

KERNFORSCHUNGSZENTRUM KARLSRUHE

KFK 1924

Februar 1974

Institut für Radiochemie

Phasenumwandlungen und Phasengleichgewichte von Uran-Seltenerd-Mischoxiden

U. Wichmann

GESELLSCHAFT FÜR KERNFORSCHUNG M.B.H.

KARLSRUHE

Als Manuskript vervielfältigt

Für diesen Bericht behalten wir uns alle Rechte vor

GESELLSCHAFT FÜR KERNFORSCHUNG M.B.H. KARLSRUHE

Kernforschungszentrum Karlsruhe

,

KFK 1924 +)

Institut für Radiochemie

PHASENUMWANDLUNGEN UND PHASENGLEICHGEWICHTE VON URAN-SELTENERD-MISCHOXIDEN

.

von

Uwe Wichmann

Gesellschaft für Kernforschung m.b.H., Karlsruhe

•

+) Von der Fakultät für Chemie der Universität Karlsruhe genehmigte Dissertation

ZUSAMMENFASSUNG

Es wird eine Methode angegeben, die gestattet, mit einer galvanischen Festkörperkette EMK-Messungen an Oxiden im Temperaturbereich von 700 °C bis 1400 °C durchzuführen. Die Bestimmung der Lösungsentropien von Sauerstoff in ternären Oxiden gestattet, temperaturabhängige Phasenumwandlungen zu erfassen, wie an einer Reihe von Uran-Seltenerd-Mischoxiden, z.B.LaUO₄, HoUO₄, LuUO₄, TmUO₄, YbUO₄, U₄O₉, gezeigt wird. Phasenübergänge vom geordneten in den ungeordneten Zustand werden am Beispiel des $\mathrm{U}_{\mu}\mathrm{O}_{\mathbf{Q}}$ demonstriert. In dieser Verbindung lassen sich bis zu 15 Mol-% des Urans durch Lanthan und bis zu 10 Mol-% durch Lutetium ersetzen, ohne daß die Überstruktur des $U_{\mu}O_{Q}$ verloren geht. Bei höheren SE(III)-Gehalten wird nur die ungeordnete Struktur des Fluoritgitters beobachtet. Mit Hilfe röntgenographischer und elektrochemischer Untersuchungsmethoden werden die Phasenverhältnisse der Systeme Ho01,5-U02-Sauerstoff und Lu0_{1.5}-U0₂-Sauerstoff bei 1250 °C ermittelt.

ABSTRACT

By using a new developed high-temperature galvanic cell with solid electrolytes EMF measurements on ternary oxides have been studied in the temperature region $700 \le T [^{\circ}C] \le 1400$. The determination of the solution-entropie of oxigen in ternary oxides, $\Delta_L S$, allows to observe temperature dependent phase transformations, as has been demonstrated for mixed uranium oxides like, e.g., LaUO₄, HoUO₄, LuUO₄, TmUO₄, YbUO₄, U₄O₉.

It has been shown that up to 15 m/o uranium in ordered U_4O_9 can be substituted by lanthanum and up to 10 m/o by lutetium without loss of the U_4O_9 -superstructure.Mixed oxides with higher amounts of RE(III) crystallize in the disordered fluorite type of structure.

By using X-ray diffraction and electrochemical techniques the phase diagrams of the systems $HoO_{1.5}-UO_2$ -oxygen and $LuO_{1.5}-UO_2$ -oxygen at 1250 °C are established.

Inhaltsverzeichnis .

1 1

Seite

1.	EINLEI	ITUNG UND PROBLEMSTELLUNG					
2.	ELEKTROCHEMISCHE GRUNDLAGEN						
	2.1.	Der Fest	telektrolyt	6			
	2.2.	Die Festkörperkette					
		2.2.1. Einphasengebiete					
		2.2.2.	Zweiphasengebiete	10			
3.	EXPERIMENTELLES						
	3.1.	Die Vers	suchsanordnung	1 2			
		3.1.1.	Die Meßhalbzelle	13			
		3.1.2.	Die Bezugshalbzelle	1 4			
		3.1.3.	Die Meßapparatur	14			
	3.2.	Die Probenherstellung					
	3.3.	Chemische Analysen					
	3.4.	Röntgenographische Untersuchungen					
	3.5.	Versuchsdurchführung					
	3.6.	Ausgangssubstanzen					
4.	ERGEBI	NISSE UNI	DISKUSSION	20			
	4 .1.	Thermodynamische Untersuchungen an Fluoritphasen der Zusammensetzungen SEUO4 mit SE = La, Nd, Eu, Ho, Er, Tm, Yb und Lu					
		4.1.1.	Thermodynamische Daten von LaUO $_{\!$	20			
·		4.1.2.	Thermodynamische Daten von $MdUO_4$ und EuUO ₄	22			
		4.1.3.	Thermodynamische Daten von $HoUO_4$ TmUO ₄ und YbUO ₄	25			
		4.1.4.	Thermodynamische Daten von LuUO ₄ und ErUO ₄	28			
		4.1.5.	Abschließende Betrachtung	3 1			
	4.2.	Thermodynamische Untersuchungen an Ver- bindungen des Typs SE _{1-y} U ₉ ^O 2,23 ^{mit} SE = La, Lu					
		4.2.1.	Die Phase La, U_{0}	 38			
		4.2.2.	Die Phase $Lu_{1-y}U_{y}^{O}2,23$	4 1			

				Seite		
	4.2.3.	Vergleich ^{und Lu} 1-y	$y^{\text{zwischen La}}_{y^{0}2,23}$	43		
4.3.	Thermodynamische Untersuchungen an Ver- bindungen des Typs USE ₆ 0 ₁₂ mit SE = Eu, Ho, Lu					
4.4.	Die Phasengleichgewichte der ternären Systeme SE-U-O mit SE = Ho, Lu bei 1250°C					
	4.4.1.	Übersicht		54		
	4.4.2.	Im System auftretend	U02-Ho01,5-Sauerstoff le Phasen,5	55		
		4.4.2 .1.	Das Phasendiagramm des Systems UO ₂ -HoO _{1,5} - Sauerstoff	58		
	4.4.3.	Im System UO2-IuO1,5-Sauerstoff auftretende Phasen,5				
		4.4.3. 1 .	Das Phasendiagramm des Systems U0 ₂ -Lu0 _{1,5} - Sauerstoff	65		
		4.4.3.2.	EMK-Messungen an Proben der Zusammensetzung ^{UO} 3-x ^{•6LuO} 1.5	67		
4.5. Fehlerbetrachtungen						
ZUSAM	MENFASSU	NG		71		
LITERATURVERZEICHNIS						

5.

6.

•

1. EINLEITUNG UND PROBLEMSTELLUNG

In einem Kristall können Kationen und Anionen durch andere Ionen gleicher Ladung ganz oder teilweise ersetzt werden, ohne daß sich die Kristallstruktur ändert. In diesem Fall spricht man von einer Mischkristallbildung. Früher nahm man an, daß nur isotype Kristallarten, d.h. Kristalle gleicher Struktur, Mischkristalle bilden könnten; außerdem dürfte der Unterschied der Ionen- bzw. Atomradien maximal 15 % betragen.

In neuerer Zeit wurde jedoch gezeigt, daß auch heterotype Mischkristallbildung auftreten kann und daß diese "anomale" Mischkristallbildung in den meisten Fällen weitaus überwiegt, besonders bei den schweren und schwersten Elementen (1,2). Vor allem polar gebaute Substanzen vom Gittertyp des Fluorits CaF₂ (die Calciumionen besetzen die Ecken und Flächenmitten eines Würfels, die Fluorionen die Zentren der Achtelwürfel) können Substanzen homogen in ihr Gitter einbauen, deren Zusammensetzungen nicht der Formel AB₂, sondern AB, A_2B_3 , AB_5 oder AB_4 entsprechen (3). Beispiele dafür sind von den Systemen CaO-ThO₂, U_2N_3 -UO₂, UF_3 -UO₂ und ThF₄-ThO₂ bekannt, um nur einige "exotischere" Fälle aufzuzählen (eine Diskussion darüber siehe in (2)). Die Abweichungen von der atomaren Stöchiometrie der Partner wirken sich dabei als Gitterfehlbau in den gebildeten Mischphasen aus.

Bei den untersuchten polaren Verbindungen des Fluorittyps hat man festgestellt, daß das Kationenpunktgitter stets unverändert besetzt erscheint, während das Anionenteilgitter je nach dem vorliegenden Fall um zusätzliche Punktlagen erweitert ist oder Leerstellen aufweist. Bei einer anomalen Mischkristallbildung liegt normalerweise nur eine begrenzte Mischbarkeit der Einzelkomponenten vor; anders postulierte Fälle (z.B. für einzelne Systeme CeO₂-SEO_{1,5}; SE = Elemente der Seltenen Erden) bedürfen einer sorgfältigen Überprüfung.

Im Fluoritgitter vom Typ MeO₂ kristallisieren die Oxide der vierwertigen Elemente der Lanthaniden- und Actinidenreihe:

- 1 -

CeO₂, PrO₂, TbO₂ und MeO₂ mit Me = Th-Cf (4). Bei den Actinidenoxiden findet man mit steigender Ordnungszahl eine Kontraktion der Elementarzelle, da die Kationenradien in dieser Reihenfolge – ähnlich wie bei der Lanthanidenkontraktion – kleiner werden.

Mit Ausnahme des noch nicht näher untersuchten PaO_2 können alle Actinidenoxide einphasig substöchiometrisch als MeO_{2-x} auftreten, wobei der Wert x von der Temperatur, der umgebenden Atmosphäre und der Ordnungszahl des Actinidenelements abhängig ist. PaO_2 und UO_2 sind als einzige Vertreter der Actinidenoxide befähigt, auch überstöchiometrisch als MeO_{2+x} aufzutreten; allerdings ist bisher nur das Uranoxidsystem näher untersucht worden. Bei UO_{2+x} bleibt die Fluoritstruktur dadurch erhalten, daß der zusätzliche Sauerstoff auf Zwischengitterplätze, das sind Kantenmitten bzw. Würfelmitte der Elementarzelle, eingebaut wird. Der Ladungsausgleich wird dadurch erreicht, daß U(IV) dabei zu U(V) oxidiert wird.

Die genannten Dioxide können auch zum Aufbau von Mischoxiden dienen. In welchem Maß Mischkristallbildung eintritt, hängt von der Reaktionstemperatur, dem Kationenradienverhältnis bzw. der Differenz der Radien und bei oxidierbarem Me(IV) noch vom Sauerstoffpartialdruck ab. Keller (5) beschreibt, daß bei Mischkristallbildung in Systemen von Oxiden mit zweiwertigen Kationen mit Sauerstoffleerstellen der Konzentrationsbereich viel kleiner ist als im Fall von dreiwertigen Kationen. Je größer die Abweichung des Verhältnisses der Radien von Wirtsund Fremdkation vom Wert 1 ist, umso geringer wird die Mischbarkeit beider Komponenten. Mit steigender Temperatur nimmt in den meisten Fällen die Breite des homogenen Mischphasenbereichs zu.

Bei hohen Temperaturen sind im anomalen Fluoritmischkristall Anionen, Kationen und Sauerstoffleerstellen weitgehend statistisch verteilt, während bei tiefer Temperatur die Mischphase häufig zur Ausbildung bestimmter Ordnungszustände neigt. Dieser Ordnungs-Unordnungsumwandlung kann man vorbeugen, indem man die Probe durch plötzlichen Temperatursturz abschreckt (6); auf diese Weise bleiben bei ternären Oxidsystemen die Hochtemperaturphasen in den meisten Fällen als metastabile Phasen bei Raumtemperatur erhalten. Die Gitterparameter entsprechen jedoch den Werten bei der niedrigen Temperatur (7).

Eine große Verwandtschaft zum Fluoritgitter zeigen die ebenfalls kubisch kristallisierenden Sesquioxide der Seltenen Erden vom C-Typ. Goldschmidt et al. (8) zeigten, daß die Oxide der Seltenen Erden in Formen kristallisieren, von denen jedes Element nur eine stabilste Modifikation besitzt. Der hexagonale A-Typ findet sich bei den Oxiden von La bis Nd, die monokline B-Modifikation von Fm bis Tb. Von Dy bis Lu ist die kubische C-Form die stabilste Modifikation (9). Von La bis Gd ist der C-Typ metastabil, falls er bei diesen Elementen überhaupt beobachtet werden kann. Die Sesquioxide bilden untereinander Mischkristalle (10,11), deren Gitterstrukturen von der Stellung der beiden Partner in der Lanthanidenreihe abhängen.

Eine praktische Anwendungsmöglichkeit von Mischoxiden ist der Einsatz als sauerstoffionenleitende Festelektrolyte (12,13). Man hat nämlich festgestellt, daß einige Oxide, z.B. ZrO₂ und ThO₂, beim Einbau von Fremdoxiden, wie CaO, YO_{1,5} und LaO_{1,5}, unter Ausbildung von Sauerstoffleerstellen die Fluoritstruktur beibehalten (14). Bei höheren Temperaturen werden diese so beweglich, daß ein Sauerstoffloentransport durch das Mischoxid möglich wird.

Diese Gruppe von Mischoxiden hat in den letzten Jahren eine große Anzahl von Einsatzmöglichkeiten gefunden. Sie werden benutzt für Anordnungen in galvanischen Ketten, um Aussagen über die thermodynamische Stabilität von Verbindungen zu erhalten (15,16), zur Bestimmung von Sauerstoffpartialdrücken (17), zur Messung der Sauerstoffdiffusion (18), zur Verfolgung der Kinetik von Festkörperreaktionen (19) und möglicherweise in Zukunft auch zur großtechnischen Gewinnung von elektrischer Energie direkt aus chemischer Reaktionsenergie (20-23).

- 3 -

Seit etwa 15 Jahren benutzt man als Festelektrolyten dotiertes ZrO_2 , einen Sauerstoffleerstellenleiter (24,25). Während bei früheren Arbeiten hauptsächlich mit der Nernst-Masse (85 Gew.-% ZrO_2 + 15 Gew.-% $\text{YO}_{1,5}$) gearbeitet wurde, wendet man heute meist mit CaO stabilisiertes ZrO_2 (15 Mol-% CaO) an, welches bis jetzt als bester Sauerstoffionenleiter gilt (26).

Im Rahmen der systematischen Charakterisierung der Actinidenelemente werden am hiesigen Institut u.a. die Phasenbeziehungen der ternären Systeme Actiniden-Seltene Erden-Sauerstoff untersucht. Ziel der vorliegenden Arbeit war es zu zeigen, ob temperaturabhängige Phasenumwandlungen, die in diesen Systemen teilweise zu erwarten sind, experimentell nachgewiesen werden können. Dieses sollte möglich sein durch die Bestimmung der Lösungsentropien von Sauerstoff in den zu untersuchenden Substanzen in Abhängigkeit von der Temperatur, wenn die Differenzen dieser Lösungsentropien groß genug sind, die Umwandlungen schnell erfolgen (keine metastabile Phasen) und reversibel sind. Zu diesem Zweck wurde eine Meßanordnung entwickelt, die nach dem Prinzip einer galvanischen Kette über einen großen Temperaturbereich hinweg arbeitet (von 700 bis 1400°C). Es wurden damit Phasen aus den Systemen Uran-Seltene Erden-Sauerstoff untersucht, von denen die temperaturabhängigen Phasendiagramme zum großen Teil bekannt sind. Die Identifizierung der einzelnen Phasen erfolgte röntgenographisch. Ferner wurden die Phasendiagramme der noch unbekannten Dreistoffsysteme Ho-U-O und Lu-U-O erstellt.

2. ELEKTROCHEMISCHE GRUNDLAGEN

Bietet man einem sauerstoffionenleitenden Elektrolyten, der in Form einer Platte vorliegen soll, auf der einen Seite ein Sauerstoffpotential μ'_{0_2} und auf der anderen μ''_{0_2} an, so werden sich Sauerstoffionen vom höheren zum niedrigeren Potential ($\mu'_{0_2} < \mu''_{0_2}$) durch den Elektrolyten bewegen:

Dadurch tritt eine Ladungsverschiebung ein. Die Seite mit dem größeren Potential wird positiv, die andere negativ aufgeladen, bis sich ein Gleichgewicht in der Ionenwanderungstendenz einstellt zwischen den Differenzen der Sauerstoffpotentiale und der entstehenden elektrischen Potentiale.

Die Spannung E, die man dann zwischen beiden Seiten messen kann, ist nach Wagner (27) gegeben durch

$$E = -\frac{1}{z F} \int_{\mu_{0_2}}^{\mu_{0_2}} t_{ion} d\mu_{0_2}.$$
 (1)

t_{ion} ist hierbei die Ionenüberführungszahl des Elektrolyten, F die Faradaykonstante und z die Anzahl der Elementarladungen, die durch ein Molekül Sauerstoff übertragen werden, d.h. z = 4. Für t_{ion} gilt:

 $t_{ion} = \frac{\delta_{ion}}{\delta_{ion} + \delta_{el}}$, wobei δ_{ion} die ionische

und 6_{el} die elektronische Teilleitfähigkeit des Elektrolyten bedeuten.

Für den Fall, daß 6_{el} vernachlässigbar klein ist, wird $t_{ion} = 1$.

Mit
$$\mu_{0_2} = \mu_{0_2}^{\circ} + RT \ln p_{0_2} / p_{0_2}^{\circ}$$
 ergibt sich aus (1):

$$E = -\frac{RT}{4F} \ln \frac{p_{02}}{p_{02}} .$$
 (2)

Läuft der Vorgang am Elektrolyten reversibel bei konstantem Druck und konstanter Temperatur ab, so gilt nach Helmholtz (28) für die Molare Freie Reaktionsenthalpie AG einer solchen galvanischen Kette:

$$\Delta G = - zFE = - 4FE$$
 (3)

Aus (2) und (3) ergibt sich dann:

$$p_{0_2}^{"} = p_{0_2}^{'} \exp(\Delta G/RT)$$
 (4)

Stellt man mit Hilfe des Elektrolyten eine galvanische Kette zusammen, die an einer Elektrode einen bekannten Sauerstoffpartialdruck aufweist, so kann man aus der bei einer bestimmten Temperatur gemessenen Spannung (EMK) E den Partialdruck an der anderen Elektrode berechnen und damit die Molare Freie Reaktionsenthalpie der Zellreaktion. Aus der Temperaturabhängigkeit von ΔG bei konstantem Druck und konstanter Teilchenzahl ergibt sich ferner aus der Gibbs-Helmholtz-Gleichung die molare Reaktionsentropie:

$$\Delta S = -\left(\frac{\delta \Delta G}{\delta T}\right)_{p,n_{i}}$$
 (5)

Damit läßt sich dann AH berechnen nach

$$\Delta H = \Delta G + T \Delta S . \tag{6}$$

2.1. Der Festelektrolyt

Wesentlich für die Verwendbarkeit des Elektrolyten ist vor allem eine vernachlässigbar kleine Elektronenleitfähigkeit. Außerdem ist es notwendig, daß das Material auch bei hohen

- 6 -

Temperaturen gasdicht und mechanisch stabil ist. In zahlreichen Leitfähigkeitsuntersuchungen von Festelektrolyten (29-34) wurde gezeigt, daß bei größeren Sauerstoffpartialdrücken ($p > 10^{-15}$ atm bei 1000°C, $p > 10^{-11}$ atm bei 1400°C) mit CaO, YO_{1,5} oder LaO_{1,5} dotiertes ZrO₂ als reiner Ionenleiter vorliegt. Für kleinere Sauerstoffaktivitäten eignet sich ThO₂, das mit den genannten Oxiden dotiert ist ($p > 10^{-25}$ atm bei 1000°C).

Über den Mechanismus der Ionenleitung im Elektrolyten, besonders auf welche Art Ladungen sich bewegen, ist wenig bekannt. Sicher ist, daß die Sauerstoffleerstellen, die beim Einbau von Fremdoxiden in die Fluoritgitter von ZrO_2 und ThO_2 entstehen, die Ionenleitung bewirken. Mit steigender Temperatur werden diese Leerstellen beweglicher. Die obere Temperaturgrenze der Anwendbarkeit ist gegeben durch die mechanische Festigkeit und Dichtigkeit. Sie liegt bei etwa 1500°C.

Unterhalb von ca. 600°C wird der Innerwiderstand des Elektrolyten so groß, daß keine EMK mehr gemessen werden kann.

2.2. Die Festkörperkette

Es wird eine galvanische Kette folgender Art benutzt:

Pt|0,21 atm O_2 |ZrO₂(+CaO)|MeO_x|Pt bzw. Pt|0,21 atm O_2 |ThO₂(+YO_{1.5})|MeO_x|Pt

für niedrige Sauerstoffpartialdrücke. MeO_x bedeutet das zu untersuchende Metalloxid (oder auch ein Mischoxid Me'Me"O_x) mit definierter chemischer Zusammensetzung x. Als Bezugselektrode dient Luft (0,21 atm Sauerstoff). Für einige Kontrollmessungen wurde ein Gemisch aus Fe und FeO benutzt. Hier steht das Metall im thermodynamischen Gleichgewicht mit seinem sauerstoffärmsten Oxid; über diesen beiden Phasen herrscht ein konstanter Sauerstoffpartialdruck, der nur von der Temperatur abhängig ist. Vom unbekannten Oxid MeO_x kennt man häufig die vorliegenden Phasenverhältnisse nicht. Um die in obiger Kette gemessene EMK richtig zu interpretieren, ist es notwendig, zwischen ein- und zweiphasigem MeO_x zu unterscheiden.

2.2.1. Einphasengebiete

In einem Einphasengebiet MeO_x , das bei gegebener Temperatur eine Phasenbreite von $x_1 < x < x_2$ besitzt, ist das chemische Potential und damit auch der Sauerstoffpartialdruck eine Funktion der Temperatur und der Zusammensetzung. Hält man zunächst die Temperatur konstant, so kann nach Gleichung (1) die EMK alle Werte zwischen

$$E_{1} = -\frac{1}{4F} \left(\mu_{0_{2}}^{"}(x_{1}) - \mu_{0_{2}}^{"} \right)$$
(7)

und

$$E_{2} = -\frac{1}{4F} \left(\mu_{0_{2}}^{"}(x_{2}) - \mu_{0_{2}}^{"} \right)$$
(8)

annehmen. Die Zellreaktion entspricht dem Einbau (der Auflösung) von Sauerstoff in MeO_x . Aus E(x) läßt sich nach Gleichung (3) dann die Freie Molare Lösungsenthalpie $\Delta_L^G_{MeO_x}(x)$ berechnen:

$$\Delta_{L}G_{MeO_{X}}(x) = -4F E(x).$$
 (9)

Bei stromloser Messung ändert sich die Zusammensetzung von MeO_x nicht; deshalb muß die Zellreaktion in Form eines Grenzübergangs geschrieben werden:

$$\left[\begin{array}{ccc} \frac{2}{\delta} \operatorname{MeO}_{\mathbf{x}} + \operatorname{O}_{2} & \rightleftharpoons & \frac{2}{\delta} \operatorname{MeO}_{\mathbf{x}+\delta} \end{array}\right]_{\delta \longrightarrow 0} \cdot$$

Berücksichtigt man die Temperaturabhängigkeit der EMK, so ergibt sich nach der Gibbs-Helmholtz-Gleichung die Molare Lösungsentropie von Sauerstoff im Oxid MeO_x:

$$\Delta_{L} S_{MeO_{x}}(x,T) = 4F \left(\frac{\delta E(x,T)}{\delta T}\right)_{p,n_{i}}$$
(10)

und ferner die Molare Lösungsenthalpie

$$\Delta_{L}H_{MeO_{x}}(x,T) = \Delta_{L}G_{MeO_{x}}(x,T) + \Delta_{L}S_{MeO_{x}}(x,T) T . (11)$$

n_i bedeutet die Anzahl der das System aufbauenden Komponenten i. Tritt nun eine temperaturabhängige Phasenumwandlung ein, so ist die Forderung n_i = const. bei der partiellen Differentiation unter Umständen nicht gegeben. Wenn man das System jedoch als abgeschlossen betrachtet und chemisches Gleichgewicht zwichen den einzelnen Phasen voraussetzt, so behält die Gibbs-Helmholtz-Gleichung weiterhin ihre Gültigkeit. Für ein aus mehreren Phasen j bestehendes System lautet diese Beziehung nämlich (extensive Schreibweise):

$$dg = -sdT + vdp + \sum_{i} \mu_{i} dn_{i} .$$
 (12)

Für jede einzelne Phase kann entsprechend geschrieben werden:

$$dg^{j} = -s^{j}dT + v^{j}dp + \sum_{i} \mu_{i}^{j} dn_{i}^{j}.$$
 (13)

Zwischen den einzelnen Phasen soll Gleichgewicht herrschen:

$$\mu_{i}^{1} = \mu_{i}^{2} = \mu_{i}^{3} = \dots$$
 (14)

Außerdem ist das System abgeschlossen:

$$\sum_{j} dn_{j}^{j} = 0.$$
 (15)

Für das Gesamtsystem gilt dann:

$$dg = \sum dg^{j} = -\sum s^{j} dT + \sum v^{j} dp \qquad (16)$$

$$+ \sum \sum \mu_{i}^{j} dn_{i}^{j}$$

$$= -dT \sum s^{j} + dp \sum v^{j} + \sum \mu_{i}^{j} \sum dn_{i}^{j} \qquad (17)$$

$$= -sdT + vdp \qquad (18)$$

Somit gilt also unter den genannten Voraussetzungen

$$\left(\frac{\mathrm{dg}}{\mathrm{dT}}\right)_{\mathrm{p}} = -\mathrm{s} ; \qquad (19)$$

die Gibbs-Helmholtz-Gleichung darf unter Aufgabe der Forderung n. = konstant angewandt werden.

2.2.2. Zweiphasengebiete

x bedeutet jetzt eine Zusammensetzung innerhalb eines Zweiphasengebietes, in dem zwei benachbarte Oxide nebeneinander vorliegen. Die Grenzzusammensetzungen seien x_2 und x_3 :

Im Gleichgewicht gilt:

$$\mu_{O_2}(\mathbf{x}_2, \mathbb{T}) = \mu_{O_2}(\mathbf{x}_3, \mathbb{T}) = \mu_{O_2}(\mathbb{T}) , \qquad (20)$$

$$\mu_{Me}(x_2,T) = \mu_{Me}(x_3,T) = \mu_{Me}(T) .$$
 (21)

Bei konstanter Temperatur haben die chemischen Potentiale des Sauerstoffs und des Metalls konstante, von x unabhängige Werte. Damit ist auch die EMK keine Funktion der Zusammensetzung. Die in der Zelle ablaufende Reaktion ist:

$$\frac{2}{\delta} \operatorname{MeO}_{\mathbf{x}_{2}} + \operatorname{O}_{2} \rightleftharpoons \frac{2}{\delta} \operatorname{MeO}_{\mathbf{x}_{2+\delta}}$$

Aus E läßt sich in diesem Fall die Molare Freie Reaktionsenthalpie der Oxidation des Oxids MeO_{x_2} zum nächst sauerstoffreicheren Oxid $MeO_{x_{2+\delta}} = MeO_{x_3}$ berechnen.

Nach dem im vorhergehenden Abschnitt Gesagten kann die Gibbs-Helmholtz-Gleichung auch für Zweiphasengebiete unter den Voraussetzungen der Abgeschlossenheit und des chemischen Gleichgewichts in der modifizierten Form benutzt werden. Damit können dann die Molare Reaktionsentropie,

$$\Delta_{R} S_{MeO} = 4F \left(\frac{\delta E}{\delta T}\right)_{p}, \qquad (22)$$

und die Molare Reaktionsenthalpie,

$$\Delta_{\mathrm{R}}^{\mathrm{H}}_{\mathrm{MeO}} \mathbf{x}_{2} - \mathbf{x}_{3} = \Delta_{\mathrm{R}}^{\mathrm{G}}_{\mathrm{MeO}} \mathbf{x}_{2} - \mathbf{x}_{3} + \Delta_{\mathrm{R}}^{\mathrm{S}}_{\mathrm{MeO}} \mathbf{x}_{2} - \mathbf{x}_{3}$$
T, (23)

angegeben werden.

2. EXPERIMENTELLES

3.1. Die Versuchsanordnung

In Abbildung 1 ist der Aufbau der Festkörperkette

 $Pt|Luft|ZrO_{2}(+CaO)|MeO_{x}|Pt$

dargestellt. Die Anordnung läßt sich in zwei Halbzellen zerlegen, die Bezugs- und die Meßhalbzelle:

Die Meßhalbzelle wird für jede Messung neu hergestellt, die Bezugshalbzelle kann 20 bis 30 mal eingesetzt werden. Beide Teile werden im Versuch über den Elektrolyten durch Aneinanderdrücken verbunden. Um einen möglichst geringen Innenwiderstand zu erreichen, wird die Verbindungsstelle mit feinem Elektrolytpulver versehen, das mit Glycerin zu einem Brei angerührt wurde. Das Glycerin verflüchtigt sich rasch beim Aufheizen der Anordnung.

3.1.1. Die Meßhalbzelle

Sie besteht aus einem zylindrischen Tiegel mit flachem Boden aus ZrO₂ + 15 Mol-% CaO (10 mm Durchmesser, 12 mm Höhe; Lieferfirma Zircoa Comp.), in den ca. 150 mg der zu untersuchenden pulverförmigen Probe gegeben werden. Eine Platinzuleitung taucht mit einem spiralig gedrehten Ende in die Substanz ein. Die Abgeschlossenheit der Halbzelle wird durch folgende Dichtung erreicht: Ein aus Elektrolytmaterial bestehender Deckel wird auf die Probe gepreßt. Auf diesen wird dann etwas Elektrolytpulver gegeben, um Zwischenräume zwischen Tiegelwand und Deckel auszufüllen. Die eigentliche Dichtung besteht aus mehreren Schichten von AR-, Pyrex- und Quarzglas. AR-Glas bildet von 700 bis 1100°C eine flüssige Dichtung, Pyrex wird bei 900°C flüssig und Quarz schließt in Gegenwart der anderen Gläser den Tiegel oberhalb 1300°C ab. Die Prüfung auf Abgeschlossenheit erfolgt während der Messung, wie später beschrieben.

Andere Dichtungen erwiesen sich als ungeeignet. Flüssige Metalle (Cu, Au) diffundieren in die Probe und das Elektrolytmaterial und verfälschen die Ergebnisse; Fluoride und Phosphate benetzen die Tiegelwandung nicht genügend, so daß die Abgeschlossenheit nicht gegeben ist.

- 13 -

3.1.2. Die Bezugshalbzelle

Sie besteht aus einem langen, einseitig geschlossenen Rohr aus ZrO₂ + 15 Mol-% CaO (10 mm Durchmesser, 410 mm Länge; Lieferfirma Zircoa Comp.). Für den Fall sehr niedriger Sauerstoffpartialdrücke über dem zu untersuchenden Oxid muß dieses zur Vermeidung von Elektronenleitung durch ein mit 15 Mol-% YO1,5 dotiertes ThO2-Rohr mit gleichen Maßen ersetzt werden (Lieferfirma Zircoa Comp.). Einige Messungen wurden zur Kontrolle mit beiden Elektrolytrohrendurchgeführt. Die Übereinstimmung der Ergebnisse zeigte aber, daß der kritische Druckbereich nicht erreicht wurde. Das Rohr ist außen mit Zuleitungen für ein Pt-PtRh-Thermoelement und für die Meßelektrode versehen. Im Rohrinnern dient ein Platindraht, dessen spiraliges Ende mittels eines dünnen Al₂0_z-Rohres gegen den Rohrabschluß gedrückt wird, als Bezugselektrode. Ein definiertes Sauerstoffpotential wird erzeugt, indem durch das Al₂0₃-Rohr ein schwacher Luftstrom gepumpt wird.

3.1.3. Die Meßapparatur

Das Kernstück der Apparatur besteht aus einem senkrecht stehenden Silitrohrofen. Ein Al₂O₃-Rohr (80 cm Länge, 17 mm Durchmesser; Lieferfirma Haldenwanger) ist durch das Heizrohr geführt und an den Enden mit Schliffen versehen. In dieses wird von unten die fertig präparierte Meßzelle eingeführt und das Ende mit dem Tiegel in die Heizzone gebracht. Ein massiver Keramikstab drückt dabei den Tiegel fest auf das Elektrolytrohr.

Zur Regelung der Temperatur und zur Aufzeichnung der sich einstellenden EMK wurden die benötigten elektronischen Geräte in einem Meßstand angeordnet. Abbildung 2 zeigt schematisch die Funktionsweise, Abbildung 3 eine Photographie der gesamten Apparatur.

Abbildung 2:

Schematische Darstellung der Meßanordnung

Abbildung 3:

Rechts: Links: Silitrohrofen mit Meßzelle Meßstand mit Temperaturregler, Spannungs- und Temperaturanzeige, Temperaturprogrammsteuergerät, Schreiber, Coulometer, Voltmeter Die Ofentemperatur wird durch eine Thyristorregelung auf $\pm 1^{\circ}$ C konstant gehalten. Ein Programmsteuergerät, mit dem Temperatur und Zeit vorgegeben werden, ermöglicht automatischen Betrieb der Anlage und problemloses genaues Einstellen der gewünschten Temperaturen. Die EMK wird mit Hilfe eines hochohmigen Präzisions-Transistor-Voltmeters (5.10¹² Ohm; Lieferfirma Knick) mit einer Genauigkeit von $\pm 1 \text{ mV}$ gemessen und gleichzeitig mit der Temperatur durch einen Zweikanalschreiber aufgezeichnet. Ein Coulometer ermöglicht eine gezielte Veränderung der Stöchiometrie des eingesetzten Oxids bezüglich des Sauerstoffgehalts.

Zur Vermeidung der Oxidation der Probe während des Aufheizens wird die Zelle mit reinstem Argon umspült. Wie Vorversuche zeigten, ist dies nach Ausbilden der Glasdichtung nicht mehr nötig; das Spülgas kann dann sogar durch ein anderes Gas (z.B. Argon, Luft, Sauerstoff, Stickstoff) ersetzt werden, ohne daß sich die EMK ändert. Ist die Zelle nicht abgeschlossen, so stellt sich rasch eine EMK ein, die durch den Sauerstoffpartialdruck des jeweiligen Gases gegeben ist. Diese Tatsache wurde benutzt, um vor jeder Messung die Dichtigkeit der Meßzelle zu prüfen.

3.2. Die Probenherstellung

Zur Darstellung der Präparate mit vorgegebener Sauerstoffstöchiometrie werden frisch reduziertes UO₂ und bis zur Wasserfreiheit erhitztes U₃O₈ und SEO_{1,5} in den entsprechenden Mengen eingewogen, so daß die Gesamtmenge jeweils etwa 1 g beträgt. Im Achatmörser werden die Oxide innigst miteinander vermischt und in die in den Quarzampullen befindlichen Platintiegel gebracht. Durch Anschließen der Ampulle an eine Vakuumpumpe, mehrmaliges Spülen mit Argon und Erhitzen werden jegliche Wasserspuren entfernt. Um beim Glühen bei 1250°C ein Schrumpfen oder Platzen der Ampullen zu vermeiden, wird ein Argondruck von 40 Torr vorgegeben. In einem Tiegelofen werden die Proben dann bei 1250°C zur Reaktion gebracht; die Zeiten bis zur Gleichgewichtseinstellung betragen drei bis vier Wochen. Das Einfrieren der Hochtemperaturmodifikation zur metastabilen Phase bei Raumtemperatur geschieht durch rasche Entnahme der Proben und Abschrecken in flüssigem Stickstoff.

Ein Teil der Präparate wird durch gemeinsames Fällen der Mischhydroxide mit karbonatfreiem Ammoniak erhalten. Dazu werden jeweils 0,1 molare Lösungen von SE³⁺ und UO₂²⁺ hergestellt. Nach Zusammengabe der entsprechenden Mengen der Ausgangslösungen werden diese gut miteinander vermischt und in kochende 25 %-ige Ammoniaklösung gebracht, um gemeinsames Fällen von Uran und SE zu gewährleisten. Die Mischhydroxide werden an der Luft vorgeglüht und anschließend fein pulverisiert. Das Glühen dieser Proben erfolgt in sauerstoffhaltiger Atmosphäre in einem Silitrohrofen bei 1250°C ca. 4 bis 24 Stunden lang in Platinschiffchen. Durch schnelles Herausziehen aus der heißen Reaktionszone werden die Proben abgeschreckt.

3.3. Chemische Analysen

Der in den Ampullen eingestellte Sauerstoffgehalt wurde stichprobenweise kontrolliert. Das Verhältnis U(IV):U(VI) ergibt sich folgendermaßen: In einen Überschuß eingestellter schwefelsaurer Ce(IV)-sulfatlösung werden 20 bis 30 mg einer Probe gebracht und bei 40 bis 50° C aufgelöst. Das unverbrauchte Ce(IV) wird mittels eingestellter Fe(II)-Lösung gegen Ferroin zurücktitriert. Die verbrauchte Menge Ce(IV) zeigt den in der Probe vorhandenen Anteil U(IV) an. Zur Bestimmung des Gesamturans werden 10 bis 20 mg derselben Probe in verdünnter H_2SO_4 gelöst, das Uran im Jones-Reduktor reduziert und der Urangehalt durch Titration mit Ce(IV)-Lösung und Ferroin als Indikator bestimmt. Aus der Gesamtmenge an Uran und dem Anteil von U(IV) läßt sich das O:U-Verhältnis berechnen. Die Analysen der durch Mischhydroxidfällung hergestellten Präparate erfolgt analog.

3.4. Röntgenographische Untersuchungen

Die Phasenverhältnisse in den zu untersuchenden Präparaten wurden röntgenographisch ermittelt. Von allen Proben wurden Debye-Scherrer-Aufnahmen mit Ni-gefilterter Cu-K_a-Strahlung in einer Röntgenkamera von 114,6 mm Durchmesser unter Verwendung des Filmmaterials Agfa-Texo-SH aufgenommen. Die Reflexe wurden nach der asymmetrischen Methode von Straumanis (35) ausgemessen und die Gitterkonstanten nach der Extrapolationsmethode von Nelson und Riley (36) mit den Rechenprogrammen RØST bzw. B-106 (37) auf einer IBM-370 Rechenanlage ermittelt. Zur Aufklärung der Phasenverhältnisse im Bereich rhomboedrischer und orthorhombischer Strukturen wurden Aufnahmen mit einem Zählrohrgoniometer hergestellt.

3.5. Versuchsdurchführung

Nach dem Einbringen der Zelle in den Ofen und dem Anschluß von Elektroden- und Thermoelementzuleitungen wird zunächst die Luft aus dem Trägerrohr durch Argon verdrängt (ein Strom von mäßiger Blasengeschwindigkeit zwei Stunden lang). Dann wird auf 1000°C aufgeheizt und eine Dichtigkeitsprüfung vorgenommen. Ist die Zelle nicht abgeschlossen, muß sie ersetzt werden; im Normalfall wird die Temperatur dann auf 700°C erniedrigt und der Verlauf der EMK verfolgt. Nach Erreichen eines konstanten Endwertes (nach 1 bis 24 Stunden) werden Messungen in Abständen von 50 Grad bis zu 1400°C durchgeführt. Dieser Temperaturbereich wird mindestens zweimal durchfahren; zur Auswertung werden nur solche Daten herangezogen, die auf <u>+</u> 5 mV übereinstimmen.

Die Funktionsfähigkeit der Apparatur wurde in zahlreichen Vorversuchen getestet. Dazu wurde ein Gemisch aus Fe und FeO mit bekanntem Sauerstoffpartialdruck eingesetzt. Die gefundenen Werte stimmten mit den erwarteten gut überein, wie in Tabelle 1 ersichtlich.

<u>Tabelle 1:</u> Vergleich zwischen theoretischen und experimentell ermittelten EMK-Werten der galvanischen Kette Pt/Luft/ZrO₂(+CaO)/Eisen+Wüstit/Pt

Temp.	(°C)	700	800	900	1000	1100	1200	1300	1 400
berechnet		1009,0	972 , 5	935 ,1	8 9 8,8	861,5	825,2	787,9	751,6
Experi	ment	1010	973	935	900	861	824	786	748

Zur Auswertung der Ergebnisse wurde ein Rechenprogramm für den Kleincomputer Wang 700 B angefertigt, mit dem der Sauerstoffpartialdruck über der Probe, die EMK E^O bezogen auf 1 atm Sauerstoff als Gegenelektrode, die Freie Molare Enthalpie $\Delta_L G^O$ für die Auflösung von 1 Mol O₂ in einer unendlichen Menge des Oxids und aus der Temperaturabhängigkeit von $\Delta_L G^O$ dann die Standardwerte der Entropie $\Delta_L S^O$ und der Enthalpie $\Delta_L H^O$ für die Auflösung von 1 Mol Sauerstoff in einer unendlich großen Menge der Probe berechnet wurden.

3.6. Ausgangssubstanzen

Die Seltenerdoxide (Lieferfirma Rasmus, Hamburg) und U₃0₈ (Lieferfirma Merck) besaßen einen Reinheitsgrad von 99,9 %. Für Oxidationen wurde reinster Sauerstoff, für Reduktionsreaktionen reinster Wasserstoff und als Spül- und Inertgas reinstes Argon verwendet.

4. ERGEBNISSE UND DISKUSSION

4.1. Thermodynamische Untersuchungen an Fluoritphasen der Zusammensetzung SEUO₄ mit SE = La,Nd,Eu,Ho,Er,Tm,Yb und Lu

Die Phasenbeziehungen der Uran-Seltenerd-Mischoxide sind eingehend quasibinär und zum Teil auch ternär untersucht (38-41). Die stöchiometrischen SEUO₄-Glieder (korrekt als $(U_{O_5}, 5 SE_{O,5})O_2$ zu bezeichnen) kristallisieren bei hohen Temperaturen im Fluoritgitter: Die Kationen besetzen die Ecken und die Flächenmitten des Würfels, die Anionen die Zentren der Achtelwürfel; dabei sind die Uran- und Seltenerdionen im Verhältnis 1:1 statistisch auf die Metallplätze des Fluoritgitters verteilt. Bei einigen Phasen, z.B. LaUO₄, wird dieses Fluoritgitter bei niedrigen Temperaturen instabil und es bildet sich eine zweite Phase aus (42,43).

Mit Hilfe der Hochtemperatur-EMK-Technik wurde nun versucht, die Umwandlungspunkte der SEUO₄-Phasen zu ermitteln und dabei gleichzeitig die thermodynamischen Daten zur Löslichkeit von Sauerstoff in den einzelnen Gebieten zu erfassen. Die Herstellung der SEUO₄-Proben erfolgte in Quarzampullen bei 1250°C durch Reaktion der entsprechenden Mengen SEO_{1,5}, UO₂ und U₃O₈.

4.1.1. Thermodynamische Daten von LaUO4

Röntgenographisch wurde gezeigt (43), daß LaUO₄ unterhalb von 1130 <u>+</u> 20^oC in ein Zweiphasengebiet, bestehend aus Fluorit- und rhomboedrischer Phase, zerfällt. Da die Umwandlung rasch erfolgt und reversibel ist (43), wurde die elektrochemische Methode zum Vergleich herangezogen. Die gemessenen EMK-Werte sind in Abbildung 4 als Funktion der Temperatur aufgetragen.

<u>Abbildung 4:</u> Abhängigkeit der EMK E von der Temperatur für LaUO₄

Bei 1119[°]C ist eine Änderung der Steigung im EMK-Temperatur-Diagramm erkennbar, was die Phasenumwandlung anzeigt. Dieser Wert ist in Übereinstimmung mit dem bei röntgenographischen Untersuchungen erhaltenen. Unterhalb dieser Temperatur erfolgt eine Umwandlung der Fluoritphase in ein Zweiphasengemisch aus Fluorit- und rhomboedrischer Phase (43). Die aus den Meßdaten errechneten Standardwerte der Molaren Freien Lösungsenthalpie sind in Abbildung 5 gegen die absolute Temperatur aufgetragen. Die Geradengleichungen in den einzelnen Temperaturbereichen lauten:

Für 973 < T [K] ≤ 1392:

 $\Delta_{L}G^{\circ} = (-88, 4 \pm 0, 5) \text{ kcal/mol} + T (48, 1 \pm 0, 4) \text{ cal/grd·mol}$ und für $1392 \leq T[K] < 1673$:

 $\Delta_{T_{c}}G^{O} = (-71, 4 \pm 1, 4) \text{ kcal/mol} + T (35, 9 \pm 0, 9) \text{ cal/grd-mol}.$

Der Unterschied der molaren Lösungsentropie ergibt sich aus der Differenz der beiden Geradensteigungen zu $\Delta(\Delta_L S^0) =$ 12,3 ± 1,0 cal/grd·mol, der der Lösungsenthalpie zu $\Delta(\Delta_L H^0) =$ -17,1 ± 1,5 kcal/mol. Die Umwandlungstemperatur wurde aus dem geometrischen Schnittpunkt beider Geraden errechnet und beträgt 1392 K (1119°C).

<u>Abbildung 5:</u> Abhängigkeit der Molaren Freien Lösungsenthalpie $\Delta_L^{G^O}$ für LaUO₄ von der Temperatur

4.1.2. Thermodynamische Daten von NdUO4 und EuUO4

Boroujerdi (39) untersuchte das System UO_{2+x} -NdO_{1,5} röntgenographisch zwischen 1100 und 1550°C bei 1 atm Sauerstoff (Abb. 6).

Zwischen 1100 und 1400°C identifizierte er durch chemische Analyse die Phase Nd_{0,5}U_{0,5}O_{2+x} mit der Stöchiometrie NdUO_{4,0}. Innerhalb der Analysengenauigkeit kann diese Verbindung mit dem in Ampullen hergestellten NdUO_{4,00} als identisch betrachtet werden, d.h. man kann deshalb die in der Abbildung 6 gestrichelt gezogene Linie als Lage des NdUO₄ im Diagramm ansehen.

<u>Abbildung 6:</u> Phasendiagramm des quasibinären Systems ^{UO}2+x^{-NdO}1.5 (39)

Demnach ist zumindest im Bereich $1000 < T[^{\circ}C] < 1550$ keine Umwandlung zu erwarten. Unterhalb von $1000^{\circ}C$ könnte ein Zweiphasengebiet F+R oder eventuell auch F+U₃O₈ bei der 1:1-Phase auftreten. Zur Klärung der Frage, ob dies der Fall ist, wurden deshalb elektrochemische Messungen an NdUO₄ durchgeführt. In Abbildung 7 ist $\Delta_L G^{\circ}$ in Abhängigkeit von der Temperatur aufgezeichnet. Man erkennt, daß im untersuchten Temperaturintervall keine Umwandlung festzustellen ist. Die Molare Freie Enthalpie zur Auflösung von Sauerstoff in der stöchiometrischen 1:1-Fluoritphase lautet:

 $\Delta_{L}G^{0} = (-105, 4 \pm 3, 0) \text{ kcal/mol} + T (56, 2 \pm 2, 1) \text{ cal } \text{grd}^{-1} \text{ mol}^{-1}$ für 970 < T [K] < 1580.

Das Phasendiagramm des Systems Eu-U-O ist noch nicht bekannt. Aus z.Zt. laufenden Untersuchungen im hiesigen Institut ist bekannt (40), daß auch EuUO₄ bei 1250° C reine Fluoritstruktur besitzt. Die elektrochemische Untersuchung ergab, wie ebenfalls in Abbildung 7 dargestellt ist, daß auch EuUO₄ im Temperaturbereich 790°C bis 1390°C nur einphasig auftritt. Die Gleichung zur Berechnung der Molaren Freien Lösungsenthalpie lautet:

 $\Delta_{L}G^{\circ} = (-113, 6 \pm 2, 5) \text{ kcal/mol} + T (57, 8 \pm 1, 8) \text{ cal grd}^{-1} \text{ mol}^{-1}$ für 1060 < T [K] <1660.

<u>Abbildung 7:</u> Abhängigkeit der Molaren Freien Lösungsenthalpie $\Delta_L G^O$ der Verbindungen NdUO₄ und EuUO₄ von der Temperatur

4.1.3. Thermodynamische Daten von HoUO4, TmUO4 und YbUO4

Engerer (44) untersuchte das System HoO_{1,5}-UO_{2+x} bei 1 atm Sauerstoff zwischen 1100 und 1550°C. Die durch Glühen der Ausgangsoxide an Luft erhaltene 1:1-Phase entspricht nach der chemischen Analyse der Zusammensetzung HoUO_{4,0}. Nach dem Phasendiagramm wäre das Auftreten eines Zweiphasengebiets unterhalb von 1100°C möglich. Die aus der Temperaturabhängigkeit der Molaren Freien Lösungsenthalpie $\Delta_{\rm L}$ G^o zwischen 750 und 1250°C ermittelten Werte für die Lösungsentropie $\Delta_{\rm L}$ S^o zeigen bei 852°C deutlich einen Sprung, was die Phasenänderung anzeigt (Abb. 8).

<u>Abbildung 8:</u> Abhängigkeit der molaren freien Lösungsenthalpie $\Delta_L G^{O}$ der Phasen HoUO₄, TmUO₄ und YbUO₄ von der Temperatur

Die röntgenographische Analyse der eingesetzten Probe zeigte, daß unterhalb von 852° C neben der Fluoritphase orthorhombisches $\beta-U_{3}O_{8}$ vorliegt (Abb. 9+10).

<u>Abbildung 9:</u> Goniometeraufnahme von HoUO₄. Die Verbindung wurde bei 1250⁰C hergestellt und auf Raumtemperatur abgeschreckt: reine Fluoritphase

Die thermodynamischen Gleichungen für die Molare Freie Lösungsenthalpie im untersuchten Temperaturbereich lauten für HoUO $_{\mu}$:

Für 1020 < T[K] < 1125 $\Delta_{L}G^{O} = (-198, 0 \pm 0, 9) \text{ kcal/mol} + T (133, 0 \pm 0, 8) \text{ cal/grd mol}.$ Für 1125 < T[K] <1530 $\Delta_{L}G^{O} = (-118, 4 \pm 1, 9) \text{ kcal mol}^{-1} + T (62, 9 \pm 1, 4) \text{ cal grd}^{-1} \text{ mol}^{-1}.$

Der Unterschied der Molaren Lösungsentropie ergibt sich damit zu (70,1 \pm 1,6) cal grd⁻¹ mol⁻¹ und der der Molaren Lösungsenthalpie zu (79,6 \pm 2,1) kcal mol⁻¹.

Betrachtet man das von Leitner (45) ermittelte Phasendiagramm des Systems $\text{TmO}_{1,5}$ -UO_{2+x} (Abb. 11), so erwartet man eine Phasenumwandlung von TmUO₄ etwas oberhalb von 1200°C.

- 27 -

<u>Abbildung 10:</u> Goniometeraufnahme von HoUO₄. Die bei 1250^oC hergestellte Verbindung wurde vier Wochen lang bei 800^oC getempert und dann auf Raumtemperatur abgeschreckt; neben den Reflexen der Fluoritphase sind die des B-U₃0₈ zu beobachten.

<u>Abbildung 11:</u> Phasendiagramm des quasibinären Systems ^{UO}2+x^{-TmO}1,5 ⁽⁴⁵⁾

Dieses konnte durch die thermodynamischen Untersuchungen bestätigt werden. Die Kurve $\Delta_L G^O$ gegen die Temperatur aufgetragen (Abb. 8) weist bei 1254°C einen ausgeprägten Knick auf, und die röntgenographische Analyse ergab unterhalb dieser Temperatur ebenfalls die Existenz von $\beta-U_3O_8$ neben der Fluoritphase. Die Daten für TmUO₄ lauten zwischen 1270 und 1527 K

$$\Delta_{\rm L} G^{\rm O} = (-81,3 \pm 0,0) \text{ kcal mol}^{-1} + \text{T} (34,0 \pm 0,0) \text{ cal grd}^{-1} \text{ mol}^{-1}$$

und im Temperaturbereich von 1527 bis 1680 K

 $\Delta_{\rm L}^{\rm G^{\rm O}} = (-35,5 \pm 0,9) \text{ kcal mol}^{-1} + T (4,0 \pm 0,6) \text{ cal grd}^{-1} \text{ mol}^{-1}.$

Die Differenz der Freien Molaren Standardenthalpie in den beiden Phasen beträgt

$$\Delta_{L}G^{0}_{2-phasig} - \Delta_{L}G^{0}_{1-phasig} = (-45,8 \pm 0,9) \text{ kcal mol}^{-1} + T (30,0 \pm 0,6) \text{ cal grd}^{-1} \text{ mol}^{-1}$$

und wird bei der Umwandlungstemperatur von T = 1527 K gleich Null.

YbUO₄ sollte nach dem quasibinären Phasendiagramm (45) ebenfalls eine Umwandlung im untersuchten Temperaturbereich erleiden. Die Ergebnisse sind in Abbildung 8 aufgetragen. Unterhalb von 1555 K tritt neben der Fluoritphase wieder $B-U_3O_8$ auf, das röntgenographisch identifiziert wurde. Die Gleichung für $\Delta_{T_i}G^O$ lautet zwischen 1270 und 1555 K

$$\Delta_{\rm L}^{\rm G^{O}} = (-153,3 \pm 2,9) \text{ kcal mol}^{-1} + T (78,3 \pm 2,1) \text{ cal grd}^{-1} \text{ mol}^{-1}$$

und von 1555 bis 1680 K

 $\Delta_{\rm L}G^{\rm O} = (-48, 4 \pm 3, 1) \text{ kcal mol}^{-1} + T (10, 8 \pm 1, 9) \text{ cal grd}^{-1} \text{ mol}^{-1}.$

4.1.4. Thermodynamische Daten von LuUO4 und ErUO4

Oberhalb von 1100[°]C sind bei beiden Phasen nach den entsprechenden quasibinären Phasendiagrammen (46), die in den Abbildungen 12 und 13 dargestellt sind, keine Umwandlungen zu erwarten.

<u>Abbildung 12:</u> Phasendiagramm des quasibinären Systems UO_{2+x}-ErO_{1,5} (46)

<u>Abbildung 13:</u> Phasendiagramm des quasibinären Systems UO_{2+x}-LuO_{1,5} (46)
Die Bestimmung der thermodynamischen Daten zur Lösung von Sauerstoff ergab nun, daß sich die Lösungsentropie von LuUO₄ bei 1141^oC sprunghaft um (59,0 \pm 2,4) cal/grd mol ändert, wie die Kurve in Abbildung 14 zeigt.

<u>Abbildung 14:</u> Abhängigkeit der Molaren Freien Lösungsenthalpie der Phasen LuUO₄ und ErUO₄ von der Temperatur

Die Phasengrenze im System $\text{LuO}_{1,5}^{-\text{UO}_{2+x}}$ zwischen reiner Fluoritphase und dem Zweiphasengebiet aus Fluorit- und $B-U_{3}O_{8}^{-}$ Phase liegt demnach zumindest bei niedrigen Temperaturen etwas mehr auf der lutetiumreicheren Seite, als in Abbildung 13 angegeben ist. Die Gleichungen für die Standardwerte der Freien Molaren Lösungsenthalpie lauten: $\Delta_{L}G^{O} = (-146, 6 \pm 1, 2)$ kcal mol⁻¹ + T (85,5 ± 1,0) cal grd⁻¹ mol⁻¹ für 1170 < T[K] < 1414 und $\Delta_{\rm L} G^{\rm O} = (-63, 1 \pm 3, 5) \text{ kcal mol}^{-1} + T (26, 4 \pm 2, 2) \text{ cal grd}^{-1} \text{ mol}^{-1}$ für 1414 < T [K] < 1680.

Im Gegensatz zu LuUO₄ tritt bei ErUO₄ über den gesamten Temperaturbereich keine Änderung der Lösungsentropie auf (Abb. 14). Die röntgenographische Analyse zeigt auch bei tiefen Temperaturen die Reflexe der reinen Fluoritphase. Die thermodynamischen Größen ergeben sich zwischen 800 und 1400[°]C nach folgender Gleichung:

 $\Delta_{L}G^{0} = (-133,9 \pm 2,1) \text{ kcal mol}^{-1} + T [K](68,8 \pm 1,5) \text{ cal/grd mol}$

4.1.5. Abschließende Betrachtung

Wie die Untersuchungen der vorangegangenen Abschnitte zeigten, sind ein Teil der stöchiometrischen Glieder der Seltenerd-Uran-Fluoritphasen bei tiefen Temperaturen nicht mehr stabil: neben der Fluoritphase tritt eine weitere Phase auf; im Fall des LaUO₄ bildet sich zusätzlich eine rhomboedrische Phase aus, bei HoUO₄, TmUO₄, YbUO₄ und LuUO₄ die des B-U₃O₈. Bei den Phasen, die keine Phasenänderung zeigten (NdUO₄, EuUO₄ und ErUO₄), liegt eine mögliche Umwandlungstemperatur unter 700°C. Die Umwandlungsgeschwindigkeiten dürften dann aber so gering sein, daß sie mit der angewandten Meßmethode nicht mehr erfaßbar sind; vermutlich wird die reine Fluoritphase in solchen Fällen in metastabilem Zustand erhalten bleiben. Für Substanzen, bei denen Phasenumwandlungen zwischen 800 und 1300°C stattfinden, ist das Verfahren geeignet und liefert übereinstimmende Ergebnisse mit den bekannten Phasendiagrammen.

Tabelle	2:
---------	----

Berechnung thermodynamischer Groessen aus EMK-Messungen fuer die Verbindungen SEUO 4

a) LaUO 4

т[С]	EMK[mV]	p[atm]	E ° [mV]	#G°[kcal/mol]
800	364.0	.301108253705ex-07	399.5	-36.864
850	335.0	.201524623146ex-06	372.2	-34.342
900	307.0	.110245492404ex-05	345.9	-31.911
950	280.0	.505312631225ex-05	320.5	-29.574
1000	252.0	.213144021431ex-04	294.2	-27.143
1050	223.0	.835200543917ex-04	266.8	-24.621
1100	198.0	.258786409312ex-03	243.5	-22.467
1150	174.0	.716809550253ex-03	221.1	-20.406
1200	152.0	.173955973675ex-02	200.8	-18.530
1250	128.0	.423339546888ex-02	178.5	-16.468
1300	111.0	.791787468193ex-02	163.1	-15.053
1350	89.0	.164409593884ex-01	142.8	-13.176

b) NdUO 4

T[C]	EMK[mV]	p[atm]	E ° [mV]	#G°[kca1/mo1]
695	543.0	.101436832166ex-11	575.1	-53.057
784	460.0	.349101911765ex-09	495.0	-45.672
829	433.0	.248694206864ex-08	469.5	-43.318
867	400.0	.175313503480ex-07	437.8	-40.390
952	347.0	.405251680640ex-06	387.6	-35.761
996	321.0	.165641625333ex-05	363.0	-33.497
1034	296.0	.566759252313ex-05	339.3	-31.307
1074	273.0	.171208451903ex-04	317.6	-29.307
1154	240.0	.849672523043ex-04	287.3	-26.507
1194	193.0	.465689753325ex-03	241.6	-22.294
1244	178.0	.901669840790ex-03	228.3	-21.063
1310 .	130.0	.462869894444ex-02	182.5	-16.837

c) EuUO 4

T[C]	EMK[mV]	p[atm]	E ° [mV]	#G°[kcal/mol]
782	525.0	.192048795994ex-10	559.9	-51.662
787	532.0	.157593323937ex-10	567.1	-52,323
826	505.0	.112821694911ex-09	541.4	-49.952
872	475.0	.898080365118ex-09	512.9	-47.325
929	444.0	.742007015346ex-08	483.8	-44.639
997	400.0	.929576484553ex-07	442.1	-40.788
1037	378.0	.317009038971ex-06	421.4	-38.881
1074	345.0	.142951361575ex-05	389.6	-35.950
1116	300.0	.922556120577ex-05	346.0	-31.927
1118	325.0	.406140933525ex-05	371.1	-34.239
1195	272.0	.383921051145ex-04	320.6	-29.585
1209	251.0	.804298981634ex-04	300.1	-27.691
1244	234.0	.162300311066ex-03	284.3	-26.229
1254	211.0	.342423866900ex-03	261.6	-24.138
1272	205.0	.441961646864ex-03	256.2	-23.639
1274	220.0	.283943638628ex-03	271.3	-25.029
1312	183.0	.983904696126ex-03	235.5	-21.732
1327	182.0	.106511533349ex-02	235.0	-21.686
1387	130.0	.552460530061ex-02	185.0	-17.072

d) ⊞oUO

шо	υ	U	
			4

Τ[C]	EMK[mV]	p[atm]	E ° [mV]	#G°[kcal/mol]
750	644.0	.419576942705ex-13	677.9	-62.543
800	565.0	.500909028057ex-11	600.5	-55.408
850	490.0	.331078293035ex-09	527.2	-48.641
900	449.0	.398300937747ex-08	487.9	-45.012
950	413.0	.323368016453ex-07	453.5	-41.844
1000	370.0	.287527460329ex-06	412.2	-38.030
1050	332.0	.181843550102ex-05	375.8	-34.677
1100	300.0	.820772095039ex-05	345.5	-31.878
1150	265.0	.367525624692ex-04	312.1	-28.802
1200	233.0	.135228979206ex-03	281.8	-26.002
1250	198.0	.500547876793ex-03	248.5	-22.926

Fortsetzung von Tabelle 2 : TmUO 4 e)

Т[С]	EMK[mV]	p[atm]	E ° [mV]	#G°[kcal/mol]
1000	370.0	.287527460329ex-06	412.2	-38.030
1100	330.0	.297456121891ex-05	375.5	-34.645
1200	290.0	.224079583888ex-04	338.8	-31.261
1250	270.0	.556813483173ex-04	320.5	-29.569
1300	265.0	.838511714532ex-04	317.1	-29.261
1350	260.0	.123127375210ex-03	313.8	-28.952
1400	257.0	.167151644118ex-03	312.4	-28.828

¥ЪŬО 4 f)

T[C]	EMK[mV]	p[atm]	E ° [mV]	#G°[kcal/mol]
1000	536.0	.672992223665ex-09	578.2	-53.344
1042	500.0	.448293336206ex-08	543.6	-50.151
1100	460.0	.365839843786ex-07	505.5	-46.639
1120	433.0	.112550035803ex-06	479.2	-44.209
1200	365.0	.210478740501ex-05	413.8	-38.180
1273	295.0	.296947866485ex-04	346.2	-31.946
1300	285.0	.464518170783ex-04	337.1	-31.106
1355	280.0	.711931155912ex-04	333.9	-30.813
1400	274.0	.104258446239ex-03	329.4	-30.397

LuUO 4 g)

E°[mV] $#G^{o}[kcal/mo1]$ T[C] EMK[mV] p[atm] 900 462.0 .238031405430 ex-08500.9 -46.211 1000 370.0 .287527460329ex-06 412.2 -38.030 1100 270.0 .226476035428ex-04 315.5 -29.110 .262231044361ex-03 260.8 -24.065 1200 212.0 195.0 .548510086975ex-03 245.5 -22.650 1250 1300 188.0 .814814744281ex-03 240.1 -22.157 1400 147.0 .354468287126ex-02202.4 -18.680

h) ErUO 4

.

т[С]	EMK[mV]	p[atm]	E ° [m V]	#G°[kcal/mol]
800	615.0	.575066558016ex-12	650.5	-60.020
850	580.0	.800172873015ex-11	617.2	-56.944
900	540.0	.108435591432ex-09	578.9	-53.407
950	495.0	.143578609479ex-08	535.5	-49.409
1000	462.0	.100165471421ex-07	504.2	-46.517
1050	425.0	.694355642399ex-07	468.8	-43.257
1100	380.0	.547970012898ex-06	425.5	-39.258
1150	343.0	.288053909814ex-05	390.1	-35.998
1200	301.0	°158397076485ex-04	349.8	-32.276
1250	259.0	.778788251863ex-04	309.5	-28.554
1300	221.0	.307484532502ex-03	273.1	-25,201
1350	182.0	.114792634584ex-02	235.8	-21.756
1400	164.0	.221094521998ex-02	219.4	-20.249

4.2. Thermodynamische Untersuchungen an Verbindungen des $\frac{Typs SE}{1-yUyO_2, 23} \text{ mit SE = La, Lu}$

Baut man in das Fluoritgitter des UO₂ zusätzlichen Sauerstoff ein, so wird dieser zunächst unter Beibehaltung der Struktur statistisch auf Zwischengitterplätze verteilt. In Abbildung 15 sind in ein Fluoritgitter die möglichen Zwischengitterplätze eingezeichnet.

<u>Abbildung 15:</u> Fluoritgitter mit möglichen Zwischengitterplätzen für Sauerstoff

Oberhalb eines bestimmten Sauerstoffgehalts tritt eine Ordnung in der Verteilung auf; die Zwischengitterplätze werden nicht mehr statistisch, sondern in regelmäßiger Weise besetzt; es kommt zu einer Überstruktur. Im Röntgendiagramm kann dies durch zusätzliche Reflexe festgestellt. werden, die bei großen Winkeln auftreten.

 U_4O_9 (= $U_2^{IV}U_2^{V}O_9$) isteine solche kubische Überstrukturphase der Raumgruppe I43d (47). Seine Elementarzelle besteht aus 4x4x4 Elementarzellen des Fluoritgitters, enthält 256 Uranund 64 Sauerstoffatome und hat mit a = 21,77 Å eine vierfache Fluoritgitterkonstante. Bei hohen Temperaturen wird der Ordnungszustand wieder aufgehoben, die Sauerstoffatome verteilen sich unregelmäßig auf die Zwischengitterplätze. Für U_4O_9 findet der Übergang der geordneten in die ungeordnete Phase bei 1123°C statt (48).

Die Frage der Phasenbreite der $U_4 O_9$ -Überstruktur bezüglich des Sauerstoffgehalts wurde eingehend untersucht (49,50). Unterhalb von 600°C liegt das α - und β -U₄O₉ nur bei dem stöchiometrischen O:U-Verhältnis von 2,25 vor. γ -U₄O₉ dagegen besitzt bei höheren Temperaturen eine Phasenbreite von $UO_{2,21}$ bis $UO_{2,25}$. In Abbildung 16 sind die Phasenverhältnisse im System U-O dargestellt.

<u>Abbildung 16:</u> Phasenbeziehungen im Uran-Sauerstoff-System (aus 49)

Vierwertige Metalle,wie Th, Np oder Pu, können unter Erhaltung der Überstruktur das U(IV) im U₄O₉ ganz ersetzen. Die Frage, ob Uran auch successive durch dreiwertige Metalle ersetzt werden kann, ist bis jetzt noch nicht näher untersucht worden. Zur Klärung dieser Frage wurde durch Festkörperreaktionen der entsprechenden Mengen UO₂, U_3O_8 und LaO_{1,5} bzw. LuO_{1,5} bei 1000°C und einer Dauer von 12 Wochen jeweils 1 g Mischoxid der Zusammensetzung SE_{1-y}U_yO_{2,23} mit y = 1,0 ... 0,70 in Abständen von 0,05 in Quarzampullen hergestellt. Das O:U-Verhältnis 2,23 wurde gewählt, um sicher zu sein, daß die Proben im Einphasengebiet des γ -U₄O₉ liegen.

Zur Entscheidung, ob sich beim Ersatz von Uran durch die dreiwertigen Metalle die Sauerstoffatome tatsächlich durch einen Ordnungszustand auszeichnen, wurden die Proben elektrochemisch untersucht. Denn wenn sich das geordnete $(SE_{1-y}U_y)_{4}O_{8,92}$ mit steigender Temperatur in das ungeordnete $SE_{1-y}U_yO_{2,23}$ umwandelt, sollte sich dies durch unterschiedliche Lösungsentropien von Sauerstoff in den Substanzen bemerkbar machen. Daß die Umwandlungsenergie groß genug und der Vorgang reversibel ist, zeigte Kiukkola bei elektrochemischen Studien von Uranoxiden (52); im Gebiet des $\gamma-U_4O_9$ fand er solche Umwandlungen, die sich durch Unstetigkeiten in den EMK-Temperatur-Kurven auszeichneten.

4.2.1. Die Phase La1-yUy02,23

In Tabelle 3 sind die für UO_{2,23} bestimmten thermodynamischen Daten mit aufgeführt. Aus der EMK-Temperatur-Kurve (Abb. 17) ist eine Änderung der Steigung bei 1142[°]C ersichtlich.

Die aus den gefundenen Daten berechneten E^{O} - und $\Delta_{L}G^{O}$ -Werte stimmen mit den von anderen Autoren (43,52) angegebenen gut überein. Für das geordnete UO_{2,23} lautet die thermodynamische Gleichung zur Löslichkeit von Sauerstoff

 $\Delta_{L}G^{O} = (-83, 2 \pm 0, 3) \text{ kcal/mol} + T (35, 4 \pm 0, 3) \text{ cal/grd mol}$

und für dessen ungeordneten Zustand

 $\Delta_{L}G^{O} = (-72, 4 \pm 0, 5) \text{ kcal/mol} + T (27, 8 \pm 0, 4) \text{ cal/grd mol} .$ Die Differenz $\Delta_{L}G^{O}_{\text{geordnet}} - \Delta_{L}G^{O}_{\text{ungeordnet}} \text{ wird für } T = 1415 \text{ K}$ gleich Null; diese Temperatur entspricht dem Umwandlungspunkt.

<u>Abbildung 17:</u> Abhängigkeit der EMK von der Temperatur der Verbindung UO_{2.23}

Bei den Proben der Zusammensetzungen La_{0,05}U_{0,95}O_{2,23} und La_{0,15}U_{0,85}O_{2,23} konnten diese geordnet-ungeordnet Übergänge ebenfalls festgestellt werden. Für die Phasen mit 20 und 30 Atom-% Lanthan im Mischoxid ist eine Ausbildung der Überstruktur nicht mehr gegeben; hier wurde über den ganzen gemessenen Temperaturbereich eine konstante Lösungsentropie festgestellt. Die ermittelten Werte für $\Delta_{\rm L}$ G^O sind in Abbildung 18 dargestellt.

Man erkennt, daß die Grenze der Ausbildung der geordneten Phase zwischen 15 und 20 Atomprozent Lanthan anstelle von Uran im γ -Me₄O₉ liegt. Dieses ist auch in Übereinstimmung mit den röntgenographischen Analysen; mit zunehmender Substitution des Urans durch Lanthan werden die Überstrukturlinien schwächer und können bei La_{0,20}U_{0,80}O_{2,23} nicht mehr identifiziert werden.

<u>Abbildung 18:</u> Abhängigkeit der Molaren Freien Lösungsenthalpie der Proben der Zusammensetzung La_{1-y}Uy⁰2,23 von der Temperatur (0,7 < y < 1,0)

Die thermodynamischen Größen zur Löslichkeit von Sauerstoff in den untersuchten Verbindungen können nach folgenden Gleichungen berechnet werden:

 $La_{0,05}U_{0,95}O_{2,23}$ $\Delta_{L}G^{O} = (-98,2 \pm 1,0) \text{ kcal/mol} + T (48,7 \pm 0,8) \text{ cal/grd mol}$ im geordneten Bereich für 1045 < T <1397 und

 $\Delta_{L}G^{O} = (-73, 1 \pm 0, 3)$ kcal/mol + T (30,7 ± 0,2) cal/grd mol für die ungeordnete Phase mit 1397 < T < 1671.

^{La}0,15^U0,85⁰2,23 $\Delta_{L}G^{O} = (-87,0 \pm 0,5) \text{ kcal/mol} + T (41,0 \pm 0,4) \text{ cal/grd mol}$ für 1173 < T < 1449 und $\Delta_{L}G^{O} = (-73,9 \pm 1,3) \text{ kcal/mol} + T (32,0 \pm 0,8) \text{ cal/grd mol}$ für 1449 < T < 1673. ^{La}0,20^U0,80^O2,23 $\Delta_{L}G^{O} = (-78,6 \pm 0,8) \text{ kcal/mol} + T (41,0 \pm 0,6) \text{ cal/grd mol}$ für 1061 < T < 1665.

 $La_{0,30}U_{0,70}O_{2,23}$ $\Delta_{L}G^{0} = (-88,1 \pm 1,1) \text{ kcal/mol} + T (49,1 \pm 0,8) \text{ cal/grd mol}$ für 1061 < T < 1628.

4.2.2. Die Phase Lu1-yUy02,23

Um festzustellen, ob der Radius des dreiwertigen Metalls einen wesentlichen Einfluß auf die Grenze der Überstruktur der γ -Me₄O₉-Phase hat, wurde das kleinste Seltenerd-Metall, Lutetium, anstelle von Uran in U₄O₉ eingebaut. Phasenum-wandlungen geordnet-ungeordnet konnten auch hier beobachtet werden. Wie in Abbildung 19 ersichtlich, ist dies im Gegensatz zu dem Lanthanhomologen nur bis zu 10 %-igem Uranersatz durch Lutetium im Mischoxid der Fall. Die Grenze der Ausbildung der Überstruktur liegt demnach zwischen Lu_{0,10}U_{0,90}O_{2,23} und Lu_{0,15}U_{0,85}O_{2,23}.

Die Gleichungen für die $\triangle_L G^O$ -Werte der untersuchten Proben lauten:

 $L_{U}O,05^{U}O,95^{O}2,23$ $\Delta_{L}G^{O} = (-98,6 \pm 0,1) \text{ kcal/mol} + T (44,2 \pm 0,1) \text{ cal/grd mol}$ für 925 < T < 1409 und

<u>Abbildung 19:</u> Abhängigkeit der Freien Molaren Lösungsenthalpie $\Delta_L G^0$ der Phase $Lu_{1-y}U_y^0_{2,23}$ von der Temperatur (0,75 $\leq y \leq 1,0$)

 $\Delta_{L}G^{\circ} = (-79, 4 \pm 2, 7) \text{ kcal/mol} + T (30, 6 \pm 1, 7) \text{ cal/grd mol}$ für 1409 < T < 1668.

^{Lu}0,10^U0,90^O2,23 $\Delta_{L}G^{O} = (-99,1 \pm 4,4)$ kcal/mol + T (49,8 ± 3,7) cal/grd mol für 971 < T < 1419 und $\Delta_{L}G^{O} = (-67,3 \pm 2,7) \text{ kcal/mol} + T (27,4 \pm 1,7) \text{ cal/grd mol}$ für 1419 < T < 1669.

^{Lu}0,15^U0,85⁰2,23 $\Delta_{L}G^{\circ} = (-91,9 \pm 1,2)$ kcal/mol + T (49,7 ± 0,9) cal/grd mol für 1123 < T < 1673.

 $Lu_{0,20}U_{0,80}O_{2,23}$ $\Delta_{L}G^{0} = (-89,3 \pm 2,1) \text{ kcal/mol} + T (49,0 \pm 1,5) \text{ cal/grd mol}$ für 1073 < T < 1623.

 $Lu_{0,25}U_{0,75}O_{2,23}$ $\Delta_{L}G^{0} = (-94,8 \pm 1,2) \text{ kcal/mol} + T (53,9 \pm 0,9) \text{ cal/grd mol}$ für 1123 < T < 1673.

4.2.3. Vergleich zwischen La1-yUy02,23 und Lu1-yUy02,23

Der Radius des dreiwertigen Metalls hat auf die Überstruktur also einen nicht unerheblichen Einfluß. Beim Einbau des Fremdmetalls in die $\gamma-U_4O_9$ -Phase treten in dessen Gitterparametern Veränderungen auf. In Abbildung 20 sind die röntgenographisch ermittelten Fluoritgitterkonstanten in Abhängigkeit vom Fremdkationengehalt dargestellt.

Während beim Einbau von Lanthan im $MeO_{2,23}$ eine schwache Aufweitung der Elementarzelle stattfindet, schrumpft das Gitter beim Ersatz von Uran durch Lutetium relativ stark. Wegen der größeren Gitteränderung wird im letzten Fall der Ordnungszustand der Sauerstoffatome bereits bei geringerem Kationengehalt, der Wert liegt zwischen 10 und 15 Atomprozent gegenüber 15 bis 20 Atomprozent beim Lanthan, zugunsten des Fluorittyps aufgegeben. Es ist zu erwarten, daß die maximale Phasenbreite des geordneten $\gamma-Me_4O_9$ bezüglich des Seltenerdgehalts dann erreicht wird, wenn sich das Gittervolumen am wenigsten ändert; das dafür günstigste Seltenerdelement wird zwischen Neodym und Europium liegen. Eine genaue Untersuchung dieser Abhängigkeit vom eingesetzten Seltenerd-Metall soll das Thema einer weiterführenden Arbeit sein.

Abbildung 20:

Gitterkonstanten von La_{1-y} $^{U}y^{O}_{2,23}$ und Lu_{1-y} $^{U}y^{O}_{2,23}$ als Funktion von y (T = 25°C); die Proben wurden bei 1000°C hergestellt und auf Raumtemperatur abgeschreckt

Tabelle 3 :

Berechnung thermodynamischer Groessen aus EMK-Messungen fuer die Verbindungen SE U O (1-y) y 2,23

UO 2,23 a)

т[С]	EMK[mV]	p[atm]	E ° [m V]	#G°[kcal/mol]
900	406.0	.218642949374ex-07	444.9	-41.045
950	393.0	.691196112752ex-07	433.5	-39.998
1000	371.0	.277224700521ex-06	413.2	-38.122
1050	350.0	.966548942491ex-06	393.8	-36.337
1100	330.0	.297456121891ex-05	375.5	-34.645
1150	310.0	.845898189833ex-05	357.1	-32.953
1200	292.0	.210382905168ex-04	340.8	-31.445
1250	276.0	.463694295463ex-04	326.5	-30.122
1300	260.0	.971931686773ex-04	312.1	-28.799

b) La U,050,952,23

T[C]	EMK[mV]	p[atm]	E ° [mV]	#G°[kcal/mol]
772	478.0	.124357579327ex-09	512.6	-47.296
870	426.0	.636066369685ex-08	463.9	-42.798
911	400.0	.321239263118ex-07	439.2	-40.525
950	375.0	.136935196361ex-06	415.5	-38.338
996	352.0	.532539208874ex-06	394.0	-36.357
1037	330.0	.173886152376ex-05	373.4	-34.452
1074	310.0	.477947117664ex-05	354.6	-32.721
1155	269.0	.332606557580ex-04	316.3	-29.186
1192	256.0	.626497643105ex-04	304.5	-28.100
1242	237.0	.146643511476ex-03	287.2	-26,500
1305	215.0	.374551434844ex-03	267.3	-24.663
1398	180.0	.140941753874ex-02	235.4	-21.719

.

c)	La U 0,15 0,85 2,23			
Т[С]	EMK[mV]	p[atm]	E ° [mV]	#G°[kcal/mol]
900	382.0	.565578824886ex-07	420.9	-38.831
1000	335.0	.103118957631ex-05	377.2	-34.801
1050	310.0	.393700699649ex-05	353.8	-32.647
1100	288.0	.123180638567ex-04	333.5	-30.770
1150	262.0	.405339498988ex-04	309.1	-28.525
1200	241.0	.105075727132ex-03	289.8	-26.740
1250	222.0	.240731911002ex-03	272.5	-25.141
1300	205.0	.493206073443ex-03	257.1	-23.725
1350	182.0	.114792634584ex-02	235.8	-21.756
1400	166.0	.209151221503ex-02	221.4	-20.433

d) La U 0,20⁰,80²,23

T[C]	EMK[mV]	p[atm]	E°[mV]	#G°[kcal/mol]
788	349.0	.485886830709ex-07	384.1	-35.444
875	303.0	.994691044371ex-06	341.0	-31.466
961	260.0	.117947791844ex-04	300.9	-27.762
1039	222.0	.810328182332ex-04	265.5	-24.495
1078	205.0	.182407952867ex-03	249.8	-23.046
1119	189.0	.382897015683ex-03	235.1	-21.695
1156	170.0	.836046564508ex-03	217.3	-20.056
1192	149.0	.186373694581ex-02	197.5	-18.228
1239	131.0	.375255327467ex-02	181.1	-16.712
1274	113.0	.705672457162ex-02	164.3	-15.158
1317	93.0	.138744523683ex-01	145.7	-13.444
1392	58.0	.416341169646ex-01	113.2	-10.445

- 46 -

.

e)	La U 0 0,30 0,70 2,23			
T[C]	EMK[mV]	p[atm]	E ° [mV]	#G°[kcal/mol]
788	352.0	.426083643890ex-07	387.1	-35.720
847	319.0	.377053091945ex-06	356.1	-32.856
917	280.0	.376267674606ex-05	319.4	-29.473
954	265.0	.923074186781ex-05	305.6	-28.202
1037	220.0	.859507683597ex-04	263.4	-24.304
1117	173.0	.647678497705ex-03	219.1	-20.213
195	123.0	.105024506940ex-05	138.5	-12.779
1272	78.0	.201240937254ex-01	129.2	-11.923
1355	33.0	.818994122211ex-01	86.9	-8.025

f) Lu	0,05 ⁰ 0,95 ⁰ 2,2	.3		
Т[С]	EMK[mV]	p[atm]	E ° [mV]	#G°[kcal/mol]
652	595.0	.221925072229ex-13	625.6	-57.722
792	524.0	.249230136534ex-10	559.3	-51.601
897	470.0	.165319897552ex-08	508.8	-46.940
1017	408.0	.874328839416ex-07	450.7	-41.587
1150	345.0	.269848229572ex-05	392.1	-36.182
1172	332.0	.486490687137ex-05	379.9	-35.050
1240	308.0	.164205067974ex-04	358.1	-33.044
1274	292.0	.326806656555ex-04	343.3	-31.672
1305	290.0	.411774924933ex-04	342.3	-31.582
1354	272.0	.890231829860ex-04	325.9	-30.072
1378	255.0	.160789303049ex-03	309.7	-28.577
1395	253.0	.182894809123ex-03	308.3	-28.444

g)	Lu U 0,10 ⁰ ,90 ² ,23			
T[C]	EMK[mV]	p[atm]	E ° [mV]	#G°[kcal/mol]
698	530.0	.204754138876ex-11	562.2	-51.866
850	430.0	.396060893599ex-08	467.2	-43.106
898	385.0	.489317948967ex-07	423.8	-39.101
1008	334.0	.115408401391ex-05	376.4	-34.733
1120	290.0	.132533908870ex-04	336.2	-31.016
1237	236.0	.147629834428ex-03	286.0	-26.392
1330	202.0	.602538131524ex-03	255.1	-23.540
1396	178.0	.148119120334ex-02	233.3	-21.528
1180	248.0	.756629626322ex-04	296.1	-27.325
1278	214.0	.345679620604ex-03	265.4	-24.488

h)	Lu	U	0	
	Ο,	15 0	,85 2	,23

.

т[С]	EMK[mV]	p[atm]	E°[mV]	#G°[kcal/mol]
850	353.0	.957147217166ex-07	390.2	-36.002
900	322.0	.608677574666ex-06	360.9	-33.295
950	300.0	.236404603921ex-05	340.5	-31.419
1000	275.0	.920837152519ex-05	317.2	-29.265
1050	245.0	.385764699180ex-04	288.8	-26.651
1100	210.0	.172433481263ex-03	255.5	-23.575
1150	181.0	.570379723618ex-03	228.1	-21.052
1200	152.0	.173955973675ex-02	200.8	-18.530
1250	129.0	.410622278916ex-02	179.5	-16.561
1300	92.0	.138768127996ex-01	144.1	-13.300
1350	70.0	.283205630005ex-01	123.8	-11.424
1400	43.0	.636343173750ex-01	98.4	-9.086

.

- 48 -

1)	Lu U 0,200,802,23		· · · · · ·	
т[С]	EMK[mV]	p[atm]	E°[mV]	#G°[kcal/mol]
800	352.0	.506212003794ex-07	387.5	-35.757
850	330.0	.247826297725ex-06	367.2	-33.880
900	305.0	.119332108281ex-05	343.9	-31.727
950	285.0	.417911284632ex-05	325.5	-30.035
1000	260.0	.159181983855ex-04	302.2	-27.881
1050	230.0	.653207044318ex-04	273.8	-25.267
1100	190.0	.339225150440ex-03	235.5	-21.729
1150	160.0	.113209583314ex-02	207.1	-19.115
1200	133.0	.316710046866ex-02	181.8	-16.777
1250	105.0	.853796694546ex-02	155.5	-14.347
1300	77.0	.216107356051ex-01	129.1	-11.916
1350	52.0	.474074242824 ex - 01	105.8	-9.763

k)mmLu 0,250,752,23

т[С]	EMK[mV]	p[atm]	E ° [mV]	#G°[kcal/mol]
850	332.0	.228149583599ex-06	369.2	-34.065
900	305.0	.119332108281ex-05	343.9	-31.727
950	278.0	.545193383787ex-05	318.5	-29.389
1000	245.0	.275172476646ex-04	287.2	-26.498
1050	210.0	.131832360361ex-03	253.8	-23.422
1100	175.0	.563492161776ex-03	220.5	-20.346
1150	142.0	.203737514410ex-02	189.1	-17.454
1200	119.0	.492498294008ex-02	167.8	-15.485
1250	89.0	.139089957963ex-01	139.5	-12.870
1300	59.0	.367726844047ex-01	111.1	-10.256
1350	25.0	.102674613367ex 00	78.8	-7.272
1400	-3.0	.228242050442ex 00	52.4	-4.842

,

- 49 -

<u>Tabelle 4:</u> Gitterkonstanten der Verbindungen $SE_{1-y}U_{y}^{O}$ 2,23 mit SE = La, Lu (in Å)

y	1,00	0,95	0,90	0,85	0,80	0,75	0,70
SE = La	5,442	5,446		5,455	5,46 1	5,468	5,470
SE = Lu	5,442	5,4 1 9	5,415	5,396	5,371	5,338	5,3 1 7

4.3. Thermodynamische Untersuchungen an Verbindungen des <u>Typs USE₆O₁₂ mit SE = Eu, Ho, Lu</u>

Ein weiterer interessanter Verbindungstyp in den Uran-Seltenerd-Sauerstoff-Systemen liegt bei den Mischoxiden $USE_{6}O_{12}$ vor. Bartram et al. (53) zeigten, daß diese 1:6-Verbindungen vom Typ $UO_{3} \cdot 6MeO_{1,5}$ (Me = Seltene Erden, Yttrium) eine rhomboedrische Struktur besitzen.

Um zu untersuchen, ob sich die thermodynamischen Daten der einzelnen Glieder dieser Verbindungsklasse wesentlich unterscheiden und ob bei höheren Temperaturen eventuell eine Umwandlung zum kubischen Gittertyp stattfindet, wurden die drei Vertreter UEu₆0₁₂, UHo₆0₁₂ und ULu₆0₁₂ zu EMK-Messungen herangezogen.

<u>Abbildung 21:</u> Abhängigkeit der Molaren Freien Lösungsenthalpie $\Delta_L G^O$ der Verbindungen USE₆O₁₂ (SE = Eu, Ho, Lu) von der Temperatur

Die Herstellung der Proben erfolgte durch Mischhydroxidfällung und Tempern bei 1250°C unter Sauerstoff. Bei der röntgenographischen Analyse zeigten sich nach der Indizierung von Bartram et al. (54) nur rhomboedrische Reflexe; die chemische Kontrollanalyse ergab das O:U-Verhältnis von 3,0.

Die Ergebnisse sind in Abbildung 21 in einem $\Delta_L G^O$ -Temperatur-Diagramm zusammengestellt. Man sieht, daß Phasenumwandlungen auch bei hohen Temperaturen nicht auftreten. Sehr unterschiedlich sind die ermittelten Lösungsentropien für Sauerstoff; die von UEu₆O₁₂ ist mit 35,8 cal/grd mol rund dreimal so groß wie die von UHo₆O₁₂ mit 13,2 cal/grd mol; für ULu₆O₁₂ beträgt sie nur noch 8,0 cal/grd mol.

Die thermodynamischen Gleichungen lauten:

UEu₆O₁₂: $\Delta_{L}G^{O} = (-78,9 \pm 8,0) \text{ kcal/mol} + T (34,8 \pm 5,5) \text{ cal/grd mol}$ UHo₆O₁₂: $\Delta_{L}G^{O} = (-44,0 \pm 1,0) \text{ kcal/mol} + T (13,2 \pm 0,7) \text{ cal/grd mol}$ UIu₆O₁₂: $\Delta_{L}G^{O} = (-31,0 \pm 0,4) \text{ kcal/mol} + T (8,0 \pm 0,3) \text{ cal/grd mol}.$ Tabelle 5 : Berechnung thermodynamischer Groessen aus EMK-Messungen fuer die Verbindungen USE O 6 12

a) UEu O 6 12

T[C]	EMK[mV]	p[atm]	E ° [mV]	#G°[kcal/mol]
958	359.0	.274737426923ex-06	399.8	-36.886
1039	314.0	.311912771958ex-05	357.5	-32.983
1042	328.0	.195104953251ex-05	371.6	-34.283
1044	314.0	.325357764287ex-05	357.6	-32.998
1122	296.0	.110046924455ex-04	342.2	-31.576
1140	287.0	.167725464249ex-04	333.8	-30.801
1159	268.0	.352073194738ex-04	315.4	-29.106
1202	243.0	.996833817552ex-04	291.9	-26.931
1245	227.0	.202022081609ex-03	277.3	-25.587
1380	183.0	.122677112506ex-02	237.8	-21.940
1245	233.0	.168135373916ex-03	283.3	-26.140

b) UH0 0 6 12

T[C]	EMK[mV]	p[atm]	E ° [mV]	#G°[kcal/mol]
1100	230.0	.876506515593ex-04	275.5	-25.420
1150	226.0	.131278785266ex-03	273.1	-25.204
1200	217.0	.223977555815ex-03	265.8	-24.526
1250	211.0	.336700151499ex-03	261.5	-24.126
1300	202.0	.538895280316ex-03	254.1	-23.448
1350	193.0	.837878964343ex-03	246.8	-22.771
1400	181.0	.137904544451ex-02	236.4	-21.817

c)	ULu 0 6 12			
T[C]	EMK[mV]	p[atm]	E ° [mV]	#G°[kcal/mol]
1000	184.0	.254857088155ex-03	226.2	-20.870
1050	179.0	.391496008622ex-03	222.8	-20.562
1100	172.0	.623688658211ex-03	217.5	-20.069
115 0	166.0	.930723303758ex-03	213.1	-19.668
1200	161.0	.130971276609ex-02	209.8	-19.360
1250	153.0	.197483378681ex-02	203.5	-18.775

- 52 -

noch	ULu O
	6 12

T[C]	EMK [mV]	p[atm]	E ° [mV]	#G°[kcal/mol]
1300	149.0	.257778333736ex-02	201.1	-18.559
1350	143.0	.350504601950ex-02	196.8	-18.158
1400	136.0	.481087485806ex-02	191.4	-17.665

<u>4.4.</u> Die Phasengleichgewichte der ternären Systeme SE-U-O mit SE = Ho, Lu bei 1250°C

4.4.1. Übersicht

Einige Verbindungen aus diesen Systemen wurden bereits im Rahmen der elektrochemischen Messungen auf mögliche Phasenübergänge hin röntgenographisch untersucht. Um ein umfassendes Bild der Phasengleichgewichte dieser noch nicht näher untersuchten Systeme zu erhalten, wurden die Phasendiagramme der Dreistoffsysteme U0₂-Ho0_{1,5}-1/2 0₂ und U0₂-Lu0_{1,5}-1/2 0₂ bei 1250°C aufgestellt.

Untersuchungen über Mischoxidsysteme mit Ho0_{1,5} und Lu0_{1,5} als eine Komponente liegen vor für die Systeme Ho_{1,5}-CeO₂ (55), HoO_{1,5}-UO₂ (44), HoO_{1,5}-UO_{2+x} (44,53), LuO_{1,5}-ThO₂ (44), LuO_{1,5}-UO₂ und LuO_{1,5}-UO_{2+x} (41,46). Keller et al. (41) behandelten die Systeme UO_{2+x}-HoO_{1,5} und UO_{2+x}-LuO_{1,5} quasibinär, d.h. sie untersuchten die einzelnen Phasen bei konstantem Sauerstoffpartialdruck von p = 1 atm (O < x < 1) bzw. $p \sim 0$ atm (in Argon, $x \sim 0$). Es wurde die Existenz von vier Einphasengebieten (B-U₃O₈, Fluoritphase, rhomboedrische Phase und C-Typ-Phase) und den entsprechenden Zweiphasengebieten nachgewiesen. Eine Löslichkeit von HoO_{1,5} bzw. LuO_{1,5} in B-U₃O₈, d.h. eine B-U₃O₈-Phase, wurde nicht festgestellt.

Die Phasenverhältnisse in den Systemen Uranoxid-Seltenerdoxid-Sauerstoff in Abhängigkeit von der Zusammensetzung der Mischoxide lassen sich exakt in einem Dreistoffsystem für T = konstant darstellen. Über die Systeme UO₂-HoO_{1,5}-1/2 O₂ und UO₂-LuO_{1,5}-1/2 O₂ finden sich in der Literatur keine Angaben. Bartram et al. untersuchten das Dreistoffsystem UO₂-UO₃-YO_{1,5} (54). Yttrium zeigt Ähnlichkeit mit den mittleren Lanthanidenelementen Ho und Er, da es einen vergleichbaren Ionenradius aufweist. Von den Systemen UO₂-LaO_{1,5}-1/2 O₂ (38) und UO₂-NdO_{1,5}-1/2 O₂ (39) sind ebenfalls die Phasenverhältnisse bei 1250°C

Die Präparate wurden in Quarzampullen hergestellt, in denen sich die vermischten Oxide UO2, U308 und Ho01.5 in kleinen Platintiegeln befanden. Um ein Schrumpfen oder Platzen der Ampullen zu vermeiden, wurde ein Argondruck von 40 Torr vorgegeben. Proben mit einem O:U-Verhältnis oberhalb 2,67 wurden durch Glühen der Proben in einem Argon-Sauerstoffstrom dargestellt; das O:U-Verhältnis wurde nach der Reaktion durch Analysen ermittelt, wodurch eine Einordnung der Werte in das Dreistoffdiagramm möglich wurde. Die Temperatur von 1250°C erwies sich unter den vorgegebenen Reaktionsmöglichkeiten als maximal zulässig; bei höheren Temperaturen werden die Quarzampullen undicht, bei niedrigeren sind zu lange Reaktionszeiten erforderlich. Proben, die Uran in einem vergleichsweise niedrigen Oxidationsgrad enthielten, wurden in einem Handschuhkasten unter Argon aufgearbeitet, um eine Oxidation durch Luftsauerstoff zu vermeiden.

Zur Aufklärung der Phasenverhältnisse dienten Röntgenbeugungsaufnahmen nach dem Debye-Scherrer-Verfahren und Aufnahmen mit einem Zählrohrgoniometer. Die Ergebnisse der durchgeführten Versuche sind in Tabelle 6 zusammengestellt.

Verhältnis O:U	Mol-% ^{HoO} 1,5	auftretende Phasen	Gitterdaten a [A]; a[°]	Verhältnis O:Me
2,00	0	F	5,456; 90	2,00
	1 0	F	5,436; 90	1,95
	20	${f F}$	5,428; 90	1,90
	30	F + <u>R</u>	6,578; 99,28	1,85
	55,1	F + R	6,569; 99,47	1,72
	60,5	F + <u>R</u>	6,557; 99,3 1	1,70
	70	F + R	6,562; 99,28	1,65

Tabelle 6: Auftretende Phasen im System Ho01,5-U02-U03 bei 1250°C

.

•

•

Verhältnis	Mol-%	auftretende	Gitterdaten	Verhältnis
0:U	^{HoO} 1,5	Phasen	a [A]; α[°]	O:Me
2,00	80	C + <u>R</u>	6,529; 99,59	1,60
	85	C + <u>R</u>	6,512; 99,11	1,57
	87,4	C + <u>R</u>	6,527; 99,20	1,56
	90	C	10,601; 90	1,55
	95	C	10,572; 90	1,52
2,10	19,9	F	5,432; 90	1,98
	35,1	F	5,399; 90	1,89
	50	<u>R</u> + F	6,57 1; 99,22	1,80
	60	<u>R</u> + F	6,557; 99, 1 8	1,74
	70	<u>R</u> + F	6,545; 99,10	1,68
2 ,1 2	87,5	C + R		1, 58
2 ,13	25	F	5,4 1 2; 90	1,97
2,16	70,7	<u>F</u> + R	5,374; 90	1,69
2 ,1 7	35,4	\mathbf{F}	5,363; 90	1,93
2,19	24,3	F	5,358; 90	2,02
2,20	20	F	5,412; 90	2,06
	40	F	5,361; 90	1,92
	55	$\underline{F} + R$	5,346; 90	1,81
	65	<u>F</u> + R	5,349; 90	1,74
	70,7	<u>F</u> + R	5,344; 90	1,69
	80	<u>R</u> + C	6,553; 99,33	1,64
	83,3	<u>R</u> + C	6,546; 99,30	1,62
	87,5	<u>R</u> + C	6,561; 99,28	1,59
	89,9	<u>C</u> + R	10,550; 90	1,57
	95	<u>C</u> + R	10,563; 90	1,53
2,27	45	\mathbf{F}	5,355; 90	1,92
2,30	30	F	5,37 1; 90	2,06
	35	\mathbf{F}	5,38 1; 90	2,02
	50	F	5,354; 90	1,90
	60	$\underline{F} + R$	5,345; 90	1,82
	70	<u>F</u> + R	5,331; 90	1,74
	80	<u>R</u> + C	6,543; 99,52	1,66
	85,6	$\underline{\mathbf{R}}$ + C	6,547; 99,33	1,61

Tabelle 6: Fortsetzung

•

. · ·

Verhältnis O:U	Mol-% ^{HoO} 1,5	auftretende Phasen	Gitterdaten a [A]; a[°]	Verhältnis O:Me
2.33	25	F	5.384: 90	2.12
	40	F	5,369: 90	2.00
2.38	20	F	5,336: 90	2,20
2,40	- 30	F	5,382: 90	2,13
	44.9	F	5.327: 90	2,00
	64.9	F + R	5,340; 90	1,81
	75	$\mathbf{F} + \mathbf{R}$	5,335; 90	1.72
	87,5	$\overline{R} + C$	6,548; 99,31	1,61
2,50	20	F + O	5,376; 90	2,30
•	29,9	F	5,348; 90	2,20
	40,1	${f F}$	5,356; 90	2,10
	50	F	5,350; 90	2,00
	60	F	5,309; 90	1,90
	70	<u>F</u> + R	5,328; 90	1,80
	74,9	$\underline{F} + R$	5,331; 90	1,75
	80	R	6,554; 99,28	1, 70
	83,3	<u>R</u> + C	6,562; 99,08	1,67
	87,5	$\mathbf{R} + \mathbf{C}$	6,574; 99,42	1, 64
	90	$\frac{1}{R}$ + C	6,598;100,69	1,60
2,57	29,1	F + O	5,354; 90	2,26
	64,9	F	5,336; 90	1,87
2,67	20,1	<u>F</u> + O	5,354; 90	2,43
	30,1	<u>F</u> + O	5,365; 90	2,32
	40	F	5,366; 90	2,20
	50	F	5,348; 90	2,08
	55	\mathbf{F}	5,338; 90	2,03
	60	\mathbf{F}	5,330; 90	1,97
	70	<u>F</u> + R	5,355; 90	1,85
	75	$\underline{\mathbf{F}} + \mathbf{R}$	5,329; 90	1,79
	80	R	6,549; 99,2 1	1,73
	85,7	<u>R</u> + C	6,540; 99,03	1,67
	87,4	<u>R</u> + C,	6,534; 99,07	1,65

Ţ	abelle	6 :	Fortsetzung		

Verhältnis O:U	Mol-% ^{HoO} 1,5	auftretende Phasen	Gitterdaten a [A]; a[°]	Verhältnis O:Me
2,75	87,5	$\underline{\mathbf{R}}$ + C	6,574; 98,71	1,66
2,77	87,3	<u>R</u> + C	6,540; 99,03	1,66
2,80	75	$\underline{\mathbf{F}} + \mathbf{R}$	5,34 1; 90	1,82
	80	R	6,546; 99,17	1,76
	95,1	<u>R</u> + C	6,519; 99,05	1,56
2,85	83,3	R	6,525; 99,05	1,72
2,90	75	<u>F</u> + R	5,339; 90	1,85
	80	${f R}$	6,544; 99,10	1,78
	85,6	$\underline{\mathbf{R}}$ + C	6,539; 99,05	1,70
	87,5	$\underline{\mathbf{R}}$ + C	6,517; 99,04	1,67
3,00	85,7	R	6,634; 98,95	1,71
	87,5	$\underline{\mathbf{R}}$ + C	6,516; 99,03	1,69

Tabelle	6:	Forts	setzung
former and the second se	and the second se		

4.4.2.1. Das Phasendiagramm des Systems U02-Ho01.5-Sauerstoff

Die sich aus den Werten von Tabelle 5 ergebenden Phasenverhältnisse sind unter Miteinbeziehung der Ergebnisse des quasibinären Systems $UO_{2+x}-HoO_{1,5}$ (44) in Abbildung 22 in einem Diagramm mit UO_2 , UO_3 und $HoO_{1,5}$ als Grenzglieder gezeigt. Diese Darstellungsweise ermöglicht es, die Phasenverhältnisse bei verschiedenen Zusammensetzungen in Abhängigkeit von der Oxidationsstufe des Urans anschaulich wiederzugeben.

Es wurde ein relativ großer Bereich eines rhomboedrischen Einphasengebiets gefunden. Er erstreckt sich keilförmig über ein Gebiet von der Zusammensetzung 25 Mol-% UO₂ + 75 Mol-% Ho0_{1,5} zu den Punkten 78 Mol-% Ho0_{1,5} + 22 Mol-% UO₃ und 85,7 Mol-% HoO_{1,5} + 14,3 Mol-% UO₃ ($UO_3 \cdot 6HoO_{1,5}$). Bei größeren HoO_{1,5}-Gehalten schließt sich ein Zweiphasengebiet an, bestehend aus rhomboedrischer und C-Typ-Phase des HoO1,5, das

<u>Abbildung 22:</u> Phasendiagramm des ternären Systems UO₂-UO₃-HoO_{1,5} bei 1250^oC

durch ein schmales Einphasengebiet des $HoO_{1,5}$ abgegrenzt wird. Hierbei fällt auf, daß die Löslichkeit von UO_2 in $HoO_{1,5}$ mit 10 Mol-% viel größer ist als die von UO_3 in $HoO_{1,5}$ mit nur 1 Mol-%. Bei niedrigem $HoO_{1,5}$ -Gehalt wird die rhomboedrische Phase von einem ausgedehnten Zweiphasengebiet aus Fluoritund rhomboedrischer Phase umgeben; dieses ist gegeben durch die Punkte mit 26 Mol-% $HoO_{1,5}$ + 74 Mol-% UO_2 , 75 Mol-% $HoO_{1,5}$ + 25 Mol-% UO_2 , 78 Mol-% $HoO_{1,5}$ + 22 Mol-% UO_3 und 75 Mol-% $HoO_{1,5}$ + 25 Mol-% UO_3 .

Den größten Teil des Phasendiagramms nimmt die Fluoritphase $(U, Ho)_{2+x}$ ein; in UO₂ lösen sich bis zu 26 Mol-% HoO_{1,5} unter Erhaltung der Fluoritstruktur. Nach unten abgegrenzt wird der Bereich der Fluoritphase durch das Zweiphasengebiet aus $\beta-U_3O_8$ und Fluoritphase, nach oben durch das Gebiet aus rhomboedrischer und Fluoritphase.

- 59 -

Bei einem O:U-Verhältnis von >2,65 wird die Fluoritphase sowohl im Einphasenbereich bis 62 Mol-% HoO_{1,5} als auch im Zweiphasengebiet mit $B-U_3O_8$ als 2. Komponente bei 1250°C instabil. Unter Sauerstoffabgabe geht sie in das gerade noch beständige Mischoxid mit einem O:U-Verhältnis von 2,65 über. Bei HoO_{1,5}-Gehalten oberhalb 62 Mol-% im Mischoxid ist die Fluoritphase jedoch auch bei O:U-Verhältnissen >2,65 stabil. Oberhalb der Zusammensetzung Ho_{0,69}U_{0,31}O_{1,96} ist im einphasigen Bereich der Fluoritphase sogar die sonst thermisch instabile Oxidationsstufe U(VI) stabilisiert.

Im Bereich von $UO_{2,0}$ bis $UO_{2,65}$ stellten Roberts et al. (48) drei Phasenbereiche fest bei 1250°C: Fluoritgebiet mit den Grenzen $UO_{2,0}$ und $UO_{2,25}$, ein Zweiphasengebiet aus Fluoritphase und einer $UO_{2,6}$ -Phase von O:U = 2,25 bis 2,59 und ein Einphasengebiet der $UO_{2,6}$ -Phase von O:U = 2,59 bis 2,65. Die $UO_{2,6}$ -Phase entspricht dem $B-U_3O_8$.

Aus Untersuchungen des Systems $UO_{2+x}-HoO_{1,5}$ (44) geht hervor, daß eine Löslichkeit von $HoO_{1,5}$ in $B-U_3O_8$ auszuschließen ist. Abbildung 22 zeigt, daß das Zweiphasengebiet, in dem Fluoritphase und $B-U_3O_8$ nebeneinander existieren, mit steigendem $HoO_{1,5}$ -Gehalt schmaler wird und bei 35 Mol-% $HoO_{1,5}$ + 65 Mol-% $UO_{2,65}$ in die Fluoritphase übergeht.

Um die Phasenverhältnisse auch in Abhängigkeit vom Verhältnis Gesamtsauerstoff:Gesamtmetall ohne weiteres ablesen zu können, wurden die Ergebnisse in ein Dreistoffdiagramm mit den Endpunkten Uran, Holmium und Sauerstoff eingetragen, welches Abbildung 23 zeigt. Das gesamte Phasendiagramm des Systems U-Ho-1/2 O₂ kann jedoch nicht angegeben werden, da Untersuchungen zum Metallsystem U-Ho noch nicht bekannt sind und auch nicht Ziel dieser Arbeit waren.

<u>Abbildung 23:</u> Ausschnitt aus dem Phasendiagramm des Systems U-Ho-1/2 0₂ für den Bereich UO₂-HoO_{1,5}-1/2 0₂ bei 1250°C

4.4.3. Im System U02-Iu01, 5-Sauerstoff auftretende Phasen

Die Herstellung und die Analyse der benötigten Proben erfolgte wie im Abschnitt 4.4.2. erwähnt. Die Ergebnisse sind in folgender Tabelle 7 angeordnet.

Tabelle 7: Auftretende Phasen im System Lu01,5-U02-U03 bei 1250°C

Verhältnis O:U	Mol-% ^{IuO} 1,5	auftretende Phasen	Gitterdaten a[A]; α[°]	Verhältnis O:Me
2,00	0	F	5,456; 90	2,00
	40	F	5,362; 90	1,80
	45	\mathbf{F}	5,330; 90	1,77

- 61 -

.

Verhältnis O:U	Mol-% ^{LuO} 1,5	auftretende Phasen	Gitterdaten a [A]; α [°]	Verhältnis O:Me
2,00	50	<u>F</u> + C	5,324; 90	1,75
	60	<u>F</u> + C	5,325; 90	1,70
	64,9	<u>F</u> + C	5,3 1 7; 90	1,67
	70,1	<u>F</u> + C	5,375; 90	1,65
	75	<u>C</u> + F	10,383; 90	1,62
	83,3	<u>C</u> + F	10,399; 90	1,58
	85,7	<u>C</u> + F	10,392; 90	1,57
	90	<u>C</u> + F	10,386; 90	1,55
	95	C	10,352; 90	1,52
2,10	75	<u>C</u> + F	10,389; 90	1,65
	80	$\underline{C} + F$	10,396; 90	1, 62
	84	<u>C</u> + F	1 0,395; 90	1,60
	91	<u>C</u> + F	10,394; 90	1,55
2,20	60	F	5,291; 90	1,78
	70	<u> </u>	5,296; 90	1,74
	75	<u>F</u> + C	5,268; 90	1,67
2,21	87,6	<u>C</u> + F	10,397; 90	1,59
2,30	5	<u>F</u> + O	5,4 1 5; 90	2,26
	1 0	F	5,409; 90	2,22
	14,9	F	5,397; 90	2 ,1 8
	60	${f F}$	5,297; 90	1,82
	70	$\underline{\mathbf{F}}$ + C	5,290; 90	1,74
	72,5	<u>F</u> + C	5,290; 90	1,72
	77	<u>F</u> + C	5,288; 90	1,68
	80	<u>F</u> + C	5,287; 90	1,66
2,33	78	<u>F</u> + C	5,283; 90	1,68
2,39	81,4	<u>F</u> + C	5,294; 90	1,66
2,40	14,9	<u>F</u> + O	5,386; 90	2,27
	20	F	5,373; 90	2,22
	30 ,1	F	5,348; 90	2 ,1 3
	60	F	5,286; 90	1,86
	89,9	<u>C</u> + F	10,379; 90	1, 59

Tabelle 7: Fortsetzung

Tabelle 7: Fortsetzung

.

Verhältnis	Mol-%	auftretende	Gitterdaten	Verhältnis
0:U	^{LuO} 1,5	Phasen	a[A]; α[°]	O:Me
2,40	83,3	<u>C</u> + F	10,393; 90	1,65
	87,5	<u>C</u> + F	10,389; 90	1,61
2,42	90,1	<u>C</u> + F	10,393; 90	1,60
2,43	80,4	$\underline{C} + F$	10,394; 90	1,68
2,44	33,3	F	5,321; 90	2,13
	50	F	5,305; 90	1,97
2,45	72,9	<u>C</u> + F	10,329; 90	1,76
	75	$C + \underline{F}$	5,269; 90	1,74
	80	$\underline{\mathbf{F}}$ + C	5,287; 90	1,69
2,46	43,7	F	5,309; 90	2,04
2,47	40,4	F	5,310; 90	2,08
2,48	84,3	<u>C</u> + F	10,397; 90	1,65
2,50	37	· F	5,317; 90	2,13
	39	\mathbf{F}	5,317; 90	2 ,11
	50	F	5,306; 90	2,00
	66,7	F	5,294; 90	1,83
	70	F	5,274; 90	1,80
	73,9	<u>F</u> + C	5,284; 90	1,76
	74,7	<u>F</u> + C	5,299; 90	1,75
	80	<u>F</u> + C	5,371; 90 ·	1,70
	84	<u>C</u> + F	10,345; 90	1,66
	85	<u>C</u> + F	10,371; 90	1,65
	87,5	<u>C</u> + F	10,389; 90	1,62
2,52	63,2	\cdot F	5,304; 90	1,87
	70,1	${f F}$	5,296; 90	1,80
	73,7	<u>C</u> + F	1 0,394; 90	1,77
2,55	56,2	${f F}$	5,290; 90	1,96
	75	<u>F</u> + R	5,278; 90	1,76
2,57	95	<u>C</u> + F	10,385; 90	1,55
2,59	74,8	$\underline{F} + R$	5,274; 90	1,77
2,60	54,5	F	5,293; 90	2,00
	57,1	F	5,282; 90	1,97
	61,5	F	5,280; 90	1,92

Verhältnis	Mol-%	auftretende	Gitterdaten	Verhältnis
0:U	^{LuO} 1,5	Phasen	a[Å]; α[°]	0:Me
2,60	72	${f F}$	5,270; 90	1,81
	80	$\mathbf{R} + \mathbf{F}$	6,460; 99,4	1,72
	84,5	<u>C</u> + F	10,396; 90	1,67
	85	<u>C</u> + F	1 0,414; 90	1,66
2,67	30	<u>F</u> + O	5,316; 90	2,32
	34	<u>F</u> + O	5,3 1 8; 90	2,27
	40	\mathbf{F}	5,3 1 6; 90	2,20
	43,7	F	5,317; 90	2,16
	47,4	F	5,313; 90	2,11
	60	\mathbf{F}	5,278; 90	1,97
	61,9	\mathbf{F}	5,282; 90	1,94
	70	\mathbf{F}	5,275; 90	1,85
	65	F	5,270; 90	1,90
	72,9	F	5,284; 90	1,81
	73,2	$R + \underline{F}$	5,282; 90	1,81
	75	<u>F</u> + R	5,269; 90	1,79
	82,6	$\underline{\mathbf{R}}$ + F	6,456; 99,33	3 1, 70
	86,8	<u>C</u> + F	10,375; 90	1,65
	87,5	<u>C</u> + F	10,388; 90	1,65
	89	<u>C</u> + F	10,387; 90	1,63
2,70	85,7	<u>C</u> + F	10,394; 90	1,67
2,75	75	<u>F</u> + R	5,272; 90	1,81
2,77	61,9	F	5,271; 90	1,98
2,80	85,7	<u>C</u> + F	10,371; 90	1,69
2,81	65	\mathbf{F}	5,270; 90	1,96
2,82	70	F	5,285; 90	1,90
2,83	75	<u>F</u> + R	5,269; 90	1,83
	80	<u>R</u> + F	6,446; 99,24	+ 1,77
2,84	67,2	F	5,272; 90	1,94
	75	<u>F</u> + R	5,267; 90	1,83
2,85	80	$\underline{\mathbf{F}} + \mathbf{R}$	5,269; 90	1,77
2,86	70	F -	5,268; 90	1,91

10000	65	-	

Verhältnis O:U	Mol-% ^{Iu0} 1,5	auftretende Phasen	Gitterdat a [Å]; α	cen Verhältni [⁰] O:Me	Ls
2,88	80	<u>R</u> + F	6,422; 98	3,73 1, 78	
	84,5	$\mathbf{R} + \mathbf{F}$	6,431; 99) ,1 2 1,71	
2,90	80	<u>R</u> + F	6,441; 99),24 1,78	
	83,3	<u>R</u> + F	6,441; 99),22 1 ,73	
	85,7	<u>C</u> + F	10,369; 90	1, 70	
	87,5	<u>C</u> + F	10,367; 90) 1,67	
2,97	78,3	<u>F</u> + R	5,267; 90	1, 82	
	83	<u>R</u> + F	6,435; 99),05 1 ,75	
3,00	80	R	6,438; 99),1 2 1, 80	
	85,7	R	6,442; 99),14 1,66	
	90	<u>C</u> + F	10,371; 90	1, 65	

Tabelle 7: Fortsetzung

4.4.3.1. Das Phasendiagramm des Systems UO2-LuO1,5-Sauerstoff

Das aus den Werten der Tabelle 7 und Abbildung 13 abzuleitende Phasendiagramm des Systems $UO_2-UO_3-LuO_{1,5}$ ist in Abbildung 24 wiedergegeben. Der Bereich, in dem Fluorit- und $B-U_3O_8$ -Phase nebeneinander vorliegen, d.h. bei verhältnismäßig niedrigen $LuO_{1,5}$ -Gehalten, hat etwa die gleichen Abgrenzungen wie das System mit HoO_{1,5}. Bei höherem $LuO_{1,5}$ -Gehalt wurden jedoch wesentliche Unterschiede festgestellt.

Eine ausgedehnte rhomboedrische Phase zu niedrigerem O:U-Verhältnis als 3,0 konnte nicht ermittelt werden. Diese Phase ist beschränkt auf den Schnitt UO₃-LuO_{1,5} von 73 Mol-% LuO_{1,5} bis zur 1:6-Verbindung UO₃·6LuO_{1,5} mit 85,7 Mol-% LuO_{1,5}. Dieser Sachverhalt wurde auch, wie im nächsten Abschnitt gezeigt wird, durch EMK-Messungen bestätigt.

Das Zweiphasengebiet aus rhomboedrischer und Fluoritphase ist gegeben durch die Eckpunkte mit 73 Mol-% LuO_{1.5} + 27 Mol-%
$UO_{2,5}$, 82 Mol-% $LuO_{1,5}$ + 18 Mol-% $UO_{2,59}$, ULu_6O_{12} und 73 Mol-% $LuO_{1,5}$ + 27 Mol-% UO_{3} .

<u>Abbildung 24:</u> Phasendiagramm des ternären Systems UO₂-UO₃-LuO_{1,5} bei 1250°C

Ein ausgedehntes Zweiphasengebiet, bestehend aus C-Typ- und Fluoritphase, erstreckt sich bei 47 Mol-% $\text{LuO}_{1,5}$ + 43 Mol-% UO_2 beginnend über den Bereich, der durch die Punkte mit 73 Mol-% $\text{LuO}_{1,5}$ + 27 Mol-% $\text{UO}_{2,5}$, 82 Mol-% $\text{LuO}_{1,5}$ + 18 Mol-% $\text{UO}_{1,59}$, 86 Mol-% $\text{LuO}_{1,5}$ + 14 Mol-% UO_{3} , 99 Mol-% $\text{LuO}_{1,5}$ + 1 Mol-% UO_3 und 92 Mol-% $\text{LuO}_{1,5}$ + 8 Mol-% UO_2 gegeben ist. Auf der Grenze zwischen den beiden Zweiphasenbereichen liegen Fluorit-, C-Typ- und rhomboedrische Phase nebeneinander vor.

Auch in diesem Fall wurden die Ergebnisse in ein Dreistoffdiagramm mit den Eckpunkten U-Lu-1/2 O₂ eingetragen, wie in Abbildung 25 gezeigt ist. Da hier ebenfalls keine Literaturangaben über das U-Lu-Elementsystem vorliegen, ist eine Angabe von Phasenbeziehungen unterhalb des Schnitts UO_2 -LuO_{1,5} des U-Lu-1/2 O₂-Systems nicht möglich.

<u>Abbildung 25:</u> Ausschnitt aus dem Phasendiagramm des Systems U-Lu-1/2 0₂ bei 1250⁰C

4.4.3.2. EMK-Messungen an Proben der Zusammensetzung ^{U0}3-x^{°6Lu0}1,5

Eine Ausdehnung der rhomboedrischen Phase zu niedrigeren Sauerstoffgehalten als der Verbindung ULu₆0₁₂ entspricht konnte röntgenographisch nicht festgestellt werden. Zur Erhärtung dieses Befundes wurde deshalb die elektrochemische Meßmethode herangezogen. Entzieht man der rhomboedrischen Verbindung, in der Uran in der Wertigkeitsstufe +6 vorliegt, etwas Sauerstoff, so müßte nach dem in Abbildung 24 dargestellten Phasendiagramm ein Gemisch aus zwei Phasen entstehen. Zweiphasengebiete zeichnen sich dadurch aus, daß das chemische Potential des Sauerstoffs bei konstanter Temperatur einen von der Zusammensetzung unabhängigen Wert annimmt (Abschnitt 2.2.2.).

- 67 -

Zur Prüfung dieses Sachverhalts wurden, von der Verbindung ¹ULu₆O₁₂ ausgehend, EMK-Werte in Abhängigkeit des Sauerstoffgehalts im Mischoxid bei 1250°C gemessen. Die gezielte stöchiometrische Veränderung des Sauerstoffgehalts der Verbindung erfolgte durch coulometrische Titration mit Hilfe eines Präzisionscoulometers (Lieferfirma Industrielabor, Bruchsal). Die zur Änderung des Sauerstoffgehaltes Δx benötigte Ladungsmenge i·Δt läßt sich nach

$$i \cdot \Delta t = (m \cdot 2F \cdot \Delta x)/M$$

berechnen, wobei i die Stromstärke, Δt die Dauer des Stromflusses, m die Einwaage der Probe mit dem Molekulargewicht M und F die Faraday-Konstante bedeuten. Um eine möglichst geringe Gegenspannung an der Zellanordnung zu erhalten, wurde mit einer Stromstärke von 0,03 mA gearbeitet; so wurde mit 200 mV nicht die Zersetzungsspannung von ZrO_2 (2,3 V) erreicht. Die Stöchiometrie wurde in Schritten von x = 0,0025verschoben. Das Abklingen der Polarisation dauerte etwa 10 Stunden; danach stellte sich ein konstanter EMK-Wert ein.

In Abbildung 26 sind die Ergebnisse in einem Diagramm dargestellt. Man erkennt, daß bereits beim Verschieben der Stöchiometrie um 0,0025 ein starker Anstieg der EMK eintritt. Bei weiterem Ausbau von Sauerstoff aus dem Mischoxid ändert sich die Zellspannung praktisch nicht mehr und kann als konstant angesehen werden, was dem Auftreten von zwei Phasen entspricht. Man kann also sagen, daß bereits die Probe der Zusammensetzung U0_{2,99}.⁶Lu0_{1,5} nicht einphasig ist, sondern zweiphasig und nach den röntgenographischen Befunden aus C-Typ- und Fluoritphase besteht.

Es ist noch zu erwähnen, daß die Messungen unter der Voraussetzung durchgeführt wurden, daß die Ausgangsverbindung genau die Zusammensetzung $UO_{3,0000}$ ·6Lu $O_{1,5}$ hat. Diese Voraussetzung ist sicher nicht mit letzter Genauigkeit erfüllt; chemische Analysen ergaben für die mittlere Wertigkeit des Urans Werte von +6,00. Aber selbst bei nicht exakter Erfüllung der Stöchiometrie bleibt die Aussage, daß die rhomboedrische Phase keine Ausdehnung mit x >0,01 zu niedrigeren Sauerstoffgehalten hat, gültig.

- <u>Abbildung 26:</u> Abhängigkeit der EMK von der Zusammensetzung der Substanzen UO_{3-x}·6LuO_{1,5} bei 1250[°]C
- <u>Tabelle 8:</u> Berechnung thermodynamischer Größen für die SubstanzenUO_x·6LuO_{1,5} bei 1250^OC

x	EMK [mV]	p [atm]	E ^o [mV]	∆G ⁰ [kcal/mol]
3,0000	208	0,369 ex-03	258	-23,85
	220	0,256 ex-03	270	-24,95
2,9975	362	0,336 ex-05	41 2	-38,06
	37 1	0,256 ex-05	421	-38,89
2,9950	408	0,827 ex-06	458	-42,30
	4 1 0	0,778 ex-06	460	-42,48
2,9925	4 1 6	0,648 ex-06	466	-43,04
	422	0,540 ex-06	472	-43,59
2,9900	420	0,574 ex-06	470	-43,41
	425	0,493 ex-06	475	-43,87
2,9875	422	0,540 ex-06	472	-43,59
	428	0,449 ex-06	478	-44,14
2,9850	424	0,508 ex-06	474	-43,78
	430	0,423 ex-06	480	-44,33

4.5. Fehlerbetrachtungen

Als Ursachen möglicher Fehler der EMK-Messungen müssen folgende Punkte näher betrachtet werden:

- a) Ungenauigkeiten der elektrochemischen Messung,
- b) Verdampfung von Sauerstoff aus der Meßzelle,
- c) Einfluß des Spülgases auf die Messung,
- d) Polarisation der Elektroden.
- zu a) Für dieselbe Probe betrug der maximale Fehler bei der elektrochemischen Messung <u>+</u> 5 mV. Dies entspricht einem Fehler des $\Delta_L G^O$ -Wertes von ca. <u>+</u> 0,5 kcal/mol.
- zu b) Es wurde festgestellt, daß beim erstmaligen Erhitzen der Probe, solange sich noch keine Glasdichtung gebildet hat, eine Verdampfung von Sauerstoff aus der Probe auftreten kann. Dieser Effekt wurde jedoch dadurch vernachlässigbar klein gehalten, daß die Aufheizung der Zelle sehr rasch erfolgte. Risse im Elektrolytmaterial machten sich durch stetiges Abfallen der EMK bemerkbar.
- zu c) Es wurde gezeigt, daß der Sauerstoffpartialdruck des Spülgases bei abgeschlossener Zelle keinen Einfluß auf die Messung ausübt. Diese Tatsache wurde zur Dichteprüfung herangezogen.
- zu d) Polarisationseffekte sind bei dieser Art von Messungen immer möglich. Es wurden deshalb von jeder Probe mehrere Messungen durchgeführt und der Mittelwert zur Berechnung der thermodynamischen Größen herangezogen.

Der bei den thermodynamischen Gleichungen angegebene Fehler ist als mittlerer wahrscheinlicher Fehler zu verstehen.

Die Gitterdaten der kubischen Substanzen sind mit einem mittleren wahrscheinlichen Fehler von $\leq 0,002$ Å behaftet, die der rhomboedrischen mit $\leq 0,01$ Å bzw. $\leq 0,05$ Grad.

5. ZUSAMMENFASSUNG

- 5.1. In der vorliegenden Arbeit wurde eine Methode entwickelt, die es erstmals gestattet, thermodynamische Größen zur Löslichkeit von Sauerstoff in Oxidsystemen über den gesamten Temperaturbereich von 700 bis 1400°C genau und reproduzierbar zu bestimmen. Das Verfahren beruht auf dem Prinzip einer galvanischen Kette mit dotiertem Zirkondioxid oder Thoriumoxid als sauerstoffionenleitenden Festelektrolyten.
- 5.2. Der ausgedehnte Temperaturbereich, in dem die Meßanordnung eingesetzt werden kann, wurde benutzt, um temperaturabhängige Phasenumwandlungen in verschiedenen Uran-Seltenerd – Sauerstoff-Systemen zu ermitteln; diese geben sich durch verschiedene Lösungsentropien von Sauerstoff in den einzelnen Phasen der zu untersuchenden Substanz zu erkennen.
- 5.2.1. EMK-Messungen zu Phasenumwandlungen an ternären Oxiden der Zusammensetzung SE^{III}U^VO₄ (SE = La, Nd, Eu, Ho, Er, Tm, Yb, Lu) ergaben folgende Befunde: LaUO₄ mit Fluoritstruktur ist nur oberhalb 1119^oC stabil, bei niedrigeren Temperaturen liegt ein Zweiphasengebiet aus Fluorit- und rhomboedrischer Phase vor;

NdUO₄, EuUO₄ und ErUO₄ zeigen im untersuchten Temperaturbereich keine Phasenumwandlungen und liegen einphasig mit Fluoritstruktur vor;

 $HoUO_4$, $TmUO_4$, Yb UO_4 und Lu UO_4 mit Fluoritstruktur sind nur oberhalb 852, 1254, 1282 bzw. 1141^oC stabil, bei niedrigeren Temperaturen erfolgt Übergang in ein zweiphasiges Gebiet aus Fluorit- und $\beta-U_3O_8$ -Phase.

Die thermodynamischen Beziehungen zur Löslichkeit von Sauerstoff in den untersuchten Phasenbereichen wurden ermittelt.

- 5.2.2. Die rhomboedrisch kristallisierenden USE₆O₁₂-Verbindungen (= UO₃·6SEO_{1,5} mit SE = Eu, Ho, Lu) zeigen zwischen 700 und 1400°C keine Phasenumwandlungen, d.h. keinen Übergang von der rhomboedrischen in die Fluoritstruktur. Bemerkenswert sind die niedrigen Lösungsentropien $\Delta_{\rm L}$ S^o von 34,8, 13,2 bzw. 8,0 Clausius.
- 5.2.3. UO₃.6LuO_{1,5} besitzt bei 1250°C keine Sauerstoffphasenbreite (für UO_{3-x}.6LuO_{1,5} ist x<0,01). Bei der coulometrischen Veränderung der Sauerstoffstöchiometrie des UO_{3-x}.6LuO_{1,5} von x = 0 zu x = 0,01 gelangt man in ein Zweiphasengebiet, das nach röntgenographischen Befunden aus Fluorit- und C-Typ-Phase besteht. Ein solcher Befund war bei analogen Systemen der anderen Seltenen Erden noch nicht bekannt.
- 5.2.4. Es wurde erstmals gezeigt, daß ein Einbau dreiwertiger Seltener Erden in die geordnete UO_{2,25} (= U₄O₉)-Phase möglich ist, ohne daß die Ordnungsstruktur aufgegeben wird. Im geordneten UO_{2,23} lassen sich bis 15 Atom-% des Urans durch Lanthan und bis 10 Atom-% des Urans durch Lutetium ersetzen unter Ausbildung von SE_{1-y}U_yO_{2,23}. Dabei werden die Umwandlungstemperaturen für den Ordnungs-Unordnungsübergang nur unwesentlich verändert. Sie betragen 1142°C für UO_{2,23}, 1124°C für La_{0,05}U_{0,95}O_{2,23}, 1176°C für La_{0,15}U_{0,85}O_{2,23}, 1136°C für Lu_{0,05}U_{0,95}O_{2,23} und 1146°C für Lu_{0,10}U_{0,90}O_{2,23}.
- 5.3. Die durch Hochtemperatur-EMK-Messungen ermittelten Phasenumwandlungstemperaturen stimmen innerhalb der Meßgenauigkeit mit denen der durch röntgenographische Messungen von hohen Temperaturen auf Raumtemperatur abgeschreckten Proben überein; z.B. wurde für den Übergang der Fluoritphase in das Zweiphasengebiet aus Fluorit- und rhomboedrischer Phase RII für LaUO₄ röntgenographisch eine Temperatur von (1130+20)^oC und durch

EMK-Messung eine solche von $1119^{\circ}C$ (mit einer absoluten Genauigkeit von <u>+</u> $20^{\circ}C$) ermittelt. Dies zeigt eindeutig, daß die bei hohen Temperaturen in ternären Actiniden-Lanthaniden-Sauerstoffsystemen vorliegenden Phasengleichgewichte durch rasches Abschrecken bei Raumtemperatur in metastabilem Zustand erhalten bleiben.

- 5.4. Die durch röntgenographische Untersuchungen ergänzten EMK-Messungen wurden zur Aufstellung der Phasendiagramme der Systeme UO₂-SEO_{1,5}(Ho,Lu)-Sauerstoff herangezogen.
- 5.4.1. Im System UO₂-HoO_{1,5}-1/2 O₂ wurden vier Einphasengebiete (B-U₃O₈, Fluorit-, C-Typ- und rhomboedrische Phase), vier Zweiphasenbereiche (B-U₃O₈ + Fluoritphase, C-Typ- + rhomboedrische Phase, Fluorit- + rhomboedrische Phase, Fluoritphase + Sauerstoff (gas)) und ein Dreiphasengebiet (B-U₃O₈ + Fluoritphase + Sauerstoff (gas)) ermittelt.
- 5.4.2. Im System UO₂-LuO_{1,5}-1/2 O₂ wurden ebenfalls vier Einphasengebiete (B-U₃O₈, Fluorit-, C-Typ- und rhomboedrische Phase), vier Zweiphasenbereiche (B-U₃O₈ + Fluoritphase, C-Typ- + Fluoritphase, Fluorit- + rhomboedrische Phase, Fluoritphase + Sauerstoff (gas)) und ein Dreiphasengebiet (B-U₃O₈ + Fluoritphase + Sauerstoff (gas)) gefunden.

5.4.3. Die charakteristischsten Unterschiede beider Dreistoffsysteme sind: im System UO₂-LuO_{1,5}-1/2 O₂ ist der Bereich der Fluoritphase (U_y,Lu_{1-y})O_{2+x} besonders bei niedrigen O:U-Verhältnissen erheblich größer als im analogen Ho-System; während die UO₃·6HoO_{1,5}-Phase sowohl mit Sauerstoffals auch mit Ho-Unterschuß auftreten kann, ist der Existenzbereich von UO₃·6LuO_{1,5} auf den Schnitt UO₃-LuO_{1,5} mit den Grenzwerten 73 Mol-% LuO_{1,5} + 27 Mol-% UO₃ und 85,7 Mol-% LuO_{1,5} + 14,3 Mol-% UO₃ beschränkt.

1. G. Brauer, H. Gradinger Z.anorg.allg.Chem. 276, 209 (1954) 2. C. Keller "The Chemistry of the Transuranium Elements", Verlag Chemie, Weinheim (1971)3. E. Zintl, A. Udgard Z.anorg.allg.Chem. 240, 150 (1939) 4. L.E.J. Roberts Quarterly Review 15, 442 (1961)5. C. Keller Bericht KFK-225 (1964) Z.Chem. 4, 81 (1964) 6. H.H. Möbius Diss. Univ. Karlsruhe (1967) 7. L. Leitner Bericht KFK-225 (1967) Geochemisches Verteilungs-8. V.M. Goldschmidt, F. Ulrich, T. Barth gesetz IV, Skrifter Norske, Videnskaps Akad. Oslo I, Mat.Naturv.Kl.Nr. 5 (1925) 9. R.S. Roth, S.J. Schneider J.Res.Nat.Bur.Stand. 64A, 309 (1960) G. Brauer, B. Pfeiffer 10. Z.anorg.allg.Chem. 341, 237 (1965)Diss. Univ. Karlsruhe (1973) 11. D. Maier Bericht KFK-1844 (1973) Z.Elektrochem. 66, 572 (1962) 12. H. Schmalzried Z.Chem. 2, 100 (1962) 13. H.H. Möbius 14. J.M. Wimmer, L.R. Bidwell, J.amer.ceram.Soc. <u>50</u>, 198 N.M. Tallan (1967)

15.	S. Aronson	Int.Conf.on Comp. of Interest, AIME <u>10</u> , 247 (1964)
16.	K. Kiukkola, C. Wagner	J.Elektrochem.Soc. <u>104</u> , 308 (1957)
17.	R. Steiner	Chemie IngTechn. <u>44</u> , 152 (1 972)
18.	H. Rickert, R. Steiner	Z.phys.Chem. <u>49</u> , 127 (1966)
19.	H. Rickert	in Schwab "Activity of Solids", Amsterdam (1965)
20.	W. Fischer, H. Kleinschmager, F.I. Rohr, R. Steiner, H.H. Eysel	Chemie IngTechn. <u>22</u> , 1227 (1971)
21.	W. Vielstich	"Brennstoffelemente", Verlag Chemie, Weinheim (1965)
22.	F. v. Sturm	"Elektrochemische Stromer- zeugung", Verlag Chemie, Weinheim (1969)
23.	H. Peters, H.H. Möbius	Z.phys.Chem. <u>209</u> , 298 (1958)
24.	F. Hund	Z.elektrochem.angew.phys.Chem. <u>55</u> , 363 (1951)
25.	F. Hund	Z.phys.Chem. <u>199</u> , 142 (1952)
26,	W.D. Kingery, J. Pappis, M.E. Doty, D.C. Hill	J.amer.ceram.Soc. <u>42</u> , 393 (1959)
27.	C. Wagner	Z.phys.Chem. (B) <u>21</u> , 42 (1933)
28.	W.J. Moore	Physical Chemistry, 4 th Edition, Longmans Green and Co. Ltd., London (1964)
29.	A.V. Ramana Rao, V.B. Tare	Scripta Metallurgica <u>5</u> , 813 (1971)

.

30.	A.V. Ramana Rao, V.B. Tare	Scripta Metallurgica <u>6</u> , 141 (1971)
3 1.	B.C.H. Steele, C.B. Alcock	Transactions of the Metallurgical Soc. of AIME <u>233</u> , 1359 (1965)
32 .	H. Schmalzried	Z.phys.Chem.NF. <u>38</u> , 97 (1963)
33.	H. Tanaka, E. Kimura, A. Yamaguchi, J. Moriyama	J. Japan Inst.Met. <u>36</u> , 1 83 (1972)
34.	W.A. Fischer, D. Janke	Z.phys.Chem.NF. <u>69</u> , 11 (1970)
35.	M. Straumanis, A. Jevins	"Die Präzisionsbestimmung von Gitterkonstanten nach der asymmetrischen Methode", Verlag J. Springer, Berlin (1940)
36.	J.B. Nelson, D.P. Riley	Proc.Phys.Soc. (London) <u>57</u> , 160 (1945)
37.	J. Gvildys	Programm B-106 zur Berechnung der Gitterkonstanten nach der Methode der kleinsten Fehler- quadrate, Argonne Nat.Lab. 4-29 (1964) geändert von H. Haug, Kern- forschungszentrum Karlsruhe (1969)
<u>3</u> 8.	H.G. Diehl	Diss. Univ. Karlsruhe (1970), Bericht KFK-1235 (1970)
39.	C. Keller, A. Boroujerdi	J.inorg.nucl.Chem. <u>34</u> , 1187 (1972), siehe auch Bericht KFK-1330 (1971)
40.	R. Tanamas	persönliche Mitteilung
4 1 .	C. Keller, H. Engerer, L. Leitner, U. Sriotha	J.inorg.nucl.Chem. <u>31</u> , 965 (1969)

.

- 76 -

H.G. Diehl, C. Keller J.Solid State Chem. 3, 621 42. (1971)Diss. Univ. Karlsruhe (1972), 43. E. Stadlbauer Bericht KFK-1649 (1972) Diss. Univ. Karlsruhe (1967), 44. H. Engerer Bericht KFK-597 (1967) 45. L. Leitner Diss. Univ. Karlsruhe (1967), Bericht KFK-521 (1967) 46. U. Sriotha Diss. Univ. Karlsruhe (1968), Bericht KFK-737 (1968) Acta Cryst. 14, 837 (1961) B. Belboch, C. Piekarski, 47. P. Perio 48. L.E.J. Roberts, A.J. Walter J.inorg.nucl.Chem. 22, 213 (1961)49. C. Keller in "Comprehensive Inorganic Chemistry" (A.F. Trotman-Dickenson (ed.)), Vol. 5, p. 219-276, Pergamon Press, London (1973) J.Chem.Phys. 29, 151 (1958) 50. S. Aronson, J. Belle Diss. Univ. Karlsruhe (1970), 51. R. Paul Bericht KFK-1297 (1970) Acta Chem.Scand. 16, 327 52. K. Kiukkola (1962)E.A. Aitken, S.F. Bartram, Inorg.Chem. <u>3</u>, 949 (1964) 53. E.F. Juenke 54. J.amer.ceram.Soc. <u>47</u>, 171 S.F. Bartram, E.F. Juenke, (1964)E.A. Aitken 4th Rare Earth Conf., Phoenix D.J.M. Bevan, W.W. Barker, 55. R.L. Martin, T.C. Parks Arizona, Session IV (1964)

- 77 .