

K E R N F O R S C H U N G S Z E N T R U M

KARLSRUHE

Februar 1972

KFK 1569

Laboratorium für Isotopentechnik

Das Verschleißverhalten und die Tragfähigkeit von Gleitlagern im Übergangsbereich von der Vollschmierung zu partiellem Tragen (Untersuchungen mit Hilfe von Radioisotopen)

G. Katzenmeier

Als Manuskript vervielfältigt

Für diesen Bericht behalten wir uns alle Rechte vor

39

GESELLSCHAFT FÜR KERNFORSCHUNG M.B.H. KARLSRUHE

Februar 1972

KFK 1569

Laboratorium für Isotopentechnik Fachbereich Physik-Maschinenbau

Das Verschleißverhalten und die Tragfähigkeit von Gleitlagern im Übergangsbereich von der Vollschmiterung zu partiellem Tragen

(Untersuchungen mit Hilfe von Radioisotopen)⁺

von

Gustav Katzenmeier

Gesellschaft für Kernforschung mbH., Karlsruhe +von der Fakultät für Maschinenbau der Universität Karlsruhe genehmigte Dissertation

n ta se a companya a serie da serie da

Das Verschleißverhalten und die Tragfähigkeit von Gleitlagern im Übergangsbereich von der Vollschmierung zu partiellem Tragen

(Untersuchungen mit Hilfe von Radioisotopen)

Zusammenfassung

Die Berechnung hydrodynamisch geschmierter Gleitlager wird unsicher, wenn sich Welle und Schale dem Mischreibungsgebiet nähern. Um die Grenze der Tragfähigkeit genau zu kennen, müssen daher Versuche durchgeführt werden. Die Verschleißmessung mittels Radioisotopen bietet die Möglichkeit, die Grenzen des sicheren, verschleißfreien Betriebes sehr empfindlich festzustellen.

 γ -spektrometrische Voruntersuchungen ergaben, daß alle bleihaltigen Lagermaterialien – das sind die meisten handelsüblichen Lager – durch Deuteronenbeschuß so aktiviert werden können, daß an den Lagern Ein- und Mehrkomponenten-Verschleißmessungen nach bestehenden Meßverfahren möglich sind.

In einem speziell aufgebauten Prüfstand wurden Lagerversuche bei statischer und dynamischer Last (sinusförmig wechselnd) durchgeführt. Die Experimente gaben Aufschluß über das grundsätzliche Verschleiß- und Einlaufverhalten von Lagern. Es wurde der Einfluß der Materialpaarung Welle – Schale und insbesondere der Oberflächenrauhigkeit der Lagerteile auf den Abrieb und die Tragfähigkeit untersucht.

Als Grenze der Tragfähigkeit wurde der Betriebspunkt des Verschleißbeginns definiert. Zu den in den Versuchen ermittelten Übergangspunkten in den Verschleißbereich wurden theoretische Werte für die minimalen Schmierspaltdicken errechnet und diese Größen in Beziehung gesetzt zu den Kenngrößen der Oberflächengestalt von Welle und Schale.

Aus den Ergebnissen konnten Kriterien für die zulässige Belastung und die kleinste zulässige Schmierspaltgröße des Lagers abgeleitet werden. Es wurden Aussagen gefunden, die als Hinweise für den richtigen Einlauf und den sicheren Betrieb eines Lagers dienen können. Wear Behaviour and Load Capacity of Journal Bearings in the Transition Range from Full to Boundary Lubrication

(Investigations by Means of Radioisotopes)

ABSTRACT

The calculation of hydrodynamically lubricated journal bearings becomes uncertain as the shaft and the bush approach the zone of mixed friction. To obtain a precise knowledge of the limit of load capacity, experiments must be performed. Wear measurement with the help of radioisotopes is a very sensitive means of assessing the limits of safe operation free from wear.

Preliminary investigations using gamma-spectrometry revealed that all bearing materials containing lead - this applies to most of the commercially available bearings - can be activated by deuteron bombardment in such a manner that the bearings can be subjected to single - and multi-component wear measurements by existing measuring techniques.

In a test bench set up for this purpose bearing tests were carried out under static and dynamic loads (sinusoidal cycling). The experiments provided information about the general wear and running-in behaviour of bearings. The investigations concentrated on the influence exerted by the material pair shaft/bush and, above all, the surface roughness of bearing elements on the abrasion and the load capacity.

The operating point characterized by the beginning of wear was defined as the limit of load capacity. In addition to the experimental points of transition into the wear regime theoretical values were calculated for the minimum thickness of the lubrication gap and related to the surface characteristics of the shaft and the bush.

Based on these results, criteria were derived for the permissible load and the minimum permissible size of the lubrication gap of the bearing. Information was found which may serve as an indication of the proper running-in and safe operation of a bearing.

INHALTSVERZEICHNIS	
	Seite
1. EINLEITUNG	L
1.1 Überblick: Verschleißversuche im Rahmen der	
Gleitlagerforschung	1
1.2 Aufgabe und Ziel der Arbeit	3
1.3 Der Abriebverschleiß im Lager als Schadens- form und als erwünschter Einlaufeffekt	3
2. PRINZIP UND TECHNIK DEB VERSCHLEISSMESSUNG AN	
DEN LAGERN UND WELLEN MITTELS RADIOISOTOPEN	5
	_
2.1 Auswahl des Meßverfahrens	5
2.2 Aktivierung der Lagerschalen mit Deuteronen	6
2.2.1 Im Lagermaterial erzeugte radioaktive	-
	7
2.2.2 Tiefenverteilung der Aktivität	9
2.2.3 Bestrahlungstechnik	10
2.3 Aktivierung der Wellen	12
2.4 Möglichkeiten zur Verschleißmessung an Lagern aufgrund der Dünnschichtaktivierung	12
2.5 Verschleißmeßeinrichtung	14
2.5.1 Funktion und Aufbau des Meßkreislaufes	14
2.5.2 Detektor. Elektronik und Datenausgabe	16
2.5.3 Eichung des Meßkopfes	16
	10
2.6 Zur Durchfunrung der Messungen	10
2.7 Genaulgkeit und mogliche Storeinflusse	19
3. LAGERPRÜFSTAND	21
3.1 Leistungsdaten und wichtige Abmessungen	21
3.2 Konstruktiver Aufbau	21
3.3 Ölkreisläufe für Schmierung und Belastung	25
3.4 Meßeinrichtungen außer der Verschleißmessung	25
3.4.1 Kraft- und Verlagerungsmessung	25
3.4.2 Messung der Öl- und Lagertemperaturen	25

Se	it	e
----	----	---

4. VERSCHLEISSBEGINN ALS KRITERIUM FÜR	
DEN ÜBERGANG IN DAS MISCHREIBUNGSGEBIET UND	
ZULÄSSIGE SCHMIERSPALTDICKE	27
4.1 Experimentelle Ermittlung des Übergangs- punktes in das Verschleißgebiet	28
4.1.1 Versuchsablauf	28
4.1.2 Auswertverfahren zur Ermittlung des Übergangspunktes	29
4.1.3 Möglichkeit zur mathematisch-statisti- schen Analyse des gemessenen Verschleiß- verlaufes	31
4.2 Berechnung und Messung der Schmierspaltdicke ^h min ü für den Übergangspunkt p _ü	32
4.2.1 Rechenverfahren	32
4.2.2 Viskosität	33
4.2.3 Messung der Schmierspaltdicke	34
4.2.4 Lagerspiel	35
5. VERSCHLEISSVERHALTEN DER LAGER BEIM EIN-	
LAUF UNTER STATISCHER LAST	35
6. EINFLUSS VERSCHIEDENER MATERIALPAARUNGEN	
WELLE-SCHALE AUF DAS VERSCHLEISSVERHALTEN	38
6.1 Versuchsteile und Laufprogramm	38
6.2 Lage der Verschleißanstiegspunkte bei neuen und gelaufenen Teilen	39
6.3 Verschleiß- und Temperaturverhalten bei Last- steigerung in das Mischreibungsgebiet	42
6.4 Material- und Härteeinfluß auf den Gesamt- verschleiß	44
6.5 Verschleißverhalten der Wellen; Vergleich der Abriebmengen an Welle und Schale	46
7. BEDEUTUNG DER OBERFLACHENGESTALT FUR DEN	
VERSCHLEISS UND ZULASSIGE SCHMIERSPALTGRÖSSE	49
7.1 Einleitung und Versuchsziele	49

		x	Seite
	7.1.1	Der Schmierspalt zwischen realen Oberflächen	49
	7.1.2	Stand der Untersuchungen	51
	7.1.3	Informationsziel der Versuche	54
	7.1.4	Begriffe und Maße für die Beschreibung der Oberflächengestalt	55
7.2	Versu stoff	chsdaten; Oberflächengestalt und Werk- e der Versuchsteile	56
7.3	Versu	chsergebnisse	59
	7.3.1	Übergangslasten	59
4. 4.	7.3.2	Verlauf der Gesamtmenge des Abriebs beim Einlauf der Lager	61
	7.3.3	Grenztragfähigkeit nach beendetem Ein- lauf	62
14 14 12 13 14 14 14 14 14 14 14 14 14 14 14 14 14	7.3.4	Übergangswerte c _{üv} vor und nach dem Einlauf	65
	7.3.5	Versuche zur oberen Drehzahlgrenze bei konstanter Last	66
7.4	Veränd und So	derung der Oberflächengestalt bei Wellen chalen durch den Einlauf	71
	7.4.1	Die Oberflächenprofile und Rauhigkeits- daten nach den Versuchen	71
	7.4.2	Einlaufspiegel in der Lagerfläche	75
7.5	Zusam werte spalte	menhänge zwischen den Oberflächenkenn- n und der kleinsten zulässigen Schmier- dicke	76
	751	Redeutung der svislen Rauhigkeitswerte	76
	7.5.2	Glättungstiefe und Welligkeit der Ober- flächen als Kriterien für die zulässige Schmierspaltgröße	77
	7.5.3	Einfluß der Wellendurchbiegung im Lager	85
7.7	Verscl Oberf	hleißberechnung über eine statistische lächenanalyse	86
	7.7.1	Beschreibung der Oberflächen durch die Verteilungsfunktionen der Höhen- und Steigungswerte	87
	7.7.2	Berechnung des Verschleißmengenquotienten für die Reibpartner verschiedener Rauhig- keit	89

	7.7.3 Vergleich gerechnete-gemessene Ver- schleißmengen, Ergebnis und Aussage der Rechnung	91
8.	EINFLUSS DER DREHZAHL AUF DIE TRAGFÄHIG-	
	KEIT UND DIE WIRKSAME ÖLVISKOSITÄT IM	i se e
	LAGER	93
9.	VERSCHLEISSVERHALTEN UND ÜBERGANGSPUNKTE BEI	
	SINUSFÖRMIG WECHSELNDER LAST	97
	9.1 Informationsziele und Versuchsprogramm	97
	9.2 Verlagerungsbahn und minimale Schmierspalt- größe	98
	9.3 Ergebnisse; Vergleich der Tragfähigkeit bei statischer und Wechsellast	99
10	ZUSAMUENFASSIINC	103
10,		100
	LITERATURA	108
	BILD-ANHANG	114
	a ser a companya ang ang ang ang ang ang ang ang ang an	s In a a
	a status e a de la seconda de la seconda La seconda de la seconda de La seconda de la seconda de	
	a service a service of the service o Service of the service	tini V v
	الم المراجعة التي 1997 على المراجعة المراجعة المراجعة المراجعة المراجعة المراجعة المراجعة المراجعة المراجعة ال المراجعة المراجعة الم المراجعة المراجعة الم	
	가 가지 않는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있다. 가지 않는 것이 있는 것이 있는 것이 있다. 같이 있는 것이 있는 것이 있다. 같이 있는 것이 있는 것이 있 같이 가지 않는 것이 있는 것이 있다. 같이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 같이 있는 것이 같이 있는 것이 있다. 같이 있는 것이 있는 것이 없는 것이 있는 것이 없다. 같이 있는 것이 없는 것이 없는 것이 있	

Seite

ax		Index für Axialrichtung
A		Aktivität
A _n and a second	cm^2	Berührfläche (S.91)
B gara an	mm	Lagerbreite
b _{pp}	μm	predominant-peak Rauhigkeit des Lagers (S.56)
c _{üv}	1/m	Übergangswert, in Verschleißver- suchen ermittelt (S.41)
d- no managététététése és a de		Kurzbezeichnung für Deuteronen
d state	mm	Wellendurchmesser
dyn ar han bar ar bar ar		Index für dynamisch
D	mm	Lagerdurchmesser
f is the second state	μm	Wellendurchbiegung im Lager
$h_{u}, h_{a}, h_{y}^{u}, h_{x}^{a}, h_{e}$	e la stratica de Regione	statistische Kenngrößen der Ober- 🔅 flächen (S.88)
h _{min} electric duranter estat	μm	kleinste Schmierspaltdicke
hmin ü I(II) = hzul I(II)	μm	Übergangsschmierspaltdicke = zu- lässige minimale Schmierspaltdicke vor (I) und nach (II) dem Einlauf
HV	kg/mm^2	Vickershärte
HRC state of the s		Rockwellhärte
j	μm	p-p Rauhigkeit der Welle (S.56)
K ^D bb	1	Rauhigkeitsfaktor (S.90)
n	U/min	Drehzah1
n*		Anzahl von Berührstellen zweier Oberflächen (S.90)
ⁿ ü(v)	U/min	Übergangsdrehzahl (V: in Verschleiß- versuchen ermittelt)
$\overline{\mathbf{q}}$	kp/cm^2	mittlere spez. Lagerlast
$\overline{p}_{\ddot{u}}, \overline{p}_{\ddot{u}I}, \overline{p}_{\ddot{u}II}$	kp/cm ²	Übergangslast in den Verschleißbe- reich vor (I) und nach (II) dem Einlauf
Ρ	kp _	Gesamtlast
$\bar{p}_{dyn}, \bar{p}_{stat}, \bar{p}_{sin}$	kp/cm^2	dynamische Last, statische Grund- last, Sinusamplitude (S.97)
$R_{p}, R_{a}, R_{t}, R_{s}$	μm	Rauhigkeitskennwerte (S.55)
RW, RL	μm	Rauhigkeit der Welle (W), des La- gers (L)

Rax, Rtang	μm	Rauhigkeit axial (ax) bzw. in Um- fangsrichtung (tang) gemessen
S	mm	Eindringtiefe
So		Sommerfeldzahl ($ar{ extbf{p}}$. $\psi^2/\%$ w)
So _{ü(I,II)}		Übergangs-Sommerfeldzahl vor (I) und nach (II) dem Einlauf
tang		Index für Umfangsrichtung
$\mathbf{T}_{\mathbf{E}}^{},\mathbf{T}_{\mathbf{A}}^{}$	°C	Öltemperatur am Lagereingang (E) bzw. Lagerausgang (A)
$T_L \approx T_A$	°C	Lagertemperatur 0,2 mm unter der Lauffläche
T_A^*		Ölausgangstemperatur mit Spülbohrungen
U	m/s	Umfangsgeschwindigkeit
V	mg, μg	Verschleißmenge (V Verschleißrate)
V _o	3 m	Lagervolumen
W	μm	Welligkeit der Oberfläche (S.55)
x,y,z		Axial-, Umfangs-, Höhenkoordinate des Oberflächenprofiles (S.89)
β	kpm/m ³⁰ C	raumspezifische Wärme des Schmier- mittels (Öl: β = 0,18.10 ⁶ kpm/m ³ °C)
3		relative Exzentrizität des Zapfens
$K = C \circ \frac{\omega}{2}$	_1	Drehzahlkenngröße (S.69)
? _E ,? _A ,? _L	kps cm	Viskosität des Öls bei Öleingangs- temperatur (E), Ölausgangstemperatur (A), Lagertemperatur (L)
⁹ 1,2ü	°C	Öltemperatur Eingang (1), Ausgang (2), beim Verschleißübergang (ü)
Θģü		Erwärmungsfaktor (S.119)
λ		Lastfrequenz
ω		Drehfrequenz
arphi	%0	relatives Lagerspiel

1. EINLEITUNG

Die Tragfähigkeit des hydrodynamisch geschmierten Gleitlagers beruht darauf, daß in dem Schmierfilm zwischen Welle und Schale ein Druckberg aufgebaut wird, der die Feststofflaufflächen trennt. Reicht der Druck nicht mehr aus, der auf das Lager aufgebrachten Belastung das Gleichgewicht zu halten, dann unterschreitet die Schmierfilmdicke ihre zulässige untere Grenze und es tritt der Zustand partiellen Tragens [1] mit Festkörperberührung ein. Dies kann zu Abriebverschleiß oder im Extremfall auch zur Zerstörung des Lagers durch "Fressen" führen. Es ist deshalb notwendig, im praktischen Lagerbetrieb, vor allem im Dauerbetrieb, diesen Zustand mit großer Sicherheit zu vermeiden. Die kompakte Bauweise moderner Maschinen und Wirtschaftlichkeitsüberlegungen fordern aber, daß die Tragfähigkeit der Lager bis möglichst nahe an die Grenze des hydrodynamischen Bereiches ausgenutzt wird. Kenntnisse zu dieser Grenze sind daher für die richtige Lagerauslegung wichtig.

1.1 <u>Überblick: Verschleißversuche im Rahmen der Gleitlager-</u> forschung

Die Theorie der Hydrodynamik im Gleitlager gibt Verfahren an, das Betriebsverhalten von Lagern beliebiger Geometrie mit guter Genauigkeit zu berechnen. Für statische und wechselnde Belastung können der Druck- und Temperaturverlauf im Schmierfilm, sowie die Zapfenverlagerung und damit die Schmierfilmstärke theoretisch ermittelt werden. Die meist angewandten mathematischen Verfahren für die Berechnung des statisch belasteten Lagers wurden von Vogelpohl [1], Pinkus-Sternlicht[4] und Sassenfeld-Walther [5]erarbeitet. Andere Verfasser [6-10] haben die Theorie erweitert, indem sie die Temperatur- und Druckabhängigkeit der Viskosität sowie die elastische Verformung mit erfaßten. Die Berechnung dynamisch belasteter Lager wird meist nach den Lösungsmethoden von Hahn-Someya [11], Holland-Lang [12] und Schaffrath [13] durchgeführt. Verschiedene experimentelle Arbeiten, in denen vor allem der Druckverlauf, Temperaturen und die Zapfenverlagerung [15-18] gemessen wurden,

- 1 -

gaben Aufschluß über das Betriebsverhalten der Lager im vollhydrodynamischen Bereich und bestätigten weitgehend die Gültigkeit der Theorien, sofern die richtige mittlere Ölfilmtemperatur gefunden wurde.

Die Rechnung der Hydrodynamik wird aber um so unsicherer, je weiter sich Welle und Schale dem Mischreibungsgebiet annähern, da die der Theorie zugrunde liegenden Voraussetzungen dann zum Teil nicht mehr erfüllt sind und andere Gesetzte gelten [1].

Deshalb wurden über das Lagerverhalten bei sehr dünnen Schmierfilmen und zum Übergangspunkt in das Mischreibungsgebiet eine Reihe von experimentellen Untersuchungen durchgeführt und daraus verschiedene empirische Kriterien für die Tragfähigkeit und die zulässige Schmierspaltgröße ermittelt ([10, 14, 19, 20, 21, 22, 23] + Kap. 7.1.1).

Als meßbarer Indikator für den Übergang diente zunächst der Temperaturanstieg, dann vor allem der Reibungsverlauf sowie der elektrische Widerstand zwischen Welle und Schale.

Die angegebenen Kriterien geben aber keine eindeutige Antwort zu den für die Lagerauslegung wichtigen Fragen: Bei welchen Grenzbetriebsdaten läuft ein Lager noch betriebssicher, d.h. ohne oder mit sehr geringem Verschleiß? Welchen Aussagewert hat der errechenbare Verlagerungsverlauf, insbesondere die theoretische Größe des minimalen Schmierspaltes, für den praktischen Lagerbetrieb? Wie beeinflussen bestimmte Parameter, die von der Rechnung nur schwer oder gar nicht erfaßt werden können, z.B. die Werkstoffdaten, die Oberflächenbeschaffenheit oder die Schmierstoffeigenschaften das Verschleißverhalten und die Tragfähigkeit eines Lagers?

Die empfindliche, kontinuierliche Abriebmessung mittels Radioisotopen bietet eine Möglichkeit, diese Probleme über das Verschleißverhalten als neues Kriterium für den Schmierzustand zu untersuchen.

1.2 Aufgabe und Ziel der Arbeit

Um ein Lager unter Ausnutzung seiner maximalen hydrodynamischen Tragfähigkeit ausreichend sicher auszulegen, ist es notwendig, die Lage des Übergangspunktes in das Verschleißgebiet, den Abriebverlauf im Mischreibungsbereich und die Verschiebung des kritischen Überganges durch den Einlauf unter dem Einfluß verschiedener Betriebs- und Lagerparameter zu kennen. Die vorliegende experimentelle Arbeit soll einen Beitrag zur Kenntnis über diese Probleme darstellen.

Die Untersuchungen sind in folgende Abschnitte gegliedert:

- a. Aufbau des Lagerprüfstandes und isotopentechnische Voruntersuchungen zur Verschleißmessung.
- b. Erprobung des Meßverfahrens und Untersuchungen über das grundsätzliche Verschleißverhalten eines Lagers beim Übergang in das Mischreibungsgebiet.
- c. Versuche zur Ermittlung des Einflusses von bestimmten, im Motoren- und Turbinenbau verwendeten Materialpaarungen Welle-Schale auf das Verschleißverhalten der Lager.
- d. Untersuchungen über die Zusammenhänge zwischen der Oberflächenbeschaffenheit der Laufpartner und der Tragfähigkeit eines Lagers.
- e. Lagerversuche mit sinusförmig wechselnder Last. Vergleich zwischen dem statischen und dem dynamischen Lastbetrieb.

Mit den Ergebnissen der Versuche, insbesondere denen zum Einfluß der Oberflächenrauhigkeit, wird versucht, den Gültigkeitsbereich der bestehenden Lagertheorien abzugrenzen und Kriterien herauszuarbeiten, die dem Konstrukteur helfen können, ein Lager betriebssicher auszulegen.

1.3 <u>Der Abriebverschleiß im Lager als Schadensform und als</u> erwünschter Einlaufeffekt

Beim Betrieb von Gleitlagern können im wesentlichen zwei Gruppen von Schadensformen entstehen, die sich in der Ursache und den Auswirkungen deutlich unterscheiden. Die eine Gruppe sind die Schäden, die im Lager ohne Berührung der Oberflächen aufgrund der Wirkung des hydrodynamischen Ölfilms entstehen können, wie etwa Kavitation und Materialermüdung.

Davon müssen als zweite Gruppe die Verschleißerscheinungen deutlich getrennt werden, die bei direkter Berührung der Laufflächen aufgrund thermischer oder mechanischer Überlastung auftreten. Physikalisch gesehen handelt es sich dabei je nach dem Material der Reibpartner um Abrasiv- oder Adhäsivverschleiß [24,25], meist vermutlich um eine Überlagerung der beiden Abtragsformen. Ein Schadensbild mit typischen Abriebspuren zeigt die Abb.1. In den Laufflächen der Lager ist deutlich starker Materialabtrag zu erkennen.

Abb.l Abriebschaden an Kurbelwellengrundlagern durch Überlastung

Eine Schadensumfrage bei Lagerherstellern und Verwendern ergab, daß solche Schadensfälle - verursacht durch eine zu geringe Schmierfilmtragfähigkeit - recht oft auftreten. Der Schaden vergrößert sich bei weiterem Betrieb des Lagers und wird dann besonders gefährlich, wenn die Laufschicht abgerieben ist und die Welle auf den härteren Zwischenschichten zu reiben beginnt.

Innerhalb der Gruppe Abriebverschleiß ist es sinnvoll, von dem beschriebenen schädlichen Abtrag ("severe wear") den Abrieb zu unterscheiden, der im Einlauf eines neuen Lagers zu einer Glättung und Anpassung der Oberflächen führt ("mild wear") und dabei durchaus erwünscht oder sogar notwendig ist[26]. In den vorliegenden Untersuchungen geht es,ausgenommen die Grenzversuche zum Einlaufende, hauptsächlich um diesen unkritischen "Verschleiß". Ein geringer Abtrag wird jeweils als Indikator für den Schmierzustand des Lagers betrachtet. Die Verschleißmengen sind dabei so gering, daß noch keine Schädigung des Lagers auftritt.

2. PRINZIP UND TECHNIK DER VER-SCHLEISSMESSUNG AN DEN GLEIT-LAGERN MITTELS RADIOISOTOPEN

2.1 Auswahl des Meß- und Aktivierungsverfahrens

Für die kontinuierliche Messung geringer Abriebmengen in laufenden Maschinen bietet die Isotopentechnik heute vor allem zwei Methoden: das am häufigsten eingesetzte Durchflußmeßverfahren und das neuere Dünnschichtdifferenzverfahren [27]. Für beide Verfahren muß das Verschleißteil, bzw. die interessierende Verschleißfläche, zunächst durch Beschuß mit thermischen Neutronen in einem Reaktor oder durch Bestrahlung mit schweren geladenen Teilchen (α, d) an einem Beschleuniger aktiviert werden. Die Neutronen bewirken eine nahezu gleichmäßige Aktivierung des gesamten Bauteiles, was in manchen Fällen - z.B. bei kleinen Teilen mit komplizierter Geometrie - vorteilhaft sein kann, oft aber den Nachteil mit sich bringt, daß eine sehr viel höhere Gesamtaktivität erzielt wird, als dies für die Messung notwendig ist. Außerdem ist die Zahl der mit vertretbarem Aufwand aktivierbaren Elemente relativ gering, eine gezielte Teilaktivierung ist nur sehr schwer möglich. Die Deuteronen oder a-Teilchen dagegen verlieren beim Eindringen in das Material sehr schnell ihre Energie und aktivieren nur eine dünne Oberflächenschicht des bestrahlten Teiles. Daraus ergibt sich der bedeutende Vorteil, daß es möglich ist, örtlich begrenzt eine hohe spezifische Aktivität zu erzeugen, ohne daß das bestrahlte Teil eine hohe Gesamtaktivität erreicht.

Das Dünnschichtdifferenzverfahren ist nun dadurch charakterisiert, daß mit einem Detektor direkt an der oberflächenaktivierten "Verschleißfläche" dauernddie um den Abtrag verminderte Gesamtaktivität als Maß für den Verschleißverlauf gemessen wird. Voraussetzung ist dabei nur, daß die Verschleißpartikel vom Entstehungsort weit genug abtransportiert werden. Die erreichte Empfindlichkeit liegt bei ca. 0,5 μ m Abtrag pro Stunde.

Beim Durchflußmeßverfahren werden die radioaktiven Verschleißpartikel durch ein Trägermedium, z.B. Schmieröl, von der Verschleißquelle zu dem Detektor transportiert und dort aufgrund der Strahlung nachgewiesen. Der radioaktive Abrieb bleibt im allgemeinen in dem geschlossenen Transportkreislauf, so daß von dem Detektor eine ständig steigende Aktivität als Maß für die Gesamtverschleißmenge im Öl registriert wird. Die Nachweisgrenze liegt mit etwa 10^{-6} g/h vor allem bei größerem Flächenabtrag, wie er im Lager zu erwarten ist, weit über der Empfindlichkeit des Differenzverfahrens. Da sich zudem am Lagerprüfstand sehr günstig in den vorhandenen Schmierkreislauf ein Detektor einbauen läßt, wurde für alle Lagerversuche das Durchflußverfahren angewandt.

2.2 Aktivierung der Lagerschalen mit Deuteronen

Bei früher durchgeführten Verschleißversuchen [28] an Motorengleitlagern wurden die Lagerschalen mit Neutronen aktiviert. Voraussetzung war eine indiumhaltige Laufschicht, in der das Meßisotop ^{114m}In erzeugt wurde. Dies hatte den Nachteil, daß ohne spezielle In-Zulegierung nicht viele handelsübliche Lager untersucht werden konnten. Außerdem zeigte das Indium ein starkes Diffussionsbestreben zum Blei, so daß eine exakte quantitative Messung schwierig war. Indium hat einen niedrigen Schmelzpunkt, der Versuche bei höheren Temperaturen stört. Aus diesen Gründen und den in 2.1 genannten grundsätzlichen Vorteilen der örtlichen Bestrahlung wurde von Beginn der vorliegenden Untersuchungen an angestrebt, die neuen Erkenntnisse über die Deuteronenaktivierung, die sich bereits bei Stahl [29] bewährt hatte, auch für die Lageraktivierung auszunutzen.

2.2.1 Im Lagermetall erzeugte radioaktive Isotope

Die Untersuchung zur Aktivierung umfaßt im wesentlichen die Bestrahlung von Folienpaketen (Foliendicke O,1 mm) aus den interessierenden Legierungsmetallen und anschließende γ -spektrometrische Messungen an den einzelnen Folienplättchen. Die Messungen wurden zunächst an einem Meßplatz mit NaJ-Kristall, zur genaueren Analyse dann mit einem Halbleiterdetektor durchgeführt. Dieser bietet eine wesentlich bessere Energieauflösung der γ -Strahlung. Aus den Folienversuchen erhält man die notwendigen Informationen zu den erzielten aktiven Isotopen und zu der Tiefenverteilung der einzelnen Aktivitäten.

Entsprechend den am häufigsten eingesetzten Lagern wurden die Legierungsmetalle Cu, Sn und Pb allein und in den Originallegierungen (Kap. 4.1) untersucht.

Abb.2 zeigt das Halbleiter- γ -Spektrum einer deuteronenaktivierten Bleiprobe, wobei die wichtigsten Fotopeaks gekennzeichnet sind. Nahezu alle

- 7 -

 γ -Linien stammen von den Wismut-Isotopen ²⁰⁶Bi und ²⁰⁵Bi, die durch die Umwandlung von Bleiatomen gebildet wurden. In Tabelle l sind die wesentlichen aktiven Isotope mit ihren Ursprungskernen und den γ -Linien zusammengefaßt, die bei der Deuteronenaktivierung von Blei, Kupfer und Zinn entstanden sind. Die Spektren von Zinn und Kupfer sind zur Ergänzung im Bildanhang, Abb.l A und 2 A, mitgeteilt.

Ausgangskerne	akt.Isotope	^T 1/2	mögliche Reaktionen	γ-Energien KeV
Blei: 204 _{Pb} 206 _{Pb}	205 _{Bi}	15,5d	(dn),(d3n)	260, 510 703, 988,
207 ^{Pb} , Pb,			a an	1766
	206 _{Bi}	6,24d	(d2n),(d3n)	184, 343,
				398, 497 516, 803,
				880
Kupfer:			an an Arran an Arra an Arra. An Arra an Arra an Arra an Arra an Arra	
⁶³ Cu, ⁶⁵ Cu	58 _{Co}	71 d	(nα3n), (dLin)	511, 813
and the second	⁵⁷ Co	270 d	(nα2n), (dLi2n)	122, 137
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	65 _{Zn}	245 d	(d2n)	511, 1115
Zinn: 114 $Sn-$ 120 Sn	120m _{Sb}	5,8 d	(dn),(d2n)	90, 1030, 1171
	111 _{In}	2,8 d	(dan)	173, 247

Tabelle 1: Die wichtigsten aktiven Isotope bei der Deuteronenbestrahlung von Blei, Kupfer und Zinn.

Der Vergleich der Messungen an den Einzelelementen wie auch die Bestrahlungsversuche mit Lagerlegierungen zeigten, daß die im Blei erzeugten Isotope 205 Bi und vor allem 206 Bi weitaus am häufigsten auftraten. Die Verschleißmessung stützt sich deshalb im wesentlichen auf die γ -Strahlung dieser Nuklide.

Zusammengefaßt ergab sich folgendes Ergebnis: Es ist mög-

lich, alle bleihaltigen Lagermaterialien - das sind fast alle handelsüblichen Lager - mit Deuteronen so zu aktivieren, daß Verschleißmessungen durchgeführt werden können. Die wesentlichen Isotope ²⁰⁵Bi und ²⁰⁶Bi erlauben aufgrund der relativ kurzen Halbwertszeiten von 6 bzw. 15 Tagen eine Versuchsdauer von ca. 4 Wochen.

Es ist vorteilhaft, die bestrahlten Lager nach der Aktivierung vor dem Versuch ca. 5 Tage ruhen zu lassen, damit die kurzlebigen Isotope abklingen.

2.2.2 Tiefenverteilung der Aktivität

Die Wahrscheinlichkeit der Wechselwirkung zwischen den Deuteronen und dem stabilen Ausgangsmaterial ist von der Energie des Teilchenstrahles abhängig. Da die Strahlenergie beim Eindringen in die Oberfläche eines Teiles von dem Anfangswert, der durch den Beschleuniger gegeben ist (50 MeV d in Karlsruhe), auf Null abgebremst wird, ergibt sich als Funktion der Eindringtiefe ein bestimmtes Profil der spezifischen Aktivität. Die Kenntnis dieser Tiefenverteilung ist für die optimale Aktivierung wichtig und für eine quantitativ genaue Messung notwendig. Die Verteilungsfunktion läßt sich experimentell durch Bestrahlung mit gestufter Energie oder, wie es in dieser Untersuchung durchgeführt wurde, durch Bestrahlung von Folienpaketen mit nachfolgender Aktivitätsmessung der Einzelfolien ermitteln [29] .

Das Ergebnis des Bleifolienversuches ist in Abb.3 aufgezeichnet. Die Aktivitätsmessung richtete sich dabei gezielt auf das am häufigsten auftretende Isotop ²⁰⁶Bi. Die Kurve zeigt bei einer Deuteronenenergie von ca. 30 MeV ein gestrecktes Maximum. Ziel bei der Aktivierung für die Verschleißversuche ist es, dieses Maximum, wie in Abb.3 schraffiert gekennzeichnet, in die Oberfläche des Verschleißteiles zu legen, um dort bei möglichst geringer Gesamtaktivität einen dünnen Bereich konstanter, hoher spezifischer Aktivität zu erzeugen.

s a second a second a second a second a second second a A second second second a secon Personal a second a s

- 9 -

d-Energie [MeV] 50 40 Eb 30 20 10 n 2 2,6 s[mm] norm. [1] spez. Aktivität $\Delta A/\Delta s$ Lageroberfläche 1,0 0,8 0,6 0,4 0,2 2 2,6 s[mm]

2.2.3 Bestrahlungstechnik

Die notwendige Bestrahlungszeit, um eine für die Verschleißmessung ausreichende Aktivität an 206 Bi in der Oberfläche zu erzielen, ist von dem Bleigehalt der Lagerlaufschicht, der bestrahlten Fläche, der zu erwartenden Abriebmenge und dem Ölvolumen des Meßkreislaufes abhängig. Für die Lager mit 87% Blei genügte eine Strahlzeit von ca. 2 min/cm² bei einer Strahlstromstärke von 2 μ A Deuteronen. Die Bleibronzeschalen mit 15 und 20% Pb wurden dem geringeren Bleigehalt entsprechend länger bestrahlt.

Die praktische Durchführung der Bestrahlung ist in Abb.4 verdeutlicht. Durch eine Stahlabdeckung bestimmter, experimentell ermittelter Dicke wird der Strahl vor dem Eindringen in

Abb.4 Bestrahlung einer kreiszylindrischen Lagerschale

die Lagerlauffläche soweit abgebremst, daß er die für die Aktivierung optimale Energie (Abb.3) erreicht. Die Lagerschale wird zusammen mit der Stahlabdeckung vor dem feststehenden Deuteronenstrahl so bewegt, daß dieser die Lauffläche in engen, parallelen Schritten überstreicht und damit eine gleichmäßige Oberflächenbelegung erzielt. Dazu wurde eine besondere Bestrahlungsvorrichtung [29]gebaut, die für die Aktivierung der Lagerlauffläche oder anderer Verschleißteile folgende Bewegungsabläufe mit einstellbarem Hub und Drehwinkel erzeugt:

Bewegung:	Zur Bestrahlung der Lauffläche:
Schraubenlinie	gesamte zylindrische Lauffläche
einfache Drehung	Umfangslinie des Lagers
Schwenkbewegung	Teil einer Umfangslinie
Hubbewegung	Axiallinie
Stufenlinie, Hub +	Teilfläche der Lagerbohrung
Schwenkbewegung	(Abb.4)

Bei der Aktivierung ist zu beachten, daß das bestrahlte Teil aufgeheizt wird, da nahezu die gesamte eingeleitete Strahlenergie beim Abbremsen in Wärme umgesetzt wird. Durch Gebläsekühlung und Begrenzung der Stromstärke auf maximal 2 μA wurde erreicht, daß die Lagerlauffläche keine zu hohen Temperaturen erreichte.

2.3 Aktivierung der Wellen

Die Laufflächen der Wellen wurden für die Verschleißmessungen ebenfalls am Zyklotron durch Deuteronenbestrahlung aktiviert. Bei der Wechselwirkung der Deuteronen mit dem Eisen entsteht dabei unter anderem hauptsächlich das Isotop 56 Co, das sich mit einer Halbwertszeit von 77,3 d und γ -Energien bei 511, 850, 1240 KeV gut für Verschleißmessungen eignet [29]. Die Tiefenverteilung der 56 Co-Aktivität in Eisen verläuft ähnlich wie die des 206 Bi in Blei. Die notwendige Bestrahlungsdauer beträgt ca. 10 min/cm², die Bestrahlung erfolgte wie die der Lager auf der beschriebenen Vorrichtung.

2.4 <u>Möglichkeiten der Verschleißmessung in Lagern aufgrund</u> der Deuteronenaktivierung

Die aktivierungstechnischen Untersuchungen ergaben, daß an Gleitlagern sowohl nach der Durchflußmeßmethode als auch nach dem Dünnschichtdifferenzverfahren Verschleißmessungen möglich sind. Außerdem können Ein- und Mehrkomponentenmessungen durchgeführt werden.

Dünnschichtdifferenzverfahren (DDV): Der Einsatz des DDV erfordert einen Dickenbereich, in dem die Gesamtaktivität linear mit der Eindringtiefe abfällt.

Abb.5 zeigt, daß bei der Bleiaktivierung ein solcher geeigneter Meßbereich entsteht, so daß bei richtiger Strahlenergie eine geeichte Abtragsmessung über etwa 300 µm von der Oberfläche möglich ist.

Das DDV ist als Ergänzung der Durchflußmessung vor allem dann interessant, wenn die Verschleißverteilung im Lager gemessen werden soll, um die Verschleißzonen am Umfang zu beurteilen.

Verschleiß an Welle und Schale: Die gleichzeitige Messung des Abriebs an Welle und Schale ist über eine γ-spektrometrische Trennung der Isotope ²⁰⁶Bi und ⁵⁶Co von Schale und Welle aufgrund unterschiedlicher γ -Energien möglich. ⁵⁶Co weist bei 1,24 MeV einen Fotopeak auf, während das bestrahlte Lagermaterial im Bereich zwischen 1 und 1,5 MeV eine Lücke zeigt. Das Wismut 206 dagegen strahlt bei 0,81 und 1,76 MeV in zwei Energiebereichen, wo von bestrahltem Eisen nur wenige Impulse ausgesandt werden. Abb.3 A zeigt die beiden γ -Spektren in direktem Vergleich mit den möglichen Energie-Auswahl-Fenstern für diese 2-Komponentenmessung.

Gleichzeitige Verschleißmessung in zwei Lagerzonen: Auch eine 2-Komponentenmessung an zwei Flächen in einem Lager (z.B. Stangen- und Deckelschale eines Pleuellagers) oder an zwei Lagern aus gleichem Material ist über eine gezielte Aktivierung mit Deuteronen möglich. Dazu müssen über die Energieauswahl die beiden Isotope ²⁰⁵Bi und ²⁰⁶Bi getrennt werden. Damit diese Trennung möglich wird, ist es notwendig, eine der interessierenden Flächen so lange nach der anderen mit Deuteronen zu aktivieren, daß das Aktivitätsverhältnis von 205 Bi zu 206 Bi sich an den beiden Teilen deutlich unterscheidet. Der erwünschte Unterschied wird aufgrund der unterschiedlichen Halbwertszeiten der beiden Isotope (6,7 und 15 d) umso größer, je länger der Zeitabstand zwischen dem Aktivieren angesetzt wird. Der Unterschied läßt sich außerdem durch die richtige Wahl der Abdeckung vergrößern. Abb.4Amacht dieses Verfahren deutlich. Durch Abklingzeit und gezielte Abdeckung (dicke, senkrechte Linie) ist das Aktiv-Verhältnis 206 Bi/ 205 Bi in der Oberfläche so stark verschieden, daß die beiden Komponenten eindeutig getrennt werden können.

Die Grundlagen zu diesen Meßmöglichkeiten wurden erst in neueren Versuchen erarbeitet, so daß diese Methoden im Rahmen der vorliegenden Lageruntersuchungen nicht mehr voll ausgenutzt werden konnten.

2.5 Verschleißmeßeinrichtung

2.5.1 Funktion und Aufbau des Meßkreislaufes

Das Durchflußmeßverfahren erfordert einen möglichst einfachen, umlaufenden Ölkreislauf als Transportweg für die Verschleißpartikel. Abb.6 zeigt die Elemente des Meßkreislaufes, der gleichzeitig Schmierkreislauf für das Prüflager ist. Aus dem Prüflager gelangen die radioaktiven Verschleißpartikel, unterstützt von einem zusätzlichen Ölstrom durch Spülbohrungen, auf kurzem Weg in einen Sammelbehälter, wo mit Heizung und Kühlung das Temperaturniveau des Ölkreislaufes geregelt wird. Eine Pumpe (ca. 5 1/min) fördert von dort den Ölstrom durch den Meßkopf und dann mit einstellbarem Druck als Schmieröl wieder in das Lager. In dem Meßkopf (Abb.7) umströmt das Öl einen NaJ-Detektor, von dem die radioaktiven Abriebteilchen nachgewiesen werden. Der Meßkopf wurde gegenüber früher verwendeten Ausführungen [28] neu gestaltet. Dabei war besonders auf einen glatten Durchfluß und eine günstige Geometrie für den Verschleiß-Nachweis zu achten. Das Öl wird von oben tangential in die Meßkammer eingeführt und erhält dadurch eine leichte Drallwirkung, die möglichen Ablagerungen entgegenwirkt und Totraum-

bildung verhindert.

Abb.6 Schematischer Aufbau des Durchflußmeßkreislaufes mit Elektronik

Eine Entlüftungsbohrung an der höchsten Stelle verhindert Luftstau. Der Detektor wird durch einen dünnen Wassermantel vor der Öltemperatur geschützt. Der Meßkopf mit dem Detektor ist von ca. 10 cm Blei umgeben, um die Raumstrahlung der Atmosphäre und des eingebauten Verschleißteiles abzuschirmen. Der Ölinhalt des Meßkopfes beträgt ca. 0,7 1, der Gesamtkreislauf enthielt in den Versuchen 2 1 Öl.

Abb.7 Durchflußmeßkopf mit Bleiabschirmung

2.5.2 Detektor, Elektronik und Datenausgabe

Als Detektor wurde ein 3"x3" NaJ-Kristall mit Photo-Multiplier [30] verwendet. Die von dieser Meßeinheit als Reaktion auf einfallende γ-Quanten weitergegebenen, energieproportionalen Spannungsimpulse werden in der angeschlossenen Elektronik (Abb.6) analysiert und gezählt. Mit dem Einkanalanalysator läßt sich aus dem gesamten Spektrum der gewünschte Energiebereich herausgreifen, so daß nur die Impulse in dem eingestellten Fenster gezählt werden. Die Datenausgabe erfolgt je nach Versuchsprogramm analog oder digital. Das Ratemeter setzt die Impulshäufigkeit in ein Analogmaß um und gibt dieses Maß an den Schreiber weiter. Die genaue Impulsrate wird von einem schnellen Zähler erfaßt, der nach einer einstellbaren Zählzeit die aufsummierte Impulszahl auf dem Drucker ausschreiben läßt.

2.5.3 Eichung des Meßkopfes

Die Meßelektronik liefert über die Ausgabegeräte eine Impulsrate als Maß für die Verschleißmenge im Öl. Um den Zusammenhang zwischen dieser Zählrate und dem Abrieb in mg zu erhalten, ist eine einmalige Eichung des Meßkopfes notwendig. Da die Ansprechwahrscheinlichkeit der Meßanordnung aufgrund von Absorption und Rückstreueffekten von der Energie der γ -Strahlung sowie der Lage des aktiven Materials zum Detektor abhängt, muß die Eichung für alle bei der Verschleißmessung interessierenden Radionuklide mit den entsprechenden γ -Energien durchgeführt werden.

Dazu wurden Proben des Lagermaterials (Kap.6) mit bekanntem Gewicht und bekannter spezifischer Aktivität chemisch aufgelöst [31]. Als Maß für die spezifische Aktivität dient die gewichtsbezogene Zählrate der Probe, gemessen in fester Geometrie in dem Probenhalter der Meßkopfabschirmung (Abb.7). Die Eichlösung wurde nun in den Meßkopf gefüllt und in dem gleichen Energiebereich wie bei der festen Probe die Impulsrate gemessen. Dieser Versuch ergibt die gesuchte Beziehung zwischen der gemessenen Zählrate und der radioaktiven Verschleißmenge im Öl unter Einbezug der spezifischen Zählrate des Abriebstoffes. Faßt man die gefundenen Bezugsgrößen in einem Eichfaktor K zusammen, so errechnet sich der Gesamtabrieb in einem Versuch als

 $G = K \cdot G_p / Z_p \cdot V_{ii} \cdot Z e^{\lambda t}$

Darin sind:

Eichfaktor K: <u>spez.Zählrate der festen Eichprobe</u> spez.Zählrate der Eichlösung·V_{Eichl}.

 Z_p/G_p : spez.Zählrate der festen Vergleichsprobe zum Versuchszeitpunkt, gemessen im Probenhalter

V₀₁: Gesamtölvolumen des Kreislaufes

Z: Meßzählrate des Versuchsöles

e^{λt}: Korrekturfaktor für die Halbwertszeit, falls sie klein ist gegenüber der Zeit zwischen Probenmessung und Versuchszeitpunkt

Der Eichfaktor K ergab sich in dem betrachteten Integrationsbereich für die bleihaltigen Lagermaterialien als

$$K = 0,9 \ 1/L$$

- 17 -

2.6 Zur Durchführung der Verschleißmessung

Integrationsbereich: Entsprechend der γ -Energieverteilung des aktiven Lagermaterials und mit dem Ziel, eine möglichst hohe Impulsausbeute zu erzielen, wurden in den Messungen alle Impulse über 450 KeV integriert. Die Lage dieses Meßbereiches in dem NaJ- γ -Spektrum zeigt Abb.8.

Abb.8 Integrationsbereich im γ -Spektrum einer d-aktivierten Bleibronze

Die wesentlichsten Peaks des Wismut 206 sind in den Integrationsbereich einbezogen.

Zählzeiten: Die Zählzeiten wurden der auftretenden Verschleißmenge und vor allem dem Versuchsablauf angepaßt. In den kurzen Versuchen zur Ermittlung des Verschleißanstiegspunktes wurde je 1 oder 2 min gezählt, in den übrigen Versuchen mit länger konstanten Betriebspunkten genügte die Zählzeit von meist 4 min für die gewünschte Auflösung. Zur Beobachtung kurzzeitiger Änderungen wurde immer gleichzeitig der Analogschreiber eingesetzt.

Korrektur der Halbwertszeit: Die Eichformel (Kap. 2.5.3) wurde jeweils für den Versuchsbeginn ermittelt. Die Aktivitätsabnahme innerhalb der Versuchszeit von je 10 h beträgt maximal bis 10% und konnte deshalb nicht vernachlässigt werden. Sie wurde durch den zeitabhängigen Korrekturfaktor e $^{\lambda t}$ berücksichtigt.

Ölwechsel: Die eingefüllte Ölmenge muß genau abgemessen sein, um Fehler in der Verschleißbestimmung zu vermeiden. Die Zeitpunkte des Ölwechsels richten sich nach dem Versuchsprogramm und nach der Höhe der Verschleißteilchenkonzentration im Öl. Unabhängig vom Laufprogramm muß das Öl dann gewechselt werden, wenn die Zählrate eine Höhe erreicht, bei der die statistischen Schwankungen die erwünschte Empfindlichkeit der Messung stören.

Strahlenschutz: Die Gesamtaktivität der Versuchslager ist aufgrund der Oberflächenaktivierung mit Deuteronen so gering, daß eine bestimmte Zeit lang eine Montage allein mit Handschuhen ohne Fernwerkzeug möglich ist. Nach der Montage erlaubt die auftretende Strahlendosis ohne weiteres einen längeren Aufenthalt in Prüfstandsnähe.

2.7 Genauigkeit und mögliche Störeinflüsse

Es ist schwierig, die Genauigkeit der Absolutwerte der Messungen exakt anzugeben.

Bei der Bildung der Eichlösung ist zunächst ein Fehler von ca. 2 – 3% möglich, der alle Verschleißwerte verschiebt, somit allerdings für die Vergleichsaussagen, die meist das Ziel sind, keine Bedeutung hat.

Unter Einbezug der nachfolgenden Einflüsse kann der Meßfehler der Lagerverschleißversuche mit ca. 5 ÷ 8% angegeben werden. Die wichtigsten Störquellen bei der Verschleißmessung, deren Einfluß in jedem Versuch wechseln kann, sind im folgenden genannt. Es wird deutlich, daß durch gezielte Maßnahmen in der Versuchsdurchführung der Einfluß klein gehalten wurde.

Ungleichmäßige Aktivierung: Strahlstromänderungen am Zyklotron können zu einer ungleichen Verteilung der Aktivität auf der Verschleißfläche führen, die durch die Probe nicht erfaßt wird. Die Anordnung von mehreren Proben in verschiedenen Lagen bei der Bestrahlung ermöglicht eine Kontrolle und Mittelung der Aktivitätsschwankungen. Ölwechsel: Geringe Ölreste im Leitungssystem des Meßkreislaufes verändern die Ölfüllung und damit das Bezugsvolumen für die Verschleißberechnung. Genaues Auslitern der Ölmengen beim Einfüllen und Ablassen reduziert mögliche Fehler.

Verschleißablagerungen: Es besteht die Gefahr, daß ein Teil der abgeriebenen Verschleißpartikel sich im Kreislauf absetzt und vom Detektor nicht erfaßt wird. In Blindversuchen mit verschleißhaltigem Öl ohne radioaktives Lager wurde über die Zählrate festgestellt, daß im Prüflagerkreislauf auch bei längerer Versuchsdauer und verschiedenen Öltemperaturen keine Absetzungen auftreten. Dieses Ergebnis entspricht den Erfahrungen, die in zahlreichen Motorversuchen gemacht wurden, daß die Verschleißteilchen von einem Motorölstrom gut vermischt schwimmend gehalten wurden.

Diffusion: Diffusionsvorgänge können die nach der Bestrahlung zunächst gleichmäßige Verteilung der aktiven Wismutkerne in der Lagerlaufschicht verändern. Damit würde die mitbestrahlte Probe kein exaktes Maß mehr für die spezifische Zählrate des abgeriebenen Verschleißmaterials geben und ein Fehler in der Verschleißbestimmung auftreten. Für die Beurteilung dieser Störquelle wurde der Diffusionskoeffizient von Wismut in Blei herangezogen. Er beträgt ca.0,58 $\frac{cm^2}{s}$ bei 50°C. Daraus folgt, daß die Diffusionsbewegungen sehr langsam sind gegenüber den Verschleißvorgängen und der Dauer des Versuches. Die qualitativen Aussagen der Versuche wurden damit nicht beeinflußt, die Absolutverschleißmengen können nur einen sehr kleinen Fehler aufweisen.

Materialübertrag: Bei der Durchflußmessung nicht erfaßt wurde der Lagerabrieb, der sich an der Welle festsetzt. Eine Kontrolle dieses Materialübertrages kann erst nach der Demontage am Versuchsende durch Aktivitätsmessungen an der Welle erfolgen. Diese Messungen ergaben, daß in den vorliegenden Versuchen der Materialübertrag von der Lagerschale auf die Welle sehr klein (<1%) ist gegenüber dem Gesamtabrieb im Lager. Eine nähere Untersuchung dieses Problems wurde nicht durchgeführt.

3. LAGERPRÜFSTAND

Der Lagerprüfstand entstand aus einer Weiterentwicklung der Prüfmaschine, die bereits von Carl [15] für Lagerversuche eingesetzt war. Das Prinzip wurde im wesentlichen übernommen, der konstruktive Aufbau aber geändert und erweitert, um die Anlage den besonderen Erfordernissen der Verschleißversuche anzupassen. Die Forderungen waren vor allem folgende:

Hohe Antriebsleistung für einen sicheren Betrieb bei großen Exzentrizitäten,

gute Steifigkeit des Aufbaus beim Betrieb mit hohen Lasten, Exakte Ausrichtmöglichkeit Welle – Lager, schnelle, leichte Montage der radioaktiven Prüflager, leichte Reinigung bei Kontamination.

3.1 Leistungsdaten und wichtige Abmessungen

stat. Last: Hydraulikeinheit, max. Lagerlast ca. 5000 kp Sinuslast: Elektromagnetisch erregtes Feder-Masse-System, Erregung über Frequenzgenerator. Maximale Amplitude: ca. 3000 kp.

Abmessungen: Wellendurchmesser 65,00 mm, Stützlager $B/D = 0,4 \div 0,5; \quad \Psi = 2\%;$ Prüflager $B/D = 0,4; \quad \Psi = 2\%$

3.2 Konstruktiver Aufbau

Abb.9 und Abb.10 zeigen den Prüfstand in Quer- und Längsschnitt.

ი - -

Abb.9 Querschnitt-Zeichnung des Lagerprüfstandes

Abb.10 Längsschnitt durch den Lagerprüfstand

Die Welle ist in zwei Stützlagern gehalten, die in einem starren Gehäuse sitzen. Zwischen den Stützlagern befindet sich das Prüflager, dessen Aufnahme mit vier Federdrähten axial im Gehäuse verspannt ist. Die Prüflagernabe bleibt dadurch radial beweglich, so daß von außen Kräfte eingeleitet werden können. Der Prüflagerträger ist als Steckeinheit so ausgelegt, daß eine schnelle Montage möglich ist. Auf beiden Seiten des Prüflagers sind ein Dicht- und Meßflansch mit je zwei kapazitiven Abstandsgebern montiert, die die Verlagerung der Welle gegenüber dem Lager aufnehmen. Mit dieser Einrichtung ist es auch möglich, das Lager gegenüber der Welle bei der Montage achsparallel auszurichten. Das Prüflager wird von oben durch einen Hydraulikzylinder statisch belastet, der Lastangriff erfolgt über Kugelgelenke in der Lagermittelebene. Der statischen Last kann durch den elektrodynamischen Schwingungserreger von unten eine sinusförmig wechselnde Kraft überlagert werden. Die seitlichen "Eichzylinder" dienen dazu, das Lager von der Seite gegen die Welle zu drücken, um die seitliche Spielkreisbegrenzung zu ermitteln.

Lagerprüfstand

Hydr**a**ulik und Meßkopf

Abb.ll Blick auf Teile der Versuchsanlage
Zur Versorgung des Prüfstandes sind drei voneinander unabhängige Ölkreisläufe installiert. Der Meßkreislauf (Kap.2.5) ist gleichzeitig Schmierkreislauf für das Prüflager. Das Öl wird durch zwei horizontale Bohrungen 6 Ø in der Lagermittelebene in den Schmierspalt gedrückt (Abb.12). Die Stützlager werden aus einer getrennten Ölversorgung geschmiert, deren Temperaturniveau durch Heizung und Kühlung einstellbar ist. Der Schmieröleingangsdruck in die Lager betrug im allgemeinen 2 atü. Die Hydraulikeinheit versorgt den statischen Belastungszylinder mit Drucköl. Der Druck ist – von einem Meßpult fernbedient – von O bis ca. 60 kp/cm² einstellbar. Von der Belastungsdruckpumpe läßt sich über einen Umschalter ein fest eingestellter Eichdruck auf die seitlichen Eichzylinder aufgeben. Das ermöglicht eine schnelle Messung des Lager-Warmspiels zwischen den Versuchen.

3.4 <u>Messungen außer der Verschleißmessung</u>

3.4.1 Kraft- und Verlagerungsmessung

Die Größe der statischen Kraft wird über den Druck in den Belastungszylindern ermittelt. Die Messung der dynamischen Last erfolgt durch Dehnmeßstreifen an den Federplatten des Krafterregers.

Die Zapfenverlagerung im Lager wird in zwei Ebenen seitlich des Lagers durch je zwei kapazitive Abstandsgeber gemessen. Die Geräte geben eine über einen Bereich von 1 mm lineare Abstandsanzeige mit einer Genauigkeit von 1 μ m. Bei dynamischer Verlagerung läßt sich direkt ein X-Y-Oszillograph anschließen, um die Bewegungsbahn sichtbar zu machen.

3.4.2 Messung der Öl- und Lagertemperatur

Die Öleingangstemperatur T_E , die Ausgangstemperatur T_A^* und die Lagertemperatur werden mit Fe-K-Thermoelementen gemessen, die Meßwertanzeige erfolgt auf einem Kompensograph. Die Position der Meßstellen am Lager ist in Abb.12 eingetragen. Die gemessene Ölausgangstemperatur T_A^* entspricht nicht der echten Temperatur am Lagerausgang, da das aus dem Lager fließende Öl stark mit dem Öl vermischt wird, das durch Kurzschluß-Spülbohrungen im Lagerkörper fließt. Diese Spülbohrungen sorgen dafür, daß die Verschleißpartikel schneller zum Meßkopf transportiert werden. Der Öldurchsatz ändert sich dadurch in der Form von Abb.6A. Die echte Ölausgangstemperatur liegt, wie Vergleichsmessungen ohne Spülbohrungen gezeigt haben, sehr nahe bei der gemessenen Lagertemperatur T_L. Die Temperaturverläufe mit und ohne Spülbohrung wurden im interessierenden Drehzahlbereich gemessen und zum Vergleich in Abb.7 A aufgezeichnet. Wichtig ist dabei die Übereinstimmung von T_L (mit Spülbohrung) und T_A (ohne Spülbohrung).

Die Temperaturerhöhung des Schmieröls wurde außerdem rechnerisch ermittelt und in Abb.7 A mit eingetragen. Die Rechnung erfolgte über einen Erwärmungsfaktor $\bigoplus_{pu}^{"}$, (Abb.8 A) den Huber [19,20] aus den Reibverlustgleichungen von Vogelpohl für das statisch belastete, umlaufgeschmierte Lager abgeleitet hat. Die theoretischen Ölausgangstemperaturen entsprechen gut den gemessenen Werten T_A (ohne Spülbohrung) und der Lagertemperatur T_L.

Abb.12 Temperaturmeßstellen am Lager

- 26 -

4. VERSCHLEISSBEGINN ALS KRI-TERIUM FÜR DEN ÜBERGANG IN DAS MISCHREIBUNGSGEBIET UND ZU-LÄSSIGE SCHMIERSPALTDICKE

Das Reibungsverhalten dient in den meisten experimentellen Lageruntersuchungen als Beurteilungsgröße für den Schmierzustand des Lagers. Für die untere Betriebsgrenze eines Lagers wurde entweder das Minimum (M) des Reibungskoeffizienten [1] als charakteristisch angesehen oder der Punkt Ü, in dem die Reibungskurve sich von der Kurve für reine Flüssigkeitsreibung abhebt und die ersten Festkörperberührungen auftreten [34,35]. Auf diese Punkte wurde dann auch die zulässige kleinste Schmierspaltgröße bezogen. In Abb.13 ist der charakteristische Verlauf des Reibungskoeffizienten aufgezeichnet, um diese Punkte deutlich zu machen.

Abb.13 Charakteristische Reibungsbereiche und Übergangspunkte im Stribeckdiagramm

Mit dem Beginn der Mischreibung bei Ü tritt auch aufgrund der Festkörperberührung Verschleiß auf, somit entspricht diese Grenze dem Verschleißübergangspunkt, der in der vorliegenden Arbeit als Kriterium für die Grenze des sicheren Lagerbetriebs angenommen wird. Für diesen Punkt wird auch die Schmierspaltgröße berechnet und dieser Wert als Übergangsschmierspaltgröße (h_Ü, h_{min}) oder als zulässige Schmierspaltgröße (h_{zul}) definiert.

Abb.13 macht deutlich, daß der Punkt des Verschleißbeginns (Ü) nicht mit dem Reibungsminimum übereinstimmt.

4.1 <u>Experimentelle Ermittlung des Übergangspunktes in das</u> <u>Verschleißgebiet</u>

4.1.1 Versuchsablauf

Es gibt verschiedene Möglichkeiten, über die Änderung der Drehzahl, Last oder Viskosität eine Annäherung der Welle an die Schale im Lagerbetrieb zu erreichen.

Versuchstechnisch erwies es sich am günstigsten, bei konstanter Drehzahl durch Laststeigerung den Übergang in das Verschleißgebiet zu erzwingen. Dabei sind die Temperaturanstiege geringer als bei Drehzahlveränderung, so daß die Annahme einer mittleren Viskosität für die Schmierspaltberechnung aus den gemessenen Temperaturen sicherer ist.

Abb.14 zeigt das Lastprogramm und das Meßergebnis eines Versuches zur Ermittlung der Übergangslast. Daraus wird der Versuchsablauf deutlich. Die Last wird in engen Stufen von je 6 min Dauer bei konstanter Drehzahl soweit erhöht, bis die gemessene Gesamtverschleißmenge, d.h. die Konzentration der radioaktiven Verschleißpartikel im Öl, einen gegenüber der statistischen Streuung der Meßpunkte (ΔI) sich deutlich abhebenden Anstieg (ca. 3 x ΔI) zeigt. Damit ist der Betriebsbereich des Verschleißüberganges (zwischen 70 und 80 kp/cm²) gefunden.

Abb.14 Belastungsversuch zur Bestimmung des Verschleißübergangs

4.1.2 Auswertverfahren zur Ermittlung des Übergangspunktes

Aus dem zeitlichen Verlauf der Gesamtverschleißmenge als direktes Meßergebnis (Abb.14) läßt sich nun nach verschiedenen Möglichkeiten ein Übergangslastpunkt \bar{p}_{ij} im Anstiegsbereich des Verschleißes ermitteln. Es muß ein Auswert- oder Interpolationsverfahren festgelegt werden, das den Übergangspunkt \bar{p}_{ij} im engeren Sinne definiert. Die Lage von \bar{p}_{ij} zwischen den versuchstechnisch bedingten Laststufen soll dabei berücksichtigen, daß bei einem mehr oder weniger steilen Verschleißanstieg die Übergangslast näher bei der letzten verschleißfreien Laststufe oder näher bei der Last liegt, die den ersten Abrieb erzeugt hat.

In den vorliegenden Untersuchungen wurden zwei Ermittlungsverfahren eingesetzt, die diese Forderung erfüllen und bei einfacher Auswerttechnik einen eindeutigen Übergangspunkt ergeben: das Tangentenverfahren und die Grenzverschleißmethode. Bei beiden Wegen wird zunächst aus der Gesamtverschleißkurve (Abb.14) der Verlauf der mittleren Verschleißrate pro Lastschritt als Funktion der Last (Abb.15) abgeleitet, da damit eine Interpolation zu Lastzwischenwerten möglich ist, und weil die Differentiation eine feinere Auflösung des Verschleißverlaufes ergibt.

Abb.15 Bestimmung der Übergangslast aus dem Verlauf der Verschleißrate

Tangentenverfahren (Abb.15): An den anlaufenden und den ansteigenden Ast der Verschleißratenkurve werden die Tangenten gelegt, der Schnittpunkt dieser Tangenten wird als Übergangspunkt mit dem Lastwert \overline{p}_{ij} definiert. Auf diese Weise wurden die Übergangspunkte in den ersten Versuchen einschließlich den Materialuntersuchungen bestimmt. Dabei zeigten sich aber zwei Nachteile des Verfahrens:

- Bei einigen Kurven ist es schwierig, an den gekrümmten ansteigenden Ast eine eindeutige Tangente zu legen.
- 2. Für das Anlegen der Tangente ist eine bestimmte Größe des ansteigenden Astes notwendig; das bedeutet, daß in dem Versuch unter Umständen eine höhere Verschleißmenge erzeugt werden muß als dies für die Anzeige des Übergangs notwendig wäre.

In den übrigen Versuchen wurden diese Nachteile durch ein anderes Übergangskriterium umgangen. Grenzverschleißmethode: Der Übergangspunkt \overline{p}_{ij} ist als die Last definiert, bei der die mittlere Verschleißrate im Last-Intervall eine festgelegte Grenze von 90 µg/h überschreitet. Diese Übergangsgrenze (Abb.15) ist aufgrund der gemessenen Verschleißwerte in allen Versuchen festgelegt worden. Dabei wird die Bedingung erfüllt, daß durch diese Verschleißgrenze die Lagerlauffläche noch sehr wenig verändert wird, der Übergang aber eindeutig angezeigt ist.

Die Unterschiede, die sich durch die beiden Auswertungsverfahren für \overline{p}_{ij} ergeben, sind in den meisten Fällen sehr klein (Abb.15), so daß die Aussagen von der Wahl des Verfahrens nicht wesentlich beeinflußt werden.

4.1.3 Möglichkeit zur mathematisch-statistischen Analyse des

gemessenen Verschleißverlaufs

Beide genannten Auswertverfahren erfordern, daß die statistisch um einen Mittelwert streuenden Meßpunkte (Abb.l4) durch eine vom subjektiven Urteil des Bearbeiters abhängige mittlere Kurve verbunden werden. Es wurde daher ein Weg überlegt, um mit Hilfe mathematisch-statistischer Methoden eine objektive Analyse der Meßergebnisse durchzuführen.

Die Verteilung der statistisch streuenden Meßwerte v (Abb.l4) - Verschleißmaß in Impulse/Zeit - folgt bei jedem Verschleißniveau der Poisson-Funktion

$$\mathcal{G}(\mathbf{v}) = \mathbf{P}(\lambda, \mathbf{v}) = \frac{\lambda^{\mathbf{v}}}{\mathbf{v}!} e^{-\lambda}$$

mit λ als Mittelwert und v als Meßwert der Impulsrate. Gesucht ist die analytische Funktion V (t) der unbekannten Mittelwerte λ als Verlauf für den Gesamtverschleiß. Für diese Funktion wird ein Exponentialansatz gemacht.

$$V = A \cdot e^{\alpha t}$$
 $\alpha, A zu bestimmen.$

Die Exponentialform wurde deswegen gewählt, weil die Original-

.- 31 -

kurve (Abb.14) und die Verschleißratenkurve (Abb.15) als 1.Ableitung in ihrem Verlauf ähnlich sind.

Die Bestimmung der Koeffizienten α und A erfolgt nun über eine Anpassung der Funktion an die statistisch streuenden Meßwerte. Eine mathematische Möglichkeit dazu bietet die Statistik über die Maximalisierung der Likelihood-Funktion[37].

$$L = \frac{\prod_{i=1}^{i=n} \frac{\alpha t_i}{1}}{v_i} e \times p (-A \cdot e^{\alpha t_i})$$

v.

L gibt die Wahrscheinlichkeit an, daß die Ordinaten-Abstände der Meßpunkte v_i von der angesetzten Exponential-Mittelwertkurve die geforderte Poissonverteilung aufweisen. Aus der Maximumbildung

$$\frac{dL}{dA} = 0$$
 und $\frac{dL}{d\alpha} = 0$

lassen sich die gesuchten Größen α und A berechnen. Damit ist die Funktion V des Gesamtverschleißverlaufes gefunden. Differentiation ergibt den Verlauf der Verschleißrate, und aus dieser kann nun nach den genannten Kriterien, z.B. dem Grenzverschleißkriterium, der Verschleißübergangspunkt bestimmt werden.

Die Rechnung und das Kriterium lassen sich über ein Programm auf einen Rechner geben, so daß durch Eingabe der gemessenen Impulswerte direkt die Übergangslast ermittelt werden kann.

Das beschriebene mathematische Auswertverfahren wurde in den vorliegenden Untersuchungen aber noch nicht eingesetzt, da der Gewinn an Genauigkeit und Objektivität im Verhältnis zum erhöhten Aufwand zu gering erschien.

4.2 Berechnung und Messung der Schmierspaltdicke h_{min ü} für den Übergangspunkt $\overline{p}_{\ddot{u}}$

4.2.1 Rechenverfahren

Die Verlagerungswerte für das Versuchslager mit B/D = 0,4sind bis $\xi = 0,95$ aus den Ergebnissen von Sassenfeld-Walther [5] durch Interpolation gewonnen, für größere Exzentrizitäten wurde nach dem Rechenverfahren Schaffrath [13] gerechnet, das in programmierter Form für die Berechnung von Lagern beliebiger Geometrie mit beliebigem Lastverlauf vorliegt. Bis $\epsilon = 0,97$ wurden noch Werte von Pinkus-Sternlicht [4] zum Vergleich hinzugezogen. Das so ermittelte und für die Auswertungen in dieser Arbeit zugrundegelegte Diagramm S₀ = F (ϵ) ist in Abb.5 A aufgetragen.

4.2.2 Viskosität

Entscheidend für die Bestimmung der Schmierspaltgröße zu einem Betriebspunkt ist die Wahl der mittleren Viskosität γ_m . Es wurde zunächst mit folgendem Mittelwert gerechnet.

$$\gamma_{\rm m} = \frac{\gamma_{\rm E} + \gamma_{\rm L}}{2}$$

mit \mathcal{P}_{E} = Viskosität des Öles bei Eingangstemperatur \mathcal{P}_{L} = Viskosität des Öles bei Lagertemperatur, die im gegebenen Fall sehr gut mit \mathcal{P}_{A} übereinstimmt (Kap. 3.4.2 und Abb.7 A).

 $\mathcal{M}_{\rm A} \approx \mathcal{M}_{\rm L}$ = Viskosität des Öles bei Ausgangstemperatur, gemessen und berechnet.

Dieser Mittelwert \mathscr{N}_{m} ergab die beste Übereinstimmung zwischen gerechnter und gemessener Verlagerung bei Drehzahlen bis 1000 U/min und \mathcal{E} -Werten $\leq 0,95$ (Abb.16). Die Verschleißversuche zeigten, daß diese Annahme in dem genannten Betriebsbereich berechtigt war (Kap. 7.6). Bei größeren Exzentrizitäten und höheren Drehzahlen ist eine Annäherung der zugrundegelegten Viskosität an die Viskosität bei Ausgangstemperatur notwendig (Kap.8).

Abb.16 Gerechnete und gemessene Zapfenexzentrizität

4.2.3 Messung der Schmierspaltdicke

Die Messung der Schmierspaltgröße über die kapazitiven Abstandsgeber außerhalb des Lagers ließ sich bis zu \in ca. 0,95 mit ausreichender Genauigkeit (Abb.16) durchführen. Dies entspricht einer h_{min}-Größe bis 3,25 µm. Bei höheren Exzentrizitäten von \in = 0,95 bis \in = 0,99 (h_{min}: 3,25 ÷ 0,7) unter hohen Lasten war die Meßunsicherheit aufgrund der Bezugspunktverschiebung und der Gerätegenauigkeit (± 1 µm) so groß, daß eine Absolutaussage zur Schmierspaltgröße nicht mehr zulässig erschien. In diesem Bereich stützen sich die Schmierspaltaussagen ausschließlich auf theoretische Werte von h_{min}.

Für die Frage nach der zulässigen Schmierspaltgröße und Belastbarkeit ist der theoretische Wert aber ohnehin deshalb wichtiger, da h_{zul} bei der Lagerauslegung wieder der hydrodynamischen Rechnung zugrunde gelegt wird. Entscheidend sind dabei Kenntnisse zur Bedeutung des h_{zul} als Beurteilungsgröße für die Lagerbetriebssicherheit und Daten über den Einfluß der schwierig zu erfassenden Betriebsparameter η_m und ψ , die ebenso wie h_{zul} der Rechnung zugrunde gelegt werden müssen.

4.2.4 Lagerspiel

Das rel. Kaltspiel aller Lager betrug $\Psi = 2\%$, die Absolutgröße 130 µm. Die gemessene Änderung des Spiels durch die Erwärmung im Betrieb betrug maximal 10 µm, wobei sich das Spiel um dieses Maß verkleinerte. Der Relativwert Ψ sank dadurch auf minimal $\Psi = 1,85\%$. Aufgrund dieser geringen Änderung wurde für alle Berechnungen $\Psi = 2\%$ eingesetzt, so daß die mitgeteilten Werte für h_{zul} und So_{zul} auf der sicheren Seite liegen.

5. VERSCHLEISSVERHALTEN DER LAGER BEIM EINLAUF UNTER STATISCHER LAST

Die ersten Versuchsläufe auf dem Prüfstand dienten dazu, das Meßverfahren – Durchflußmessung mit Deuteronenaktivierung – zu erproben und zunächst grundsätzlich Information zu erhalten über Verschleißmengen und Verschleißverlauf eines Lagers unter hoher statischer Last.

Wenn man Belastungsversuche bis in den Verschleißbereich (Abb.14) an demselben Lager wiederholt durchführt, so wird deutlich, daß der Übergangspunkt \overline{p}_{ij} bei einem neuen Lager keinesfalls ein Festpunkt ist, sondern sich zu höheren Werten verschiebt. Das Versuchsergebnis Abb.17 gibt diesen Vorgang zu erkennen.

Abb.17 Verschiebung des Verschleißanstiegspunktes bei wiederholter Laststeigerung

In vier nacheinanderfolgenden Versuchen (1. bis 4.) wurde die Last jeweils von O bis über den Verschleißanstieg gesteigert. Die Übergangslast verschiebt sich von zunächst $\overline{p}_{ii1} = 33 \text{ kp/cm}^2$ auf $\overline{p}_{ii4} = 88 \text{ kp/cm}^2$ im vierten Versuch. Der Einlaufvorgang war damit, wie die weiteren Versuche zeigten, aber noch nicht abgeschlossen. Das Ende des Einlaufes kündigt sich dadurch an, daß keine Verschiebung des Übergangspunktes mehr eintritt. Die maximal erreichbare Endlast erzeugt dann jeweils einen Dauerverschleiß, oder das Lager neigt zum Fressen und läuft fest. Die Laufflächen sind soweit angepaßt und geglättet, daß eine geringe Lasterhöhung im Übergangsbereich eine größere metallische Berührfläche erzeugt, so daß es zu einer örtlichen Erhitzung und zum Zusammenbruch der Schmierfilmtragfähigkeit kommt. Endwerte von \overline{p}_{ii} ergaben sich im Bereich von 200 + 240 kp/cm² (Kap. 7).

Wird in dem Lastbereich über \overline{p}_{ij} die Last nicht jeweils auf O zurückgestellt (Abb.17), sondern schrittweise langsam erhöht, so erhält man als Meßergebnis eine Verschleißstufenkurve wie in Abb.18, in der der Gesamtverschleiß über der Versuchszeit mit dem Lastprogramm aufgezeichnet ist.

- 36 -

- 37 -[µg] Gesamtverschleiß 200 150 100 50 50 60 Welle: nitr. Lager: P15 TE: 52 °C 60 80 [min]

Abb.18 Verschleißverlauf bei stufenweiser Lasterhöhung im Mischreibungsgebiet

90

n = 300 U/min

85

80

Last p [kp/cm²]

Am Beginn jeder neuen Laststufe zeigt sich ein kurzer Einlaufverschleiß, dann geht die Kurve in die Waagrechte über, d.h. es wird kein weiteres Material abgerieben. Die Lageroberfläche ist für den neuen Betriebspunkt eingelaufen. Die Abtragsmenge pro Laststufe und die Steilheit des Anstiegs charakterisieren den Verlauf dieses Einlaufvorganges. Der Verschleißabtrag in Abb.18 ist für den Lagerbetrieb unkritisch und führt im wesentlichen zu einer Glättung der Oberflächen, wie die Untersuchungen in Kap.7 zeigen. Bei zu großen Laststufen kann der kurzzeitige Betrieb im Mischreibungsgebiet auch im Einlauf zu einer starken örtlichen Erhitzung in den Berührzonen und einem Schaden im Lager führen. Dies betrifft vor allem Lagerschalen aus harten Bronzewerkstoffen. 6. EINFLUSS VERSCHIEDENER MATERIAL-PAARUNGEN WELLE-SCHALE AUF DAS VERSCHLEISSVERHALTEN

Bei der Auslegung eines Lagers stellt die Wahl der richtigen [®]Materialpartner Welle-Schale ein Problem dar, das nur schwer von der Rechnung zu erfassen ist. Die Forderungen an den Werkstoff sind sehr oft widersprüchlich. So verlangt der rein hydrodynamische Bereich, insbesondere bei dynamisch belasteten Lagern, hohe Festigkeit der Laufschicht, während das An- und Auslaufen der Maschinen gleichzeitig gute Notlaufeigenschaften, d.h. wenig Verschleiß im Mischreibungsgebiet, erfordert. Außerdem ist es ein wirtschaftliches Problem, welche Paarung gewählt wird, um noch ausreichende Sicherheit zu gewähren. Die Versuche in diesem Abschnitt sollten Information zum Verschleißverhalten verschiedener, im Motoren- und Turbinenbau häufig verwendeter Lager- und Wellenmaterialien bringen, die bei der Entscheidung für die Werkstoffpaarung helfen können.

6.1 <u>Versuchsteile und Versuchsprogramm</u>

Zwölf Werkstoffkombinationen Welle-Schale wurden nach einem ganz bestimmten Programm auf dem Prüfstand untersucht. Vier verschiedene Wellen liefen in je drei Lagerschalen aus unterschiedlichem Material.

```
Wellen: Oberfläche geschliffen und poliert; max. Rauhigkeit
ca. R_t = 0,5 \ \mu\text{m}; D = 65 mm.
a. einsatzgehärteter Stahl CK 10
Oberflächenhärte HV = 823 (HRC = 64)
b. nitrierter Vergütungsstahl 24 Cr Al Ni 7 V
HV = 966 (HRC = 68)
c. unvergüteter Turbinenstahl 17 Mo V 84
HV = 263 (HRC = 23)
d. Welle gespritzt mit Cr-Stahl 13% Cr
HV = 366 (HRC = 35)
```

Lager: B/D = 0,4; $\Psi = 2\%$; kreiszylindrisch; 2 horizontale Ölbohrungen 6 Ø, D = 65,13; Rauhigkeit R₊ = 2,5 ÷ 3 µm.

- a. Blei-Zinn-Bronze P 15, 15% Pb, HV ca. 70
- b. Blei-Zinn-Bronze P 22, 22% Pb, HV ca. 50
- c. Mehrschichtlager G 40, HV ca. 20

Stahlstützschale mit Bleibronzeausguß, Nickeldamm 2 μm, galvanische Laufschicht aus einer ternären Legierung mit 87% Pb, 10% Sn, 3% Cu.

Die Oberflächen wurden, soweit es die Fertigung erlaubte, innerhalb der Wellen- und Lagergruppe gleich ausgeführt.

Das Versuchsprogramm, nach dem alle zwölf Paarungen gefahren wurden, umfaßte drei Abschnitte mit verschiedenen Informationszielen: Zunächst wurde durch wiederholtes Steigern der Last (entsprechend Abb.14) der Übergangspunkt bei neuen Laufflächen ermittelt. Der zweite Teil galt dem Verschleißverhalten beim Überfahren der gefundenen Übergangslast durch Lasterhöhung, auch bei erhöhter Drehzahl; zum Abschluß wurden noch einmal die jetzt durch den Einlauf verschobenen Übergangspunkte gemessen. Die Laufzeit jeder Paarung betrug insgesamt ca. 40 h. Bei dem Aufbau des Programmes wurde beachtet, daß möglichst kein Versuch die gewünschte Information eines nachfolgenden Versuchslaufes stören oder verhindern darf. Dieser Grundsatz ist bei den Verschleißmessungen besonders wichtig, da jeder Verschleißzustand des Lagers irreversibel ist, und damit kein Meßpunkt exakt wiederholt werden kann.

6.2 <u>Lage der Verschleißanstiegspunkte bei neuen und gelaufenen</u> Teilen

Als Ergebnis der Belastungsversuche bei konstanter Drehzahl n = 300 U/min an den jeweils neuen Lagerteilen ergaben sich Übergangslasten \overline{p}_{Ul} zwischen 53 und 88 kp/cm². Diese Punkte, ermittelt an allen 12 Materialpaarungen, liegen in dem schraffierten Bereich I auf Abb.19. Dabei war, wie erwartet, zunächst keim bestimmter Einfluß des Materials festzustellen. Die Meßpunkte liegen ungeordnet in dem Streubereich I, wobei für die Bandbreite vermutlich die Streuungen in der Oberflächenbeschaffenheit oder auch montagebedingte geringe Veränderungen verantwortlich sind. Zu den mittleren spezifischen Lagerlasten \overline{p} sind die rechnerisch ermittelten minimalen Schmierspaltgrößen h_{min} aufgetragen. Als Begrenzung von Bereich I ergaben sich Größen von 2,3 bis 3,4 µm.

Abb.19 Übergangslasten und theoretische Schmierspaltdicken

In den Bereichen II und III von Bild 19 liegen die Übergangslasten, die an den Lagern nach einem längeren, für alle Teile identischen Laufprogramm gemessen wurden. Es zeigte sich, daß bei gleicher Vorgeschichte die Paarungen mit den harten Wellen – Bereich III, einsatzgehärtete und nitrierte Wellen – höhere Belastungen bis zum Verschleißbeginn aufnehmen konnten, alsø einen günstigeren Zustand erreicht hatten, als die Lager mit der chromgespritzten und unvergüteten Welle. Die Übergangsschmierspaltdicken betragen dabei 1,9 \div 2,1 für Bereich II und 1,6 \div 1,8 µm für Bereich III. Diese Werte wurden erst nach einem deutlichen Glättungsverschleiß erreicht, stellen aber, wie sich später erwies, noch nicht die erreichbaren Höchstwerte dar. Trotzdem müssen diese erreichten h_{min}-Werte als Auslegungsgrößen schon mit dem Vorbehalt genannt werden, daß ein neues Lager dabei bei zu schneller Laststeigerung ohne vorsichtigen Einlauf stark verschleißen oder sogar "fressen" kann. Dies gilt, wie die Messungen in Kap. 6.3 zeigten, insbesondere für die relativ harten Bronzelager, die nicht die guten Notlaufeigenschaften des Mehrschichtlagers aufweisen.

Für die experimentell ermittelten Übergangslasten $\overline{p}_{\ddot{u}}$ wurden die Übergangswerte C_{üv} nach Vogelpohl (2) berechnet und in Abb.20 aufgetragen. Zur Unterscheidung von den üblichen c_ü-Werten, die das Reibungsminimum beim Auslauf eines Lagers charakterisieren, werden die in den Verschleißversuchen ermittelten Werte mit c_{üv} bezeichnet.

Für B/D < 0, 5, wie in dem vorliegenden Fall (B/D = 0, 4), muß in der Übergangsgleichung der Wert der erweiterten Sommerfeldzahl So (1 - ε) berücksichtigt werden. Sie lautet damit:

$$C_{iiv} = \frac{1}{So(1-\varepsilon)} \cdot \frac{p_{ii}}{\gamma_m \cdot v_o \cdot n_{ii}}$$

Aus der ersten Versuchsreihe an den neuen Teilen ergaben sich Werte für C_{UV} zwischen 0,9 und 1,45. Die Werte steigen durch den Einlauf bis zum Versuch 6 für die weichen Wellen auf 1,7 bis 1,85, für die harten Wellen auf 1,9 bis 2,2 m⁻¹ an. Die Werte liegen an der unteren Grenze des Wert-Bereiches, den

- 41 -

andere Verfasser über das Reibungsminimum ermittelt haben. Dies ist ein Hinweis auf die Empfindlichkeit des Verschleißbeginns als Indikator für den Übergangspunkt.

6.3 <u>Verschleiß- und Temperaturverhalten bei Laststeigerung</u> in das Mischreibungsgebiet

Alle Lagerpaarungen wurden nach dem ersten Versuch zur Ermittlung der Übergangslast \overline{p}_{il} in Stufen über diesen Wert belastet. In den Ergebnissen zeigt sich, daß der Verlauf und die Gesamtmenge des Abriebs sowie die Lagertemperaturen stark von dem Lagerwerkstoff und der Wellenhärte bestimmt sind.

Abb.21 Verschleißverlauf und Lagertemperatur bei Lasterhöhung

In Abb.21 ist der Unterschied im Verschleiß- und Temperaturverhalten der verschiedenen Lagermaterialien zu erkennen. Die härteren Bleibronzelager - in diesem Fall P 15 - zeigten im Lauf mit der jeweils gleichen Welle bei jeder Lasterhöhung einen hohen Abrieb, auf den aber eine schnelle Glättung erfolgte. Das Lager G 40 mit der dünnen, hochbleihaltigen Laufschicht dagegen zeigt einen sehr weichen Verschleißanstieg und einen geringen Gesamtabrieb. Die Glättungsdauer, bis die Verschleißkurve wieder in die Waagerechte übergeht, ist dabei aber größer. Der schnelle Verschleißanstieg des Bronzelagers bedeutet eine erhöhte Gefahr, daß das Lager sich in der Zone des minimalen Schmierspaltes örtlich erhitzt, der Schmierfilm dadurch seine Tragfähigkeit verringert und das Lager zum "Fressen" neigt. Der Temperaturverlauf (Abb.21) des Bronzelagers - gemessen 0,3 mm von der Lauffläche im Lastbereich unterstreicht diese Gefahr. Analog zum Verschleißanstieg trat bei jeder Laststufe ein Temperatursprung auf, nach der Glättung der Verschleißkurve geht die Temperatur auf einen stabilen Wert zurück. Auch im Temperaturverlauf erwies sich das Lager G 40 mit ternärem Aufbau unkritischer, da keine deutlichen Temperatursprünge gemessen wurden.

Abb.22 Einlaufverschleißraten an Bronze- und Dreischichtlagern

Das unterschiedliche Verschleißverhalten zwischen den Bronzelagern und dem Dreischichtlager wurde bei höheren Drehzahlen noch deutlicher. Abb.22 zeigt das Ergebnis von vier Belastungsversuchen mit verschiedenen Wellen und Schalen bei 1000 U/min. Im Gegensatz zu Abb.21 ist hier die Verschleißrate aufgetragen, die sich durch Differentiation der Gesamtverschleißkurve ergibt. Die Last wurde von $\overline{p} = 100$ auf 110 kp/cm² gesteigert.

Die Bronzelager P 22 zeigen auch hier nach der Lastumstellung sowohl im Lauf mit der einsatzgehärteten als auch mit der nitrierten Welle einen gegenüber dem Lager G 40 deutlich höheren Abrieb, der nach etwa 40 min auf ein geringes Maß zurückgeht.

6.4 <u>Material-und Härteeinfluß auf den Gesamtabrieb</u>

Bisher wurde die Lage der Verschleißanstiegspunkte und der Verschleißverlauf betrachtet. Vor allem für den Vergleich der Materialpaarungen ist natürlich auch der Gesamtabrieb der Lager nach jeweils gleichem Laufprogramm interessant.

In Abb.23 sind zum Vergleich die Verschleißmengen nebeneinander aufgetragen, die an den zwölf Lagern gemessen wurden.

Es ergibt sich aus diesem Bild folgende Wertung: Das Mehrschichtlager G 40 zeigte, insbesondere in den Läufen mit den harten Wellen, die geringsten Abriebmengen. Die beiden Bronzelager P 15 und P 22 differieren mit den günstigsten Werten aus den Versuchen mit der nitrierten und der einsatzgehärteten Welle nur wenig. In den Versuchen mit der chromlegierten und der unvergüteten Welle brachten die P 22-Schalen mehr Abrieb als das Lager P 15. Als mit Abstand günstigste Paarung erwies sich die Kombination der nitrierten Welle mit dem Mehrschichtlager.

- 44 -

Abb.23 Vergleich der Lagerabriebmengen der 12 Materialpaarungen

Betrachtet man den Einfluß des Wellenmaterials, so zeichnet sich vor allem die Bedeutung der Wellenhärte für den Gesamtabrieb ab (Abb.24).

[%] Gesamtverschleiß

[%] 100

(3,7mg)

Cr

Abb.24 Einfluß der Wellenhärte auf den Gesamtverschleiß der Lagerschalen Die harten Wellen erzeugten eindeutig weniger Abrieb. Die Ursache dürfte darin liegen - das ließen die Oberflächenbilder erkennen -, daß diese Wellen bei dem Lagereinlaufvorgang die ursprünglich glatte Oberfläche ohne wesentliche Veränderung durch Verschleiß und Materialübertrag beibehalten konnten.

Die Gegenüberstellung der Härtedifferenzen und Härtequotienten Welle – Schale mit den Gesamtverschleißmengen ergab eine deutliche Korrelation zwischen dem Härteverhältnis und dem Gesamtabtrag (Abb.25). Der Lagerverschleiß nimmt ähnlich einer Hyperbelfunktion mit zunehmendem Härteverhältnis Welle-Schale zunächst sehr schnell ab, von einer bestimmten Grenze an im Bild bei $H_{Welle}/H_{Schale} \approx 20$ - ist die Verbesserung nur noch gering, der Verschleiß geht asymptotisch zu einem unteren Grenzwert.

Abb.25 Zusammenhang zwischen dem Härtequotienten Welle-Schale und den Verschleißmengen

6.5 <u>Verschleißverhalten der Welle, Vergleich der Abriebmengen</u> <u>an Welle und Schale</u>

Der Wellenverschleiß wurde an der einsatzgehärteten und der unvergüteten Welle bei gleichem Laufprogramm wie in den

- 46 -

Lagerversuchen gemessen. Die Ergebnisse zeigten, daß es auch von der Wellenseite her möglich ist, durch Laststeigerung unter konstanter Drehzahl den Übergang in das Abriebgebiet zu ermitteln, jedoch sind die Verschleißanstiege, vor allem beim Einsatz der weichen Dreischichtlager, weniger ausgeprägt. Die gemessenen Übergangslasten entsprachen denen der Lagerversuche.

Bei einer Laststeigerung über den an den neu eingesetzten Teilen ermittelten Übergangswert zeigt auch der Wellenverschleiß den vom Lager her bekannten charakteristischen Stufenverlauf. Der Gesamtverschleiß ist in Abb.26 über der Versuchszeit aufgetragen. Bei jeder Lasterhöhung wird Material abgerieben und Welle und Schale gelangen in einen neuen Einlaufzustand. Der Wellenverschleiß war in diesem Versuch mit der harten Lagerschale P 15 größer als der Abrieb im Lager.

Die deutliche Stufenstruktur im Wellenabrieb bildete sich allerdings nur im Lauf mit den Bronzelagern aus. Das 3-Schichtlager mit der weichen Lauffläche erzeugte auf den Wellen nur einen sehr geringen Verschleiß, in dessen flachem Verlauf keine Struktur mehr zu erkennen war. Noch deutlicher als in den Lagerversuchen hebt sich dabei das Lager mit ternärem Aufbau von den Bronzelagern dadurch ab, daß es äußerst geringen

- 47 -

Abrieb erzeugt. Dies gilt auch für den Lauf mit der ungehärteten Welle, wobei es interessant sein kann, daß die Paarung der G 40-Schale mit der ungehärteten Welle weniger Wellenverschleiß und nicht mehr Lagerverschleiß zeigte, als die Bronzelager mit der einsatzgehärteten Welle. In bestimmten Anwendungsfällen ist damit beim Einsatz dieser Lager der Verzicht auf eine teure Zapfenhärtung denkbar.

Abb.27 Vergleich der Gesamtabriebmengen an Welle und Schale

In Abb.27 sind zum Vergleich die Gesamtabriebmengen an Welle und Schale - aus mehreren Versuchen addiert - nebeneinander aufgetragen. Vergleicht man in diesem Bild die Paarung weiche Welle 17 MoV 84/Mehrschichtlager G 40 mit der Kombination harte Welle CK 10/Bronzelager P 15, dann fällt auf, daß P 15 auf der Welle mehr Abrieb erzeugt als es selbst verschleißt, während das Lager G 40 die Welle eindeutig stark schont, selbst aber mehr Abrieb aufweist. 7. BEDEUTUNG DER OBERFLÄCHENGE – STALT FÜR DEN LAGERVERSCHLEISS UND ZULÄSSIGE SCHMIERSPALT – GRÖSSE

7.1 <u>Einleitung und Versuchsziele</u>

Die Entwicklung der Fertigungsverfahren ermöglichte die Herstellung immer besserer Oberflächen bei exakter Geometrie. Damit konnte die Lagertragfähigkeit und Sicherheit sehr weit gesteigert werden. Versuche und praktische Erfahrungen haben aber gezeigt, daß die Oberflächenverfeinerung von bestimmten Grenzen ab keine Vorteile mehr bringt, sondern im Gegenteil sogar eine erhöhte Gefahr des "Fressens" bedeuten kann, vor allem, wenn ein Lager im Betrieb häufig das Mischreibungsgebiet durchfahren muß [45]. Man beläßt deshalb heute den Oberflächen meist eine geringe Restrauhigkeit, die den Anpassungsvorgang beim Einlaufen erleichtert und beim An- und Auslaufen einen zu engen Flächenkontakt verhindert. Weder theoretisch noch experimentell sind allerdings bisher die Schmierfilm- und Verschleißvorgänge in Abhängigkeit vom Oberflächenprofil der Laufflächen soweit geklärt, daß kläre Angaben zum richtigen Profil für einen bestimmten Anwendungsfall vorliegen.

7.1.1 Der Schmierspalt zwischen realen Oberflächen

Die hydrodynamische Theorie setzt im allgemeinen ideal glatte Oberflächen voraus, so daß die Schmierfilmdicke h eindeutig als Abstand der Reibflächen festgelegt ist. Der Flächenabstand h kann sich in der Rechnung dem Wert Null nur annähern, da dabei die Tragfähigkeit unendlich groß wird.

Die realen Oberflächen von Lager und Welle weisen aber eine fertigungsbedingte Rauhigkeit auf, deren Größe gegenüber der Schmierspaltgröße vor allem bei hohen Exzentrizitäten nicht mehr vernachlässigt werden kann. Abb.28 zeigt, daß bei Berührung der ersten Rauhigkeitsspitzen Schichtdicken h(x) zwischen O und $\sum R_t$ wirksam sind, deren Größenverteilung bei den meisten Profilen etwa der Gauß-Funktion, Abb.29, entspricht.

Dichtefunktion der Abb.29 Verteilung und Mittelwert des Flächenabstandes

Es scheint sinnvoll, als Schmierspaltdicke den mittleren Abstand h_m zu definieren [38], wobei noch offen ist, ob dieses h_m der hydrodynamisch wirksamen Ölschichtdicke im Betriebspunkt erster Berührung entspricht, die von der Rechnung angegeben wird. Von diesem Punkt an gelten sicher erweiterte Gesetze, die in der einfachen hydrodynamischen Theorie nicht erfaßt sind. Wichtig ist, daß das Oberflächenprofil durch den Schnitt in einer Richtung nicht vollständig beschrieben ist, sondern als Gebirge betrachtet werden muß, wobei an Lager und Welle vor allem in Laufrichtung und senkrecht dazu durch die Fertigung völlig verschiedene Charakteristiken auftreten können.

7.1.2 Stand der Untersuchungen

Zum Einfluß der Oberflächenrauhigkeit auf die Tragfähigkeit und die zulässige Schmierspaltdicke sind eine Reihe experimenteller Arbeiten und auch theoretische Betrachtungen durchgeführt worden, die bis auf Berndt und Falz [39,40] zurückgehen. Es sollen hier vor allem einige neuere Untersuchungen zu diesem Problem mitgeteilt werden.

Kreisle [34,35] hat in umfangreichen Versuchen an schmalen Lagern ($B/D \le 0,5$) Übergangspunkte in das Mischreibungsgebiet über den Reibungsverlauf (Abb.13, Punkt Ü) in Abhängigkeit von der Oberflächenbeschaffenheit gemessen. Er kommt zu dem Schluß, daß die Grenze der Vollschmierung durch den Betriebspunkt gegeben ist, in dem die minimale Schmierspaltgröße gleich der Summe der predominant-peak-surface-Rauhigkeiten (pp, s.Kap. 7.1.4) von Welle und Schale in Umfangsrichtung wird. Dies gilt für das eingelaufene Lager.

> $h_{zul} = j_{pp} + b_{pp} = h_h$ (minimale hydrodynamische Ölfilmdicke).

Die pp-Rauhigkeit errechnet Kreisle aus der rms-Rauhigkeit (=R_s) durch Multiplikation mit dem Tarasov-Faktor K (3,5 ÷ 9 je nach Fertigungsverfahren) [41]. Für die Schmierspaltberechnung verwendet Kreisle die Unterlagen von Ocvirk und DuBois [42,44]. Die Werte für h_{zul} liegen bei 1,5 ÷ 2,5 µm.

Burwell [47] fand in Prüfstandsversuchen, daß die Oberflächenrauhigkeit die Tragfähigkeit und das Verschleißverhalten im Einlauf entscheidend beeinflußt. Ocvirk und DuBois [43] berechneten für die von Burwell mitgeteilten Übergangslasten die Schmierspaltgrößen und fanden dabei das Ergebnis von Kreisle über die predominant-peak-Rauhigkeit bestätigt. Davis [46] unterschied zwischen Übergangswerten vor und nach dem Einlauf. An neuen Lagern und Wellen ermittelte er ebenfalls durch Reibungsmessungen theoretische Übergangsschmierspaltdicken, die mit ca. $3 \div 5 \ \mu m$ in der Größenordnung der Summe der Maximalrauhigkeiten R_t von Welle und Schale lagen. Nach dem Einlauf verbesserten sich die h_{min}-Werte auf 0,5 bis 2 µm, wobei kein Bezug zu den Oberflächenbildern nach den Versuchen gegeben ist.

Martin [36] gibt ein ganzes Kennfeld für die zulässige Schmierspaltgröße in Abhängigkeit vom Wellendurchmesser und der Drehzahl an. Er trennt dabei deutlich zwischen dem unteren Drehzahlbereich, in dem der Schmierfilm durch Überlastung bis in das Verschleißgebiet zusammengedrückt wird, und den hohen Drehzahlen, bei denen Überhitzung des Materials auftreten kann. Für die untere Grenze gibt die Oberflächenrauhigkeit das entscheidende Kriterium, das mit

 $h_{zul} = 2 h_{f} + \delta_{b/2} \text{ angegeben ist.}$ $h_{f} = 1/2 (R_{tWelle} + R_{tLager})$ $\delta_{b/2} = Wellendurchbiegung$

In dieser h_{zul}-Angabe ist ein Sicherheitsfaktor gegen Verschleiß mit einbezogen, denn h_f entspricht annähernd der nach Ocvirk bestimmten Schmierspaltdicke im Übergangspunkt.

Schieszl [48] leitete aus Prüfstandversuchen bei statischer Last mit Wellen verschiedener Rauhigkeit (R_{tm} = 0,15 ÷ 3,5 µm) über das Reibungsminimum folgenden Zusammenhang für h_{zul} ab.

$$h_{zul} = 5,75 \cdot R_{tm}^{0,75}$$

mit R_{tm} als Maximalwert der Rauhigkeit, wobei einzelne, herausragende, tiefe Riefen nicht berücksichtigt sind.

Burke [51] empfiehlt für die Lagerauslegung ein weiteres Kriterium, das die Oberflächenrauhigkeit mit R_a berücksichtigt.

- 52 -

 $h_{zul} = 2 \cdot R_{a} + 1/2 \cdot \delta_{b/2} + 5 \mu m$ R_{aWelle} Durchbiegung

Darin ist der konstante Anteil 5 μm als Sicherheitsabstand an-zusehen.

Karelitz [49] ermittelte auf einem Modellprüfstand Schmierspaltdicken von 1,46 bis 1,49 µm und verfolgte den Einlaufmechanismus und die Oberflächenstruktur bei verschiedenen Materialien und Ölsorten. Ostvik und Christensen [50] befaßten sich noch eingehender mit der Veränderung der charakteristischen Oberflächengrößen durch den Einlauf, wobei sie unter anderem Oberflächenanalysen nach statistischen Methoden durchführten.

Auf der theoretischen Seite sind nur wenige Lösungsansätze bekannt, die die Oberflächengestalt in die hydrodynamische Rechnung mit einbeziehen.

Burton [52] berechnete die Wirkung eines vorgegebenen, sinusförmigen Rauhigkeitsprofiles und fand bei rein hydrodynamischer Schmierung keinen wesentlichen Einfluß des Profiles auf die Tragfähigkeit.

Tzeng und Saibel [53] geben eine geschlossene Lösung für die Schmierfilmberechnung mit dem realen Ansatz, daß die Oberfläche - und damit auch die Schmierspaltgröße-eine zufällige statistische Verteilung von Höhenwerten darstellt. Das Oberflächenprofil ist dabei allerdings nur in der Laufrichtung betrachtet. Für die mathematische Lösung wurde auch ein Beispiel gerechnet. Es ergab sich die Tendenz, daß die Oberflächenrauhigkeit zu einer Steigerung der hydrodynamischen Tragfähigkeit führt.

Christensen [54] bezieht die Oberflächen als dreidimensionale Gebirge mit zufälliger Spitzenverteilung in die Røynoldssche Differentialgleichung mit ein und führt die Rechnung für diesen allgemeinen Fall durch. Er schließt aus den Ergebnissen, daß die Rauhigkeit bei kleinen Schmierspalten in der Nähe der ersten Berührung einen beträchtlichen Einfluß auf die Tragfähigkeit, den Öldurchsatz und das Reibverhalten des Lagers ausübt. Die Axialrauhigkeit ergibt eine geringe Abnahme der Tragfähigkeit, die Tangentialrauhigkeit wie bei [53] eine Erhöhung, die Reibkoeffizienten verhalten sich umgekehrt. Die Gesamtrauhigkeit verringert nach dieser Rechnung die Tragfähigkeit gegenüber den ideal glatten Flächen um ein geringes Maß. Entscheidender ist die Wirkung der Rauhigkeit beim Übergang zur Mischreibung. Christensen gibt Ansatzmöglichkeiten an, um auch diesen Bereich theoretisch zu erfassen.

Zusammenfassend kann zu den experimentellen und theoretischen Ergebnissen festgestellt werden, daß die Kriterien für die zulässige Schmierspaltgröße und Tragfähigkeit nicht eindeutig sind, und vor allem über den Einfluß der Oberflächengestalt auf das Verschleiß- und Einlaufverhalten der Lager nur wenig Unterlagen vorliegen.

7.1.3 Informationsziele der Versuche

In Prüfläufen zwischen 1000 und 3000 U/min unter hohen statischen Lasten wird das Verschleißverhalten von Lagern gleicher Geometrie und Oberfläche im Lauf mit Wellen verschiedener Oberflächengestalt untersucht. Es werden die Übergangspunkte in das Verschleißgebiet bei neuen Teilen und nach dem Einlauf ermittelt. Während des Einlaufvorganges wird der Verlauf und die Menge des Abriebs verfolgt. Vor und nach den Versuchen werden die Oberflächen der Lager und Wellen axial und tangential gemessen und die Veränderungen in der Struktur ermittelt. Die Rauhigkeitswerte werden zu den theoretisch errechneten Schmierspaltgrößen für die Übergangspunkte in Beziehung gesetzt. Mit den Meßergebnissen wird versucht, einen Beitrag zur Lösung von zwei Problemkreisen zu finden:

- a. Wie beeinflußt das Rauhigkeitsbild die Tragfähigkeit ($\bar{p}_{\ddot{u}}$, So_{\ddot{u}}) und die zulässige theoretische Schmierspaltgröße $h_{zul} = h_{min\ddot{u}}$ eines Lagers? Welche Rauhigkeitskenngrößen bestimmen h_{zul} ?
- b. Welche Aussagen geben die über die Rauhigkeitswerte be-

- 54 -

stimmten mittleren Schmierspaltgrößen beim Verschleißbeginn zur Gültigkeit der hydrodynamischen Theorie, bzw. zu den richtigen Annahmen für die Schmierspaltrechnung, z.B. die richtige Wahl der wirksamen Viskosität?

7.1.4 Begriffe und Maße für die Beschreibung der Oberflächengestalt [55, 56, 57]

Für die Charakterisierung technischer Oberflächen werden im allgemeinen die folgenden Oberflächenmaße angewandt. Gestaltabweichungen 2. Ordnung (Welligkeit):

Wellentiefe W: Maximalamplitude von Wellen, die groß sind gegenüber der Rauhigkeit (ca.≥0,75 mm)

Gestaltabweichungen 3. - 5. Ordnung (Rauhigkeit):

Profilmittellinie: Profiltrennlinie, so daß die Flächensumme der Oberflächenberge und -Täler ausgeglichen ist.

Abstand zwischen Spitze und Tal des Rauhtiefe R₊: Oberflächengebirges (von Bezugs- zu Grundprofil)

Glättungstiefe R_n(G): Abstand der Hüllinie über die Profilspitzen zur Profilmittellinie

$$R_{p} = \frac{1}{L} \cdot \int y_{i} dl \qquad (1 - 1)^{2} + \frac{1}{L} \cdot \frac{1}{L} \cdot$$

arithmetrischer Mittelrauhwert R_a : Abstand der arithmetischen Einebnungslinie von der and the second second

$$R_{a} = \frac{1}{L} \cdot \int_{0}^{\ell} (h_{i}) dl$$

geometrischer Mittenrauhwert R_s: Abstand der geometrischen Einebnungslinie von der Mittellinie

$$R_{s} = \sqrt{\frac{1}{L} \cdot \int_{o}^{\ell} h_{i}^{2} d1}$$

In der angegebenen Literatur werden außerdem verwendet:

Center-line average-roughness (CLA) = R_a root mean square (RMS) = R_s peak to valley roughness = R_t

predominant peak surface r. (pp): Abstand der Hüllinie über

Abstand der Hullinie über die Profilspitzen von einer Grundlinie, die von der Materialseite an die Täler gelegt wird, wobei einzelne tiefe Riefen nicht berücksichtigt werden, die für die Funktion ohne Bedeutung sind.

Außerdem können zur genaueren Profilbeschreibung angegeben werden:

Abbot-Tragkurve: Verlauf des Profiltraganteils als Funktion der Profiltiefe

Statistische Verteilungsfunktion der Höhen und Steigungen.

7.2 <u>Versuchsdaten; Oberflächengestalt und Werkstoffe der</u> <u>Versuchsteile</u>

Versuchsöl: 20 W 20, unlegiert, Viskosität s. Abb.9 A.

Lager: Dreischichtlager mit ternärer Laufschicht G 40, s. Kap. 6.1

Ölzufuhr: 2 horizontale Bohrungen 6 \emptyset

Oberflächenmit guter Genauigkeit (R_t von 1,9 ÷ 2,2 μ m) gleich ausgeführt.

Wellen: d = 65,00 mm

Werkstoff: Vergütungsstahl DIN 17200, Oberflächengehärtet HRC 50 - 55

Fertigung: Welle 1: feinstgeschliffen und poliert Welle 2: feingeschliffen und poliert Welle 3: feingeschliffen Die Rundheit von Wellen und Schalen ist auf einem Talyrond-Gerät geprüft (Abb.10 A).

Der Mantellinienschrieb (Talyrond) zeigte maximale Konizität innerhalb der Lagerbreite von 2 μ m bei den Lagern, 0,5 μ m bei den Wellen.

Die Oberflächen wurden auf einem Pertometer-Gerät axial (ax) und tangential (tang) vermessen. An jeder Lauffläche wurden 3 Messungen durchgeführt, aus den gemessenen Rauhigkeitsdaten ist der Mittelwert gebildet. In Tabelle 2 sind die Rauhigkeitsdaten der neuen Teile zusammengefaßt, in Abb.30 ist zur besseren Anschauung je ein Teil der Rauhigkeitsschriebe aufgetragen. Daraus ist schon deutlich zu erkennen, daß die Profile vom Fertigungsvorgang her in axialer und tangentialer Richtung verschiedene Charakteristiken aufweisen.

	R _t		Rp		Ra		R _s		W	
	ax	tang	ax	tang	ax	tang	ax	tang	ax	tang
Lager	2,2	1,9	0,6	0,4	0,36	0,24	0,5	0,18	1,1	3,4
Welle 1	0,54	0,2	.0,16	0,05	0,09	0,03	0,08	0,02	0,26	0,1
2	0,67	0,35	0,17	0,12	0,1	0,02	0,12	0,02	0,3	0,15
4	1,2	0,4	0,22	0,2	0,14	0,12	0,15	0,08	0,3	0,15
3	2,3	0,8	0,4	0,3	0,25	0,2	0,27	0,13	0,3	0,2
5	4,0	1,6	1,25	0,4	0,65	0,3	0,66	0,17	0,2	0,65

Tabelle 2: Axiale und tangentiale Rauhigkeitsdaten der neuen Teile (ax: cutoff 0,75; T 25 tang: Tastsystem HTF 250)

Die Welle mit der Kennnummer 3 war rauher als Welle 4, deshalb wird in der weiteren Auswertung die nach steigender Rauhigkeit geordnete Reihenfolge 1,2,4,3,5 verwendet.

- 57 -

Axialschriebe

Umfangsschriebe

Abb.30 Rauhigkeitsschriebe der neuen Teile in Axial- und Umfangsrichtung

7.3 <u>Versuchsergebnisse</u>

Die Versuche zum Übergangspunkt in das Verschleißgebiet wurden mit jeder Lagerpaarung bei geringen Abriebmengen mehrfach wiederholt, um den einzelnen Meßpunkt zu sichern und Streuwerte durch Einzelspitzen in der Oberfläche oder Schmutzteilchen zu erkennen. Für jedes Rauhigkeitsbild wurden durch Axialverschiebung der Welle auf eine neue Lauffläche und Einsatz eines neuen Lagers ein oder zwei geschlossene Reproduktionsversuchsreihen durchgeführt. Diese ergaben, daß die Lage der Übergangspunkte mit Abweichungen von maximal \pm 5 kp/cm² reproduzierbar ist. Die gemessenen Abriebmengen bei gleichem Versuchsmaterial und gleichen Oberflächenbedingungen zeigten Schwankungen von \pm 8%.

7.3.1 Übergangslasten \overline{p}_{UI} bei neuen Teilen

In der ersten Versuchsreihe wurde für jede neue Welle-Schale-Paarung (z.B. Vers.Nr. R 11: Welle 1 + Lager 1) bei 1000 U/min die Übergangslast in das Verschleißgebiet nach Kap. 4.1 ermittelt. Als Beispiele für diesen Versuch sind in Abb.31 die Verschleißraten aufgezeichnet, die an drei Wellen verschiedener Rauhigkeit gemessen wurden, Welle 1 (R 11), Welle 4 (R 44) und Welle 5 (R 55). Entsprechend der steigenden Rauhigkeit der Wellen 1,4,5 verschiebt sich die Übergangslast $\overline{p}_{\rm til}$ zu niedrigeren Werten. Die Größe der $\overline{p}_{\rm til}$ -Werte ist durch die Grenzverschleißrate bestimmt (Kap. 4.1). In Tabelle 3 sind die gemessenen Übergangsdaten für alle fünf Rauhigkeitsbilder zusammengefaßt, zu den $\overline{p}_{\rm til}$ -Werten sind außerdem mit $q_{\rm til} = 1/2(q_{\rm E}+q_{\rm L})$ die Sommerfeldzahlen und die Übergangsschmierspaltdicken h_{minül}

Die weitere Auswertung dieser Daten im Zusammenhang mit den Rauhigkeitsbildern erfolgt in Kap. 7.5.

Die Lastwerte \overline{p}_{UI} in Tabelle 3 sind Mittelwerte der für jedes Oberflächenprofil in jeweils 3 bis 4 Versuchen gemessenen Übergangslasten.

Abb.31 Versuche zum Verschleißübergang bei verschiedener Wellenrauhigkeit

Vers. Nr. Welle/Schale	^p üI kp/cm ²	T _E °C	TL °C	So _{üI}	h minü I µm
R 1 1	65	45	70	7,1	4,4
R 2 2	54	47	67	5,7	5,1
R 4 4	62	44	65	6,6	4,7
R 3 3	53	48	64	5,6	5,2
$\mathbf{R}^{\mathrm{N}} = 2^{\mathrm{N}} 5^{\mathrm{N}} 6^{\mathrm{N}} 5^{\mathrm{N}} 5^{\mathrm{N}} 6^{\mathrm{N}}$	43	42	63	3,9	6 .,7
n = 1000 U/mi	n Ŋ"	= 1/3	2 (Ŋ,	_ν + η _τ)	<u> </u>

Tabelle 3: Übergangslasten, gemessen für die neuen Teile

- 60 -
Lager

Nach den Versuchen zu \bar{p}_{Ul} wurde die Belastung bei ebenfalls 1000 U/min in Stufen mit längerer Laufdauer (40 min) gesteigert. Die Laufzeit pro Lastpunkt war dabei so angesetzt, daß der Einlaufglättungsvorgang beendet war. Es zeigte sich bei allen Versuchen der charakteristische Stufenverlauf, wie ihn das Versuchsergebnis Abb.32 deutlich macht. Die Lagertemperatur reagiert auf die Abriebvorgänge nach der Lastumstellung jeweils mit einem kleinen Anstieg, der dann auf einen neuen, stabilen Festwert zurückgeht. Die Wellen verschiedener Rauhigkeit zeigten alle ähnliche Verschleißkurven, weitere Originalergebnisse sind in Abb.11 A \div 15 A des Anhangs mitgeteilt.

Abb.32 Verschleiß- und Temperaturverlauf bei Laststeigerung in das Mischreibungsgebiet (Welle 2)

Der Unterschied liegt in den Gesamtverschleißmengen, die aus den Lagern abgerieben werden, bis ein bestimmter Einlaufzustand und vor allem bis die maximale Tragfähigkeit nach beendetem Einlauf erreicht ist.

In Abb.33 sind die Gesamtverschleißmengen aufgetragen, die die Wellen verschiedener Rauhigkeit (1 ÷ 5) aus den Lagern beim Einlauf abgerieben haben. Der Einlaufvorgang ist durch die Erhöhung der Übergangslast \overline{p}_{U} auf der Abszisse deutlich gemacht, dies entspricht einer Verringerung der theoretischen Übergangsschmierspaltdicke von maximal 6,5 µm bis nahe 1 µm.

Abb.33 Einlaufverschleißmengen in Abhängigkeit von der Oberflächenbeschaffenheit der Welle

Die rauheste Welle (Nr.5) erzeugte einen Einlaufverschleiß von ca. 3,5 mg und damit etwa den doppelten Abtrag der feinen Wellen 1,2,4, obwohl die erreichte Endübergangslast mit ca. 200 kp/cm² niedriger liegt als die der anderen Wellen. In keinem der untersuchten Lager trat durch den Verschleiß ein Schaden auf, der Abrieb führte nur dazu, daß das Lager die maximale Tragfähigkeit ohne Dauerverschleiß erreichte. Die geringe Gewichtsmenge des Abtrags und die Tiefe des Laufspiegels (Abb.42) unterstreichen diese Tatsache.

7.3.3 Grenztragfähigkeit nach beendetem Einlauf

Im letzten Versuchsabschnitt wurden alle Lager mit ver-

schiedenen Wellenrauhigkeiten bei 1000 U/min soweit belastet, bis eindeutig keine Glättung mehr eintrat, sondern der Verschleißanstieg bei wiederholter Belastung jeweils im gleichem Lastpunkt eintrat. Eine geringe weitere Laststeigerung führt dann zu hoher Festkörperreibung, das Lager beginnt zu "Fressen" oder läuft fest, wenn die Welle nicht schnell genug zum Stillstand kommt. Abb.34 zeigt den Verschleiß- und Temperaturverlauf von zwei solchen Grenzversuchen. Die mit b und c gekennzeichneten Kurven sind die Verschleißmeßergebnisse bei wiederholter Laststeigerung zu hohen Werten. Das Lastprogramm ist auf der unteren Abszisse eingetragen.

Abb.34 Belastungsversuche zur Höchstlast bei eingelaufenen Lagern

Während in dem Versuch b noch ein deutlicher Glättungsverschleiß in den meisten Lastbereichen gemessen wurde, zeigte der darauffolgende Versuchslauf c bis zu der Grenzlast 250 kp/cm² keinen Abtrag mehr. Weitere Wiederholungen ergaben jeweils den Verlauf von Kurve c, womit die Lage der maximal möglichen Last zwischen 240 und 250 kp/cm² gefunden ist. Die Auswertung dieser Ergebniskurve nach Kap. 4.1.2 ergibt dann die Endübergangslast $\overline{p}_{\rm uII}$. Die Ergebnisse dieser Versuche, die Übergangswerte nach beendetem Einlauf, sind in Tabelle 4 zusammengefaßt.

Vers. Nr. Welle/Schale			^p üII kp/cm ²	T _E °C	°C	So _{üII}	^h minüll µm
R	1	1	232	63	9 0	46,5	1,1
R	2	2	243	64	91	50,5	1,03
R	4	4	228	61	86	43,0	1,16
R	3	3	210	62	84	39,5	1,27
R	5	5	202	62	86	38,0	1,3
		/ ·			_ / _	- \	

n = 1000 U/min $\eta_m = 1/2 (\eta_E + \eta_L)$

Tabelle 4: Maximale Übergangslasten der eingelaufenen Lager

Der verschleißfreie, rein hydrodynamische Lastbereich (O $\div \overline{p}_{\ddot{u}}$) aller Lager hat sich durch den Einlauf entscheidend vergrößert. Zu den Verschleiß-Übergangspunkten $\overline{p}_{\ddot{u}}$ wurden als Maß für die Tragfähigkeit die Übergangs-Sommerfeldzahlen errechnet. Die Werte vor (So_{üI}) und nach (So_{üII}) dem Einlauf sind in Abb.35 dargestellt. Auf der Abszisse sind die Lagerpaarungen mit zunehmender Wellenrauhigkeit aufgetragen.

Abb.35 Verbesserung der Tragfähigkeit So_ü durch den Einlauf bei verschiedener Wellenrauhigkeit Die erreichbaren Endwerte sind von der Anfangsrauhigkeit der Wellen nur noch wenig abhängig, obwohl das axiale Oberflächenbild der Wellen kaum verändert wurde. Eine Erklärung dafür läßt sich, wie die folgenden Untersuchungen (Kap. 7.5) zeigen, nur über die Bedeutung der Umfangsrauhigkeiten finden.

Bei den Erstübergangswerten So_{ül} dagegen ist ein stärkerer Einfluß der Axialrauhigkeit zu erkennen, die mit $R_t = 0,6$ bei Welle 1 bis $R_t = 4$ µm bei Welle 5 deutlich abgestuft ist.

7.3.4 Übergangswerte c_{UV} vor und nach dem Einlauf

Zu den experimentell gefundenen Übergangslasten in das Verschleißgebiet wurden nach der von Vogelpohl [1] gegebenen Formel (siehe Kap. 6.2) die Übergangswerte ermittelt. In Abb.36 sind die c_{üv}-Werte als Funktion der axialen

Abb.36 Übergangswerte vor und nach dem Einlauf in Abhängigkeit von der axialen Rauhigkeitssumme

and and the second second second and the second In an associated as a second In a second s Rauhigkeitssumme der neuen Teile aufgetragen. Die Werte erhöhen sich durch den Einlauf von ca. 0,5 auf 4, wobei das Axialprofil der Welle in dem untersuchten Bereich keinen deutlichen Einfluß ausübt. Die feinbearbeiteten Wellen 1,2,4 bringen nur eine geringe Verbesserung des c_{üv}-Wertes gegenüber den rauheren Wellen 3 und 5.

7.3.5 Versuche zur oberen Drehzahlgrenze bei konstanter Last

Das Gleitlager weist zwei Grenzen der Tragfähigkeit bzw. Betriebssicherheit auf, die oft als untere und obere [1] Grenze bezeichnet werden. Die untere Grenze ist dadurch charakterisiert, daß die Schmierfilmdicke durch zu hohe Last oder zu niedrige Drehzahl so klein wird, daß Oberflächenkontakt und Verschleiß der Laufflächen eintritt.

Die obere oder thermische Belastungsgrenze dagegen ist bestimmt durch den Temperaturanstieg im Schmieröl, der bei höheren Drehzahlen so groß werden kann, daß das Laufflächenmaterial plastisch wird oder der Schmierfilm durch die Viskositätsabnahme seine Tragfähigkeit verliert.

Die bisherigen Belastungsversuche bei konstanter Drehzahl (300 ÷ 1000 U/min) zielten auf die untere Grenze, die Versuchsläufe, die in diesem Kapitel beschrüeben werden, gelten der oberen Grenze, wobei die Temperaturanstiege noch nicht in den Bereich kommen, in dem das Lagermaterial wesentlich verändert wird. Das Kriterium ist die Verringerung der wirksamen Viskosität, die dazu führt, daß die Oberflächen in Kontakt kommen und Material abgerieben wird.

Die bereits eingelaufenen Lager mit den Wellen gestufter Rauhigkeit wurden alle nach folgendem Laufprogramm untersucht: Bei hoher, statischer Last $\bar{p} = 120 \text{ kp/cm}^2$ wurde die Drehzahl aus dem verschleißfreien Betriebsbereich bei 1000 U/min in Stufen soweit gesteigert, bis ein schneller Verschleißanstieg die Neigung zum Fressen anzeigte.

In Abb.37 ist das Originalergebnis eines solchen Versuches (Welle 4) gezeigt. Daraus ist sowohl der Versuchsablauf als auch das gemessene Verschleiß- und Temperaturverhalten zu erkennen. - 67 -

Abb.37 Verschleiß- und Temperaturverlauf bei Drehzahlsteigerung bis zur thermischen Belastungsgrenze

Zunächst zeigt das Lager bei Drehzahlen bis 2800 U/min einen weiteren Einlaufverschleiß, der vermutlich darauf zurückzuführen ist, daß die statische Gleichgewichtslinie des Zapfens durch die gegenüber den anderen Versuchen bei 1000 U/min erhöhte Drehzahl und das dadurch veränderte Temperaturprofil [6,8] im Schmierfilm näher an den Lagerspielkreis gedrängt wird, und damit die Welle neue Lagerflächen glätten muß. Unabhängig von diesem Glättungsabrieb trat in allen Versuchen bei einer bestimmten Drehzahl (2600 - 3000 U/min) ein plötzlicher, schneller Verschleißanstieg auf. Weder der Verschleiß noch der gleichzeitige Temperaturanstieg gehen wieder zurück, so daß ein weiterer Betrieb zu einem Schaden am Lager oder zum "Fressen" führt. Die Ergebnisse der übrigen Versuche (Welle 1,2,3,5) dieser Reihe sind im Anhang, Abb.16A÷ 19 A aufgeführt.

Entsprechend den Auswertverfahren für die Übergangslast \bar{p}_{ij} (Kap. 4.1.2) wurde aus den Drehzahlversuchen eine Verschleißübergangsdrehzahl n_{üv} ermittelt. Dazu wurde eine geänderte Grenzverschleißrate festgelegt (300 µg/h), die als Kriterium für n_{üv} definiert wurde. Abb.20 A zeigt diese Auswertung für alle Drehzahlversuche mit der Grenzlinie für die Verschleißrate. Die so gewonnenen n_{üv}-Werte mit den zugehörigen Betriebsdaten sind in der folgenden Tabelle 5 aufgeführt.

Vers. Nr. Welle/Schale			ⁿ üV U/min	T _E °C	TL °C	So _ü	h _{minü}	
R	1	e e 1 - 1	2480	68	115	13,5	2,85	
R	2	2	2930	65	110	10,2	3,5	
R	4	4	2880	63	108	9,8	3,6	
R	3	.3	2820	63	105	9,8	3,6	
R	5	5	2720	63	102	9,9	3,58	
$\bar{p}_{ii} = 120 \text{ kp/cm}^2$ $\eta_m = 1/2 (\eta_{ir} + \eta_{ir})$								

Tabelle 5: Experimentell ermittelte Verschleißübergangsdrehzahlen und die dazu berechneten theoretischen Schmierspaltgrößen

Der Rauhigkeitseinfluß auf die obere Drehzahlgrenze ist klein. Betrachtet man die Übergangsdrehzahlen der Lager mit den Wellen 4,3,5, die aufgrund der identischen Öleingangstemperatur am besten zu vergleichen sind, dann erkennt man ein geringes Absinken der Grenzdrehzahl mit zunehmender Rauhigkeit der Wellenoberfläche.

Es besteht die Frage, wie der Vorgang des plötzlichen Verschleißanstieges von der Schmierfilmseite zu erklären ist: Sicher ist, daß nur die Viskositätsabnahme aufgrund der Ölerwärmung im Film zu der Verringerung der Tragfähigkeit und dem Abrieb führen kann.

Wichtiges Problem ist allerdings, ob die Schmierspaltdicke

kontinuierlich kleiner wird, da die Viskositätsabnahme gegenüber der Drehzahlabnahme in der Sommerfeldzahl langsam den stärkeren Einfluß gewinnt, oder ob trotz sinkender Sommerfeldzahl und steigender oder konstanter Schmierfilmdicke die Tragfähigkeit des Ölfilmes plötzlich zusammenbricht. Dies würde die Gültigkeit der Sommerfeldzahl als Kriterium in dem untersuchten Drehzahlbereich in Frage stellen.

Die zweite Erklärung wird durch die Untersuchungen von Floberg und Hakansson [9]unterstützt, die bei statisch belasteten Lagern unter Einbezug der Energiegleichung in die hydrodynamische Schmierspaltbetrachtung eine thermische Stabilitätsgrenze festgestellt haben (Abb.38). Über dieser Grenze kann die aufgrund der inneren Reibung im Öl erzeugte Wärme nicht mehr schnell genug abgeleitet werden und führt zu einem schnellen Aufheizen des Öles.

Die Lage der Stabilitätsgrenze, nach Abb.38, ist vor allem durch die drehzahlproportionale Betriebskenngröße \times bestimmt. Der Wert \times ist in den vorliegenden Versuchen mit ca. 0,03 relativ hoch, so daß der instabile Bereich bis ca. $\mathcal{E} = 0,93$ reichen

- 69 -

müßte. Eine quantitative Einordnung der Versuchswerte in das Diagramm, Abb.38, ist aber nicht möglich, da die Kurven für sehr breite Lager berechnet sind. Prinzipiell läßt sich damit aber erklären, daß selbst bei \mathcal{E} -Verkleinerung durch eine über n verringerte Lastzahl – z.B. von B₁ nach B₂ – Abb.38 – ein Lager plötzlich seine Tragfähigkeit verringern oder verlieren kann.

Zu der ersten Erklärungsmöglichkeit – langsamer Übergang durch Erhöhung von So – muß zunächst der Verlauf der theoretischen Schmierspaltdicke betrachtet werden. Dieser ist in Abb.39 zusammen mit drei Verschleißmeßergebnissen aufgezeichnet.

Abb.39 Gemessene Verschleißraten und Verlauf der theoretischen Schmierspaltdicken bei Drehzahlsteigerung unter konstanter Last

Abhängig von der Wahl der mittleren effektiven Ölviskosität ergibt sich ein Anstieg der Filmstärke oder bei $\gamma_m = \gamma_L$ ein zunächst horizontaler, dann am Ende abfallender Verlauf von h_{min}. Soll die Sommerfeldzahl oder die Größe von h_{min} als Kriterium für den Übergang Gültigkeit haben, dann muß h_{min} im Punkte des Verschleißanstiegs aufgrund der Versuche bei 1000 U/min und der Oberflächenrauhheit in den Bereich von 1 ÷ 1,5 µm absinken. Dies ist nur möglich, wenn die Wahl des γ_m für die Bestimmung von So von der Drehzahl abhängig gemacht wird. Es muß \mathcal{N}_m von 1/2 ($\mathcal{N}_E + \mathcal{N}_L$) auf einen Wert etwasunter \mathcal{N}_L zurückgehen. Dabei ist allerdings denkbar, daß T_L aufgrund der Trägheit der Meß-fühler im letzten Betriebspunkt des Verschleißanstieges nicht exakt erfaßt wurde und noch etwas höher liegt als der zugrunde gelegte Wert, so daß $\mathcal{N}_m = \mathcal{N}_L$ als Annahme ausreichen könnte.

Welche der beiden Erklärungen für den plötzlichen schnellen Verschleißanstieg die richtige ist, läßt sich mit den vorhandenen Unterlagen nicht eindeutig klären. Die Annahme liegt nahe, daß es sich bei dem Vorgang um eine Überlagerung der Effekte – langsamer Anstieg der So-Zahl und Erreichen eines Punktes thermischer Instabilität – handelt.

Der Verschleißverlauf und die theoretischen Schmierspaltgrößen in Abb.39 machen deutlich, daß h_{\min} und die Sommerfeldzahl bei hohen Exzentrizitäten und vor allem gesteigerten Drehzahlen ihren Aussagewert verlieren, wenn die zugrunde gelegte wirksame Viskosität γ_m nicht entsprechend angepaßt ist. Die vereinfachenden Annahmen der Schmierspaltrechnung - Ölfilm als adiabates Problem, konstante Viskosität - werden in diesem Bereich besonders kritisch.

7.4 <u>Die Veränderung der Oberflächengestalt der Wellen und</u> <u>Schalen durch den Einlauf</u>

Die Oberflächenanpassung und Glättung führte im Einlauf zu einer wesentlichen Vergrößerung des verschleißfreien Lastbereiches. Für die Beurteilung des Einlaufvorganges und für den Vergleich der Oberflächendaten mit den Übergangsschmierspaltdicken nach dem Einlauf wurden alle Oberflächenwerte 1.bis 5. Ordnung auch nach den Versuchen gemessen. Damit ist ein Überblick über die Veränderungen der Oberflächen gegenüber der Ausgangsgestalt (Kap. 7.2) möglich.

7.4.1 <u>Die Oberflächenprofile und Rauhigkeitsdaten nach den</u> Versuchen

Die Messungen mit dem Pertometer wurden wieder an je drei Stellen der Lauffläche, beim Lager in dem Winkelbereich des minimalen Schmierspaltes, durchgeführt. Einen Ausschnitt aus den Rauhigkeitsschrieben aller Laufflächen zum Vergleich mit Abb.30 zeigt Abb.40.

Die charakteristischen Oberflächenwerte nach den Versuchen sind in Tabelle 6 zusammengefaßt.

		t	R p		Ra		R s		W	
	. 8X .	tang	ax	tang	ax	tang	ax	tang	ax	tang
Welle 1	0,8	0,15	0,15	0,05	0,1	0,03	0,09	0,04	0,25	0,1
2	0,75	0,15	0,12	0,03	0,09	0,02	0,09	0,05	0,24	0,12
4	0,8	0,25	0,18	0,1	0,15	0,1	0,18	0,14	0,26	0,1
3	1,4	0,5	0,25	0,2	0,2	0,15	0,23	0,2	0,25	0,15
5	2,8	0,9	0,8	0,3	Q , 5	0,25	0,6	0,24	0,2	0,5
a Astron										
Lager 1	1,5	1,4	0,3	0,25	0,26	0,2	0,37	0,16	0,3	0,6
2	1,7	1,4	0,45	0,3	0,32	0,28	0,39	0,22	0,3	0,5
4	2,14	1,2	0,46	0,38	0,38	0,35	0,75	0,2	0,3	0,4
3	2,6	1,2	0,7	0,35	0,6	0,3	0,76	0,14	0,3	0,35
5	2,6	0,8	1,0	0,3	0,64	0,32	1,04	0,18	0,3	0,25

Tabelle 6: Axiale und tangentiale Rauhigkeitswerte der Wellen und Schalen nach den Versuchen

An den Wellen zeigten sich im wesentlichen folgende Verschiebungen: Die axialen Maximalwerte R_t sind nur bei den Wellen 3 und 5 mit größeren Ausgangswerten geglättet, bei den feinen Wellen zeigt sich sogar eine geringe Aufrauhung durch den Einlaufvorgang. Das charakteristische Bild des axialen Profiles, das durch das Verhältnis R_p/R_t geprägt ist, wurde bei allen Wellen, besonders deutlich bei den rauhen Wellen 4,3,5 in der Richtung verschoben, daß durch Glätten, bzw. Abtrag der Oberflächenspitzen ein schnellerer Übergang zu hohen Traganteilen erfolgt. Dies zeigt sich in einer einseitigen Abrundung des Profiles auf der Laufseite und einer verringerten

 $\gamma_{\rm eff} = 10^{-10} {\rm erg}^{-1}$, $\gamma_{\rm eff} = 10^{-10} {\rm erg}^{$

Umfangsschriebe

Abb.40 Axiale und tangentiale Oberflächenschriebe der Wellen und Schalen nach dem Einlauf (Neuteile s,Abb.30) Glättungstiefe R_p. Abb.41 macht diese Veränderung am Beispiel der Welle 3 deutlich. Eine gute Beschreibung dieses Vorgangs

Abb.41 Veränderung des axialen Rauhigkeitsprofiles durch den Einlauf

bietet die Abbot'sche Traganteilkurve [55,56], deren qualitativer Verlauf vor und nach dem Einlauf in Abb.41 neben den Profilen aufgetragen ist. Die axialen Welligkeiten wurden kaum verändert, die Lager paßten sich diesen Unebenheiten an.

In Umfangsrichtung, also in Laufrichtung, ist bei allen Wellen eine deutliche Glättung zu erkennen, so daß die am Beginn schon recht geringen Gestaltabweichungen noch weiter eingeebnet waren. Dies gilt für alle Rauhigkeitskennwerte.

Die Lageroberflächen zeigten in der Grob- und in der Feinstruktur die ausgeprägten Veränderungen. In Axialrichtung sind die Profile nach dem Einlauf im wesentlichen durch die Wellengestalt bestimmt. Im Lauf mit den glatten Wellen 1,2,4 erfolgte eine Glättung der Oberflächen ähnlich wie in Abb.41, die rauheren Wellen 3 und 5 dagegen übertragen ihr axiales Oberflächenbild auf die Lager, die sich in Rauhigkeit und Welligkeit der Welle anpassen und dabei nur wenig geglättet wurden.

Die deutlichsten Veränderungen konnten an den Lagern in den Umfangsrauhigkeiten und -welligkeiten festgestellt werden. Die Glättungstiefe R_p und vor allem die relativ hohe Ausgangswelligkeit W(von 3,4 μ m auf 0,2 ÷ 0,6)wurden stark reduziert. Dabei erzielten die rauheren Wellen 3 und 5 im Lager tangential einen noch stärkeren Glättungseffekt als die glatten Wellen, die bei geringerem Einlaufverschleiß noch eine Restwelligkeit (von ca. 0,6 μ m) im Lager übrig ließen.

Die Veränderungen in der Oberflächengestalt zeigen, daß vor allem die Glättungstiefe und noch stärker die Welligkeit, insbesondere die Umfangswelligkeit, für die Größe des Einlaufverschleißes und die Tragfähigkeit bestimmend sind. Diese Tatsache wird in der Fertigungspraxis zum Teil berücksichtigt. Das Polieren verringert im wesentlichen die Glättungstiefe, bringt aber nur dann einen echten Vorteil, wenn die Umfangswelligkeit dadurch nicht vergrößert wird.

7.4.2 Einlaufspiegel in der Lagerfläche

Die Talyrond-Umfangsschriebe (Abb.42) der eingelaufenen Lager ermöglichen es, die Größe der in den Versuchen von der Welle in das Lager eingegrabenenEinlaufspur zu beurteilen. Es sind zwei Lager als Beispiel aufgezeichnet, die mit Wellen unterschiedlicher Rauhigkeit liefen , Lager 2 mit Welle 2 und Lager 3 mit Welle 3.

Abb.42 Einlaufspiegel an den Lagern nach den Versuchen

- 75 -

Lager 2 zeigt einen Einlaufspiegel von ca. 2 μ m Tiefe, Lager 3 ca. 3 μ m, die Eingrabung liegt jeweils in dem Bereich kleinster Schmierspalte. Ein quantitativer Vergleich des Volumenabtrages aus diesen Bildern mit dem gemessenen Verschleiß scheint zu unsicher, da ein Gebirgsprofil und kein Vollmaterial abgetragen wird, außerdem plastische Verformungen überlagert sein können.

Der Einlaufspiegel ist mit 2 + 3 μ m Tiefe klein gegenüber der gesamten Laufschichtdicke des Lagers von 25 μ m, so daß die Betriebssicherheit durch den gemessenen Verschleiß noch keinesfalls gestört oder gefährdet ist.

7.5 <u>Zusammenhänge zwischen den Oberflächenkennwerten und</u> <u>der kleinsten zulässigen Schmierspaltdicke</u>

Die Gegenüberstellung der gemessenen Oberflächendaten mit den für die Verschleißübergangspunkte gerechneten Schmierspaltgrößen ergibt verschiedene Kriterien des verschleißfreien Laufs für neue und eingelaufene Teile. Bei neuen Teilen sind die Oberflächengebirge der Laufpartner zufällig überlagert, so daß sich für den Beginn der Berührung andere Oberflächeneinflüsse ergeben können als für die eingelaufenen Teile, bei denen die Profile der Laufflächen einander angepaßt sind.

7.5.1 Bedeutung der axialen Rauhigkeitswerte

In der Praxis werden heute noch oft die Axialrauhigkeiten, insbesondere R_{tax}, allein zur Beschreibung einer Oberfläche verwendet. Daher wurde zunächst untersucht, wieweit diese Werte unabhängig von der Umfangscharakteristik eine Aussage zur zulässigen Schmierspaltgröße geben können. In Abb.43 sind dazu die für die neuen Oberflächen ermittelten Übergangsschmierspaltdicken – h_{min üI} für gemessene \bar{p}_{iI} -Werte – als Funktion der axialen R_t-Rauhigkeitssumme von Welle und Schale aufgetragen. Man findet eine recht gute Übereinstimmung der h_{min üI}-Werte mit der Geraden h_{min ü} = $\sum R_t$ und noch besser mit h_{min ü} = $\sum (W + R_t)$, die die verbreitete einfache Annahme unterstützt, daß die Grenze des betriebssicheren Bereiches dort liegt, wo die Schmierspaltgröße die Summe der Rauhigkeitswerte unterschreitet.

Abb.43 Übergangsschmierspaltdicke in Abhängigkeit von der Summe der axialen Rauhigkeitswerte R_t der neuen Teile

Die Grenzlinie $h_{\min \ u} = 4,5 \ \mu m$, der sich die Kurve der $h_{\min \ u}^{-}$ Werte nähert, deutet an, daß auch mit einer weiter verfeinerten Welle ($R_{tW} \longrightarrow 0$) keine Verbesserung mehr eintritt. Diese untere Grenze muß daher durch die Lageroberfläche bestimmt sein. Aus den axial gemessenen Rauhigkeitswerten der Lager läßt sich dieser Wert aber nicht erklären. Ursache war eine relativ hohe Umfangswelligkeit der Lager. Die weiteren Untersuchungen zeigten dann auch, daß die Beziehung $h_{zul} = h_{min \ u} = \sum (W + R_t)$ (axial) zwar aufgrund der Fertigung für neue Teile annähernd zutreffen kann, aber keine eindeutige Aussage über die Tragfähigkeitsgrenze eines Lagers darstellt.

Durch den Einlauf wird der Übergangspunkt entscheidend verschoben. Die zulässige Schmierspaltdicke bis zum Verschleißbeginn - Abb.44 macht diesen Vorgang deutlich - durchschneidet dabei die Niveaulinien der axialen R_t-Werte und geht von h_{.üI} auf einen Wert h_{min üII} nahe 1 μm zurück. Das schraffierte Feld

kennzeichnet den überstrichenen Einlaufbereich.

Faßt man alle $h_{min\ \ddot{u}}$ -Werte vor und nach dem Einlauf zusammen - Abb.45 - und trägt dazu die axialen Rauhigkeitswerte der Welle-Schale-Paarungen (ll ÷ 55) auf, so läßt sich aus diesem Vergleich folgendes über den Einfluß des von der Fertigung gegebenen axialen Rauhigkeitsbildes sagen: Bei den Erst-Übergangswerten zeigt sich, wie bereits in Abb.43 zu erkennen war, eine annähernde Übereinstimmung $h_{min\ \ddot{u}I} = \sum (R_t + W)$. Die Endwerte $h_{min\ \ddot{u}II}$ liegen in der Nähe der Summe der Glättungstiefen. Aus den Axialrauhigkeiten der neuen Wellen und Lager ist keine eindeutige Beziehung zu der erreichbaren Grenztragfähigkeit - ausgedrückt durch $h_{min\ \ddot{u}II}$ - zu erkennen.

Die charakteristischen Axialrauhigkeitswerte, die

- 79 -

Abb.45 Schmierspaltgrößen im Verschleißübergangspunkt vor (h_{.üI}) und nach (h_{min üII}) dem Einlauf im Vergleich mit den axialen Rauhigkeitswerten der Neuteile

Abb.46 Schmierspaltgrößen h_{min üll} und axiale Rauhigkeitswerte nach dem Einlauf

an den eingelaufenen Lager gemessen wurden, zeigen keine für alle Versuche übereinstimmende Relation zu dem Verlauf der h_{min üII}-Größen, die sich in einem Kriterium ausdrücken ließe. Abb.46 macht dies deutlich in dem Vergleich der h_{min üII}-Werte mit den Rauhigkeitsdaten, die für jedes Welle-Schale-Paar ermittelt wurden.

Die erreichbare Endtragfähigkeit eines Lagers nach sorgfältigem Einlauf ist in dem untersuchten Rauhigkeitsbereich $(R_t = 0,5 \div 4 \mu m)$ von dem axialen Rauhigkeitsbild der neuen und gelaufenen Wellen nur wenig beeinflußt. Eine Abhängigkeit ergibt sich nur indirekt dadurch, daß bei den meisten Fertigungsverfahren die Veränderung des axialen Schnittbildes auch eine Änderung in der Umfangsrauhigkeit mitbringt. Im allgemeinen werden dabei beide Größen gleichzeitig verfeinert.

7.5.2 Glättungstiefe und Welligkeit der Oberflächen als Kriterien für die zulässige Schmierspaltgröße

Wenn die Umfangswerte der Rauhigkeit und Welligkeit in die Betrachtungen mit einbezogen werden, lassen sich klare Zusammenhänge aus den Ergebnissen ableiten. Die in tangentialer Richtung gemessene Oberflächengestalt hat bei Lagern und Wellen aufgrund der Fertigungsverfahren eine andere Charakteristik als der Axialschnitt und übt offensichtlich als Profil in Reibrichtung den größeren Einfluß auf das Schmierverhalten und die Tragfähigkeit aus.

Es ist auch hier wieder die Unterscheidung notwendig zwischen der Grenze des verschleißfreien Betriebes bei neuen und eingelaufenen Teilen.

Übergangskriterium für neue Laufflächen:

Aus der Gegenüberstellung der Meßdaten für die Oberflächengestalt der Teile vor den Versuchen und den experimentell ermittelten Übergangsschmierspaltdicken (Abb.47) konnte folgender Zusammenhang gefunden werden:

$$h_{zul I} = h_{min \, \ddot{u}I} = \sum (R_p + W)_{max} + f$$

- 80 -

"max" bedeutet: R_p und W sind Maximalwerte aus Umfangs- und Axialrichtung. f = Wellendurchbiegung im Lager (s. Kap. 7.5.3), R_p = Glättungstiefe, W = Welligkeit. h_{zul I} ist die gesuchte hydrodynamische wirksame Schmierspaltgröße, bei der der erste meßbare Oberflächenabrieb im Lager auftritt. Dieser Wert kann damit als Grenze des rein hydrodynamischen Schmierbereiches bei neuen Oberflächen der Lagerrechnung zugrunde gelegt werden. Die Verhältnisse nach dem Einlauf zeigen aber, daß damit die Tragfähigkeit eines Lagers nicht voll ausgenutzt wird.

In Abb.48 wird die Lagerkennkurve $h_{min} = F(So)$ mit Meßpunkten verglichen, deren Lage sich aus den Verschleißversuchen (Abszissenwerte So_{üI}) und über das Rauhigkeitskriterium $h_{zul \ I} = \sum (R_p + W)_{max} + f$ (Ordinatenwert) ergab. Die gute Übereinstimmung der Meßpunkte mit dem Verlauf der Schmierspaltdicke bestätigt das Übergangskriterium, zumal der Schmierspaltverlauf in diesem Bereich ($\epsilon \leq 0,95$) nicht nur gerechnet ist, sondern auch durch die Verlagerungsmessung in der Absolutgrößte bestimmt wurde (s.Kap. 4.2.3, Abb.16).

Abb.47 Maximalwerte von R und W des zweiachsigen Oberflächenbildes als ^p Kriterium für die Übergangsschmierspaltdicke bei neuen Laufflächen.

- 82 -

Kriterium nach dem Einlauf:

Wenn man zunächst die Beziehung für die neuen Teile auf den eingelaufenen Zustand anwendet, dann findet man, daß dieses Kriterium ohne die Durchbiegung f (s. Kap. 7.5.3) in der Form $h_{min \ \ddot{u}} = \sum (R_p + W)_{max}$ bei den feinbearbeiteten Wellen 1,2,4 in guter Näherung auch dafür gültig ist, wie die strichpunktierte Linie in Abb.49 zeigt. Die Abweichung wird aber bei den Wellen 3 und 5 umsogrößer, je rauher das axiale Oberflächenprofil ist. Die Ursache muß darin liegen, daß die axiale Glättungstiefe R_{pax} gegen R_{ptang} stärker überwiegt und R_{pax} nicht die entscheidende Einflußgröße sein kann. Es wirkt sich bei den rauheren Wellen aus, daß das Lager seine axiale Oberflächenstruktur anpaßt, was bei den sehr glatten Wellen $(R_n + W)$ der Welle weniger deutlich wird. Durch diese Anpassung verlieren die Axialwerte ihren Einfluß auf die effektive Grenzschmierspaltgröße, und es sind allein die Umfangsrauhigkeiten entscheidend, wobei vorausgesetzt ist, daß Welle und Schale bei den hohen Lasten ohne axiale Verschiebung gegeneinander immer auf den gleichen Flächen laufen.

Aus dem Vergleich der Oberflächendaten der Wellen und Schalen nach den Versuchen mit den experimentell ermittelten End-Übergangsschmierspaltdicken (Abb.49) konnte folgendes Kriterium für die zulässige minimale Schmierspaltdicke gefunden werden:

$$h_{zullI} = h_{min \ ull} = \sum (R_p + W)_{tang}$$

Die Größe h_{zulII} begrenzt den sicheren Betriebsbereich reiner Flüssigkeitsreibung der Lager und könnte deshalb bei der Lagerauslegung als Mindestwert angenommen werden. Da die Oberflächenwerte nach dem Einlauf aber bei der Lagerkonstruktion nicht bekannt sind, ist es notwendig, sich auf Versuche zu stützen oder eine Abschätzung vorzunehmen, zu der folgende Hinweise möglich sind:

Für die Welle können die Rauhigkeitswerte des Neuzustandes eingesetzt werden, da sich diese, wie die Versuche gezeigt haben, nicht wesentlich ändern. Die Lageroberfläche glättet sich weitgehend, es wurden in Umfangsrichtung R_p-Werte um 0,3 μ m, W-Werte von 0,2 ÷ 0,6 μ m erreicht. Die Ausgangswelligkeit (3,4 μ m) ist dabei sicher wesentlich und sollte möglichst gering sein. Dies gilt für Lager mit sehr weicher Laufschicht (G 40). Bei harten Lagerschalen kann der Einfluß der neuen Schalenoberfläche größer sein. Die gesamte Betrachtung berücksichtigt nicht die thermische Belastungsgrenze des Lagers.

In Abb.50 sind die Meßpunkte für h_{zulII} - nach obiger Formel aus den Oberflächendaten ermittelt - entsprechend Abb.48 in das Verlagerungsdiagramm $h_{min} = F(So)$ zum Vergleich mit der über die hydrodynamische Rechnung bestimmten Schmierspaltgröße eingetragen. Dabei zeigt sich, daß die Übereinstimmung Messung-Rechnung noch besser ist, wenn die Schmierspaltgröße mit einer mittleren Viskosität berechnet wird, in der T_L als Maß für die Ölausgangstemperatur stärker als in dem üblichen Mittelwert 1/2 ($\mathscr{P}_E + \mathscr{P}_L$) berücksichtigt wird, in diesem Fall durch $\mathscr{P}_m = 1/3$ ($\mathscr{P}_E + 2\mathscr{P}_L$). Dies ist ein Hinweis, daß die Wahl der richtigen effektiven Viskosität auch von der Exzentrizität abhängig ist (s. Kap. 4.2 und 8.).

- 83 -

Abb.49 Vergleich der Übergangsschmierspaltdicken mit den Rauhigkeitswerten R_D und W

Abb.50 Glättungstiefe und Welligkeit in Umfangsrichtung als Kriterien für die zulässige Schmierspaltdicke nach dem Einlauf

7.5.3 Einfluß der Wellendurchbiegung im Lager

In Abb.51 ist die berechnete Durchbiegung der Prüfstandswelle in den Lagern in Abhängigkeit von der mittleren spezifischen Lagerlast p aufgetragen.

In dem Bereich der Übergangslasten $\overline{p}_{UI} = 40 \div 60 \text{ kp/cm}^2$ bei neuen Teilen ist f mit ca. 0,2 µm klein gegenüber den Rauhigkeitswerten, so daß es in der Summe der Rauhigkeitswerte, die das Kriterium für den Verschleißübergang bilden, keinen entscheidenden Einfluß ausübt. Die Durchbiegung f ist aber auf jeden Fall in dem Kriterium für die zulässige Schmierspaltgröße bei Neuteilen als Summand enthalten und kann bei größeren Werten wichtig sein.

Bei den hohen Lasten nach dem Einlauf ($200 - 240 \text{ kp/cm}^2$) wird die Durchbiegung zwar mit 0,7 - 0,8 µm wesentlich größer und kommt in dem Absolutmaß in den Bereich der Rauhigkeiten und Schmierspaltgrößen, die Mantellinienschriebe der Lager nach den Versuchen zeigten aber, daß die Lageroberfläche sich durch Einlaufverschleiß oder plastische Verformung der Wellenkrümmung unter den hohen Lasten angepaßt hat. Abb.52 zeigt am Beispiel des Lagers 2 den typischen Verlauf der axialen Lager-

- 85 -

mantellinie im Bereich des minimalen Schmierspaltes. Die Mantellinie war nach dem Versuch abweichend vom Neuzustand symmetrisch zur Lagermitte nach außen um ca. 1 μ m grkrümmt, dies entspricht in etwa der maximalen Wellendurchbiegung von 0,85 μ m.

Abb.52 Mantellinienschrieb eines Lagers in der h_{min}-Zone nach dem Einlauf; Anpassung an die Wellendurchbiegung

7.7 <u>Verschleißberechnung über eine statistische Oberflächen-</u> <u>analyse</u>

Die in der Praxis meist verwendeten Oberflächenkennwerte R_t, R_a, R_p usw. geben eine nur unvollständige Beschreibung einer technischen Oberfläche und können vor allem über das Reibungs- und Verschleißverhalten nur wenig aussagen [58]. Es wurde daher in verschiedenen Arbeiten versucht (z.B. [58]), erweiterte Kriterien zu finden.

Eine Möglichkeit, das Oberflächengebirge als ganzes zu erfassen und mathematisch zu beschreiben, besteht darin, die Spitzenhöhen und -steigungen als zufällige Ereignisse in Verteilungsfunktionen zusammenzufassen. Mit diesen Funktionen kann die Oberflächengeometrie dann auch in die hydrodynamische Theorie oder in analytische Reibungs- und Verschleißbetrachtungen einbezogen werden.

In diesem Abschnitt ist eine solche statistische Analyse für drei Wellen verschiedener Rauhigkeit und ein Lager beschrieben und durchgeführt. Mit Hilfe der gewonnenen Verteilungsfunktionen wurden die Verschleißmengen in Abhängigkeit von der Oberflächengestalt berechnet, darauf das Rechenergebnis mit den gemessenen Abriebmengen verglichen. Der Vergleich sollte Auskunft darüber geben, ob sich diese mathematischstatistischen Analyse- und Berechnungsmethoden, die für ebene Flächen entwickelt wurden, auch auf das Verschleißproblem der Gleitpartner Welle-Schale im Lager übertragen lassen, und ob die statistische Oberflächenanalyse Kenndaten liefern kann, aus denen Aussagen über das Verschleißverhalten abgeleitet werden können.

7.7.1 Beschreibung der Oberflächen durch die Verteilungs-

funktionen der Höhen- und Steigungswerte

Die reale Oberfläche stellt ein Gebirge dar, das in jedem Flächenpunkt (x,y) eine Höhenkoordinate Z = f(x,y) und Steigungswerte $Z_x = df/dx$ und $Z_y = df/dy$ aufweist. Die x-y-Ebene ist als mittlere Profilebene so gewählt, daß - entsprechend der Profilmittellinie im 2-achsigen Schnitt, die Volumenanteile über und unter der Ebene ausgeglichen sind, d.h. es gilt

$$\iint \mathbb{A}_n f(x,y) dx dy = 0.$$

Alle Höhen- und Steigungswerte treten mit bestimmter Häufigkeit auf und können durch eine Verteilungsfunktion beschrieben werden. Zur Ermittlung der Verteilungsfunktion und ihrer charakteristischen Größen müssen aus dem Profil mit unendlich vielen Flächenpunkten eine ausreichende Zahl von Stichproben herausgegriffen werden, die repräsentativ sind für das gesamte Bild. Dazu wurden praktisch aus je 300 mm PerthometerProfilschrieb der x und y-Richtung (ax und tang) 100 über Zerfallszahlen [60] festgelegte zufällige Meßstellen herausgegriffen und in diesen Stellen der Höhenwert Z(Xy) sowie die Steigung Z_x bzw. Z_y gemessen. Abb. 53 zeigt einen axialen Profilausschnitt mit einer Meßstelle x_i , in der die Werte Z und Z_x ermittelt wurden.

Abb.53 Ermittlung von Z und Z in einem Profilpunkt X.

Die so gewonnenen Wertegruppen Z(x), Z(y), Z_x , Z_y lassen sich für jede untersuchte Fläche zu Verteilungsbildern,wie in Abb.55 für Welle 5,zusammenfassen, in denen die prozentuale Häufigkeit der Werte über dem Größenbereich aufgetragen ist.

Die Höhen- und Steigungsverteilung folgt in guter Näherung einer Gaußfunktion, wie ein Anpassungstest nach der χ^2 -Methode [37] bestätigte.

Charakteristische Kenngröße dieser Verteilungsfunktion ist die Varianz h als halbe Breite der Glocke (Abb.55) im Wendepunkt der Verteilungskurve. Der Wert von h errechnet sich aus den Meßwerten nach der Beziehung

$$h = \sqrt{\frac{1}{n-1} \Sigma (Z-Z_m)^2}$$

Die Auswertung der Profilschriebe des Lagers und der drei untersuchten Wellen ergaben folgende Werte für die Varianzen:

 h^{u} = Varianz der Höhenwerte Z in Umfangsrichtung (y) h^{a} = Varianz der Höhenwerte in Axialrichtung (x) h^{u}_{y} = Varianz der Steigungen in Umfangsrichtung (y) h^{a}_{x} = Varianz der Steigungen in Axialrichtung (x) h_y^u und h_x^a sind keine Absolutgrößen, sondern Proportionalmaße für die Steigungen. Dies erleichtert die Auswertung und genügt für die vorliegenden Relativbetrachtungen.

		h ^u · 10 ⁻¹ µm	h ^a ·10 ⁻¹ µm	hyu	h ^a x
Lager		4,7	5,05	2,92	12,1
Welle	2	. 1,34	1,41	2,15	26,0
Welle	3	3,03	5,27	2,19	33,8
Welle	5	4,26	8,85	3,4	32,7

Tabelle	7:	Varianzwerte	der	Höhen-	und	Steig	ungs-
		verteilung de	er Ol	berfläcl	nen		

Die Varianz der Gesamthöhenverteilung einer Fläche ergibt sich aus den Einzelvarianzen der Axial- und Umfangsrichtung bei gleicher Stichprobenzahl in x- und y-Richtung als

$$h = \sqrt{1/2 (h^{u^2} + h^{a^2})}.$$

7.7.2 Berechnung des Verschleißmengenquotienten für die Reib-

partner verschiedener Rauhigkeit

Rabinovic [24] gibt für die Gesamtverschleißmenge beim Reibkontakt metallischer Oberflächen an:

$$V \sim \sqrt{\frac{1}{n}}$$

n ist die Anzahl der realen Kontaktpunkte, in denen sich zwei Oberflächen der Gesamtfläche A unter einem bestimmten Druck P berühren. Der Verschleiß bezieht sich auf den Reibpartner mit der geringeren Materialhärte.

Da für die metallische Berührung im Gleitlager weder die Gesamtfläche mit den verteilten Kontaktpunkten noch der Druck P in den Kontaktstellen exakt gegeben sind, ist die vorliegende Untersuchung auf eine Relativbetrachtung beschränkt, in der Verschleißmengen bei gleichen Druck- und Geometrieverhältnissen, gerechnet und gemessen, verglichen werden.

$$v_3/v_2 = \sqrt{n_2/n_3}$$

mit V₃, n₃: Verschleißmenge im Lager und Anzahl der Kontaktstellen der Welle 3 mit dem Lager.

Abb.54 Ordinaten- und Steigungsverteilung mit Varianzen der Welle 5

Für die Bestimmung der Anzahl n der realen Kontaktpunkte zweier Oberflächen gibt die Literatur verschiedene Theorien an. Es wird hier die Berechnungsmethode von Kimura [59] verwendet, da sie von einer sehr genauen, allgemeinen Oberflächenbeschreibung durch die statistische Verteilung ausgeht und damit für beliebige Oberflächen gültig ist. Auf die nähere Beschreibung der Ableitung wird verzichtet.

Die Zahl der Kontaktstellen beträgt [59]:

$$n = \frac{h_{xe}^{a} \cdot h_{ye}^{u}}{h_{e}^{2}} \cdot \frac{1}{4\pi^{2}\lambda} \cdot \frac{P_{m} \cdot A_{n}}{P} \exp \left[-2 \left(\text{erfc}^{-1} \frac{2P}{P_{m} \cdot A_{n}} \right)^{2} \right]$$

$$K_{R}$$
B

In dem Rauhigkeitsfaktor K_R sind die oberflächenspezifischen Varianzen zusammengefaßt. h_e ist eine"äquivalente Varianz" der beiden Kontaktflächen.

$$h_e = \sqrt{h_1^2 + h_2^2}$$
.

Die Betriebsvariable B enthält:

λ

- p_m = Materialhärte des weicheren Partners,
- A_n betrachtete Gesamtfläche, P = Belastung,

Formfaktor der Kontaktflächen.

B bleibt konstant, wenn Belastung, Geometrie und Material nicht verändert werden. Das bedeutet, daß bei der Quotientenbildung der Teil B durch Kürzung wegfällt und in der Verhältniszahl n_2/n_3 nur noch die von der Oberflächengeometrie abhängigen Rauhigkeitsfaktoren K_{B2} und K_{B3} übrig bleiben.

$$(V_3/V_2)_{\text{theor.}} = \sqrt{K_{R2}/K_{R3}}$$

In den Lagerversuchen ist die Bedingung B = konst. erfüllt, da die Geometrie der Reibteile gleich ist ($A_n = konst$) und weil Versuche mit gleicher Belastung \overline{p} verglichen werden.

Die Faktoren K_{R2}, K_{R3}, K_{R5} wurden aus den Varianzen der Oberflächenwerte der Wellen und Lager bestimmt und daraus die Verschleißquotienten errechnet, die mit den Ergebnissen der Messung verglichen werden sollen.

7.7.3 Vergleich gerechnete - gemessene Verschleißmengen, Ergebnis und Aussage der Rechnung

Die Oberflächenauswertung und die Abriebvergleichsrechnung wurden für die in der Rauhigkeit deutlich verschiedenen Wellen 2,3,5 und jeweils gleiche Lager durchgeführt. Dies ergab über die Rauhigkeitsfaktoren K_{R2}, K_{R3}, K_{R5} für die Reibpaarungen Welle + Lager folgende theoretische Verschleißquotienten:

 $(V_3/V_2)_{\text{theor}} = 1,18 (V_5/V_3)_{\text{theor}} = 1,16 (V_5/V_2)_{\text{theor}} = 1,38$

Für den Vergleich wurden aus den Verschleißversuchen diejenigen Abriebmengen in Beziehung gesetzt, die an den Lagern vom Neuzustand bis zu einer identischen Belastung vom $\overline{p} = 130 \text{ kp/cm}^2$ am Ende des 2. Versuchsabschnittes (Kap. 7.3.2) gemessen wurden. Damit ist am Beginn die Anpassung an den der Rechnung zugrundegelegten Oberflächenanfangszustand gegeben, am Ende ist bei geringer Oberflächenveränderung die Bedingung gleicher Flächenbelastung mit P = konst erfüllt. Die gemessenen Verschleißmengen betragen V₂ = 1320 μ g, V₃ = 1610 μ g, V₅ = 1850 μ g, daraus ergeben sich die gemessenen Verschleißquotienten:

 $(v_3/v_2)_{gem} = 1,22$ $(v_5/v_3)_{gem} = 1,15$ $(v_5/v_2)_{gem} = 1,41$

Der Vergleich der auf zwei völlig verschiedenen Wegen gewonnenen Werte zeigt eine recht gute Übereinstimmung zwischen der Rechnung und den experimentell ermittelten Daten. Aus dieser Übereinstimmung können folgende Schlüsse gezogen werden:

Es ist offensichtlich möglich, theoretische Verschleißbetrachtungen,wie im gegebenen Fall, die von relativ einfachen Modellen abgeleitet sind, auch auf den praktischen Reibmechanismus des Gleitlagers im Mischreibungsgebiet anzuwenden und daraus zumindest qualitative Aussagen über das Abriebverhalten z.B. beim Einlauf zu gewinnen. Die Verteilungsfunktionen der Höhenwerte und Steigungen mit den Varianzen h und h_x für Umfangsund Achsrichtung geben nicht nur eine gute Beschreibung der Oberflächengeometrie sondern beinhalten auch Aussagen über das zu erwartende Verschleißverhalten eines Lagers.

Der Rauhigkeitsfaktor K_R (Kap. 7.3.2), in dem die Varianzen von Höhen und Steigungen des Rauhigkeitsgebirges in der folgenden Form verbunden sind

stellt eine wichtige Einflußgröße für das Reibungs- und Verschleißverhalten einer Oberflächenpaarung dar.

Mit dieser Kenngröße K_R ist es unter Umständen möglich, durch statistische Oberflächenanalysen bei der Entwicklung günstiger Oberflächen Abschätzungen über die zu erwartenden Abriebverhältnisse zu machen. 8. EINFLUSS DER DREHZAHL AUF DIE TRAGFÄHIGKEIT UND DIE WIRKSAME ÖL-VISKOSITÄT IM LAGER

Eine Drehzahlsteigerung führt im hydrodynamisch geschmierten Lager zu zwei gegenläufigen Auswirkungen:

- a. Die Tragfähigkeit wird erhöht durch verbesserten Druckaufbau
- b. Die erhöhte innere Reibung im Schmieröl bedingt einen Temperaturanstieg und damit eine Abnahme der Belastbarkeit durch verringerte Viskosität.

Diese überlagerten Einflüsse erschweren eine exakte theoretische Bestimmung der Tragfähigkeit, zumal der zweite Effekt (b) von den Wärmeübergangsverhältnissen, also dem konstruktiven Aufbau des Lagers, abhängig ist. Es wurden deshalb Übergangsversuche bei verschiedenen Drehzahlen zwischen 200 und 3000 U/min durchgeführt. Die Ergebnisse dieser Versuche – Übergangslasten $\overline{p}_{U\ II}$ nach beendetem Einlauf – sind in Abb.55 zusammengefaßt. Der Einfluß der inneren Reibung – Viskositätsverringerung – nimmt mit steigender Drehzahl zu und überwiegt ab einer bestimmten Grenze gegenüber der Wirkung der erhöhten Differenzgeschwindigkeit Welle – Schale. Dies führt dazu, daß die maxi-

mal zulässige Last bei ca. 800 U/min ein Maximum durchläuft und dann erheblich zurückgeht.

Berechnet man zu den gemessenen Übergangslasten \bar{p}_{UII} mit dem üblichen Viskositätsmittelwert $\eta_m = 1/2 (\eta_E + \eta_L)$ die Übergangswerte c_{Üv} [1], so erhält man den Verlauf Abb.56. Die Übergangswerte liegen bis 1000 U/min zwischen 3,6 und 4,8 und fallen dann über 1000 U/min bis zu Werten um c_{Üv} = 1 bei 3000 U/min ab. In dem untersuchten Drehzahlbereich erfolgt ein Übergang von der "unteren" zur "oberen" Betriebsgrenze des Lagers, wobei die Einflüsse überlagert sind und keine feste Grenze festzulegen ist. Das gemeinsame Kriterium aller Meßpunkte ist der Verschleißbeginn, unabhängig davon, ob er durch hohe Last bei niederer Drehzahl oder hohe Drehzahl bei konstanter Last erreicht wurde. Daher scheint es berechtigt, alle Übergangspunkte in einem Diagramm zusammenzufassen und zu vergleichen.

Abb.56 In Verschleißversuchen ermittelte Übergangswerte bei verschiedenen Drehzahlen

Aus den Übergangslasten lassen sich mit den übrigen Betriebsdaten die Übergangssommerfeldzahlen und die Übergangsschmierspaltdicken ermitteln. Die erhaltenen Werte sind in Abb.57 in Abhängigkeit von der Drehzahl aufgezeichnet. Für die Berechnung wurde dabei wieder die mittlere Viskosität $\gamma_{\rm m} = 1/2$ ($\gamma_{\rm E} + \gamma_{\rm L}$) zugrundegelegt.

Abb.57 Experimentell ermittelte Abhängigkeit der Grenztragfähigkeit So_{ull} und der zulässigen theoretischen Schmierspaltdicke n_{min üll} von der Drehzahl

Die Grenz-Sommerfeldzahl So_{ü II} geht von ca. 60 bei sehr niederer Drehzahl auf ca. 10 bei 3000 U/min zurück, die theoretische Minimal-Schmierspaltgröße steigt von 1 auf ca. 4 µm an. Dieser Verlauf macht deutlich, daß bei Annahme einer festen Formel für die mittlere Ölviskosität – wie hier $\gamma_m = 1/2 (\gamma_E + \gamma_L)$ – weder die Sommerfeldzahl noch die zulässige kleinste Schmierspaltdicke ein brauchbares Kriterium für die Betriebssicherheit über einen größeren Drehzahlbereich darstellen. So_{zul} und h_{min zul} können nur dann eine eindeutige Aussage zum Schmierzustand bzw. zum sicheren, verschleißfreien Lauf geben, wenn gleichzeitig Angaben zu den Einfluß-Parametern γ , \bar{p} , ψ und vor allem n gemacht werden.

Die Verschleißversuche bestätigen damit die Aussagen, die verschiedene Verfasser [6,9], insbesondere Motosh, aufgrund einer hydrodynamischen Theorie gefunden haben, in der für die Ölviskosität nicht ein konstanter Mittelwert, sondern eine temperaturabhängige Funktion angenommen wird.

Aus der Forderung, daß beim Übergang in den Verschleißbereich die wirksame Schmierspaltdicke $h_{min\ U}$ - bei gleicher Oberflächenbeschaffenheit - unabhängig von Last und Drehzahl mit guter Näherung gleich sein muß, ergibt sich eine Möglichkeit, experimentell die Gültigkeit der Schmierspaltberechnung im Grenzbereich des Übergangs in das Mischreibungsgebiet zu beurteilen oder für bestehende Theorien die richtige Viskositätsannahme zu ermitteln. Aus der Bedingung $h_{min\ U\ II}$ = konst. wurde die Korrekturkurve Abb.58 für die mittlere, wirksame Öl-Viskosität im Lager abgeleitet. Der Absolutwert von $h_{min\ U\ II}$, der die Viskositäts-Drehzahlkurve allerdings nur parallel verschiebt und den Verlauf nicht ändert, wurde aus dem Oberflächenkriterium (Kap. 7.5) als Abstand der Profilmittellinien bestimmt.

Abb.58 Die mittlere, effektive Viskosität im Lager in Abhängigkeit von der Drehzahl

Während bei niederen Drehzahlen die Annahme $\gamma_m = 1/2$ ($\gamma_E + \gamma_L$) zulässig ist, muß mit zunehmender Drehzahl, um den Schmierfilm im Übergangsbereich richtig zu berechnen, die wirksame Viskosität der Viskosität bei Ölausgangstemperatur angenähert werden.
VERSCHLEISSVERHALTEN UND ÜBER-9. GANGSPUNKTE BEI SINUSFÖRMIG WECHSELNDER LAST

9.1 Informationsziele und Versuchsprogramm

Bei dynamischer Last herrschen im Schmierfilm aufgrund der Verdrängungswirkung und geänderter Temperaturverteilung andere Bedingungen als im statischen Fall. Der kleinste minimale Schmierspalt tritt nicht dauernd auf, sondern nur mit einem bestimmten zeitlichen Anteil, dazwischen erfolgt eine Entlastung des Lagers mit Zwischenkühlung. Dies ändert die zulässige Belastungsspitze und beeinflußt das Verschleißverhalten.

Die Versuche in diesem Abschnitt sollten Aufschluß bringen über die Größe des verschleißfreien Laufbereiches bei dynamischer Last im Vergleich zu den Ergebnissen bei stationärer Belastung. Dazu wurde bei sonst gleichen Bedingungen (Öl, Ψ , D,B/D) wie bisher das Lager im Prüfstand abwechselnd statisch und sinusförmig schwellend so hoch belastet, bis ein Verschleißanstieg festzustellen war. Auf diese Weise wurden bei jeweils annähernd gleichem Einlaufzustand statische und dynamische Übergangspunkte $\overline{p}_{\ddot{u}}$ ermittelt. Es wurden die Übergangsschmierspaltgrößen h_{üstat} und h_{udvn} errechnet und miteinander verglichen, so daß sich Aussagen über den Verdrängungs- und Temperatureinfluß des dynamischen Lastbetriebs ergaben.

Die Oberflächenrauhigkeit wurde nicht variiert, sie entsprach der Welle 5 in Kap. 7.2. Die Drehzahl betrug konstant n = 1000 U/min. Die Belastung setzte sich aus einer statischen Grundlast und einem sinusförmig wechselnden dynamischen Anteil zusammen (s.Abb.59).

 $\overline{p}_{dyn} = \overline{p}_{stat} + \overline{p}_{sin} \cdot \sin \lambda t$

Verhältnis Lastfrequenz/Drehfrequenz = λ/W = 2,5 bei n = 1000 U/min. b≉ – standing and standing and standing and standing at the standing of the standing of the standing of the st And the standing of the standing

- 98 -

Die Bewegung des Zapfenmittelpunktes als Reaktion auf die wechselnde Kraft wurde nach der hydrodynamischen Rechnung von Schaffrath [13] durchgeführt. Abb.59 zeigt für einen Lastpunkt den zeitlichen Verlauf der mittleren Lagerlast \tilde{p}_{dyn} und der theoretisch ermittelten kleinsten Schmierspaltdicke h. Der minimal vorkommende Abstand h_{min} von Welle und Schale ist die Größe, deren Grenzwert in den Verschleißversuchen bestimmt wird, und die mit den minimalen Schmierspaltdicken bei statischer Last verglichen wird. Abb.60 zeigt als Ergänzung die Lage und Größe der Verlagerungsbahn des Wellenmittelpunktes im Spielkreis sowie die Winkellage von h_{min}. Diese Bahn wird pro Wellenumdrehung 2,5 mal durchlaufen.

9.3. Ergebnisse; Vergleich der Tragfähigkeit bei statischer und wechselnder Last

In allen Versuchen zeigte sich eine deutliche Verschiebung des Verschleißanstiegspunktes zu höheren \overline{p}_{max} -Werten unter dynamischer Last gegenüber dem statischen Betrieb bei vergleichbarem Einlaufzustand. Der Ablauf und das Ergebnis von zwei Vergleichsversuchen dynamisch-statisch ist in Abb.61 deutlich gemacht. Die Maximallast wurde von der statischen

Abb.61 Verschleiß- und Temperaturverlauf bei statischer und dynamischer Belastung

- 100 -

Grundlast $\bar{p}_{o} = 120 \text{ kp/cm}^{2}$ aus zunächst durch eine steigende Sinuslast erhöht. Bei $\bar{p}_{max} = \bar{p}_{üdyn} = 230 \text{ kp/cm}^{2}$ ergab sich der gesuchte Verschleißanstiegspunkt, der aus der Verschleißkurve nach dem Grenzverschleißkriterium ($\dot{v}_{ii} = 90 \text{ µg/h}$) ermittelt wurde (Kap. 4.12). Bei rein statischer Laststeigerung setzte der kritische Verschleißanstieg schon bei $\bar{p}_{iistat} =$ 180 kp/cm² ein.

Der Temperaturverlauf (Abb.61) macht den Einfluß der Zwischenkühlung und des geänderten Öldurchsatzes deutlich. Die Lagertemperatur geht von dem Betriebspunkt der statischen Grundlast 120 kp/cm² trotz Erhöhung des Sinusanteiles, also auch Erhöhung der maximalen Exzentrizität, zunächst etwas zurück und steigt erst im Bereich des Verschleißübergangs leicht an.

In Abb.62 sind die Ergebnisse von vier solchen Versuchspaaren statisch-dynamisch aufgetragen, die aufgrund des gleichen Einlaufzustandes jeweils verglichen werden können. Die Werte $\overline{p}_{\ddot{u}dyn}$ liegen alle deutlich über den statischen Lastwerten. Zwischen diesen Versuchen zum Verschleißanstiegspunkt wurde

Abb.62 Übergangslasten bei statischer und schwellender Belastung die Last dynamisch in kleinen Schritten erhöht, wobei sich zeigte, daß der Verschleiß auch bei wechselnder Last einer charakteristischen Stufeneinlaufkurve (s.Abb.18 und 32) ähnlich der des statisch belasteten Lagers folgt.

Die nach dem Einlauf erreichte dynamische Maximallast, die auch bei mehrfacher Wiederholung keine weitere Verschiebung brachte, ergab sich als $\overline{p}_{\ddot{u}dyn} = 300 \text{ kp/cm}^2$ mit einem statischen Grundanteil von $\overline{p}_0 = 140 \text{ kp/cm}^2$ und einer Sinusamplitude von 160 kp/cm². Der Übergang bei diesem Höchstwert der Last zeigt sich im Gegensatz zum statisch belasteten Lager nicht in einem kritischen Temperaturanstieg und in der Neigung zum Fressen, sondern in einem Anstieg zu einem zumindest für kurzzeitigen Betrieb ungefährlichen Dauerverschleiß.

Wichtig ist nun der Vergleich der theoretischen Übergangs-Schmierspaltgrößen für statische und dynamische Last. In Abb.63 sind die Schmierspaltverläufe in Abhängigkeit von der mittle-

ren Belastung \overline{p}_{\max} aufgetragen, wobei der dynamischen Rechnung (durchgezogene Linie) eine Öl-Viskosität $\gamma_m = 1/2 (\gamma_E + \gamma_L)$ zugrundegelegt ist, für die statische Rechnung (gestrichelte Linien) wurde zur Gegenüberstellung zunächst die gleiche 7-Formel (obere Kurve) verwendet, die zweite Kurve wurde mit $q_{\rm m} = 1/3$ ($q_{\rm E} + 2\eta_{\rm L}$) gerechnet. In diesem Verlagerungsbild interessiert vor allem die Lage der experimentell ermittelten Übergangspunkte. Wegen der besseren Übersichtlichkeit ist von den vier Vergleichsversuchen nur ein Punktpaar $\overline{p}_{ustat}/\overline{p}_{udyn}$ eingetragen, und zwar das Ergebnis des Übergangsversuches Abb.61. Die zu diesen \overline{p}_{ii} -Größen errechneten Übergangsschmierspaltdicken h_{min ü}(stat + dyn) müssen, wenn die Rechnung richtig ist, annähernd übereinstimmen, da der reale Abstand Welle - Schale beim Verschleißbeginn bei gleichen Oberflächen bei statischer und schwellender Last gleich sein muß. Die \overline{p}_{ij} -Werte sind durch strichpunktierte Linien mit den h_{min ü}-Werten verbunden.

Es zeigt sich, daß bei der Annahme des gleichen Mittelwertes $\gamma_{\rm m} = 1/2$ ($\gamma_{\rm E} + \gamma_{\rm L}$) für die Schmierspaltberechnung die notwendige Übereinstimmung nicht vorliegt. Gleiches h_{min ü} für statische und schwellende Last ergibt sich dann, wenn die statische Rechnung mit der Viskosität $\gamma_{\rm m} = 1/3$ ($\gamma_{\rm E} + 2\gamma_{\rm L}$) durchgeführt wird, die sich bereits in den Oberflächenuntersuchungen (Kap. 7.5) als richtig erwies, die Berechnung der dynamischen Verlagerung dagegen mit dem einfachen Mittelwert $\gamma_{\rm m} = 1/2$ ($\gamma_{\rm E} + \gamma_{\rm L}$) erfolgt. Dies gilt für alle gemessenen Übergangspunkte.

Aus diesem Ergebnis kann geschlossen werden, daß bei dynamisch wechselnder Belastung in Form einer Sinus- oder Schwelllast die Viskositätsannahme $\gamma_m = 1/2 (\gamma_E + \gamma_L)$ bis zu sehr hohen Exzentrizitäten, in denen sich die Oberflächenspitzen berühren und der erste Verschleiß auftritt, für die Berechnung der minimalen Schmierspaltgröße berechtigt ist. In diesem Falle können aufgrund der Übereinstimmung der Übergangsschmierspaltdicken die Oberflächenkriterien für die zulässige kleinste Schmierspaltdicke, die für statische Last experimentell gefunden wurden, auch auf das dynamisch belastete Lager übertragen werden.

10. Z U S A M M E N F A S S U N G

Die Aufgabe der vorliegenden Arbeit bestand darin, mit Hilfe von Radionuklid-Meßverfahren das Verschleißverhalten von hydrodynamisch geschmierten Gleitlagern grundsätzlich und unter dem Einfluß der Werkstoffe sowie insbesondere der Oberflächengestalt von Welle und Schale zu untersuchen. Dabei war es das Ziel, aus den Meßergebnissen Aussagen und Kriterien über die zulässige Belastung und die kleinste zulässige Schmierspaltdicke zu finden, die als Hilfsmittel für die optimale Auslegung und als Hinweise für den sicheren Betrieb und den richtigen Einlauf eines Lagers dienen können.

Isotopentechnik und Lagerprüfstand:

Aktivierungsanalytische Untersuchungen ergaben, daß es möglich ist, alle bleihaltigen Lagermaterialien durch Deuteronenbeschuß so zu aktivieren, daß Verschleißmessungen an den Lagern nach den bestehenden Isotopenmeßverfahren durchgeführt werden können. Es wurde eine Bestrahlungsvorrichtung gebaut, um beliebige Zonen der Lagerlauffläche örtlich gleichmäßig zu aktivieren.

Für die Lagerversuche unter hohen statischen und dynamischen Lasten wurde eine Versuchsanlage aufgebaut. Wichtige Teile der Anlage, insbesondere der Meßkopf und der Belastungsprüfstand, wurden neu entwickelt, um die besonderen Anforderungen der vorliegenden Versuche zu erfüllen.

Ergebnisse und Aussagen der Verschleißversuche:

Die Versuche gaben Aufschluß über das grundsätzliche Verschleißverhalten der Lager bei statischer und sinusförmig wechselnder Last sowie über die Grenzen des verschleißfreien Lastbetriebs. Die Übergangspunkte in das Verschleißgebiet verschieben sich durch Abtrag und Glättung des Lagers von relativ niederen Anfangswerten zu hohen Endlasten nach abgeschlossenem Einlauf.

Einfluß der Materialpaarung Welle - Schale:

Es wurden zwölf verschiedene Werkstoffpaarungen Welle-Schale untersucht. Der Verlauf und die Menge des Abriebs sind deutlich vom Material, insbesondere der Wellenhärte, beeinflußt.

- a. Der Übergangspunkt in das Verschleißgebiet als Grenze für den rein hydrodynamischen Betrieb verschiebt sich bei gleichem Laufprogramm im Einlauf abhängig von dem Wellenmaterial zu verschieden hohen Werten. Die Lager mit den härteren Wellen erreichten bei weniger Verschleiß höhere Übergangswerte.
- b. Die Unterschiede im Verschleiß- und Temperaturverlauf bei stufenweiser Lasterhöhung machen deutlich, daß ein optimales Einlaufprogramm für das Lager der Materialpaarung angepaßt sein muß.
 - Die Bronzelager zeigten im Lauf mit gehärteten Wellen bei jeder Laststufe kritische Verschleiß- und Temperatursprünge, die bei zu großen Laststufen zum "Fressen" führen können. Die ungehärtete Welle und das weiche Dreischichtlager sind weniger empfindlich.
- c. Der Quotient Wellenhärte/Schalenhärte erwies sich als wichtigstes Kriterium für die im Einlauf abgetragenen Verschleißmengen. Bei einem Härteverhältnis > ca. 20:1 trat wenig Verschleiß auf, unter dieser Grenze steigen die Abriebmengen sehr schnell an.
- d. Als günstigste, verschleißarme Materialpaarung zeigte sich die Kombination einer nitrierten Welle mit einem Dreischichtlager. Die Paarung ungehärtete Welle/Dreischichtlager war - Wellen- und Schalenverschleiß betrachtet - günstiger als die Verbindung harte Welle/ Bronzelager. In bestimmten Anwendungsfällen ist damit beim Einsatz des Dreischichtlagers der Verzicht auf eine teure Zapfenhärtung denkbar.

Oberflächengestalt und zulässige Schmierspaltgröße:

Versuche mit Wellen gestufter Oberflächenrauhigkeit (R_t zwischen 0,5 und 4 µm) und Dreischichtlagern zeigten, daß das Verschleißverhalten im Einlauf und die Tragfähigkeit der Lager entscheidend durch die Oberflächengestalt der Laufpartner, insbesondere der Welle, beeinflußt sind. Es wurden zu den experimentell ermittelten Übergangsbetriebspunkten die Schmierspaltgrößen errechnet und aus deren Beziehung zu den charakteristischen Oberflächendaten in Umfangs- und Axialrichtung Kriterien für die zulässge Übergangsschmierspaltdicke im Lager am Beginn und Ende des Einlaufvorganges abgeleitet.

- a. Die Bedeutung der in der Praxis noch oft allein betrachteten Axialrauhigkeit der Laufflächen wurde zunächst getrennt untersucht. Dabei ergab sich für noch nicht gelaufene, neue Oberflächen in einem gewissen Bereich eine recht gute Übereinstimmung der Grenzschmierspaltgröße mit der Summe der Rauhigkeitsmaximalwerte R_t von Welle und Schale. Diese Übereinstimmung ist aber durch die zufällige, fertigungsbedingte Oberflächencharakteristik bestimmt und nicht allgemein gültig, was sich darin zeigte, daß im Endzustand keine Beziehung mehr zwischen Axialrauhigkeit und Schmierspaltgröße zu finden war.
- b. Kriterium für neue Laufflächen: Bei nicht eingelaufenen, neuen Lageroberflächen, die in zufälliger Lage durch Laststeigerung einander angenähert wurden, sind die Maximalwerte der Glättungstiefe R_p und Welligkeit W von Umfangs- und Axialrichtung und die Wellendurchbiegung f für die wirksame Schmierspaltgröße beim Verschleißbeginn entscheidend:

$$h_{zull} = h_{min \ ull} = \sum (R_p + W)_{max} + f$$

c. Kriterium für den Zustand nach dem Einlauf: Die Oberflächen der Reibpartner sind geglättet und axial angepaßt. Die Übergangsformel enthält nur noch die Oberflächenkennwerte

R_n und W der Umfangsrichtung (tang).

 $h_{zullI} = h_{min \ ullI} = \sum (R_p + W)_{tang} (+f)$

Dies ist die Grenzschmierspaltgröße, die nach beendetem Einlauf der Lager den sicheren, verschleißfreien Betriebsbereich begrenzt. Es wurden Werte zwischen 0,9 und 1,3 μ m erreicht. Die Wellendurchbiegung f wurde in den vorliegenden Versuchen durch Einlaufanpassung ausgeglichen, so daß sie nicht in der Beziehung für h_{zul} auftritt. Bei größeren Werten und vor allem bei instationärer Last muß sie sicher als Summand bei dem Kriterium auftreten.

- d. Eine Oberflächenanalyse nach statistischen Methoden und der Vergleich einer darauf aufgebauten Verschleißrechnung mit den Versuchsergebnissen ergab, daß die Verschleißvorgänge im Gleitlager zumindest qualitativ auch durch theoretische Betrachtungen beurteilt werden können. Der Rauhigkeitsfaktor K_R, in dem die Varianzen der statistischen Verteilungen von Höhenwerten und Steigungen des Oberflächengebirges zusammengefaßt sind, stellt eine charakteristische Oberflächenkenngröße dar, die Information über die Abriebverhältnisse der Oberflächen enthält.
- e. Untersuchungen über die Veränderung der Oberflächengestalt durch den Einlauf zeigten, daß die Erhöhung des verschleißfreien Lastbereichs im wesentlichen durch eine Verringerung der Glättungstiefe und der Welligkeit in Umfangsrichtung, insbesondere in der Laufzone der Lager, bedingt ist. Bei den Wellen verändert sich die Glättungstiefe R_p, axial und tangential gemessen, zu niedrigeren Werten.

Drehzahl und Tragfähigkeit, Viskositätskorrektur

Versuche zur Grenze des verschleißfreien Laufbereiches bei verschiedenen Drehzahlen zwischen 300 und ca. 3000 U/min machten deutlich, daß die zulässige Last stark drehzahlabhängig ist. Ab einer bestimmten Grenze bei ca. 1000 U/min geht die Tragfähigkeit der Prüflager aufgrund der zunehmenden Ölerwärmung im Schmierfilm zurück. Die Sommerfeldzahl So_{max} und auch die Schmierspaltgröße h_{zul} können in einem größeren Bereich von Exzentrizität und Drehzahl nur dann eine echte Beurteilungsgröße darstellen, wenn die zugrundegelegte mittlere wirksame Viskosität \mathcal{N}_m dem Betriebsbereich, insbesondere der Drehzahl, angepaßt ist. Aus der Forderung, daß beim Übergang zum Verschleiß im Lager bei gleicher Oberfläche die Schmierspaltgröße bei verschiedenen Drehzahlen mit guter Näherung gleich groß sein muß, läßt sich eine Korrekturkurve für die mittlere wirksame Viskosität in Abhängigkeit von der Drehzahl ableiten. Die der Schmierspaltrechnung zugrundegelegte Viskosität muß bei höheren Drehzahlen der Viskosität bei Öl-Ausgangstemperatur angenähert werden.

Tragfähigkeit bei dynamischer Last:

Der Vergleich von gemessenen Verschleißübergangslasten bei statischer und sinusförmig wechselnder Last zeigt deutlich den Einfluß der Schmierfilmverdrängung und der bei Wechsellast geänderten Temperaturverhältnisse. Die theoretischen Übergangsschmierspaltdicken stimmen bei gleichem Oberflächenzustand mit den Werten bei statischer Last gut überein, so daß die Oberflächenkriterien zur zulässigen Schmierfilmdicke, die aus den Versuchen mit statischer Last abgeleitet wurden, im untersuchten Betriebsbereich auch auf den Fall der vorliegenden dynamischen Last übertragen werden können.

Übertragbarkeit der Aussagen auf die Lagerpraxis:

Die Absolutgrößen der maximalen Last und der im Prüfstand ermittelten Grenzdrehzahlen sind sicher durch den konstruktiven Aufbau des Prüflagers beeinflußt, so daß sie nicht exakt als allgemeingültige Werte angenommen werden können. Die Rauhigkeitskriterien für die zulässige Schmierspaltgröße dagegen und die qualitativen Aussagen über den Einfluß der Drehzahl, Materialpaarung und Oberflächengestalt auf das Verschleißverhalten und die Tragfähigkeit der Lager sind als Unterlagen für die Lagerauslegung bei ähnlichen Betriebsbedingungen auch auf andere Lagerkonstruktionen übertragbar. LITERATURVERZEICHNIS

1	G.	Vogelpohl	Betriebssichere Gleitlager
			Springer-Verlag
2	G.	Vogelpohl	Geringste zulässige Schmierschichtdicke und Übergangsdrehzahl
		an an an an Arthur An Arthur an Arthur an Arthur	Konstruktion 14 Jahrg. 1962, Heft 12
3	G.	Vogelpohl	Beiträge zur Kenntnis der Gleitlager- reibung
		en en de la companya	VDI-Forschungsheft 386, 1937
4	Pir	nkus-Sternlicht	Theorie of hydrodynamic lubrication
			New York:Mc Graw Hill Book Company 1961
5	н.	Sassenfeld.	Gleitlagerberechnungen
	Α.	Walther	VDI-Forschungsheft 441, 1954
6	N.	Motosh	Das konstant belastete zylindrische Gleit- lager unter Berücksichtigung der Abhängig- keit der Viskosität von Temperatur und Druck
			Diss.Techn.Hochschule Karlsruhe, 1962
7	K.	Czeguhn	Die seitliche Änderung des Lagerspieles infolge von Temperatur- und Druckeinflüssen
			Diss.Techn.Hochschule Karlsruhe, 1967
8	В.	Romacker	Die Temperaturverteilung im Schmierfilm konstant belasteter Gleitlager. Theoreti- sche Untersuchungen und Entwicklung eines Meßverfahrens
			Diss.Techn.Hochschule Karlsruhe, 1965
9	В.	Hakansson	The journal bearing considering variable viscosity
			Trans. of Chalmers Universtiy of Technolo- gy Gothenburg (Sweden) Nr.298, 1965
10	A.	Nica	A Thermohydrodynamic Method of Bearing Analysis
		i de la constance de la constan La constance de la constance de	Tribology Vol.4, Nr.4 Nov.1971

11 W. Hahn Das zylindrische Gleitlager endlicher Breite unter zeitlich veränderlicher Belastung Diss.Techn.Hochschule Karlsruhe, 1957 12 Holland-Lang Beitrag zur Erfassung der Schmierverhältnisse in Verbrennungskraftmaschinen (Holland)VDI-Forschungsheft 475, 1959 Berechnung der Gleitlager im Verbrennungsmotor (Eberhard und Lang) MTZ 1961 13 G. Schaffrath Das Gleitlager mit beliebiger Schmierspaltform - Verlagerung des Wellenzapfens bei zeitlich veränderlicher Belastung Diss.Techn.Hochschule Karlsruhe, 1967 14 Terres, Morlock, Untersuchungen über Filmresistenz von Völker Schmierölen im Gleitlager in Abhängigkeit von Belastung und Umdrehungszahl Erdöl und Kohle Nr.9, 10, 11, 1956 15 T. Carl Das zylindrische Gleitlager unter konstanter und sinusförmiger Belastung Diss.Techn.Hochschule Karlsruhe, 1962 16 A. Buske Der Einfluß der Lagergestaltung auf die Belastbarkeit und die Betriebssicherheit Stahl und Eisen 71, 1951 17 K. Radermacher Das instationär belastete zylindrische Gleitlager - experimentelle Untersuchung Diss.Techn.Hochschule Karlsruhe, 1962 18 Mikulla Die Belastbarkeit von Gleitlagern Konstruktion 10, 1958 19 R. Huber Zur Berechnung der Übergangsdrehzahl bei hydrodynamisch geschmierten Gleitlagern Schmiertechnik + Tribologie, 15 Jg., Nr.5 20 R. Huber Zur Berechnung von Gleitlagern mit hydrodynamischer Schmierung

Forsch.Ing.-Wes., Bd.20, 1963

- 109 -

21	R. Dietz	Verhalten von statisch belasteten kreis- zylindrischen Gleitlagern im Betriebsbe- reich des Reibminimums
		Diss. UNI Karlsruhe, 1968
22	S.A. McKee, T.R. McKee	The effect of running in on journal- bearing preformance
	an de la companya de La companya de la comp	Mechanical Engineering, Vol.49, 1927, Vol.50, 1928
23	L. Leloup	Die Berechnung von Gleitlagern
		Schmiertechnik, Heft 2, April/Juni 1955
24	E Rabinovicz	Friction and wear of materials
21	L. Rabinovicz	Verl. John Wiley and sons. Inc. New York 1965
25	Uetz	Grundkenntnisse auf dem Verschleißgebiet
		Staatl. Materialprüfungsanstalt Stuttgart, Vortrag 1969
26	W. Hirst	Basic Mechanisme of wear
		Lubrication and wear, Vol.182, 1967-68
27	J. Schüßler	Dünnschichtdifferenzverfahren
		Forschungsbericht der Forschungsvereinigung Verbrennungskraftmaschinen e.V., Frank- furt/Main, 1969
28	Kaspar-Sickermann	Messung des Verschleißes am mittleren Kurbelwellenlager eines schnellaufenden Dieselmotors mit Radioisotopen
	e an tractica de la composition de la c Composition de la composition de la comp	Forschungsbericht der FVV, Nr. 2-213/9, 1962
29	A. Gervé, H. Kamm,	Zur Deuteronenaktivierung von Maschinen- teilen aus Stahl und Gußeisen
	G. Katzenmeier	Forschungsbericht der Forschungsvereinigung Verbrennungskraftmaschinen e.V., Frank- furt/Main, Nr.2-213/10
30	Duivensti in	Praktische v-Snektrometrie
50	Venverloo	Philipps Technische Bücherei

31	G. Katzenmeier	Untersuchungen über das Verschleißver- halten von Gleitlagern unter statischer Last mittels Radioisotopen. Einfluß der Materialpaarung Welle-Schale auf den Ver- schleiß
		Forschungsbericht der Forschungsvereinigung Verbrennungskraftmaschinen e.V., Frankfurt, Nr. 213-13, Heft 106, 1969
32	G. Katzenmeier	Untersuchungen zum Verschleißverhalten von Gleitlagern mittels Radioisotopenverfahren
		Automobil-Industrie 3/71
33	A. Gervé, G. Katzenmeier	Relationship Between Oil Film Thickness and Wear of Journal Bearings
	K. Kollmann	SAE Meeting Milwaukee, Wiss. Sept.14-17, 1970, 700717
34	L.F. Kreisle	Predominant-Peak Surface Roughness, a Criterion for Minimum Hydrodynamic Oil-Film Thickness of Short Journal Bearings
		Austin, Texas Trans. ASME 79, 1957
		n a 1994 an an tha an an tao an an an an an an ann an an an an an an
35	L.F. Kreisle	Very Short Journal-Bearing Hydrodynamic Performance. Under Conditions Approaching Marginal Lubrication
	an an an tha an	Austin, Texas Trans. ASME 78, 1956
36	F.A. Martin	Minimum Allowable Oil Film Thickness in Steadily Loaded Journal-Bearing
		Proc.Inst.Mech.Engrs. 1963-1964, Vol.178, Pt 3 N
37	M. Fisz	Wahrscheinlichkeitsrechnung und mathematische Statistik
		VEB Deutscher Verlag der Wissenschaften, Berlin 1962
38	J.K. Appeldorn	Physikalische und chemische Gesichtspunkte bei der Grenzschmierung
	a service and the service of the ser Service of the service	Erdöl und Kohle, Aug. 1967
39	E. Falz	Grundzüge der Schmiertechnik
	te i su al contente d	Springer-Verlag 1931

40 G. Berndt

Die Oberflächenbeschaffenheit bei verschiedenen Bearbeitungsverfahren

Loewe Notizen 9, 1924

41 L.P. Tarasov Relation of Surface-Roughness Readings to Actual Surface Profile Trans. ASME 1945, Vol.67

42 F.W. Ocvirk,
Du BoisRelation of Journal-Bearing Performance
to Minimum Oil-Film ThicknessNACA TH 4223

43 F.W. OcvirkSurface Finish and clearence effects on
journal-bearing load capacity and friction

J.Basic Engng.Americ.Soc.Mech.Engrs., June 1959, 245

- 44 Du Bois
F.W. OcvirkAnalytical derivation and experimental
evaluation of short bearing approximation
NACA TN 1175, 1953
- 45 A. Sonntag Die Bedeutung der Oberflächengüte für Reibung, Verschleiß und Schmierung Konstruktion 12, 1960, Heft 11
- 46 A.J. Davis

Part II: Running-in Characteristics Proc.Institution of Mechanical Engineers, Vol.171, 1957

- 47 J.T. Burwell, Effects of Surface Finish
 J. Kaye, Journal of applied Mechanics 8, 1941
 D.M. Morgan
- 48 S. von Schieszl Untersuchung der Mindestschichtdicke von Ölen in Gleitlagern

Erdöl und Kohle-Erdgas-Petrochemie, 20.Jg. Mai 1967, Nr.5

- 49 G.B. Karelitz, J.N. Kenyon
 49 Oil-Film Thickness at Transition From Semifluid to Viscous Lubrication
 Research, RP-59-3
- 50 Ostrik, H. Christensen Droc.of the Inst.of Mech.Eng., Bd.183, 1968/69

51	A.E. Burke, M.J. Neale	A method of designing plain journal- bearings for steady loads
		Proc.cont.lubric. Wear 1957, 118
52	R.A. Burton	Effect of two-dimensional, sinusoidal roughness on the load support charachte- ristics of a lubricant film
		J.Basic Eng. 85, 1963
53	S.T. Tzeng, E. Saibel	On the Effects of Surface Roughness in the Hydrodynamic Lubrication Theory of a Short Journal Bearing
		Wear, 10, 1967
54	H. Christensen	Some Aspects of the Functional Influence of Surface Roughness in Lubrication
		Wear Vol.17 No.2, Febr. 1971
55	G. Schmaltz	Technische Oberflächenkunde Springer
56	G. Schlesinger	Messung der Oberflächengüte
		Springer-Verlag 1951
57	DIN Blatt 4760 + 4	1764
58	N.O. Myers	Characterization of Surface Roughness Wear 5, 1962, 182-189
59	Y. Kimura	Estimation of the Number and the Mean Area of Real Contact Points on the Basis of Surface Profiles
		Wear 15, 1970 47-55
60	D.B. Owen	Handbook of statictical Tables, Reading Mass:
		Addison Wesley 1962

	,	

and the second secon

B I L D A N H A N G

Abb.1 A - 20 A

Abb.3 A Gegenüberstellung der γ-Spektren von Welle und Schale; mögliche Integrationsbereiche für 2-Komponentenmessung

- 115 -

Abb.4 A Tiefenverteilung der Aktivität an Wismut 205 und ²⁰⁶Bi nach verschiedener Abklingzeit

Abb.5 A Exzentrizität als Funktion der Sommerfeldzahl (gerechnet nach Sassenfeld-Walther und Schaffrath)

Abb.6 A Öldurchsatz durch den Lagerkörper mit und ohne Spülbohrungen

Abb.7 A Lager- und Öltemperaturen als Funktion der Drehzahl

Abb.8 A Erwärmungsfaktor zur Berechnung des Öltemperaturanstiegs

Abb.9 A Temperatur-Viskositäts-Diagramm der Versuchsöle

and the second second

Abb.ll A Lagerverschleiß bei stufenweiser Lasterhöhung (Welle 1)

Abb.12 A Lagerverschleiß bei stufenweiser Lasterhöhung (Welle 3)

Abb.13 A Lagerverschleiß bei stufenweiser Lasterhöhung (Welle 4)

Abb.14 A Lagerverschleiß bei stufenweiser Lasterhöhung (Welle 5)

- 123 -

Abb.15 A Verschleißverlauf im Mischreibungsgebiet bei verschiedener Wellenrauhigkeit

Abb.16 A Verschleiß- und Temperaturverlauf bei Drehzahlsteigerung unter konstanter Last

- 124 -

Abb.17 A Verschleiß- und Temperaturverlauf bei Drehzahlsteigerung unter konstanter Last

Abb.18 A Verschleiß- und Temperaturverlauf bei Drehzahlsteigerung unter konstanter Last

- 125 -

Abb.19 A Verschleiß-und Temperaturverlauf bei Drehzahlsteigerung unter konstanter Last

Abb.20 A Verschleißraten und Übergangspunkte bei Drehzahlsteigerung unter konstanter Last

a de la companya de la comp

1.5					$\mathcal{L}_{i} = \mathcal{L}_{i} = \mathcal{L}_{i}$	
						1 N - 2 2 1
. 1						
, *		;				÷.,
	e de la Ale		•			

a biblio de la Marcia da Caracteria da Servicio de la Caracteria de La Caracteria da Caracteria da Caracteria d Basela da Caracteria da Caracteria de Caracteria da Caracteria da Caracteria da Caracteria da Caracteria da Cara