. WELLENLAENGE DUSZ A ANFANGSWERIG 4.090E 02	
	9666 00 1.6576 00 1.1676 00
MINKENN71EEFD 0	
2. WELLINGAENCE 5046 & ANEANGSHERTE 2.654E CZ 3.	900F 04 3-000F 02 1-000F 02
CEN EAKT 12 1.000+ 00. ENDWERTE 2.654E C2 4.	
M.QU.FEHLER 0.0 1.	657E 00 2.159E 00 1.314E 00
MINRENNZIFFER C	1 1 1
3. WELLENLAENGE 5055 A ANFANGSWERTE 2.182E C2 3.	500E 02 4.20VE M2 2.20VE 02
GEWFAKTOR 1.000E CO ENDWERTE 2.182E 02 3.	414E 02 4.729E 02 1.830E 02
M+QU.FEHLER 0.0 1.	719E U0 1.828E 00 1.948E 00
MINKENNZIFFER C	1 1 1
4. WELLENLAENGE 5071 A ANFANGSWERTE 1.5CIE 62 1.	200E 02 2.000E 02 3.800E 02
GEWFAKTUR 1.000L GO ENDWERTE 1.501E 02 2.	2076 02 2.7186 02 5.8256 02
MINKENNZIFFER C	
MECC. HNF. JEAUENDLOTE	
THE OND RECHEMBERTE	LHNE CE CHNA LA ED(1) FD(2) ED(3) FD(4)
1 1.051 5.11E-01 6.07E-01 4.83E-01 3.19E-01 1.73E-03	3 2.00E-02 5.59E-07 C.U 0.C -4.57E-03 7.51E-03 1.27E-03-1.73E-04
2 1.208 4.55c-01 6.50E-01 5.19E-01 3.38E-01 1.73E-03	2.40E-02 1.12E-06 0.0 0.6 9.61E-03 2.56E-03-1.58E-03-3.04E-03
3 1.378 3.79E-01 6.82F-01 5.58E-01 3.64E-01 1.73E-03	3 2.00E-02 2.38E-06 C.n 0.0 -2.10E-03-3.20E-03 2.99E-05 2.49E-03
4 1.501 3.47E-01 6.93E-01 5.82E-01 3.75E-01 1.75E-03	3 2.006-02 4.17E-76 C.C. C.C. 1.89E+03-5.55E-03 8.67E-04 1.46E-03
5 1.667 3.09E-01 6.96E-01 6.08E-01 3.86E-01 1.73E-03	1 2.00E-02 8.40E-06 C.C 0.C 2.87E-03-4.91E-04-2.84E-03-1.89E-03
6 1.917 2.40E-01 6.50E-01 6.64E-01 4.13E-01 1.73E-03	3 2.00E-02 2.46E-05 C.C 0.0 -1.19E-02-3.01E-03 1.74E-03 9.55E-04
7 2.102 2.11E-01 6.07E-01 7.07E-01 4.35E-01 1.73E-04	2.00E-02 5.26E-05 C.U C.C 6.20E-04 7.39E-03 3.76E-03-2.23E-04
8 2.277 1.80E-01 5.51E-01 7.31E-01 4.63E-01 1.73E-03	$2 + 0.00 \pm 0.02 + 0.00 \pm 0.04 + 0.01 + 0.01 + 0.01 \pm 0.0$
	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
11 2.749 1.226-01 4.226-01 7.016-01 5.776-01 1.736-02	1 2 000-02 06112-04 0.0 0.0 -0.0 -0.105-04 2.125-00-2.007-05 1.175-00
- 66 - EFTTE ACCELTUE TECHETUE FOULETUE JOFFETUE ANTOETUE - 10 - 7.041 1 026-01 2.706-01 6.506-01 6.416-01 1 706-02	2.600=02 JOUE VY (10 01) JOUE VS 2.62=03 TO DE UT 107750 1 107500 1 10750 1 10750 1 10750 1 10750 1 10750 1 10
13 3.184 9.30F+C2 3.(9F+C1 5.67F+C1 /.31F+C1 1.73F+C3	
14 3.398 8.50E-02 2.70c-01 5.25E-01 7.97F-01 1.73E-03	2.008-02 3.195-03 0.0 0.0 2.395-04-1.355-03 1.285-02-4.115-06
15 3.631 8.00±-02 2.40E-01 4.66E-01 8.52E-01 1.73E-03	3 2.00E-02 4.96E-03 U.C 0.0 1.42E-03 2.90E-03 3.19E-03 1.06E-03
16 3.834 7.50E-02 2.165-01 4.27E-01 8.81E-01 1.73E-03	2.CUE-02 0.75E-03 0.0 0.0 2.21E-06-7.31E-04-6.03E-03-2.25E-03
17 4.(16 7.20E-02 2.03F-01 4.10E-01 9.03E-01 1.73E-03	2.00E-02 8.39E-03 0.0 0.C -8.24E-04-1.24E-03-4.64E-03-1.31E-04
18 4.371 7.00E-02 1.93E-01 3.92E-01 9.24E-01 1.73E-03	2.00E-02 1.12E-02 0.0 0.0 -3.96E-04 2.84E-03-1.83E-03-1.58E-03
19 4.831 6.80E-02 1.62E-01 3.80E-01 9.38E-01 1.73E-03	3 2+00E-02 1+34E-02 0.0 0.0 -1+10E-03-6+18E-04-2.65E-03 3.72E-04
20 5.391 0.90E-02 1.80E-01 3.78E-01 9.48E-01 1.73E-02	2.00E+02 1.45E-02 0.C C.0 4.02E-04 3.35E-04-2.61E-04 5.65E-03
21 5.739 6.90E-02 1.80E-01 3.83E-01 9.40E-01 1.73E-02	3 2.00±-02 1.48±-02 0.0 0.0 5.08E-04 9.57E-04 5.66E+03-3.34E-03

PHASE SAUFRUF EMALEK FUER FRGEBNISDIAGRAMM

٠,

Beide Bestimmungsmethoden liefern für ß₁ ähnliche Werte, wogegen die ß₂ verschieden sind. Die durch Ionenaustausch bestimmten Stabilitätskonstanten liegen generell unter den durch Spektralphotometrie bestimmten, besonders bei tiefen Temperaturen.

- Berechnung von ΔH und ΔS aus den durch Ionenaustausch bestimmten Stabilitätskonstanten

Trägt man die Stabilitätskonstanten gegen T auf, so erhält man eine Sägezahnkurve. Die an den Verteilungskoeffizienten Q₀ festgestellte besondere Temperaturabhängigkeit schlägt also auf die Stabilitätskonstanten durch. Wie schon bei der Untersuchung von Q₀ wurde auch hier durch Messen eines Ansatzes (Harz, wäßrige Phase mit H₃NTE) bei verschiedenen Temperaturen sicher gestellt, daß kein Meßfehler vorliegt. Die Prüfgröße ist in diesem Fall der Quotient Q₀/Q, der von dem speziellen Temperaturverhalten des Verteilungskoeffizienten unabhängig sein müßte.

$$\frac{Q_{o}}{Q} = 1 + \beta_{1} [NTE^{3-}] + \beta_{2} [NTE^{3-}]^{2}$$
(19)

Auch diese Prüfung bestätigte die sägezahnförmige Temperaturkurve für die mittels Ionenaustauschmessungen bestimmten Stabilitätskonstanten, die bei spektralphotometrisch bestimmten Stabilitätskonstanten nicht auftritt.

ABBILDUNG 9

Temperaturabhängigkeit der durch Ionenaustausch bestimmten Stabilitätskonstanten der H₃NTE-Komplexe von Am(III) und Cm(III) im Temperaturbereich 30°C bis 50°C

	· · · · · · · · · · · ·		
	T ([°] ,C)	lg ß _l	lg ß ₂
Am	14,0	11,70 <u>+</u> 0,02	20,72 <u>+</u> 0,13
	20,5	11,78+0,01	20,71 <u>+</u> 0,05
	25,6	11,91 <u>+</u> 0,02	20,18 <u>+</u> 0,56
	30,0	11,39 <u>+</u> 0,02	20,19 <u>+</u> 0,20
	35,0	11,41+0,01	20,57 <u>+</u> 0,05
	40,0	11,45+0,07	20,30 <u>+</u> 0,05
<u></u>	45,8	11,56 <u>+</u> 0,01	20,46 <u>+</u> 0,04
Cm	14,0	11,66+0,01	20,44 <u>+</u> 0,12
	21,0	11,75+0,01	20,96 <u>+</u> 0,03
	25,0	11,88+0,02	20,58+0,16
	30,0	11,37 <u>+</u> 0,01	20,60+0,05
	35,8	11,39 <u>+</u> 0,01	20,57 <u>+</u> 0,03
	40,0	11,42+0,01	20,48 <u>+</u> 0,07
	45,8	11,49 <u>+</u> 0,01	20,53 <u>+</u> 0,03
Cf	14,9	11,74+0,02	21,39+0,03
	20,2	11,62 <u>+</u> 0,02	21,34 <u>+</u> 0,04
	25,0	11,71 <u>+</u> 0,01	21,33 <u>+</u> 0,02
	30,4	11,35+0,02	21,08+0,02
	37,0	11,35+0,06	21,52+0,11

<u>TABELLE 4</u> Durch Ionenaustauschmessungen bestimmte Stabilitätskonstanten der Nitrilotriessigsäurekomplexe von Americium, Curium und Californium (Ionenstärke 0,1)

Der besondere Temperatureffekt tritt nur im Ionenaustauschsystem auf. Offensichtlich laufen gegenwärtig noch unbekannte Reaktionen ab. Es könnte sich dabei z.B. um eine Reaktion des Zwischenkomplexes Am(HNTE)⁺ handeln, der als Kation vom Austauscher sorbiert wird und einen Wechsel der Hydration bei ca. 28^oC erleidet, wie er in 2.1 für die unkomplexen Kationen diskutiert wurde. Mit der Annahme eines kationischen Komplexes steht die Tatsache in Übereinstimmung, daß Ionenaustauschexperimente stets kleinere Stabilitätskonstanten liefern alsspektralphotometrische Experimente, wie es der Fall sein würde, wenn zusätzlich zum unkomplexen Kation auch komplexe Species vom Harz sorbiert werden. Versuchsweise wurden die im Temperaturintervall 30 bis 50° C gemessenen Stabilitätskonstanten ausgewertet und die "Enthalpie" berechnet. Die Konstanten K^{*}_i liegen im 1g K-1/T-Diagramm auf einer Geraden wie es auch im Falle der Spektralphotometrie beobachtet wird (Abbildung 9). Bei K^{*}₂ ist infolge der großen Streuung eine Δ H-Berechnung nicht sinnvoll. Mittels der Geradenmethode kommt man zu folgenden Zahlen für Δ H₁:

ann a staine ann an Anna a	Am	Cm
$\frac{\delta \log K_1^*}{\delta (1/T)}$	-2052 <u>+</u> 123	-1746 <u>+</u> 55
∆H [*] (?)	9270 <u>+</u> 560	6760 <u>+</u> 251 cal/Mo1
ΔH ₁ (?)	4600 <u>+</u> 560	2100 <u>+</u> 250 cal/Mo1

Wie zuvor spektralphotometrisch ermittelt, beträgt die Enthalpie für Am(NTE)^o +670 cal/Mol, der Wert 4600 cal/Mol ist grob falsch. Offensichtlich ist eine Bestimmung thermodynamischer Daten bei den dreiwertigen Transuranen durch Ionenaustauschmessungen nicht möglich. Auch gegen die mit dieser Methode erhaltenen Stabilitätskonstanten müssen Bedenken angemeldet werden, ungeachtet dessen, daß hier bei 25° C die gleichen ß_i erhalten wurden wie auf spektralphotometrischem Weg. Die Übereinstimmung ist vermutlich zufällig bei H₃NTE gegeben. Hinweise auf einen signifikanten Unterschied der Resultate beider Bestimmungsweisen gibt es bei vielen Liganden z.B. Am(III)-diäthylentriaminpentaacetat $B_{Sp} \simeq 8 \cdot B_{IA}$ (19).

2.2.2 Iminodiessigsäurekomplexe

- Spektralphotometrische Untersuchung und Bestimmung der Stabilitätskonstanten

Aus den Absorptionsspektren im Bereich pH 1 bis pH 10 ist die sukzessive Bildung von drei Komplexen zu entnehmen, deren Absorptionsmaxima bei 5053, 5071 bzw. 5096 Å liegen (Abbildung 10). Die ersten beiden Maxima werden von den Komplexen $Am(IDE)^+ \cdot aq$ und $Am(IDE)_2^- \cdot aq$ verursacht, wie schon früher beweisen wurde (7,18). Die Identität des dritten Komplexes folgt aus der Beobachtung, daß die 5096 Å-Bande auch dann auftritt, wenn in der Lösung das Verhältnis Am:H₂IDE nur 1:2 beträgt und daß sie bei sehr hohem pH erscheint: es ist das Komplexhydroxid Am(IDE)₂(OH)²⁻·aq. Bei den Berechnungen der Stabilitätskonstanten ergab sich genügende Kongruenz von Extinktionsmeßwerten und berechneter Extinktionskurve nur bei Vorgabe einer vierten Species, des Hydrogenkomplexes Am(HIDE)²⁺, der in saurer Lösung auftritt (Abbildung 11).

Somit verläuft die Komplexreaktion im System Am(III)/H₂IDE nach folgendem Schema:

Am³⁺

$$pH 2...3$$

Am(HIDE)²⁺
 $pH 3...5$
Am(IDE)⁺
 $pH 5...7$
Am(IDE)²
 $pH > 7$
Am(IDE)₂(OH)²⁻

Aminopolykarbonsäure-Hydrogenkomplexe, deren Absorptionsmaxima nicht festzustellen sind, wurden früher bei Äthylendiamintetraessigsäure, Cyclohexantetraessigsäure und anderen festgestellt; dieser Typ war jedoch bisher bei H₂IDE nicht erkannt worden. Komplexhydroxide der dreiwertigen Transplutone waren bisher nicht bekannt.

Es wurden Titrationen bei vier Temperaturen ausgeführt und jeweils die Stabilitätskonstanten aus den Extinktionen bei 5032, 5053, 5071 und 5096 Å berechnet (Werte in Tabelle T2). Das vierstufige Reaktionsschema bleibt bei allen Temperaturen erhalten. Die Stabilitätskonstanten sind:

ABBILDUNG 11 Extinktionskurven für das System Am(III)/H₂IDE/ 0,1 m NH₄Cl0₄

- 25 -

-7,91+0,06
-7,84 <u>+</u> 0,05
-7,88 <u>+</u> 0,05
-7,71 <u>+</u> 0,04

In (18) wird ein 1:5-Komplex $Am(IDE)_5^{7-}$ angegeben. Messungen mit hoher H₂IDE-Konzentration ergaben jedoch keinen Hinweis auf die Existenz eines solchen Komplexes; dessen Existenz kann also nicht bestätigt werden.

- Berechnung von ΔH und ΔS Die in Abschnitt 2.2.1 beschriebene Berechnungsweise über K_i^* und auch der direkte Weg über B_i (Gleichung 4 bis 6) lieferten innerhalb der Fehlergrenzen das gleiche Ergebnis. Mittels quadratischen Angleichs der Wertepaare $\frac{1}{2}B_i^{-1/T}$ an eine Gerade gemäß der Gleichung lg $B_i^{} = a + b \cdot T^{-1}$ erhielt man die Enthalpie nach $\Delta H = -2, 3 \cdot R \cdot b$. Am³⁺ + HIDE⁻ \longrightarrow AmHIDE²⁺ $\Delta G_H^{} = -1, 79\pm0, 15$ kcal/Mol $\Delta H_H^{} = -14, 99\pm1, 52$ kcal/Mol $\Delta S_H^{} = -44, 3\pm5, 7$ cal/Mol·grd Am³⁺ + IDE²⁻ \longrightarrow AmIDE⁺ $\Delta G_1^{} = -9, 64\pm0, 01$ kcal/Mol $\Delta H_1^{} = -1, 19\pm0, 32$ kcal/Mol $\Delta S_1^{} = 28, 4\pm1, 1$ cal/Mol·grd

AmIDE⁺ + IDE²⁻ \longrightarrow Am(IDE)₂ Am(IDE)₂ $\Delta G_2 = -7,59\pm0,04 \text{ kcal/Mol}$ $\Delta H_2 = -3,14\pm1,68 \text{ kcal/Mol}$ $\Delta S_2 = 14,9 \pm 5,6 \text{ cal/Mol} \text{ grd}$

$$Am(IDE)_2^{-} \cdot aq \longrightarrow Am(IDE)_2(OH)^{2^-} + H^+ \Delta G_{OH} = 10,70\pm0,09 \text{ kcal/Mol}$$

 $\Delta H_{OH} = \pm 10,8\pm1,2 \text{ kcal/Mol}$

Für die Hydrolysenreaktion läßt sich kein Entropiewert angeben, da die Differenz ΔH – ΔG weit kleiner ist, als der Fehler der beiden Größen.

2.2.3 Diglykolsäurekomplexe

- Spektralphotometrische Untersuchung und Bestimmung der Stabilitätskonstanten

Es wurde festgestellt, daß das Absorptionsspektrum einer Am(III)/ H₂DGS-Lösung im Bereich pH 1 bis pH 6 drei Komplexabsorptionsbanden aufweist, deren Maxima bei 5047, 5056 bzw. 5071 Å liegen (Abbildung 12). Die Auswertung mit KOMPLEX1 ergibt, daß folgendes Reaktionsschema vorliegt:

$$Am^{3+}$$

 $pH 1...2$
 $Am(DGS)^{+}$
 $pH 2...3$
 $Am(DGS)_{2}^{-}$
 $pH 3...5$
 $Am(DGS)_{3}^{3-}$

Die H₂DGS-Komplexe bilden sich bei wesentlich niedrigerem pH als die H₂IDE-Komplexe. Bemerkenswert ist das Auftreten des Trisdiglykolates angesichts der Tatsache, daß eine Tris-verbindung der stärker komplexbildenden Iminodiessigsäure nicht nachgewiesen war.

Es wurden spektralphotometrische Titrationen bei fünf Temperaturen ausgeführt. Da sich herausstellte, daß die Stabilitätskonstanten nur sehr wenig von der Temperatur abhängen, wurde der Meßbereich bis zur mit der vorhandenen Einrichtung höchst möglichen Temperatur von ca. 50°C ausgedehnt. Höher zu gehen, ist nicht möglich, da die Verdampfungsverluste beim Umfüllen der Lösung vom Titrationsgefäß in die Meßküvette zu groß werden. Weiter war es schon bei 50°C sehr schwierig, die Thermostaten des Titrationsgefäßes und des Spektralphotometers auf gleiche Temperatur einzustellen bzw. im Küvettenraum überhaupt 50°C zu erreichen.

ABBILDUNG 12

Absorptionsspektren einer Lösung von Am(III) und H₂DGS

Medium	:	0,1m NH ₄ C10 ₄
Temperatur	:	25,2 [°] C
Am(III)	:	0,00174 m
H ₂ DGS	:	0,02 m

T ([°] C)	lg ß _l	lg ß ₂	lg ^R 3
14,5	6,45+0,02	11,06 <u>+</u> 0,03	13,96 <u>+</u> 0,04
25,2	6,47 <u>+</u> 0,01	10,96 <u>+</u> 0,03	13,83 <u>+</u> 0,03
29,6	6,38+0,01	10,95 <u>+</u> 0,02	13,87 <u>+</u> 0,03
39,1	6,55 <u>+</u> 0,02	11,16 <u>+</u> 0,02	14,08+0,03
49,1	6,45 <u>+</u> 0,02	11,16 <u>+</u> 0,05	14,12 <u>+</u> 0,05

- Berechnung von ΔH und ΔS

Die Enthalpie wurde mittels der Gleichungen 4 bis 6 berechnet. Entsprechend der geringen Temperaturabhängigkeit der Komplexstabilität erhält man große statistische Fehlerbreiten der Enthalpie.

$Am^{3+} + DGS^{2-}$	Am(DGS) [†]	$\Delta G_1 = -8,75\pm0,03 \text{ kcal/Mol}$
		$\Delta H_1 = 0,46\pm0,70 \text{ kcal/Mol}$
· · · · · · · · · · · ·		$\Delta S_1 = 30,9 \pm 2,4 \text{ cal/Mol·grd}$
$Am(DGS)^+ + DGS^2$	$-$ Am(DGS) $\frac{1}{2}$	$\Delta G_2 = -6,20\pm0,07 \text{ kcal/Mol}$
	_	$\Delta H_2 = 1,56 \pm 0,76 \text{ kcal/Mol}$
		$\Delta S_{2} = 25,9 + 2,8 \text{ cal/Mol·grd}$

 $\operatorname{Am}(\operatorname{DGS})_{2}^{-} + \operatorname{DGS}^{2^{-}} \longrightarrow \operatorname{Am}(\operatorname{DGS})_{3}^{3^{-}}$

 $\Delta G_3 = -3,93\pm0,08$ kcal/Mol $\Delta H_3 = 0,81\pm0,25$ kcal/Mol $\Delta S_3 = 15,9\pm1,2$ cal/Mol grd

2.2.4 Thiodiglykolsäurekomplexe

- Spektralphotometrische Untersuchung und Bestimmung der Stabilitätskonstanten

Die Absorptionsspektren in Gegenwart von H₂TDG sind, wie Abbildung 13 zeigt, verschieden von denen in Gegenwart der bisher behandelten Komplexbildner. Die Banden treten nicht deutlich hervor, sondern scheinbar verschiebt sich mit steigendem pH der Lösung das Absorptionsspektrum nach größeren Wellenlängen. Beim höchsten pH, d.h. maximaler Komplexierung ist die Extinktion (und daher der molare Extinktionsmodul) niedriger als beim unkomplexen Am(III), dafür ist die Halbwertsbreite der Komplexbanden größer als die der Am³⁺·aq-Bande. Die anderen studierten Am(III)-Komplexe haben alle einen höheren molaren Extinktionsmodul als das Am(III)-Aquokation. Die im Falle der H₂TDG beobachteten Spektren sind typisch für reine Karboxylgruppenkoordination (1). Damit ist ein Hinweis gegeben, daß das Schwefelatom nicht koordinativ gebunden ist.

ABBILDUNG 13

Absorptionsspektren einer Lösung von Am(III) und Thiodiglykolsäure Medium : 0,1 m NH,ClO,

TIC OF GH	•	o , i m m m m m m m m m m
Temperatur	:	25,6°C
Am(III)	•	0,00156 m
H ₂ TDG	:	0,02 m

Die Auswertung mit KOMPLEX1 ergab, daß sich die Extinktionsdaten mit verschiedenen Reaktionsschemata interpretieren lassen. Für eine bei 30,4[°]C Meßtemperatur ausgeführte Titration erhielt man z.B. folgende Angleichsresultate:

a.)	Am	-	Am(TDG) -	$\operatorname{Am}(\operatorname{TDG})_{2}$		GFQS =	0,0132
b.)	Am^{3+}	-	$Am(HTDG)^{2+}-$	Am(TDG) [∓]		GFQS =	0,0078
c.)	Am ³⁺	-	$Am(HTDG)^{2+}-$	Am(TDG) ⁺ -	$Am(TDG)_2$	GFQS =	0,0037

Aus dem Vergleich der Fehlerquadratsumme folgt, daß Reaktionsschema c.) vorliegt. Man sieht dies auch beim Vergleich der gemessenen Extinktionen und der berechneten Extinktionskurven in Abbildung 14. Diese Kurven wurden aus den pH-Werten und Konzentrationen an Am(III) und H₂TDG mit Gleichung (2) unter Einsetzen der von KOMPLEX1 ausgeworfenen Stabilitätskonstanten berechnet. Bei Reaktionsschema a.) und b.) liegen die Meßwerte streckenweise ganz auf einer Seite der Kurve, d.h., es liegt eine systematische Abweichung vor. Das aber beweist, daß die Kurven a und b unter falschen Voraussetzungen berechnet wurden, nämlich unter Vorgabe eines falschen Reaktionsschemas.

Die Komplexreaktion der H₂TDG mit Am(III) wurde bei vier Temperaturen untersucht und jeweils auf der Basis des Reaktionsschemas c.) die Stabilitätskonstanten berechnet.

T ([°] C)	lg ß _H	lg ß _l	lg ß ₂
20,4	2,12+0,09	3,52+0,08	5,52+0,14
25,6	2,06 <u>+</u> 0,08	3,56 <u>+</u> 0,05	5,66 <u>+</u> 0,07
30,4	1,89+0,24	3,75 <u>+</u> 0,05	6,01 <u>+</u> 0,07
38,3	1,83+0,14	3,79 <u>+</u> 0,09	6,17 <u>+</u> 0,10

- Berechnung von ΔH und ΔS

Es war nicht erforderlich zur Berechnung von ΔH das in 2.2.1 beschriebene Verfahren über die K^{*}-Konstanten anzuwenden. Der Komplex Am(HTDG)²⁺ entsteht in exothermer, die beiden Komplexe Am(TDG)⁺ und Am(TDG)₂⁻ in endothermer Reaktion.

<u>ABBILDUNG 14</u> Extinktionsmeßwerte und berechnete Extinktionskurven für das System Am(III)/H₂TDG/0,1m NH₄C10₄ Temperatur : 30,4°C Am(III) : 0,00145 m H₂TDG : 0,02 m

$$Am^{3+} + HTDG^- \longrightarrow Am(HTDG)^{2+}$$

 $Am^{3+} + TDG^{2-} \longrightarrow Am(TDG)^{+}$

 $Am(TDG)^{+} + TDG^{2-} \longrightarrow Am(TDG)_{2}^{-}$

40

 $\Delta G_{H} = -2,75\pm0,19 \text{ kcal/Mo1}$ $\Delta H_{H} = -7,08\pm0,98 \text{ kcal/Mo1}$ $\Delta S_{H} = -14,5\pm3,9 \text{ cal/Mol} \cdot \text{grd}$

 $\Delta G_1 = -4,88\pm0,09 \text{ kcal/Mol}$ $\Delta H_1 = 6,76\pm1,12 \text{ kcal/Mol}$ $\Delta S_1 = 39,1 \pm 4,2 \text{ cal/Mol} \cdot \text{grd}$

 $\Delta G_2 = -2,85\pm0,12$ kcal/Mol $\Delta H_2 = 8,88\pm0,66$ kcal/Mol $\Delta S_2 = 39,4\pm2,4$ cal/Mol·grd

3. Diskussion

- 33 -

- Komplexbildung

H₃NTE bildet mit Am(III) in Form des 1:2-Komplexes eine Verbindung mit 8 gebundenen Donatoratomen. Daraus folgt, daß der 1:2-Komplex des Am(III) mit H₂IDE, in welchem der Ligand nur sechs Donatoratome zur Verfügung stellt, koordinativ ungesättigt ist. Die vorhandene Tendenz zur Auffüllung der Koordinationssphäre führt zur Entstehung des Komplexhydroxides bei genügend hohem pH. Versuche zum Nachweis eines Komplexhydroxides bei Am(III)-bis-nitrilotriacetat waren erfolglos - offenbar sättigen 8 verfügbare Donatoratome die Koordinationstendenz des Am(III) ab.

Diglykolsäure bildet mit Americium Komplexe bemerkenswert großer freier Bildungsenergie, vergleichbar mit den Komplexen von H₂IDE und Zitronensäure (20):

Am(DGS) ⁺		-∆G ₁ =	8,75	kcal/Mol	
Am(IDE) ⁺	i e i	$-\Delta G_1 =$	9,64	kcal/Mol	
Am(ZIT) ⁰		$-\Delta G_1 =$	9,44	kcal/Mol	

Man muß daraus schließen, daß der ätherartig gebundene Sauerstoff an der Koordination beteiligt ist. Für die Thiodiglykolate wurden freie Bildungsenergien gemessen, die noch unter denen der Oxalate liegen $(AmC_2O_4^- - \Delta G_1 = 6,73 \text{ kcal/Mol}, AmTDG^+ - \Delta G_1 = 4,88 \text{ kcal/Mol}),$ und etwa in der Größe des ΔG_1 des Am(III)-diacetates liegen (4,45 kcal/Mol (21)). Das Schwefelatom in H₂TDG hat also keinen erkennbaren Einfluß auf die Stabilität der Am-Komplexe.

Die Reihenfolge der Komplexbildungstendenz zwischen dreiwertigen Actiniden und den drei Dikarbonsäure ist:

- Enthalpie, und Entropie

Die wesentlichen Faktoren für die Thermodynamik der Komplexbildung sind: 1. die Dehydratation der Ionen, die positive Beiträge zur Entropie und Enthalpie ergibt und 2. die Vereinigung von Anionen und Kationen, die negative Δ H- und Δ S-Beiträge ergibt. Ein weniger ins Gewicht fallender negativer Δ S-Beitrag rührt von der Aufhebung der freien Drehbarkeit der Donatorgruppen der Liganden her, der nach (22) mit $\Delta S \simeq -2$ cal/Mol.grd je Bindung anzusetzen ist. Im allgemeinen resultiert netto hei Innerkomplexbildung eine Entropiezunahme und bei Ionenpaarbildung eine Entropieabnahme. Alle hier untersuchten normalen Komplexe bilden sich mit hohem positiven ΔS , es sind also Innerkomplexe.

Zwischen ΔS_1 und ΔS_2 der beiden H_3 NTE-Komplexe bzw. der beiden H_2 IDE-Komplexe ist ein auffällig großer Unterschied: $\Delta S_2 \simeq 0, 4\Delta S_1$! Setzt man gleiche Bindung der Ligandenanionen voraus, so kann man folgern, daß die Dehydratation bei der Bildung des 1:1-Komplexes größer ist als bei der Bildung des 1:2-Komplexes. Zum gleichen Schluß kommt man durch den Vergleich der Entropien der 1:1-Komplexe verschiedener Aminopolykarbonsäuren. Trägt man ΔS gegen die Zahl der verfügbaren Donatoratome des Liganden (VDA) auf (Abbildung 15), so findet man, daß keine Proportionalität besteht, die andererseits für die ΔG gegeben ist. Wäre die Zahl der gebundenen Donatoratome gleich oder proportional der verdrängten H_2^{0-} Moleküle, so wäre eine Proportionalität von ΔS und VDA zu erwarten.

ABBILDUNG 15

Enthalpie und freie Energie von Am(III)-Aminopolykarbonaten

Aus den Stabilitätskonstanten war geschlossen worden, daß der Schwefel der Thiodiglykolsäure nicht koordiniert ist. Im Hinblick darauf ist es erstaunlich, daß die Am(III)-thiodiglykolate eine erhebliche positive Bildungsentropie aufweisen und ihre Bildung stark endotherm ist. Ähnliche Verhältnisse liegen z.B. bei den Fluoriden vor und wurden dort einer starken Dehydratation des Liganden bei der Bildung der Komplexe zugeschrieben (23). Es ist ferner bekannt (24), daß Δ S für die Thioglykolate der Seltenen Erden größer ist als für ihre Glykolate, obwohl ersteres einzähnig und letztere zweizähnig koordiniert sind und demnach bei dominierendem Einfluß der Kation-Dehydratation das Umgekehrte der Fall sein sollte. Daraus wird hier der Schluß gezogen, daß bei Komplexen der Schwefel-haltigen organischen Säuren eine erhebliche Dehydratation des Liganden auftritt, die einen großen positiven Entropiebeitrag liefert.

- 35 -

4. Versuchsdurchführung und Meßwerte

- Nuklide

Am-241 war in Form des Oxids AmO_2 vorhanden, das mit konz. Perchlorsäure gelöst und zu einer 0,085m Stammlösung (HC1O₄ = 0,1m) verdünnt wurde. Die Radioindikatoren Cm-244 und Cf-252 (je ca. 3 mCi) wurden eingedampft, zur Zerstörung organischen Materials geglüht, mit HC1O₄ wieder gelöst und auf 0,1 m freie Säure verdünnt.

- Komplexbildner

Die Komplexbildner H₃NTE und H₂IDE waren p.a.-Substanzen und wurden ohne weitere Reinigung verwendet. H₂DGS und H₂TDG wurden aus Wasser umkristallisiert und über P₂O₅ getrocknet.

- Kationenaustauscher

Als Kationenaustauscher fand DOWEX50-X12, 50-100 mesh in der NH₄-Form Verwendung. Das Harz wurde durch mehrmaliges Behandeln mit konz. HNO₃ gereinigt, mit Wasser säurefrei gewaschen, mit O,1m NH₄Cl-Lösung in die NH₄-Form überführt und anschließend bei 110[°]C getrocknet und gesiebt (verwandte Fraktion 0,1 bis 0,3 mm). Nach dreitägigem Stehen an der Luft wurde es in einem verschlossenen Gefäß aufbewahrt.

- Ionenaustauschversuche

Eine wäßrige Phase, die Radioindikator, Ligand und die für Ionenstärke 0,1 erforderliche Menge NH₄ClO₄ enthielt, wurde mit konz. NH₄OH auf den gewünschten pH-Wert eingestellt. Je 20 ml dieser Lösung wurden in ein Kunststofffläschchen (50 ml), das abgewogenes NH₄-DOWEX enthielt, gegeben und zur Gleichgewichtseinstellung in einer thermostatisierten Schütteleinrichtung 36 Stunden geschüttelt. Nach Einstellung des Gleichgewichtes erfolgte die Probeentnahme zur Radioaktivitätsbestimmung und die pH-Messung. - Radioaktivitätsmessung

Zur Radioaktivitätsmessung wurden vor und nach dem Austausch 100 µl der Lösung auf Edelstahlschälchen pipettiert, unter einer IR-Lampe bis zur Trockene eingedampft und dann die Schälchen auf dem Spiegelbrenner ca. 30 sec geglüht. Man erhält rückstandsfreie Präparate, da sich das zugesetzte NH₄ClO₄ beim Glühen quantitativ verflüchtigt.

Die Messung der Zählraten erfolgte mit einem Methandurchflußzähler und einem automatischen Probenwechsler.

Der Verteilungskoeffizient ist nach folgender Formel berechnet:

$$Q = \frac{A_V - A_N}{A_N} \cdot \frac{V_W}{m_H}$$

Es bedeuten: A_V bzw. A_N die Aktivität der wäßrigen Phase vor und nach dem Austausch in Imp/min·ml V_w das Volumen der wäßrigen Phase in ml m_H das Harzgewicht in Gramm

- Spektralphotometrische Titration

Die erforderlichen Volumina frisch hergestellter Am(III)-Lösung (5 ml), Ligandenlösung und O, 1m Perchlorsäure werden in einen 25 ml Meßkolben gegeben und mit O, 1m NH₄ClO₄-Lösung zur Marke aufgefüllt. Diese Titrationslösung wird in einem thermostatisierten Rührgefäß (25+0,2°C) mit gesättigter Natronlauge schrittweise neutralisiert. Bei den vorgesehenen pH-Werten entnimmt man mit einer Pipette einen Teil der Lösung, gibt ihn in eine Küvette, nimmt das Absorptionsspektrum auf und bringt dann den Küvetteninhalt wieder in das Titriergefäß zurück.

Durch Verwendung stets derselben Pipette und Küvette wird ein Verlust von Titrationslösung vermieden. Die Verdünnung durch die zugesetzte Natronlauge beträgt am Ende der Titration ca. 0,5%. Sie bleibt bei den Rechnungen unberücksichtigt.

Die Extinktionsmessungen erfolgten in 1 cm Quarzküvetten gegen eine mit O, IN HClO₄ gefüllte 1 cm Vergleichsküvette aus Quarz. Das Rührgefäß und der Küvettenraum waren mit Heizmänteln umgeben, die je an einem Wasserthermostaten angeschlossen waren und so einreguliert wurden, daß die Meßlösung während des Titrierens und Messens die gleiche Temperatur hatte.

- 37 -

- Bestimmung der pK-Werte von H₂DGS und H₂TDG

In sechs 100 ml Meßkolben wurden je 0,00100 Mol der Säure eingewogen, die zur Neutralisation jeder Dissoziationsstufe zu 25, 50 bzw. 75% erforderliche Menge 0,1000 m Natronlauge zugegeben (2,5; 5,0; 7,5; 12,5; 15,0; 17,5 ml) und dann mit 0,1m NaClO₄-Lösung zur Marke aufgefüllt. Der pH-Wert jedes dieser Ansätze wurde bei vier Temperaturen gemessen.

Bei beiden Säuren überlappen sich die erste und die zweite Dissatationsstufe. Es gilt die Gleichung:

$$\frac{\overline{n} - 2}{\overline{n}} \cdot [H^+]^2 + \frac{\overline{n} - 1}{\overline{n}} [H^+] K_1 + K_1 \cdot K_2 = 0$$

n = mittlerer Protonierungsgrad der Säure

$$= \frac{2 [H_2L] + [HL]}{[H_2L] + [HL] + [L]}$$

Bezeichnet man die Einwaagekonzentration der Säure mit E (Mol/1), die Einwaagekonzentration der NaOH mit B (Mol/1) und die gemessene Wasserstoffionenkonzentration mit H (Mol/1), so folgt aus obiger Gleichung:

$$\frac{H + B}{2E - H - B} \cdot H^{2} = K_{1} \cdot K_{2} + \frac{E - H - B}{2E - H - B} \cdot H \cdot K_{1}$$

Das ist die Gleichung einer Geraden ($y = a + b \cdot x$) mit

$$x = \frac{E - H - B}{2E - H - B} \cdot H$$
$$y = \frac{H + B}{2E - H - B} \cdot H^{2}$$
$$a = K_{1} \cdot K_{2}$$
$$b = K_{1}$$

Aus den Meßwerten wurden x und y berechnet und dann daraus mittels eines Rechenprogramms die Dissoziationskonstanten. Aus diesen erhielt man die Dissoziationsenthalpie nach der Beziehung

 $\Delta H = -2, 3 \cdot R \cdot d \, 1gK/d(1/T).$

Säure	Temperatur	pK ₁	$\Delta \mathbf{H}_{1}$	рК ₂	[∆] ^H 2
H ₂ DGS	17,8 [°] C	2,808+0,012	<u></u>	3,959 <u>+</u> 0,048	<u></u>
4	25,5°C	2,814+0,022		4,058+0,101	
	30,3 [°] C	2,814+0,010	-0,47 <u>+</u> 0,12	4,010 <u>+</u> 0,044	-2,43 <u>+</u> 0,87
	33,9°C	2,830 <u>+</u> 0,012		4,078 <u>+</u> 0,058	
H,TDG	18,1 [°] C	3,050 <u>+</u> 0,016		4,314+0,016	
Δ	24,7 [°] C	3,175 <u>+</u> 0,002	-4 80+0 53	4,287 <u>+</u> 0,011	≈ 0
	30,0 ⁰ C	3,214+0,003	4,00 <u>1</u> 0,99	4,338 <u>+</u> 0,017	- V
	35,0°C	3,252 <u>+</u> 0,004		4,296 <u>+</u> 0,019	
1					

t

TABELLE TI	Ergebnisse der s des Systems Am(I	pektralphotom II)/H ₃ NTE bei	etrisch versch	en Titr: iedenen	ationen Tempera-
	turen (Medium: O	,1m NH ₄ C10 ₄)			
<u>a.) 15⁰C</u>					

a.)	15°C

Am(III)	:	0,00	158	m	N.	IM	PH	EX(1)	EX(2)	EX(3)
H_NTE	•	0.00	3 m			1	1.106	6.34E-01	3.69E-01	2.04E-01
	•	0,00		. ·		2	1.325	5.89E-01	3.96E-01	2.16F-01
λ,	:	5032	X			. 3	1.456	5.35E-01	4.29E-01	2.28F-01
λ	:	5054	8			4	1.566	4.93F-01	4.60F-01	2.426-01
2	•		0			5	1.674	4.21E-01	5.22E-01	2.71E-01
λ _a	÷	5076	Ă.			6	1.774	3.65F-01	5.60E-01	2.85E-01
5						7	1.882	2.93E-01	6.09E-01	3.09E-01
						8	2.183	1.82F-01	6.80E-01	3.52E-01
		·				9	2.413	1.51E-01	6.81E-01	3.87E-01
						10	2.642	1.30F-01	6.58E-01	4.338-01
	•					11	2.875	1.15E-01	6.16E-01	4.91E-01
						12	3.063	1.08E-01	5.68E-01	5.49E-01
						13	3.306	9.60E-02	5.01E-01	6.34E-01
						14	3.571	8.30E-02	4.23E-01	7.29E-01
						15	4.106	6.20E-02	2.88E-01	8.91E-01
						16	5.102	5.50E-02	2.13F-01	9.88E-01
						17	5.942	4.40F-02	1.88E-01	1.01E 00

<u>b.) 20,8°C</u>

•	0,00171 m
:	0,005 m
:	5032 Å
:	5054 Å
:	5076 Å
	8 8 9 9 9 9 8 9

• •

ŢM	РН	EX(1)	EX(2)	EX(3)
1	1.147	6.72E-01	4.03E-01	2.16E-01
2	1.337	6.20E-01	4.35E-01	2.30E-01
3	1.407	5.89E-01	4.52E-01	2.38E-01
4	1.560	5.16E-01	5.08E-01	2.63E-01
5	1.587	4.91F-01	5.16E-01	2.76E-01
6	1.716	4.08E-01	5.86E-01	2.93E-01
7	1.855	3.208-01	6.43E-01	3.21E-01
8	2.171	2.00E-01	7.278-01	3.79E-01
9	2.381	1.62E-01	7.34F-01	4.07F-01
10	2.537	1.43F-01	7.205-01	4.34E-01
11	2.723	1.30E-01	6.93E-01	4.72F-01
12	2.931	1.20F-01	6.47E-01	5.32E-01
13	3.248	9.90F-02	5.51E-01	6.47E-01
14	3.472	9.00E-02	4.77E-01	7.39E-01
15	3.639	8.00E-02	4.33E-01	7.90F-01
16	3.858	7.20E-02	3.63E-01	8.70E-01
17	3.998	6.60E-02	3.408-01	9.01F-01
18	4.412	5.70E-02	2.568-01	1.01E 00
19	4.772	4.80E-02	2.05E-01	1.05F 00
20	5.658	4.20E-02	1.73F-01	1.09E 00
21	6.418	4.10E-02	1.68E-01	1.10F 00

TABELLE T1 Fortsetzung

<u>c.)_24,6</u>	5°(2							
Am(III)	:	0,0015	5 m		IM	PH	EX(1)	EX(2)	FX(3)
HNTE	:	0,005	m		1	1.104	6.15E-01	3.64F-01	1.96F-01
্র		P			2	1.343	5.53E-01	4.10E-01	2.14E-01
· ^λ 1	:	5032 A	•		3	1.503	4.72E-01	4.65E-01	2.43E-01
λ	:	5054 Å			4	1.620	4.30E-01	5.00F-01	2.53F-01
2		0			5	1.656	3.77E-01	5.34E-01	2.73E-01
[^] 3	:	5076 A	•	÷	6	1.710	3.14E-01	5.72E-01	2.93F-01
					7	2.151	1.59E-01	6.67E-01	3.64E-01
· · · ·		v			8	2.426	1.40E-01	6.60E-01	3.995-01
					· 39 · 2	2.735	1.14F-01	6.04E-01	4.78E-01
					10	2.886	1.12E-01	5.84E-01	5.11F-01
	5				11	3.040	1.015-01	5.48E-01	5.45E-01
$(\omega_{1},\ldots,\omega_{n}) \in \mathbb{R}^{n}$		·····			12	3.193	9.10E-02	4.88E-01	6.128-01
					13	3.360	8.20F-02	4.34E-01	6.80E-01
					14	3.500	7.40E-02	3.81E-01	7.50E-01
					15	3.936	6.00E-02	2.96E-01	8.51E-01
				•	16	4.393	5.00E-02	2.23E-01	9.39F-01
					17	5.622	3.70E-02	1.69E-01	1.00E 00
					1.8	6.198	4.10E-02	1.68E-01	1.01E 00
				Sec. Sec. 1	a de la composición d	1. M. A.			

<u>d.) 30⁰C</u>

Am(III) :	0,0015 m	* 1.0				
		īΜ	РН	EX(1)	EX(2)	FX(3)
H ₃ NTE :	0,005 m	1	1.095	6.41E-01	3.81E-01	2.06E-01
λ :	50.32 Å	2	1.297	5.98E-01	4.13E-01	2.21E-01
<u>^1</u>	0	3	1.411	5.46E-01	4.50E-01	2.43E-01
λ_2 :	5054 A	4	1.510	4.85E-01	4.93E-01	2.57E-01
λ :	50.76 8	5	1.609	4.23E-01	5.35E-01	2.75E-01
<u>^3</u>		6	1.702	3.62E-01	5.87E-01	3.00F-01
. :		7	1.870	2.69F-01	6.47E-01	3.31E-01
		8	2.083	2.01E-01	6.90E-01	3.63E-01
		9.	2.232	1.74E-01	6.99E-01	3.78E-01
		10	2.385	1.51E-01	6.89E-01	4.04E-01
		11	2.560	1.41E-01	6.73E-01	4.34E-01
		12	2.685	1.33E-01	6.53E-01	4.62E-01
		13	2.907	1.16F-01	5.99E-01	5.38E-01
		14	3.221	9.00E-02	4.77F-01	6.77E-01
		15	3.475	8.20E-02	4.20E-01	7.50E-01
		16	3.916	6.40E-02	3.00E-01	8.958-01
		17	4.475	5.10E-02	2.14E-01	9.98E-01
	an a	18	5.138	4.30E-02	1.93E-01	1.03F 00

TABELLE T1 Fortsetzung

					-				
e.) 40,1	°(2							
Am(III)	:	0,00149	m		IM	РН	EX(1)	EX(2)	EX(3)
HNTE	:	0,005 m			1	1.081	6.00E-01	3-41E-01	1.96E-01
λ.	:	5032 Å	:		2	1.228	5.80E-01	3.79E-01	2.06E-01
λ λ	÷	5054 8		· ·	4	1.503	4.75E-01	4.74E-01	2.47E-01
²		5074 A		· ·	5 a.5	1.568	4-33E-01	5.08E-01	2.63E-01
^3	÷	2070 A			6 6 F	1.682	3.52E-01	5.57E-01	2.88E-01
					8	1.965	2.31E-01	6.40E-01	3.32E-01
				•	9	2.150	1.84E-01	6.65E-01	3.56E-01
				÷ 1.	10	2.359	1.56E-01	6.73E-01	3.90F-01
		an an an gan			12	2.768	1.26E-01	6.15E-01	4.70F-01
					13	2.993	1.175-01	5.63E-01	5.36E-01
					14	3.156	1.05E-01	5.21E-01	5.89F-01
					16	3.509	8.80E-02	4.14F-01	7.17E-01
		2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		÷ ž	17	3.887	7.00E-02	3.12E-01	8.38E-01
					18	4.420	5.40E-02	2.30E-01	9.43E-01
					17	1.000	9.00E-02	1.075-01	TOUF 00

f	.)	50	° C

•

Am(III) : 0,00178 m	IM	РН	EX(1)	EX(2)	EX(3)
H.NTE : 0.005 m	1	1.099	7.05E-01	4.04E-01	2.12E-01
-3	2	1.240	6.84E-01	4.47E-01	2.40F-01
λ ₁ : 5032 Å	3	1.318	6.61E-01	4.71E-01	2.50E-01
λ : 5054 Å	4	1.419	6.11E-01	5.14E-01	2.71F-01
² ¹ ³ ³ ³ ³	5	1.542	5.31E-01	5.73E-01	3.01F-01
λ_3 : 5076 Å	6	1.700	4.20F-01	6.58E-01	3.37E-01
	7	1.897	3.16E-01	7.76E-01	4.00E-01
	8	2.419	1.94E-01	8.39E-01	4.76E-01
	9	2.922	1.49E-01	7.62E-01	5.87E-01
	10	3.110	1.41E-01	7.03E-01	6.60E-01
	11	3.126	1.37E-01	7.00E-01	6.75E-01
	12	3.199	1.30E-01	6.62E-01	7.30E-01
	13	3.388	1.20E-01	6.07E-01	7.86E-01
	14	3.549	1.15E-01	5.61F-01	8.59E-01
	15	3.890	9.40E-02	4.53E-01	9.97E-01
	16	4.456	7.00E-02	3.43E-01	1.12E 00
	17	5.219	5.50E-02	2.42E-01	1.25E 00

TABELLE T2	Ergebnisse der spektralphotometrischen Titrationen des Systems Am(III)/H ₂ IDE bei verschiedenen Tempera- turen (Medium: 0,1m \overline{NH}_4ClO_4)
	7 7

a.) 20,1	0				,		
Am(III)	:	0,00141 m	ÍМ	PH EX(1)	EX(2)	FX(3)	EX(4)
H ₂ IDE	:	0,005 m	1	1.168 5.72E-01	3.17E-01	2.035-01	9.205-02
λ_1		5032 Å	2 3	2.082 5.648-01	3.17E-01	2.022-01	9.30E-02
λ_2	•	5053 Å	4 5	2.815 5.55E-01	3.19E-01	2.07E-01	9.20E-02
λ ₃	•	5072 Å	6	3.611 5.34E-01	3.375-01	2.235-01	9.30E-02
λ ₄	:	50 96 Å	· 7 - 8	4.018 4.89E-01 4.236 4.66E-01	3.63E-01 3.82E-01	2.30E-01 2.42E-01	1.06E-01 1.15E-01
			-9	4.482 4.16E-01	4.13E-01	2.60E-01	1.205-01
			10	5.228 2.33E-01	5.18E-01	3.528-01	1.785-01
		e de la companya de	12	5.572 1.80E-01	5.38E-01	3.92E-01	2.00E-01 2.27E-01
			14	6.188 1.03E-01	4.64E-01	5.01E-01	2.58E-01
			15 16	6.381 9.40E-02 6.691 7.80E-02	2 4.30E-01 2 3.51E-01	5.29E-01 5.80E-01	2.80E-01 3.26E-01
			17	7.061 6.30E-02	2.795-01	6.12E-01	3.76E-01
			18	7.644 4.50E-02	2 1.83E-01	5.63E-01	4.90E-01
			20	7.941 4.30E-C2	2 1.60E-01 2 1.34E-01	5.06E-01 4.37E-01	5.70E-01
			5 a a .			, e e e sa de	
	•						

<u>њ.) 26,0°С</u>

a second s										
Am(III)	0	0,001	57	m	IM	PH	EX(1)	FX(2)	EX(3)	EX(4)
UTDE		0 005			1	1.162	6.42E-01	3.58E-01	2.26E-01	1.04E-01
ⁿ 2 ^{1DE}	•	0,000			2	1.463	6.37E-C1	3.525-01	2.23E-01	1.02E-)1
λ	:	5032	Å		3	1.709	6.39E-01	3.52E-01	2.245-01	1.02E-01
1		5052	Q		4	2.122	6.335-01	3.53E-01	2.24E-01	1.03E-01
^2	•	2022	A		. 5	2.488	6.29E-01	3.53E-01	2.28E-01	1.06E-01
λ	:	5072	Å	<u> </u>	6	3.088	6.24E-01	3.61E-01	2.31E - 01	1.J8E-01
3		E006	Q		7	3.728	5.87E-01	3.86E-01	2.46E-01	1.196-01
^ 4	ě	2090	A		8	4.001	5.53E-01	4.121-01	2.018-01	1.248-01
					9	4.169	5.286-01	4.29E-01	2.71E-01	1.30E-01
					10	4.248	5.10E-01	4.43E-01	2.828-01	1.395-01
					11	4.474	4.608-01	4.73E-01	3.09F-01	1.47E-01
					12	4.712	3.978-01	5.17E-01	3.27E-J1	1.075-01
÷					13	5.059	3.10E-01	5.728-01	3.715-01	1.885-01
					14	5.269	2.60E-C1	5.928-01	4.005-01	2.03E-01
					15	5.444	2.278-01	6.041-01	4.25F-01	2.196-01
					16	5.673	1.855-01	6.00E-01	4.635-01	2.338-01
		+			17	5.842	1.685-01	5.90E-01	4.908-01	2.548-01
					18	6.094	1.39E-01	5.461-01	5.408-01	2.83E-01
					19	6.232	1.30E-01	5.231-01	5.61E-01	3.00E-01
					20	6.451	1.11E-01	4.69E-01	6.06E-01	3.29E-01
					21	6.784	9.105-02	3.375-01	6.54E-01	3.76E-01
					22	7.068	7.70E-02	3.128-01	6.76E-01	4.26F-01
					23	7.314	6.70E-02	2.64E-01	6.698-01	4.69E-01
					24	7.586	6.00E-02	2.27E-01	6.29E-01	5.27E-01
					25	7.941	5.10E-02	1.78E-01	5.45E-01	6.21E-01
					26	8.172	4.70E-02	1.58E-01	4.80E-01	6.80E-01

<u>c.) 30,8°C</u>

						·			
Am(III)	•	0,00132	m	IM	РН	EX(1)	EX(2)	EX(3)	EX(4)
ע ד הע		0 005 m		1	1.158	5.60E-01	3.10E-01	2.06E-01	9.30E-02
^H 2 ¹ ^D ^E	٠	0,005		2	1.499	5.55E-01	3.08E-01	2.02E-01	9.40E-02
λ,	÷	5032 Å		3	1.991	5.55E-01	3.12E-01	2.05E-01	9.40E-02
1		FOF2 8		4	2.541	5.53E-01	3.12E-01	-2.08E-01	9.70E-02
^2	ě	5055 A		5	3.097	5.408-01	3.175-01	2.11E-01	9.80E-02
λ	:	5072 Å		6	3.594	5.19E-01	3.36E-01	2.21E-01	1.02E-01
ຸ 3		5006 8		7	3.882	4.94E-01	3.60E-01	2.34E-01	1.11E-01
[^] 4	ě	5096 A		8	4.189	4.41E-01	3.90E-01	2.528-01	1.25E-01
				9	4.401	3.98E-01	4.21E-01	2.76E-01	1.37E-01
				10	4.639	3.40E-01	4.60E-01	3.00E-01	1.50E-01
				11	4.911	2.80E-C1	4.96E-01	3.33E-01	1.69E-01
				12	5.302	2.018-01	5.33E-01	3.805-01	2.00E-01
				13	5.698	1.60E-01	5.32E-01	4.28E-01	2.23E-01
				14	5.941	1.38E-01	5.02E-01	4.63E-01	2.495-01
				15	5.101	1.18E-01	4.79E-01	4.95E-01	2.68E-01
				16	6.322	1.02E-01	4.295-01	5.41E-01	2.935-01
				17	6.513	9.20E-02	3.85E-01	5.71E-C1	3.20E-01
				18	6.871	8.10E-02	3.30E-01	6.14E-01	3.63E-01
		1		19	7.111	6.40E-02	2.64E-01	6.23E-01	4.20E-01
				20	7.304	5,90E-02	2.33E-01	6.17E-01	4.50E-01
				21	7,501	5-30E-02	2.07E-01	6.02E-01	4.88E-01
				22	7.773	4-80E-02	1.80E-01	5.50E-01	5.565-01
				23	7,981	4-40E-02	1,53E-01	4.80E-01	6-09E-01
				24	8,191	4.20F-02	1.385-01	4.29E-01	6-60E-01
				4. T	0				

d.) 39.2°C

۰,

		-							
Am(III)	a e	0,00136	m	IM	PH	EX(1)	EX(2)	EX(3)	EX(4)
		0 005 m		1	1.178	5.54E-01	3.08E-01	2.001-01	9.30E-02
H ₂ IDE	•	0,005 m		2	1.477	5.528-01	3.08E-01	1.985-01	9.106-02
1	•	5032 8		2	1.852	5-52F-01	3.09E-01	2.02E-01	9.50E-02
^1	•	JUJ2 A		.	2 001	5.505-01	3-11-01	2.01F-01	9.40E-02
λ.	:	5053 Å		4	2.071		3 16E-01	2.09E-01	9.90E-02
2		0		2	2.5/1	5.500-01	2 205-01	2.15E-01	1.016-01
λ	:	5072 A		6	3.291	5.305-01	3.50L-01	2.150 01	1 155-01
ر ۲		5006 8		7	3.863	4.885-01	3.628-01	2.395-01	1 205-01
^4	ē	3090 A		8	3.989	4.71E-C1	3.825-01	2.446-01	1 075 01
				9	4.159	4.36E-01	4.03E-01	2.58E-01	1.275-01
				10	4.402	3.71E-C1	4.49E-01	2.90E-01	1.475-01
				11	4.599	3.33E-01	4.755-01	3.045-01	1.54E-01
				1 2	4 958	2-72E-01	5.11E-01	3.42E-01	1.75E-01
				12	= 101	2 045-01	5-39F-01	3.82E-01	1.99E-01
				12		2 505-01	5 30E-01	4-421-01	2.31E-01
				14	2.017	1.000-01	4 975-01	4.84E-01	2.53E-01
				15	5.889	1.275-01	4.992-01	= 27C-01	2 875-01
				16	6.138	1.062-01	4.000-01		2 005-01
				17	6.339	9.60E-02	4.091-01	5.072-01	
				18	6.578	8.20E-02	3.52E-01	6.04E-01	3.415-01
				19	6.801	7.30E-02	3.03E-01	6.29F-01	3.//E-01
				20	7.038	6.90E-C2	2.66E-01	6.38E-01	4.21E-01
				20	7 459	5-40E-02	2.01E-01	5.86E-01	5.03E-01
				21	18 T J J	4 90E-02	1.70F-01	5.31E-01	5.67E-01
				22	1.0121	2 005-02	1 30E-01	4-39F-01	6.56E-01
				23	8.071	3.905-02		10372	
						1 1 1	N ¹		
•									

- 44 -

TABELLE T3	Ergebnisse der spektralphotometrischen Titrationen
<u></u>	des Systems Am(III)/H2DGS bei verschiedenen Tempera-
	turen (Medium: 0,1m NH ₄ C10 ₄)

<u>a.) 14,</u>	5° (<u>C</u>								
Am(III)	:	0,00	174	m	IM	РН	EX(1)	EX(2)	FX(3)	FX(4)
HDGS		0.02	m		1	1.088	5.016-01	6.125-01	5.00F-01	3.368-01
-2			•	· ·	2	1.381	3.905-01	6.815-01	5.71E-01	3.70E-01
λ	:	5032	Ă		3	1.649	3.05E-01	7.02E-01	6.315-01	4.015-01
1		50/7	8		4	1.931	2.435-01	6.705-01	6.800-01	4.23E-01
^2	•	JU47			5	2.072	2.165-01	6.115-01	7.11E-01	4.50F-01
λ,	:	5055	Å		6	2.331	1.68E-01	5.55E-01	7.48F-01	4.795-01
່ <u>ງ</u>		5071	ò		7	2.618	1.33E-01	4.798-01	7.32F-01	5.355-01
^ <u>4</u>	÷	5071	A		8	2.768	1.25E-01	4.405-01	6.955-01	5.715-01
					9	3.012	1.02E-01	3.66F-01	6.21E-01	6.70E-01
					10	3.312	9.00E-02	3.005-01	5.128-01	7.788-01
					11	3.511	8.205-02	2.63E-01	4.665-01	8.33F-01
					12	3.909	7.60E-02	2.20E-01	4.105-01	9.035-01
					13	4.667	7.00E-02	1.93F-01	3.585-01	9.39F-01
					14	5.226	6.80E-02	1.905-01	3.605-01	9.435-01
					15	5.912	7.005-02	1.89E-01	3.515-01	9.485-01

<u>b.) 25,2⁰C</u>

· . · ·

Am(III)	:	0,00174	m .	IM	PH	EX(1)	EX(2)	EX(3)	EX(4)
HDCS	•	0 02 m		1	1.112	5.325-01	5.995-01	4.825-01	3.235-01
¹ 2 ⁵⁶⁶	•	0, 02 m		2	1.291	4.30E-01	6.41F-01	5.178-01	3.485 - 01
λ	:	5032 X		3	1.409	3.90E-01	6.79E-01	5.50E-01	3.655-01
2		50/7 8	1	4	1.708	3.09E-01	6.99E-01	6.09F-01	3.97F-01
^2	٠	J047 A		5	2.029	2.365-01	6.575-01	6.71F-01	4.285-01
λ	:	5055 X		6	2.293	1.79E-01	5.83F-01	7.29E-01	4.675-01
 		5071 8		7	2.569	1.41E-01	5.085-01	7.412-01	5.21F-01
^4	•	J 074 A		8	2.868	1.205-01	4.42E-01	6.965-01	5.945-01
				9	3.161	1.025-01	3.605-01	6.095-01	7.06F-01
				10	3.429	9.005-02	2.995-01	5.335-01	7.975-01
				11	3.837	7.80F-02	2.44F-01	4.618-01	8.725-01
				12	4.191	7.10E-02	2.18E-01	4.305-01	9.10E-01
				13	4.469	7.405-02	2.095-01	4.10F-01	9.295-01
				14	5.177	7.00E-02	2.00F-01	4.00F-01	9.365-01
				15	6.651	7.105-02	2.025-01	3.97F-01	9.40F-01
							· .	1997 - E. S.	

- 45 -

- 46 -

TABELLE T3 Fortsetzung

<u>c.) 29,6</u>	5 [°] C								
Am(III)	: 0	,00172	m	IM	PH	EX(1)	FX(2)	EX(3)	EX(4)
H_DGS	: 0	,02 m		1	1.139	5.32E-01	6.00E-01	4.745-01	3.23E-01
λ	: 50	032 Å		2	1.331	4.50E-01 3.42E-01	6.50E-01 6.87E-01	5.895-01	3.545-01
^1 \				4	1.941	2.80F-01	6.57E-01	6.48F-01	4.20E-01
^2	: 50	J4/ A		5	2.188	2.20E-01	5.87E-01	6.98F-01	4.49E-01
λ3 🐘	: 50	055 A		6	2.423	1.725-01	5.02E-01	7.235-01	4.84E-01
λ	: 50	071 Å		.0	2.113	1.40E-01	4.395-01	7.09E-01 6.20E-01	5.49E-01
чт .				9	3.371	9.70E-02	2.80E-01	5.315-01	7.715-01
				10	3.498	9.20E-02	2.64E-01	5.12E-01	8.03F-01
				11	3.899	8.205-02	2.175-01	4.495 - 01	8.755-01
				12	4.219	7.80 = 02	2.016-01	4.205-01	9.025-01
				14	5.054	7.605-02	1.88E-01	3.98E-01	9.205-01
				15	5.585	7.30E-02	1.80E-01	3.92F-01	9.265-01
d.) 39,	1°C	:							-
Am(III)	: 0	,00164	m	IM	РН	EX(1)	EX(2)	EX(3)	FX(4)
H.DGS	: 0	.02 m		1	1.090	4.93E-01	5.69E-01	4.50E-01	3.095-01
		022 8		2	1.299	4.10E-01	6.19E-01	4.98E-01	3.405-01
^1	ر ،				1.909	2.53F-01	6.33E-01	6.11E-01	4.01E-01
^λ 2	: 5	047 A		5	2.331	1.70E-01	5.195-01	6.895-01	4.60F-01
λ3	: 5	055 X		6	2.567	1.43E-01	4.535-01	7.07 -01	5.005-01
λ,	: 5	071 Â		7	2.871	1.19E-01	3.87E-01	6.73t-01 5.70E-01	5.715-01
4				9	3.497	8.50E-02	2.615-01	5.17E-01	7.67E-01
				10	3.828	7.80E-02	2.21F-01	4.608-01	8.31F-01
				11	4.033	7.40F-02	2.01E-01	4.31E-01	8.58E-01
				12	4.532	7.30E-02	1.91E-01	4.15F-01	8.89E-01 8.98E-01
	. •			14	5.092	7.00E-02	1.81E-01	4.02 -01	9.05E-01
				15	5.851	7.10E-02	1.80E-01	4.07E-01	9.076-01
	1 ⁰ 0							,	
$\frac{e_1}{47}$	<u> </u>			7 M	ры -	EY(1)	EY(2)		57143
Am(III)		,00090		1	1.131	2.98E-01	. 3.18E-01	. 2.59E-01	1.72E-01
H ₂ DGS	: (),02 m		2	1.308	2.44E-01	3.62E-01	2.905-01	1.98E-01
λ1	; _	5032 X		3	1.597	1.96E-01	3.91F-01	. 3.21F-01	2.18F-01
λ	: :	5047 Å		4 5	2.309	1.45E-01	3.30E-01	4-16E-01	2.385-01
λ	: 1	5055 Å		6	2.588	8.30E-02	2.89E-01	4.295-01	3.10E-01
···3	• 1	5071 8		7	2.859	7.00E-02	2.52E-01	4.055-01	3.565-01
^4	•	,		8	3.271	5.50E-02	1.93E-01	3.39E-01	4.35E-01
		•		9 10	3.931	4.20E-02	1.33E-01	2.495t = 01 2.62E = 01	4. /0t-UL 5.19F-01
				11	4.262	4.10E-02	1.24E-01	2.44E-01	5.33E-01
				12	4.612	4.10E-02	1.13E-01	2.428-01	5.40E-01
				13	4.898	3.90E-02	1.12E-01	2.37F-01	5.42F-01
				14 15	5.811	3.90F-02	1.13E-01	2.39F-01	5.45F-01
				16	6.404	3.905-02	1.12E-01	2.38E-01	5.46E-01

TABELLE T4

T4 Ergebnisse der spektralphotometrischen Titrationen des Systems Am(III)/H₂ TDG bei verschiedenen Temperaturen (Medium: 0,1m $\overline{NH_4}C10_4$)

<u>a,) 20,4°</u>C

Am(III)	:	0,00172	m IM	PH	EX(1)	EX(?)	EX(2)	FX(4)
U TDC		0 00	. 1	1.092	7.01E-01	5.475-01	3.71F-01	0.0
ⁿ 2 ^{1DG}	•	0,02 m	2	1.291	7.00F-01	5.485-01	3.725-01	0.0
λ_1	:	5032 Å	3	1.433	6.90F-01	5.505-01	3.725-01	0.0
λ		5042 8	4	1.653	6.92E-01	5.505-01	3.73F-01	0.0
2	•	JU42 A	5	1.861	6.77E-01	5.56-01	3.73E-01	0.0
λ	:	5057 Å	6	2.069	6.64E-01	5.69F-01	3.76E-01	0.0
			7	2.308	6.41E-01	5.87 -01	3.87F-01	0.0
			8	2.508	6.125-01	6.015-01	3.945-01	0.0
			9.0	2.761	5.735-01	6.25E-01	4.13F-01	0.0
	• • •	e de la gran de	1.0	2.931	5.34F-01	6.42F-01	4.24E-01	0.0
			9	3.161	4.89F-01	6.585-01	4.465-01	0.0
			12	3.422	4.23F-01	6.51E-01	4.77F-01	0.0
			13	3.662	3.80F-01	6.325-01	5.085-01	0.0
			14	3.951	3.50E-01	6.075-01	5.335-01	0.0
			1.5	4.218	3.32E-01	5.835-01	5.675-01	0.9
			16	4.432	2.99F-01	5.425-01	5.585-01	0.0
			1.7	4.719	2.80E-01	5.195-01	5.5?8-01	0.0
			18	5.078	2.8001	5.075-01	5.64F-01	0.0
			10	5.614	2.73E-01	4.06=-01	5.695-01	0.0
			20	6.419	2.67E-01	4.90F-01	5.64E-01	0.0

<u>b.)</u> 25,6°C

$\Delta m (TTT)$		0 00150			· · · · · · · · · · · · · · · · · · ·		÷ -		
	٠	0,00156	щ	ΙM	РН	EX(1)	FX(2)	EX(3)	EX(4)
H_TDG	:	0.02 m		1	1.145	6.325-01	4.702-01	3.39E-01	0.0
2		0		2	1.352	6.29F-01	4.725-01	3.41 5-01	0.0
×1	:	5032 A		3	1.588	6.258-01	4.75=-01	3.41.E-01	0.0
λ	:	5042 Å		4	1.791	6.19E-01	4.79E-01	3.40E-01	0.0
2				5	2.079	6.08E-01	4.885-01	3.425-01	0.0
[^] 3	:	5057 A		6	2.367	5.835-01	5.095-01	3.52F-01	0.0
				7	2.508	5.61-01	5.18-01	3.585-01	0.0
				8	2.651	5.405-01	5.345-01	3.675-01	0.0
				Q.	2.861	5.015-01	5.585-01	3.735-01	0.0
		· · · · · · ·		10	3.049	4.675-01	5.7801	3.0?F-01	0.0
				11	3.321	4.12E-01	5.945-01	4.275-01	0.0
				12	3.648	3.685-01	5.875-01	4.515-01	0.0
				13	3.811	3.315-01	5.775-01	4.72E-01	0.0
				14	4.072	3.105-01	5.515-01	4.9" E-0"	0.0
				15	4.249	2.865-01	5.325-01	5.015-0'	0.0
				16	4.513	2.635-01	5.105-01	5.165-01	0.0
				77	5.001	2.505-01	4.885-01	5.255-01	0.0
				18	5.433	2.41E-01	4.765-01	5.30F-01	0.0
				1 ġ	6.054	2.315-01	4.715-01	5.30F-01	0.0

TABELLE T4 Fortsetzung

<u>c.) 30,4</u>	4 ⁰ (2								
Am(III)	8 8	0,001	45	m	IM	РН	EX(1)	EX(2)	EX(3)	EX(4)
H. TDG		0.02	m		1	1.291	5.11F-01	4.60F-01	3.035-01	0.0
-2	•	5020	Q		2	1.473	6.08E-01	4.657-01	3.025-01	0.0
^ <u>1</u>	•	2032	A		3	1.769	6.08E-01	4.92F-01	3.21F-01	0.0
λ ₂	÷	5042	Ă		4 5	2.268	6.03E-01	5.085-01	3.28E-01	0.0
λ	:	5057	Å		6	2.514	5.775-01	5.325-01	3.375-01	0.0
3					7	2.771	5.28E-01	5.63F-01	3.54F-01	0.0
					8	3.021	4.67E-01	5.875-01	3.755-01	0.0
					C	3.239	4.20E-01	6.03E-01	4.03E-01	0.0
					10	3.411	3.74E-01	5.908-01	4.200-01	0.0
					11	3.622	3.395-01	5-34E-01	4.81F-01	0.0
					12	3.829	2 725-01	4.985-01	5.11F-01	0.0
					10	4.020	2-475-01	4.635-01	5.42E-01	0.0
					15	4.485	2.33E-01	4.445-01	5.51E-01	0.0
					16	4.742	2.295-01	4.305-01	5.63E-01	0.0
					17	5.052	2.185-01	4.175-01	5.71E-01	0.0
					18	5.688	2.09E-01	4.065-01	5.78E-01	0.0
					19	6.026	2.115-01	4.01E-01	5.795-01	0.0
	^									
<u>d.) 38,3</u>	3°0	2								
<u>d.) 38,3</u> Am(III)	3°0 ;	0,001	51	m	TM	РН	FX(1)	EX(2)	EX(3)	FX(4)
<u>d.) 38,3</u> Am(III) H _o TDG	3°0 :	0,001 0,02	51 m	m	T M T	PH	FX(1) 6.26E-01	EX(2) 4.69E-01	EX(3) 3.155-01	FX(4) 0.0
<u>d.) 38,3</u> Am(III) H ₂ ^{TDG}	3 [°] (: :	0,001 0,02	51 m 8	m	[M 1 2	PH 1.148 1.352	FX(1) 6.26E-01 6.27E-01	EX(2) 4.69E-01 4.69E-01	EX(3) 3.15E-01 3.19E-01	FX(4) 0.0 0.0
$\frac{d.}{38,3}$ Am(III) H_2^{TDG} λ_1	3 [°] (: :	0,001 0,02 5032	51 m A	m	TM 1 2 3	PH 1.148 1.352 1.589	FX(1) 6.26E-01 6.27E-01 6.24E-01 6.18E-01	EX(2) 4.69E-01 4.69E-01 4.78E-01 6.78E-01	EX(3) 3.15F-01 3.19E-01 3.20F-01	FX(4) 0.0 0.0 0.0
$\frac{d.}{38,3}$ Am(III) $\frac{H_2 TDG}{\lambda_1}$ λ_2	3°0 : : :	0,001 0,02 5032 5042	51 m A A	m	TM 1 2 3 4	PH 1.148 1.352 1.589 1.768 2.069	FX(1) 6.26E-01 6.27E-01 6.24E-01 6.19E-01 6.14E-01	EX(2) 4.69E-01 4.69E-01 4.78E-01 4.79E-01 4.88E-01	EX(3) 3.15F-01 3.19E-01 3.20F-01 3.21E-01 3.27E-01	FX(4) 0.0 0.0 0.0 0.0 0.0
$\frac{d.}{38,3}$ Am(III) $\frac{H_2 TDG}{\lambda_1}$ $\frac{\lambda_2}{\lambda_2}$	3°0 : : : :	0,001 0,02 5032 5042 5057	51 m A A A	m	TM 1 2 3 4 5 5	PH 1.148 1.352 1.589 1.768 2.049 2.307	FX(1) 6.26E-01 6.27E-01 6.24E-01 6.19E-01 6.14E-01 5.98E-01	EX(2) 4.69E-01 4.69E-01 4.78E-01 4.79E-01 4.88E-01 5.04E-01	EX(3) 3.15F-01 3.19E-01 3.20F-01 3.21E-01 3.27E-01 3.31E-01	FX(4) 0.0 0.0 0.0 0.0 0.0 0.0
$\frac{d.}{38,3}$ Am(III) H_2^{TDG} λ_1 λ_2 λ_3	3°0 : : : :	0,001 0,02 5032 5042 5057	51 m A A A	m	TM 1 2 3 4 5 6 7	PH 1.148 1.352 1.589 1.768 2.049 2.307 2.542	FX(1) 6.26E-01 6.27E-01 6.24F-01 6.19E-01 6.14E-01 5.98E-01 5.62E-01	EX(2) 4.69E-01 4.69E-01 4.78E-01 4.79E-01 4.88E-01 5.04E-01 5.33E-01	EX(3) 3.15E-01 3.19E-01 3.20E-01 3.21E-01 3.27E-01 3.31E-01 3.42E-01	FX(4) 0.0 0.0 0.0 0.0 0.0 0.0 0.0
$\frac{d.}{38,3}$ $\frac{Am(III)}{H_2 TDG}$ $\frac{\lambda_1}{\lambda_2}$ $\frac{\lambda_3}{3}$	3 [°] (: : :	0,001 0,02 5032 5042 5057	51 M A A A	m	TM 1 2 3 4 5 6 7 8	PH 1.148 1.352 1.589 1.768 2.049 2.307 2.542 2.794	FX(1) 6.26E-01 6.27E-01 6.24E-01 6.19E-01 6.14E-01 5.98E-01 5.62E-01 5.16E-01	EX(2) 4.69E-01 4.69E-01 4.78E-01 4.79E-01 4.88E-01 5.04E-01 5.33E-01 5.61E-01	EX(3) 3.15F-01 3.19E-01 3.20F-01 3.21E-01 3.21E-01 3.31E-01 3.42E-01 3.57E-01	FX(4) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
$\frac{d.}{38,3}$ Am(III) $\frac{H_2 TDG}{\lambda_1}$ $\frac{\lambda_2}{\lambda_3}$	3 [°] (: : :	0,001 0,02 5032 5042 5057	51 M A A A	m	TM 1 2 3 4 5 6 7 8 9	PH 1.148 1.352 1.589 1.768 2.049 2.307 2.542 2.794 2.909	FX(1) 6.26E-01 6.27E-01 6.24E-01 6.19E-01 6.14E-01 5.98E-01 5.62E-01 5.16E-01 4.60E-01	EX(2) 4.69E-01 4.69E-01 4.78E-01 4.79E-01 4.88E-01 5.04E-01 5.33E-01 5.61E-01 5.94E-01	EX(3) 3.15F-01 3.19E-01 3.20F-01 3.21F-01 3.31E-01 3.42F-01 3.57E-01 3.80F-01	FX(4) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
$\frac{d.}{38,3}$ Am(III) H_2^{TDG} λ_1 λ_2 λ_3	3° (: : :	0,001 0,02 5032 5042 5057	51 M A A A	m	TM 1 2 3 4 5 6 7 8 9 10	PH 1.148 1.352 1.589 1.768 2.049 2.307 2.542 2.794 2.909 3.242	FX(1) 6.26E-01 6.27E-01 6.24E-01 6.19E-01 6.14E-01 5.98E-01 5.62E-01 5.16E-01 4.60E-01 4.11E-01	EX(2) 4.69E-01 4.69E-01 4.78E-01 4.79E-01 4.88E-01 5.04E-01 5.33E-01 5.61E-01 5.94E-01 6.09E-01	EX(3) 3.15E-01 3.20E-01 3.21E-01 3.21E-01 3.31E-01 3.42E-01 3.57E-01 3.80E-01 4.09E-01	FX(4) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
$\frac{d.}{38,3}$ Am(III) $H_2 TDG$ $\frac{\lambda_1}{\lambda_2}$ $\frac{\lambda_3}{3}$	3°(: : :	0,001 0,02 5032 5042 5057	51 m A A	m	TM 1 2 3 4 5 6 7 8 9 10 11	PH 1.148 1.352 1.589 1.768 2.049 2.307 2.542 2.794 2.909 3.242 3.401	FX(1) 6.26E-01 6.27E-01 6.24E-01 6.14E-01 5.98E-01 5.62E-01 5.16E-01 4.60E-01 4.11E-01 3.77E-01	EX(2) 4.69E-01 4.69E-01 4.78E-01 4.79E-01 4.88E-01 5.04E-01 5.33E-01 5.61E-01 5.94E-01 6.09E-01 6.01E-01	EX(3) 3.15F-01 3.20F-01 3.21F-01 3.21F-01 3.31E-01 3.42E-01 3.57E-01 3.80F-01 4.09E-01 4.02E-01	FX(4) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
$\frac{d.}{38,3}$ Am(III) $H_2 TDG$ λ_1 λ_2 λ_3	3°(: : :	0,001 0,02 5032 5042 5057	51 m A A A	m	TM 1 2 3 4 5 6 7 8 9 10 11 12	PH 1.148 1.352 1.589 1.768 2.049 2.307 2.542 2.794 2.900 3.242 3.242 3.401 3.589	FX(1) 6.26E-01 6.27E-01 6.24E-01 6.19E-01 6.14E-01 5.98E-01 5.62E-01 5.16E-01 4.60E-01 4.60E-01 3.73E-01 3.54E-01	EX(2) 4.69E-01 4.69E-01 4.78E-01 4.79E-01 4.88E-01 5.04E-01 5.61E-01 5.94E-01 6.02E-01 5.92E-01 5.92E-01	EX(3) 3.15F-01 3.20F-01 3.21F-01 3.21F-01 3.31E-01 3.42F-01 3.57E-01 3.80F-01 4.09F-01 4.02E-01 4.02F-01 5.04F-01	FX(4) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
$\frac{d.}{38,3}$ Am(III) H_2^{TDG} λ_1 λ_2 λ_3	3°(: : :	0,001 0,02 5032 5042 5057	51 m A A A	m	TM 12345678900 1123	PH 1.148 1.352 1.589 1.768 2.049 2.307 2.542 2.794 2.909 3.242 3.589 3.589 3.589 3.589	FX(1) 6.26E-01 6.27E-01 6.24F-01 6.19E-01 6.14E-01 5.98E-01 5.62E-01 5.16E-01 4.60E-01 4.51F-01 3.73E-01 3.54E-01 3.02E-01	EX(2) 4.69E-01 4.78E-01 4.78E-01 4.79E-01 4.88E-01 5.04E-01 5.33E-01 5.61E-01 5.94E-01 6.09E-01 6.01E-01 5.92E-01 5.50E-01 5.50E-01	EX(3) 3.15F-01 3.20F-01 3.21F-01 3.21F-01 3.27F-01 3.31E-01 3.42F-01 3.57E-01 3.80F-01 4.09F-01 4.09F-01 4.67F-01 5.04F-01 5.04F-01	EX(4) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
$\frac{d.}{38,3}$ Am(III) $H_2 TDG$ λ_1 λ_2 λ_3	3°(: : :	0,001 0,02 5032 5042 5057	51 m A A A	m	TM1234567800112345	PH 1.148 1.352 1.589 1.768 2.049 2.542 2.542 2.542 2.542 2.542 2.542 3.242 3.242 3.242 3.589 3.819 4.008 4.008	FX(1) 6.26E-01 6.27E-01 6.24E-01 6.19E-01 6.14E-01 5.98E-01 5.62E-01 5.16E-01 4.60E-01 4.11E-01 3.73E-01 3.54E-01 3.02E-01 2.79E-01	EX(2) 4.69E-01 4.78E-01 4.79E-01 4.79E-01 4.88E-01 5.04E-01 5.94E-01 5.94E-01 6.09E-01 6.02E-01 5.92E-01 5.50E-01 5.20E-01 4.76E-01	EX(3) 3.15E-01 3.20E-01 3.21E-01 3.21E-01 3.21E-01 3.31E-01 3.57E-01 3.57E-01 3.57E-01 4.09E-01 4.09E-01 4.02E-01 4.02E-01 5.33E-01 5.33E-01 5.71E-01	FX(4) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
$\frac{d.}{38,3}$ Am(III) $H_2 TDG$ λ_1 λ_2 λ_3	3°(: : :	0,001 0,02 5032 5042 5057	51 m A A A	m	TM 1234567890112345	PH 1.148 1.352 1.589 1.768 2.049 2.307 2.542 2.794 2.900 3.242 3.401 3.589 3.819 4.008 4.352	FX(1) 6.26E-01 6.27E-01 6.24E-01 6.19E-01 6.14E-01 5.98E-01 5.62E-01 5.16E-01 4.60E-01 4.60E-01 4.54E-01 3.73E-01 3.02E-01 2.79E-01 2.41E-01 2.22E-01	EX(2) 4.69E-01 4.69E-01 4.78E-01 4.79E-01 4.88E-01 5.04E-01 5.61E-01 5.94E-01 6.02E-01 5.92E-01 5.50E-01 5.20E-01 4.74E-01 4.54E-01	EX(3) 3.15E-01 3.20E-01 3.21E-01 3.21E-01 3.31E-01 3.42E-01 3.57E-01 3.57E-01 3.80E-01 4.09E-01 4.09E-01 5.04E-01 5.33E-01 5.33E-01 5.83E-01	FX(4) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
$\frac{d.}{38,3}$ Am(III) $H_2 TDG$ λ_1 λ_2 λ_3	3° (: : :	0,001 0,02 5032 5042 5057	51 m A A A	m	IM123456780011234567	PH 1.148 1.352 1.589 1.768 2.049 2.307 2.542 2.794 2.999 3.242 3.589 3.689 3.819 4.008 4.352 4.856	FX(1) 6.26E-01 6.27E-01 6.24E-01 6.19E-01 6.14E-01 5.98E-01 5.98E-01 5.16E-01 4.60E-01 4.51E-01 3.77E-01 3.54E-01 3.02E-01 2.79E-01 2.22E-01 2.19E-01	EX(2) 4.69E-01 4.78E-01 4.78E-01 4.79E-01 4.88E-01 5.04E-01 5.04E-01 5.94E-01 6.09E-01 6.09E-01 5.92E-01 5.92E-01 5.20E-01 4.74E-01 4.54E-01 4.69E-0	EX(3) 3.15E-01 3.20E-01 3.21E-01 3.21E-01 3.27E-01 3.31E-01 3.42E-01 3.57E-01 3.80E-01 4.09E-01 4.09E-01 4.02E-01 5.04E-01 5.33E-01 5.83E-01 5.89E-01	EX(4) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
$\frac{d.}{38,3}$ Am(III) $H_2 TDG$ λ_1 λ_2 λ_3	3°(: : :	0,001 0,02 5032 5042 5057	51 m A A A	m	TM123456789012345678	PH 1.148 1.352 1.589 1.768 2.049 2.542 2.542 2.542 2.542 3.240 3.542 3.542 3.542 3.542 3.542 3.540 3.540 3.540 3.555 4.3559 4.3559 5.155	FX(1) 6.26E-01 6.27E-01 6.24E-01 6.19E-01 6.14E-01 5.98E-01 5.62E-01 5.16E-01 4.60E-01 4.11E-01 3.73E-01 3.73E-01 3.64E-01 2.79E-01 2.22E-01 2.19E-01 2.10E-01	EX(2) 4.69E-01 4.69E-01 4.78E-01 4.79E-01 4.88E-01 5.04E-01 5.33E-01 5.61E-01 5.94E-01 6.09E-01 6.09E-01 5.92E-01 5.50E-01 5.50E-01 4.74E-01 4.54E-01 4.54E-01 4.30E-01	EX(3) 3.15E-01 3.20E-01 3.21E-01 3.21E-01 3.31E-01 3.31E-01 3.57E-01 3.57E-01 4.09E-01 4.09E-01 4.09E-01 4.02E-01 5.33E-01 5.33E-01 5.83E-01 5.89E-01 5.97E-01	FX(4) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
$\frac{d.}{38,3}$ Am(III) $H_2 TDG$ $\frac{\lambda_1}{\lambda_2}$ $\frac{\lambda_3}{3}$	3°(: : :	0,001 0,02 5032 5042 5057	51 m A A A		TM1234567890123456789	PH 1.148 1.352 1.589 1.768 2.049 2.307 2.542 2.794 2.542 2.794 3.242 3.542 3.542 3.542 4.355 3.819 4.355 4.855 5.472	FX(1) 6.26E-01 6.27E-01 6.24E-01 6.19E-01 6.14E-01 5.98E-01 5.62E-01 5.16E-01 4.60E-01 4.51E-01 3.73E-01 3.02E-01 2.79E-01 2.41E-01 2.19E-01 2.10E-01 2.10E-01	EX(2) 4.69E-01 4.69E-01 4.78E-01 4.78E-01 4.88E-01 5.04E-01 5.94E-01 5.94E-01 6.07E-01 5.92E-01 5.20E-01 5.20E-01 4.54E-01 4.54E-01 4.30E-01 4.23E-01	EX(3) 3.15E-01 3.20E-01 3.21E-01 3.21E-01 3.21E-01 3.31E-01 3.57E-01 3.57E-01 4.09E-01 4.09E-01 4.02E-01 4.02E-01 5.33E-01 5.33E-01 5.83E-01 5.89E-01 5.97E-01 6.02E-01	FX(4) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
$\frac{d.}{38,3}$ Am(III) $H_2 TDG$ λ_1 λ_2 λ_3	3°(: : :	0,001 0,02 5032 5042 5057	51 m A A A	m	IM123456789011234567890	PH 1.148 1.352 1.589 1.768 2.049 2.307 2.542 2.900 3.2401 3.589 4.355 3.819 4.3559 4.3559 4.3555 5.472 5.783	FX(1) 6.26E-01 6.27E-01 6.24E-01 6.19E-01 6.14E-01 5.98E-01 5.62E-01 5.16E-01 4.60E-01 4.60E-01 4.71E-01 3.73E-01 3.73E-01 3.72E-01 2.22E-01 2.19E-01 2.10E-01 2.08E-01	EX(2) 4.69E-01 4.78E-01 4.78E-01 4.79=-01 4.885-01 5.04E-01 5.94E-01 5.94E-01 5.92E-01 5.92E-01 5.92E-01 4.74E-01 4.54E-01 4.30E-01 4.23E-01 4.25E-01	EX(3) 3.15E-01 3.20E-01 3.21E-01 3.21E-01 3.31E-01 3.42E-01 3.42E-01 3.57E-01 3.80E-01 4.09E-01 4.09E-01 4.07E-01 5.33E-01 5.33E-01 5.83E-01 5.83E-01 5.89E-01 5.97E-01 6.02E-01 6.04E-01	EX(4) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.

5. Literatur

S.H. Eberle (1) KFK-1136 (1970) (2) A.D. Jones, G.R. Choppin Actinide Rev. 1,311 (1969) (3) J. Fuger, B.B. Cunningham J.Inorg.Nucl.Chem. 27, 1069 (1965) J.T. Bell, R.D. Baybarz, (4) J.Inorg.Nucl.Chem. 33, 3077(1971) D.M. Melton (5) G.R. Choppin, J.K. Schneider J.Inorg.Nucl.Chem. 32, 3283(1970) (6) S.H. Eberle, I. Bayat Jahresbericht 1971 Kernforschungszentrum Karlsruhe (7) I. Bayat Dissertation Universität Karlsruhe 1970 (8) J.P. Surls UCRL-3209 (1956) (9) O.D. Bonner, L.L. Smith J.Phys.Chem. 61,1614 (1957) G. Dickel, L. Nieciecki (10)Z.Elektrochem. 59,913 (1955) (11)O.D. Bonner, R.R. Pruett J.Chem.Phys. <u>63</u>,1417 (1959) (12)R. Münze J.Inorg.Nucl.Chem. 34,661(1972) (13)S.H. Eberle KFK-1286 (1970) Th. Moeller, R. Ferrus (14)J.Inorg.Nucl.Chem.20,261(1961) (15)S.H. Eberle, H. Rawi unveröffentlicht S.H. Eberle, S.A. Ali (16)Z.A11g.Anorg.Chem. 361,1(1968) Th. Moeller, R. Ferrus Inorg.Chem. 1, 49 (1962) (17)R.D. Baybarz, A. DelleSite J.Inorg.Nucl.Chem. 31,2201 (1969) (18)(19)E. Brandau J.Inorg.Nucl.Chem.Lett.7,1177(1972) (20) S.H. Eberle, F. Moattar Inorg.Nucl.Chem.Lett. (21)I. Greuthe Acta.Chem.Scand.16,1695 (1962) J.Inorg.Nucl.Chem. 34,973 (1972) (22)R. Münze Actinide Rev. 1,311 (1969) A.D. Jones, G.R. Choppin (23)Acta Chem.Scand. 18,283 (1964) (24)I. Greuthe

- 49 -