

April 1974

KFK 1991

Institut für Experimentelle Kernphysik

Experimentelle Untersuchungen an supraleitenden Wendelresonatoren aus Niob im 100 MHz-Bereich

B. Piosczyk

GESELLSCHAFT FÜR KERNFORSCHUNG M.B.H.

KARLSRUHE

Als Manuskript vervielfältigt

Für diesen Bericht behalten wir uns alle Rechte vor

n.

GESELLSCHAFT FÜR KERNFORSCHUNG M.B.H. KARLSRUHE

KERNFORSCHUNGSZENTRUM KARLSRUHE

KFK 1991

Institut für Experimentelle Kernphysik

EXPERIMENTELLE UNTERSUCHUNGEN AN SUPRALEITENDEN WENDEL-RESONATOREN AUS NIOB IM 100 MHz-BEREICH*

B. Piosczyk

Gesellschaft für Kernforschung mbH, Karlsruhe * von der Universität (TH) Karlsruhe genehmigte Dissertation

Zusammenfassung

Messungen an supraleitenden Wendelresonatoren werden beschrieben. Dabei wurden maximale HF-Magnetfelder bis zu 1250 Gauß und kleinste Restwiderstände von 10^{-9} Ω erreicht. Zwei Beiträge zum Restwiderstand wurden systematisch untersucht:

- 1. der Beitrag von an der Oberfläche kondensierten Gasen. Dabei wurden folgende Gase untersucht: N_2 , O_2 , CO_2 , Luft und N_2/O_2 -Mischungen.
- 2. der Beitrag von eingefrorenen äußeren Magnetfeldern bis zu einer Größe von 6 Gauß.

Die Dicke der kondensierten Gasschichten wurde von etwa 1 Monolage bis zu einigen 10⁴ Monolagen variiert. Der Verlustfaktor tan δ der kondensierten Schichten wurde bestimmt. Im Vergleich mit reinen N₂-Schichten sind die Verluste in N₂/O₂-Schichten groß. Dies wird durch das magnetische Moment der O₂-Moleküle verursacht.

Die zusätzlichen Verluste, die im 100-MHz-Bereich durch ein eingefrorenes Magnetfeld verursacht werden, zeigen Abweichungen im Vergleich zu Messungen im GHz-Gebiet. Insbesondere nimmt der zusätzliche Oberflächenwiderstand mit steigender Hf-Feldstärke zu. Dieses Verhalten kann durch eine Biegebewegung der senkrecht zur Oberfläche eingefrorenen Flußschläuche unter Einfluß der Lorentzkrafterklärt werden. Für die Biegebewegung ergibt sich im vorliegenden Fall eine Pinningfrequenz von etwa 20 MHz.

Experimental studies of superconducting Nb helical resonators in the region of 100 MHz

Abstract

Measurements on superconducting Nb helical resonators are described. Peak magnetic rf-fields up to 1250 Gauss and residual resistance as low as $10^{-9} \Omega$ were obtained. Two contributions to the residual resistance were studied systematically:

- 1. the contribution of gases condensed on the surface. The following gases were used: N₂, O₂, CO₂, air and N₂/O₂-mixtures.
- 2. the contribution of frozen-in-flux resulting from externally applied dc magnetic fields up to 6 Gauss.

The thickness of the condensed gases studied varied from approximately 1 monolayer to 10^4 monolayers. As a result the loss factor tan δ in these condensed layers was determined. Losses in the N₂/O₂ layers were particularly large compared to those found in pure N₂ layers. This difference is caused by the magnetic moment of the O₂ molecule.

The additional losses in the 100 MHz-region due to frozen-in-flux show different behaviour from losses in the GHz-region. In particular the additional resistance increases with increasing rf-field. This can be explained by a model in which the flux lines perpendicular to the surface are bent by the rf induced Lorentz force. This explanation leads to a pinning frequency of about 20 MHz.

1.	EINL	EITUNG		1				
2.	ALLG	EMEINE	ZUSAMMENHÄNGE	ц				
	2.1	Oberflächenimpedanz Z und der Zusammenhang zwi- schen dem Oberflächenwiderstand R und der unbe- lasteten Güte Q						
	2.2	Oberfl toren	ächenwiderstand in supraleitenden Resona-	6				
		2.2.1	Der Oberflächenwiderstand R _{sl} eines Supra- leiters in der Meßnerphase	7				
		2.2.2	Der Restwiderstand R _{res} in supraleitenden Resonatoren	9				
	2.3	Hochfrequenzfelder in Wendelresonatoren						
	2.4	Einfluß eines dielektrischen Körpers auf die Eigen- frequenz und Güte eines Resonators						
3.	MEBAUFBAU UND MEBDURCHFÜHRUNG							
	3.1	. Allgemeiner Meßaufbau						
	3.2	Aufbau und Behandlung der Wendelresonatoren						
	3.3	Hochfrequenzapparatur						
	3.4	Meßdurchführung und Auswertung der Meßgrößen						
	3.5	Fehlerdiskussion						
4.	MEBERGEBNISSE UND DISKUSSION							
	4.1	Maximal erreichte Hf-Feldstärken und feldbegren- zende Effekte						
	4.2	Überblick über charakteristisches Verhalten des Oberflächenwiderstandes in Wendelresonatoren						
		4.2.1	Oberflächenwiderstand R etwa unabhängig von der Hf-Feldstärke	39				
		4.2.2	Kontinuierlicher Anstieg des Restwiderstan- des mit steigender Hf-Feldstärke	40				
		4.2.3	Stufenverhalten im Restwiderstand in Abhän- gigkeit von der Hf-Feldstärke	42				
		4.2.4	Zusammenfassender Rückblick	44				

	4.3 Einfluß von kondensierten Gasen auf die Hf-Verluste in supraleitenden Wendelresonatoren							
		4.3.1	Meßergeb	nisse	45			
			4.3.1.1	Relative Frequenzverschiebung ∆f _D /f	45			
			4.3.1.2	Zusätzliche Verluste und der Ver- lustwinkel tanõ _D bzw. tanõ _m in den kondensierten Gasschichten	47			
		4.3.2	Diskussion der Verluste in den untersuch- ten kondensierten Gasschichten					
			4.3.2.1	Dielektrische Verluste in N2- und CO2-Schichten	53			
			4.3.2.2	Magnetische Verluste in O_2 - und N_2/O_2 -Schichten	54			
			4.3.2.3	Verhalten von kondensierten Luft- schichten bei hohen Hf-Feldstärken	58			
		4.3.3	Folgerun den Wend	gen für die Anwendung von supraleiten- elresonatoren im 100 MHz-Bereich	61			
	4.4	Einflu luste : Bereic	ιß von eingefrorenem Magnetfeld auf die Hf-Ver- in supraleitenden Wendelresonatoren im 100 MHz- h					
		4.4.1	Meßergeb	nisse	62			
			4.4.1.1	Kleine Hf-Feldstärken (H _{max} ≲ 5 Gauß)	63			
			4.4.1.2	Abhängigkeit von der Hf-Feldstärke	66			
		4.4.2	Diskussi	on der Meßergebnisse	69			
<u>5.</u>	ZUSAI	MMENFAS	SUNG		77			
6.	ANHÄI	NGE			78			
7.	LITERATURVERZEICHNIS							

1. EINLEITUNG

Durch mehrere Vorhaben supraleitende Hochfrequenzresonatoren in der Beschleunigertechnik anzuwenden, hat das Interesse an der Hochfrequenzsupraleitung großen Auftrieb erfahren. Eine Anwendung der Hochfrequenz (Hf)-Supraleitung anstatt der Normalleitung ist vom Standpunkt der Kosten nur dann vorteilhaft, wenn supraleitende Hf-Resonatoren bei Beschleunigungsfeldern von einigen MV/m eine um 10⁴ bis 10⁵ geringere Absorption aufweisen als normalleitende Resonatoren. Im Augenblick wird in mehreren Laboratorien an der Realisierung von entsprechenden Projekten gearbeitet¹⁻⁵. Unter anderem wird im HEPL in Stanford¹ ein supraleitender Elektronenlinearbeschleuniger gebaut. Im IEKP in Karlsruhe wird sowohl ein Prototyp eines Protonenlinearbeschleunigers² als auch ein Teilchenseparator³ entwickelt.

Die hier vorliegende Arbeit wurde im Rahmen der Studien zur Erstellung des supraleitenden Protonenlinearbeschleunigers durchgeführt. Im niederenergetischen Teil des Beschleunigers werden Wendelstrukturen bei 90 MHz verwendet. Wendelstrukturen⁶ eignen sich besonders zur Beschleunigung von langsamen Teilchen ($v_{\text{Teilchen}} \leq 0.15$ c). Im Endausbau soll der Beschleuniger Protonen auf eine Energie von etwa 500 MeV bei einem Strahlstrom von maximal 1 mA beschleunigen⁷. Ein solcher Beschleuniger eignete sich zur Erzeugung von π -Mesonenstrahlen großer Intensität (" π -Mesonenfabrik"), die sowohl für biologische und radiotherapeutische Zwecke als auch für die Grundlagenforschung interessant wären.

Die ersten sehr erfolgversprechenden Messungen an supraleitenden Nob-Resonatoren wurden in Stanford von Turneaure und Mitarbeitern^{9,10} durchgeführt. Bei etwa 10 GHz wurden Güten von über 10¹⁰ (entspricht einem Oberflächenwiderstand von einigen 10⁻⁹ Ω) bei maximalen Oberflächenfeldstärken von etwa 1000 Gauß erreicht. Die Behandlung der Resonatoren bestand aus einem Ausheizen im UHV-Ofen bei etwa 1800⁰ C in Verbindung mit einem chemischen Polierverfahren. Eine Anwendung der gleichen Behandlungsmethoden auf Resonatoren und Strukturen bei niedrigeren Frequenzen (1 bis 3 GHz) brachte weder so hohe Güten noch annähernd so hohe Felder¹¹,¹². Mit einem bei der Firma Siemens entwickelten Elektropolierverfahren¹³ gelang es in Verbindung mit anodischer Oxydation auch an unausgeheizten Resonatoren vergleichbare und sogar bessere Ergebnisse zu erzielen¹⁴,¹⁵. Dieses Verfahren bewährte sich insbesondere auch bei der Wendelstruktur, bei der eine Hochtemperaturbehandlung wegen der Gefahr der mechanischen Verformung schwierig ist¹⁶.

Bei höheren Temperaturen kann der gemessene stark temperaturabhängige Oberflächenwiderstand auf der Grundlage der BCS-Theorie befriedigend erklärt werden¹⁷,¹⁸,¹⁹. Die bei tiefen Temperaturen beobachtete Abweichung wird in einem Restwiderstand zusammengefaßt. Die Ursachen für den Restwiderstand sind trotz mehrerer vorgeschlagenen Erklärungen immer noch nicht genau bekannt. Trotz gleicher Oberflächenpräparation kann sich der Restwiderstand von einer Messung zur anderen beträchtlich unterscheiden.

Die ersten Messungen an Wendelresonatoren²⁰,²¹ zeigten ein Verhalten des Restwiderstandes, das nicht im Einklang mit Beobachtungen an Resonatoren im GHz-Gebiet war. Häufig wurde eine schwache Abhängigkeit des Restwiderstandes R_{res} von der Temperatur beobachtet und außerdem stieg R_{res} in den meisten Fällen mit zunehmender Hf-Feldstärke an. Infolge der begrenzten Kühlleistung einer Wendel²² war man daher bei der Erreichung hoher Feldstärken häufig durch den hohen Restwiderstand eingeschränkt. In der Anwendung konnten daher die projektierten Beschleunigungsfelder nicht sicher erreicht werden²³. Daraus ergab sich die Notwendigkeit, ausführlichere Untersuchungen an Wendelresonatoren, die möglichen Beschleunigungsstrukturen ähnlich waren, durchzuführen. Wegen der relativ komplizierten Geometrie sind jedoch die verwendeten Wendelresonatoren den physikalischen Aspekten der auftretenden Probleme nicht immer optimal angepaßt.

Aus der von der Anwendung bestimmten Problemstellung ergab sich als ein wesentliches Ziel der vorliegenden Messungen, das Verhalten des Restwiderstandes und der maximal erreichbaren Feld-

- 2 -

stärken in Abhängigkeit von der Oberflächenbehandlung einzugrenzen, um eine zuverlässige Parameterwahl für Beschleunigungsstrukturen zu ermöglichen. Ein zusammenfassender Überblick über Ergebnisse bezüglich der feldbegrenzenden Effekte und bezüglich des Verhaltens des Restwiderstandes wird in den Abschnitten 4.1 und 4.2 gegeben.

Die Notwendigkeit, den Restwiderstand zu studieren, führte im Verlauf der Messungen zu zwei Ansatzpunkten, die systematisch untersucht wurden.

- 1. Es zeigte sich, daß an der Oberfläche kondensierte Restgase die Verluste in einer Weise erhöhen, wie sie für eine Reihe von Messungen insbesondere auch an großen Beschleunigungsstrukturen²³ charakteristisch waren. Um etwas über die Ursachen der Verluste in kondensierten Gasschichten zu erfahren und um quantitative Aussagen machen zu können, wurden ausführliche Messungen mit Luft und ihren Hauptkomponenten durchgeführt (Abschnitt 4.3).
- 2. In geometrisch komplizierten Strukturen können beim Abkühlen Thermoströme auftreten²⁵, die neben äußeren Feldern (z. B. Erdfeld) beim Übergang zur Supraleitung wegen des unvollständigen Meißnereffektes eingefroren werden können. Eingefrorene Magnetfelder führen zu einer Erhöhung der Hf-Verluste²⁶,²⁷. Eine genauere Untersuchung dieser Verluste, insbesondere auch in Abhängigkeit von der Hf-Feldstärke, erwies sich sowohl für die Dimensionierung von Magnetfeldabschirmungen als auch für eine Unterscheidung der verschiedenen Anteile der Restverluste als sinnvoll. Bisherige Messungen im 100 MHz-Bereich sind nur bei kleinen Hf-Feldstärken durchgeführt worden²¹. Im Abschnitt 4.4 werden die Messungen beschrieben.

2. ALLGEMEINE ZUSAMMENHÄNGE

2.1 Oberflächenimpedanz Z und der Zusammenhang zwischen dem Oberflächenwiderstand R und der unbelasteten Güte Q₀

Der Schwingungszustand ("Mode") eines Hf-Resonators wird durch die Lösung der Maxwellgleichungen bestimmt²⁸,⁵⁰. Die Materialeigenschaften der Wände äußern sich in den Randbedingungen. Da die Eindringtiefe im Metall sehr viel kleiner als die Vakuumwellenlänge und der Krümmungsradius der Oberfläche ist, kann das Feld im Metall in der Nähe der Oberfläche durch eine ebene transversale Welle approximiert werden. Die tangentialen Feldkomponenten $\vec{E}_{\parallel}(z,t)$ und $\vec{H}_{\parallel}(z,t)$ im Metall sind dann durch die Beziehung

$$\vec{E}_{II} = Z(\vec{H}_{II} \times \vec{e}_{Z})$$
(2.1)

verknüpft. Z ist die komplexe Oberflächenimpedanz und \vec{e}_z ist ein in das Metall gerichteter Einheitsvektor der Oberflächennormalen.

Aus der Gleichung (2.1) und den Maxwellgleichungen ergibt sich für zeitlich periodische Felder (${}^{e^{i\omega t}}$):

$$Z = i\omega\mu_0 \int \frac{H_{\rm H}(z)}{H_{\rm H}(z=0)} dz = R + iX$$
(2.2)

X ist die Oberflächenreaktanz und R ist der Oberflächenwiderstand. Zwischen X und der Eindringtiefe λ des magnetischen Feldes besteht die einfache Beziehung: X = $\omega\mu_0\lambda$. Der zeitlich gemittelte Leistungsfluß S durch die Metalloberfläche wird durch den Mittelwert des Poyintingvektors bestimmt.

$$\bar{S} = \frac{1}{2} \operatorname{Re}(\bar{E}_{\parallel} \times \bar{H}_{\parallel}) = \frac{1}{2} \operatorname{Re}(\bar{H}_{\parallel})^2 \cdot \bar{e}_{Z}$$
 (2.3)

Der Zusammenhang mit dem Oberflächenwiderstand ergibt sich aus Gleichung (2.1). Durch Integration über die gesamte Oberfläche des Resonators erhält man die Oberflächenverlustleistung Po

$$P_{0} = \frac{1}{2} \oint_{F_{res}} R|\vec{H}_{"}|^{2} dF \qquad (2.4)$$

Mit der Definition der Güte Qo

$$Q_0 = \frac{\omega \cdot W}{P_0}$$
 (2.5)

wobei

$$W = \frac{1}{2} \mu_0 \int_{V_{res}} |\vec{H}|^2 dV = \frac{1}{2} \epsilon_0 \int_{V_{res}} |\vec{E}|^2 dV$$
(2.6)

die im Resonator gespeicherte Energie ist, ergibt sich folgender Zusammenhang zwischen Q_0 und R:

$$Q_{0} = \frac{\omega \mu_{0}}{\oint} \frac{V_{res}}{R |\vec{H}_{"}|^{2} dF} = \frac{G}{R}$$
(2.7)

Dabei wurde angenommen, daß der Oberflächenwiderstand R homogen ist und nicht von der Hf-Feldstärke abhängt und daher in Gleichung (2.7) vor das Integral gezogen werden kann. Der Geometriefaktor G hängt dann nur von der Geometrie und dem Schwingungszustand des Resonators ab.

$$G = \mu_0 \omega \frac{\int_{\text{Vres}} |\vec{H}|^2 dV}{\oint_{\text{Fres}} |\vec{H}_{\parallel}|^2 dF}$$
(2.8)

Hängt jedoch R von der Hf-Feldstärke ab, so wird der Zusammenhang zwischen Q₀ und R durch einen im Vergleich zu Gleichung (2.8) modifizierten Geometriefaktor G_m, der die Abhängigkeit des Oberflächenwiderstandes R von der Hf-Feldstärke H_{Hf} berücksichtigt, gegeben. Bei bekanntem funktionellen Zusammenhang R(H_{Hf}) läßt sich ausgehend von den Gleichungen (2.4) und (2.5) ein G_m definieren³⁰. Ist R z. B. linear von H_{Hf} abhängig, R(H_{Hf}) \propto H_{Hf}, so ergibt sich: G_m/G = 1.18. Dabei wurde angenommen, daß die Verteilung der Felder über der Oberfläche durch sin- und cos-Funktionen, wie es bei der Wendel etwa der Fall ist⁴⁷, beschrieben wird. Da R(H_{Hf}) im allgemeinen nicht explizit bekannt ist, und G_m sich nicht wesentlich von G unterscheidet, wird im folgenden auch bei feldstärkeabhängiger Güte R nach Gleichung (2.7) mit dem Geometriefaktor G (Gl. (2.8)) bestimmt.

Bei einfachen Geometrien wird G nach Gleichung (2.8) berechnet. Bei geometrisch komplizierteren Strukturen wie der Wendel wird G aus G = R · Q₀ experimentell bestimmt. Dazu wird die Güte Q₀ z. B. bei Raumtemperatur gemessen. Der dazugehörige Oberflächenwiderstand R wird aus der Theorie des Skineffektes berechnet, wobei nur die Gleichstromleitfähigkeit des Metalls benötigt wird. Die Feldkonfiguration und somit auch der Geometriefaktor G ändert sich beim Übergang zur Supraleitung praktisch nicht, denn die Eindringtiefen im Metall $\lambda_{\rm N1}$ und $\lambda_{\rm S1}$ sind sehr viel kleiner als die Abmessungen des Resonators.

2.2 Oberflächenwiderstand in supraleitenden Resonatoren

Aus vielen Messungen⁹,³²,³⁶ ist bekannt, daß der Oberflächenwiderstand R eines supraleitenden Resonators bei höheren Temperaturen eine in Übereinstimmung mit der BCS-Theorie starke Abhängigkeit von der Temperatur aufweist. Zu tiefen Temperaturen hin wird der Oberflächenwiderstand dagegen nahezu temperaturunabhängig. Die Abweichung des Oberflächenwiderstandes von dem theoretisch erwarteten Verhalten wird in dem sogenannten Restwiderstand R_{res} zusammengefaßt. Der gemessene Oberflächenwiderstand R wird als Summe aus dem supraleitenden Anteil R_{s1}, der nach der BCS-Theorie berechnet werden kann, und dem Restwiderstand R_{res} beschrieben.

$$R = R_{sl} + R_{res}$$
(2.9)

 R_{sl} wird im Abschnitt 2.2.1, R_{res} im Abschnitt 2.2.2 etwas aus-führlicher besprochen.

2.2.1 Der Oberflächenwiderstand R_{sl} eines Supraleiters in der Meißnerphase

Im Gegensatz zum Gleichstromwiderstand ist der Wechselstromwiderstand eines Supraleiters in der Meißnerphase für T > 0 von Null verschieden. In der Meißnerphase (H < H_{c1}) wird das Magnetfeld aus dem Inneren eines Supraleiters herausgedrängt. Dies geschieht jedoch nicht auf einer beliebig kleinen Länge, da hierzu eine unendlich große Dichte der Abschirmströme nötig wäre. Das Feld klingt vielmehr etwa exponentiell ($\propto e^{-Z/\lambda L}$) in den Supraleiter hinein. $\lambda = \sqrt{m/\mu_0 e^2 \cdot n_s}$ ist die Eindringtiefe³³, n_s ist die Dichte der supraleitenden Ladungsträger und m deren Masse. Bei Nb beträgt $\lambda_L \approx 400 \text{ A}^0$ für T $\leq T_c/2$.

Das Zweiflüssigkeitsmodell³⁴ ermöglicht ein qualitatives Verständnis des Oberflächenwiderstandes R_{sl}. Nach diesem Modell existieren im Supraleiter bei T > O eine normalleitende und eine supraleitende Komponente. Das an der Oberfläche in den Supraleiter eindringende Hf-Feld wechselwirkt mit beiden Komponenten. Die supraleitende Komponente trägt verlustlose Ströme, die im wesentlichen die Abschirmströme bilden, während die normalleitende Komponente Energie dissipiert ähnlich wie Leitungselektronen im normalleitenden Zustand.

Eine befriedigende quantitative Beschreibung wurde erst auf der Grundlage der BCS-Theorie möglich. Nach der BCS-Theorie³⁴ entsprechen der supraleitenden Komponente gebundene Elektronenpaare, die "Cooperpaare". Der normalleitenden Komponente entsprechen angeregte Zustände ("Quasiteilchen"), die nahezu identisch mit den freien Elektronen eines Metalls sind. Die Cooperpaare befinden sich in einem quantenmechanischen Grundzustand, der durch eine Energielücke 2 Δ (Δ = Gapparameter) vom ersten angeregten Zustand getrennt ist. Die Cooperpaare können daher nur Energiequanten absorbieren, deren Energie $\hbar \omega$ größer als die Energielücke 2 Δ ist. Für T \leq T_c/2 entspricht bei Niob 2 Δ einer Frequenz von etwa 600 GHz³⁵. Die bei T > 0 vorhandenen angeregten Zustände sind von anderen unbesetzten Zuständen umgeben. Sie können daher Energiequanten jeder Energie absorbieren. Qualitativ wurde das Verhalten eines Supraleiters in einem Hochfrequenzfeld von mehreren Autoren¹⁸,¹⁹ untersucht. Dabei wurde die Wechselwirkung mit dem Hochfrequenzfeld als eine kleine Störung behandelt und zeitabhängige Störungsrechnung angewendet. Eine detaillierte Diskussion des supraleitenden Oberflächenwiderstandes R_{s1} in Abhängigkeit von der Temperatur T, der Frequenz ω , dem Gapparameter Δ/kT_c , der London-Eindringtiefe λ_L , der Kohärenzlänge ξ und der mittleren freien Weglänge 1, wurde von Halbritter¹⁹ durchgeführt. Für $\hbar\omega < \Delta/10$ und T < T_c/2 können seine Ergebnisse etwa wie folgt zusammengefaßt werden:

a) Temperaturabhängigkeit:

$$R_{sl} \propto \frac{1}{kT} \exp(-\Delta/kT) \approx \exp(-\Delta/kT)$$
 (2.10)

b) Frequenzabhängigkeit:

$$R_{s1} \propto \omega^{\circ} \quad \text{mit} \quad 1.5 \le \delta \le 2 \tag{2.11}$$

c) Abhängigkeit von l:

Für $1 \simeq \xi$ hat R_{sl} ein Minimum.

Die quantitative Übereinstimmung der Rechnungen mit durchgeführten Messungen ist sehr gut³⁶,³⁷.

Die durchgezogenen Linien in Abb. 1 geben den mit einem Programm von Halbritter berechneten supraleitenden Oberflächenwiderstand R_{sl} bei Nb in Abhängigkeit von der Frequenz bei verschiedenen Temperaturen wieder. Der Rechnung wurden folgende Parameter zugrunde gelegt: $T_c = 9.25$ K; $\Delta/kT_c = 1.85$; London-Eindringtiefe $\lambda_L = 320$ A^O; Kohärenzlänge $\xi_0 = 390$ A^O; freie Weglänge l = 250 A^O. Es wurde diffuse Streuung der Elektronen an der Oberfläche angenommen. Bei spiegelnder Reflexion an der Oberfläche liegen die Werte für den Oberflächenwiderstand um etwa 3% höher. Die freie Weglänge l = 250 A^O wurde so gewählt, daß bei 4.2 K die Übereinstimmung der berechneten mit den experimentellen Werten, die bei Messungen an Helix II gewonnen wurden, möglichst gut ist (Abb. 1). Im Gegensatz dazu ergibt sich aus der Messung des Restwiderstandsverhältnisses⁸⁵ die freie Weglänge im Materialinneren zu etwa 1000 A⁰.

Abb. 1: Der theoretische supraleitende Oberflächenwiderstand R_{sl} bei Nb für T = 4.2; 2.5 und 1.8 K in Abhängigkeit von der Frequenz. Für die freie Weglänge wurde 1 = 250 A^o angenommen. Die experimentellen Werte (o) wurden aus Messungen an Helix II gewonnen. R_{slexp} (4.2 K) = R(4.2 K) - R_{res}

2.2.2 Der Restwiderstand R_{res} in supraleitenden Resonatoren

Die bei tiefen Temperaturen beobachtete Abweichung des gemessenen Oberflächenwiderstandes R im Vergleich zu dem berechneten supraleitenden Anteil R_{sl} (Abschnitt 2.2.1) wird im Restwiderstand R_{res} zusammengefaßt (Gl. 2.9). Die meisten Messungen des Oberflächenwiderstandes in supraleitenden Resonatoren lassen sich durch einen temperaturunabhängigen oder nur schwach temperaturabhängigen ($\propto T^{0.5^{-1}}$) Restwiderstand beschreiben³⁸. Die schwache Temperaturabhängigkeit besagt, daß R_{res} nicht mit den supraleitenden Eigenschaften des Materials zusammenhängt. R_{res} hängt stark von der Oberflächenbehandlung ab und kann von einer Behandlung zur anderen um mehrere Größenordnungen variieren. Durch Verbesserung der Oberflächenpräparation ist es bisher gelungen, Restwiderstände R_{res} $\simeq 1.5 \cdot 10^{-9} \Omega$ zu erreichen und zwar sowohl in Nb-Resonatoren bei 10 GHz³¹, 3 GHz³² und etwa 90 MHz (Abb. 10). Wegen des kleinen supraleitenden Oberflächenwiderstandes R_{s1} im 100 MHz-Bereich (Abb. 1) macht sich der Restwiderstand in diesem Frequenzbereich schon bei 4.2 K bemerkbar.

Die Abhängigkeit des Restwiderstandes von der Frequenz läßt sich etwa durch

 $R_{res} \propto \omega^{\alpha}$ mit $o \leq \alpha \leq 2$

beschreiben. "Schlechte" Oberflächen mit hohem Restwiderstand zeigen meist stärkere Abhängigkeit von der Frequenz als "gute" Oberflächen mit kleinem Restwiderstand. Ob eine Oberfläche in diesem Sinne "schlecht" oder "gut" ist, kann nur duch eine Hf-Messung geklärt werden. Bisher ist es nicht eindeutig gelungen, optisch oder mit Elektronen (Elektronenmikroskop, Augerspektrometer) "gute" Oberflächen von "schlechten" zu unterscheiden. Vorwiegend bei tiefen Frequenzen (≈ 100 MHz) wird häufig ein starker Anstieg des Restwiderstandes R_{res} mit steigendem Hf-Feld beobachtet³⁹.

Das verschiedene Verhalten des Restwiderstandes in Abhängigkeit von der Frequenz, Temperatur und Hf-Feldstärke, läßt es als wahrscheinlich erscheinen, daß mehrere Ursachen den Restwiderstand hervorrufen. Unter anderem wurden folgende Ursachen zur Erklärung des Restwiderstandes vorgeschlagen:

- normalleitende Ausscheidungen an Korngrenzen und Kristallfehlern⁴⁰.
- Erzeugung von Phononen durch das Hf-Feld insbesondere an oxydgefüllten Mikrospalten³⁰,⁴¹.

- eingefrorenes Magnetfeld²⁶,²⁷,⁴².
- dielektrische Verluste in Oberflächenoxyden, wobei jedoch verschiedene Versuche zeigten, daß Verluste im amorphen Nb₂O₅ vernachlässigbar sind¹⁴,¹⁵.
- Verluste in an der Oberfläche kondensierten Gasschichten.
- Wechselwirkung der Hf-Felder mit den magnetischen Dipolmomenten von Fremdatomen und Störstellen im Oberflächenoxyd³⁰.

Für die meisten Anwendungen ist der Restwiderstand von entscheidender Bedeutung, da er bei tiefen Temperaturen vorwiegend die Oberflächenverluste bestimmt. Das Verständnis des Restwiderstandes ist jedoch noch sehr lückenhaft. Der Einfluß der Oberflächenrauhigkeit auf R_{res} ist noch ebensowenig geklärt wie z. B. Alterungseffekte, Effekte durch Strahlenschäden⁴³, Verluste in der Metalloxydgrenzschicht⁴⁴.

Einen kleinen Beitrag zum quantitativen Verständnis von R_{res} bei Frequenzen um 100 MHz soll diese Arbeit liefern. Im Hinblick auf praktische Anwendung wurde der Einfluß von kondensierten Gasschichten (Abschnitt 4.3) und der Einfluß von eingefrorenem Magnetfeld, insbesondere bei höheren Hf-Feldstärken (Abschnitt 4.4), auf die Restverluste systematisch untersucht.

2.3 Hochfrequenzfelder in Wendelresonatoren

Die Hf-Felder in einem Resonator hängen mit der gespeicherten Energie W (Gl. 2.6) zusammen. Nach Umformung der Gleichung (2.5) und (2.6) ergibt sich allgemein für die Felder an einem bestimmten Ort im Resonator:

$$H = K_{H} \cdot \{P_{0} \cdot Q_{0}\}^{1/2} = K_{H} \cdot \{P_{cav} \cdot Q_{0}^{\prime}\}^{1/2}$$
(2.12 a)

bzw.

$$E = K_{E} \cdot \{P_{0} \cdot Q_{0}\}^{1/2} = K_{E} \cdot \{P_{cav} \cdot Q_{0}^{*}\}^{1/2}$$
(2.12 b)

 ${\rm K}_{\rm H}$ und ${\rm K}_{\rm E}$ sind Konstanten, die vom Ort und der Feldverteilung

(Mode) im Resonator abhängen. $P_0 \cdot Q_0 = P_{cav} \cdot Q'$ ist die Blindleistung des Resonators. P_{cav} enthält die gesamten Verluste (Oberflächen- und Koppelverluste, P_0 und P_k) des Resonators, Q' ist die entsprechende Güte (S. Anhang I).

In langen Wendeln (Länge L >> Durchmesser 2a, Hf-Mode = mehrere $\lambda/2$) lassen sich mit Hilfe eines Schichtmodells⁴⁵ die Hf-Felder in einem gewissen Abstand vom Wendeldraht, insbesondere auch das Achsenfeld E₀ (E₀ = Amplitude der stehenden Welle) berechnen. Die berechneten Werte stimmen gut mit Störungsmessungen an langen Wendeln überein⁴⁶. Wegen Endeffekten weicht jedoch das Achsenfeld bei kurzen $\lambda/2$ -Wendeln davon ab. In Abb. 2 ist neben dem Schichtachsenfeld E₀ qualitativ der wirkliche Verlauf des Achsenfeldes E₀exp bei einer kurzen $\lambda/2$ -Wendel gezeigt.

Die maximalen Felder treten an der Wendeloberfläche auf. Zwei modifizierte Modelle, ein Ringmodell⁴⁷ und ein Modell, welches konforme Abbildungen benutzt⁴⁸, gestatten es, die Oberflächenfelder näherungsweise zu berechnen. Beide Modelle gehen vom Schichtmodell aus. Die Übereinstimmung zwischen beiden Modellen ist besser als 10%⁴⁶. Auch ein Vergleich der berechneten Oberflächenfeldstärken mit Messungen an langen Wendeln⁴⁷ ergab eine befriedigende Übereinstimmung. Die Abweichungen in den Spitzenfeldern der kurzen Wendeln gegenüber langen Wendeln sind nicht so stark wie es das deformierte Achsenfeld vermuten läßt. Vergleichende Störkörpermessungen an Wendeln verschiedener Länge⁴⁷ ergaben, daß die für lange Wendeln berechneten Oberflächenfeldstärken für die $\lambda/2$ -Wendel um etwa 10 bis 20% bei den maximalen Magnetfeldern und um etwa 30% bei den maximalen elektrischen Feldern zu groß sind. Aus Abb. 2 geht die Lage der maximalen Hf-Feldstärken an der Oberfläche hervor.

In Tab. I sind die berechneten maximalen Oberflächenfeldstärken bezogen auf die laufende Komponente des Achsenfeldes $E_{TW} = 1/2 \cdot E_{o}$ für verschiedene Hf-Moden in beiden Wendeln (Helix I und Helix II) angegeben. $E_{TW}/(P_{cav}Q_{o}')^{1/2}$ wurde nach dem Schichtmodell berechnet. Die Oberflächenfeldstärken sind bis auf E_{rimax} Mittelwerte aus beiden Modellen. Die bei Helix I mit (*) gekennzeichneten Werte Tabelle I: Felder in den verwendeten Wendelresonatoren.

 E_{TW} = beschleunigendes Achsenfeld nach Schichtmodell.

E_{max}, H_{max} = berechnete maximale Oberflächenfeldstärken.

Die mit * gekennzeichneten Werte wurden experimentell bestimmt.

	Helix I				Helix II						
f [MHz]	79.98	139.5	195.2	251.0	305.1	91.4	160.7	224.9	288.8	352.3	413.6
$\frac{E_{TW}}{\sqrt{P_{cav}Q_{0}'}} / \frac{MV/m}{\sqrt{Watt}}$	3.05 × 10 ⁻⁴	2.14 × 10 ⁻⁴	1.2 × 10 ⁻⁴	0.63 × 10 ⁻⁴	0.33 × 10 ⁻⁴	2.79 × 10 ⁻⁴	1.89 × 10 ⁻⁴	1.02 × 10 ⁻⁴	0.53 × 10 ⁻⁴	0.26 × 10 ⁻⁴	0.14 × 10 ⁻⁴
$rac{H_{z_{max}}}{E_{TW}} \left/ rac{Gauß}{MV/m} ight.$	226 [*] (255)	232 * (277)	431	761	1397	248	278	450	818	1560	2970
$\frac{\text{H}_{\text{fmax}}}{\text{E}_{\text{TW}}} \Big/ \frac{\text{Gauß}}{\text{MV/m}}$	151 [*] (201)	292 * (350)	645	1233	2365	219	401	765	1500	2985	5815
E _{zmax} E _{TW}	5.4 [*] (7.5)	8.9 [*] (11.8)	20.7	38.7	73.5	8.15	13.5	24.5	47.1	92.5	179
Eramax ETW	4.7 * (7.0)	5.2 * (7.6)	12.0	21.3	39.4	6.9	7.5	12.4	22.8	43.8	83
E _{rimax} E _{TW}	1.45	3.63	7.58	15.3	30.6	1.4	3.7	8.0	16.3		_
$rac{P_{cav}Q_{o}'}{\Delta f_{stat}} / rac{Watt}{kHz}$	3.9 × 10 ⁵	2.4 × 10 ⁵	2.0 × 10 ⁵	2.3×10 ⁵	2.3 × 10 ⁵	12.4 × 10 ⁵	5.9 × 10 ⁵	5.1 × 10 ⁵	4.6 × 10 ⁵	4.3 × 10 ⁵	4.6 × 10 ⁵
G [Ω]	4.2	4.9	5.4	5.7	6.0	4.39	5.52	5.9	6.3	7.3	8.2
Hf - Mode	λ/2 Grundmode	λ	$\frac{3}{2}\lambda$	2 λ	$\frac{5}{2}\lambda$	λ /2	λ	<u>3</u> λ	2λ	<u>5</u> 2λ	3λ

-13

ı

wurden nach einer Störkörpermessung bezüglich der Randeffekte korrigiert. Darunter sind auch die dazugehörigen, nicht korrigierten berechneten Werte angegeben. An Helix II wurden keine Störkörpermessungen durchgeführt. Eine Korrektur bezüglich der Randeffekte erübrigt sich teilweise für die Feldkomponenten zwischen den Windungen, H_{rmax} und E_{zmax}. Beim Wickeln der Wendel ist nämlich das Wendelrohr oval geworden, so daß dadurch der Abstand zwischen den Windungen um etwa 9% kleiner wurde. Dadurch erhöhen sich die Feldkomponenten zwischen den Windungen um näherungsweise 9%.

<u>Abb. 2:</u> Maximale Feldstärken an der Oberfläche und das Achsenfeld $E_{o} = 2E_{TW}$ in einem $\lambda/2$ -Wendelresonator

Die durch die elektromagnetischen Felder im Resonator bewirkten Kräfte (Strahlungsdruck) führen zu einer mechanischen Verformung der Wendel und verursachen daher eine Erniedrigung der Resonanzfrequenz um Δf_{stat} (statische Frequenzverschiebung)²⁴. Δf_{stat} hängt von der Feldkonfiguration und den mechanischen Eigenschaften des Resonators, wie Steifigkeit, ab. Allgemein ist Δf_{stat} proportional zur im Resonator gespeicherten Feldenergie W und daher auch zur Blindleistung $P_{cav} \cdot Q'$ und dem Quadrat der Hf-Feldstärken

$$\Delta f_{\text{stat}} \propto W \propto P_{\text{cav}} \cdot Q_{0}^{\prime} \propto H^{2}, E^{2}$$
(2.13)

- 15 -

Experimentell wird diese Proportionalität sehr gut bestätigt¹⁶. Af_{stat} kann wegen der Proportionalität (Gl. 2.13) als ein sehr bequemes Maß für die Hf-Feldstärken in einem Wendelresonator (Abb. 4) verwendet werden.

2.4 Einfluß eines dielektrischen Körpers auf die Eigenfrequenz und Güte eines Resonators

Das Einbringen eines dielektrischen Störkörpers in einen Hochfrequenzresonator bewirkt sowohl eine Frequenzverschiebung Δf_D als auch eine Erniedrigung der Resonatorgüte. Wie im Anhang II ausführlicher dargestellt, erhält man aus Störungsrechnungen⁴⁹,⁵⁰ für die relative Frequenzverschiebung $\frac{\Delta f D}{f}$, die durch eine dünne dielektrische Schicht an der Oberfläche des Resonators verursacht wird, folgenden Ausdruck:

$$\frac{\Delta f_D}{f} = \frac{\varepsilon_2^2 - 1}{\varepsilon_2^2} \cdot G_E$$
(2.14)

Der Geometriefaktor G_E , der im Anhang II definiert und näherungsweise berechnet wird, ist das Verhältnis aus der gespeicherten elektrischen Energie $W_E = \frac{1}{4} \epsilon_0 f E_1^2 dV$ im Volumen V_s , welches vom Dielektrikum eingenommen wird, zur gesamten im Resonator gespeicherten Energie W (Gl. 2.6).

Die Verluste P_D im Dielektrikum werden in folgender Weise beschrieben:

$$P_{\rm D} = 2\omega W_{\rm E} \cdot \frac{\varepsilon_2^{\rm H}}{\varepsilon_2^{\rm 2}} = 2\omega W_{\rm E} \cdot \tan \delta_{\rm D}$$
(2.15)

 ε_2'' ist der Imaginärteil der Dielektrizitätskonstante und tan $\delta_D = \varepsilon_2''/\varepsilon_2''$ ist der dielektrische Verlustfaktor.

Die in einem Resonator durch einen dielektrischen Störkörper verursachten zusätzlichen Verluste P_D werden zweckmäßigerweise durch eine Güte Q_D beschrieben. Mit Gleichung (2.15) ergibt sich für Q_D:

$$Q_{\rm D} = \frac{\omega W}{P_{\rm D}} = \frac{W}{2W_{\rm E}} \cdot \frac{1}{\tan \delta_{\rm D}} = \frac{1}{2 \cdot \tan \delta_{\rm D} \cdot G_{\rm E}}$$
(2.16)

Eine analoge Beziehung erhält man, wenn die Verluste mit den magnetischen Eigenschaften (μ ', μ ", tan $\delta_m = \mu$ "/ μ ') des Störkörpers zusammenhängen (Gl.A 19, Anhang IIa):

$$Q_{\rm m} = \frac{1}{2} \frac{1}{\tan \delta_{\rm m}} \cdot \frac{1}{G_{\rm m}}$$
(2.17)

Kombiniert man die Gl. (2.14) und (2.16), so ergibt sich für den Verlustfaktor $\tan \delta_{D}$:

$$\tan \delta_{\rm D} = \frac{1}{2} \frac{(\epsilon_2^{\prime} - 1)}{\epsilon_2^{\prime}} \cdot \frac{f}{\Delta f_{\rm D}} \cdot \frac{1}{Q_{\rm D}}$$
(2.18)

Daraus geht hervor, daß bei gleichzeitiger Messung von $\Delta f_D/f$ und Q_D der Verlustfaktor $\tan \delta_D$ bestimmt werden kann, ohne eine Kenntnis über die Hf-Felder an der Oberfläche und über die Verteilung der dielektrischen Schicht.

Bei magnetischen Verlusten erhält man für $\tan \delta_m$, unter der Annahme, daß die Frequenzverschiebung Δf_D im wesentlichen durch die dielektrischen Eigenschaften ($\epsilon_2' - 1 >> \mu_2' - 1$; $G_E \simeq G_m$), die Verluste (α 1/Q) jedoch durch magnetische Eigenschaften bestimmt werden ($\tan \delta_m >> \tan \delta_D$), folgenden Ausdruck:

$$\tan \delta_{m} = \frac{1}{2} \frac{\varepsilon_{2}^{\prime} - 1}{\varepsilon_{2}^{\prime}} \frac{f}{\Delta f_{D}} \frac{1}{Q_{m}} \frac{G_{E}}{G_{m}}$$
(2.19)

Im Gegensatz zu $\tan \delta_D$ (Gl. (2.18)) kann unter den gemachten Voraussetzungen die gemessene Frequenzverschiebung $\Delta f_D/f$ nicht zur Bestimmung des magnetischen Geometriefaktors G_m in Gl. (2.17) herangezogen werden. $\Delta f_D/f$ ist vielmehr zu G_E proportional. Bei bekannter Verteilung der dielektrischen Schicht und der Hf-Felder über der Oberfläche können die Größen G_E und G_m, die man zur Bestimmung von $\tan \delta_m$ benötigt, berechnet werden (Anhang IIb).

Aus (2.18) und (2.19) ergibt sich eine formale Beziehung zwischen $tan\delta_m$ und $tan\delta_n$:

$$\tan \delta_{m} = \tan \delta_{D} \cdot \frac{G_{E}}{G_{m}}$$

(2.20)

3. Meßaufbau und Meßdurchführung

Vorangegangene Messungen an Nb-Wendeln im verbleiten Kupferaußentank¹⁶ haben gezeigt, daß es möglich ist, Oberflächenfeldstärken H_{max} ≥ 500 Gauß und E_{max} ≥ 16 MV/m zu erreichen. Die Unsicherheit mit der diese Werte jedoch erzielt wurden, machte es erforderlich, das Verhalten von Wendelresonatoren im 100 MHz-Bereich, insbesondere im Hinblick auf die Anwendung, ausführlicher zu untersuchen. Zweckmäßigerweise sollten die Messungen an einem kleineren Nb-Wendelresonator, der Beschleunigungsstrukturen ähnlich ist, durchgeführt werden.

3.1 Allgemeiner Aufbau

Den allgemeinen Aufbau mit dem Kryostaten, einer Magnetfeldabschirmung, den Koppelleitungen und dem Pumpsystem zeigt schematisch Abb. 3.

Der Resonator wird in den He-Raum eines Kryostaten (Innendurchmesser = 25 cm) eingetaucht. Eine für He-Temperaturen ausgelegte Cryopermabschirmung der Firma Vakuumschmelze (Hanau) schirmt das Erdfeld bis auf etwa 5 mOe ab.

Durch zwei bewegliche koaxiale Koppelleitungen, die über zwei Federbälge mit dem Kryostatdeckel und dem Resonator verbunden sind, wird die Hf-Leistung ein- bzw. ausgekoppelt. Die Koppelleitungen werden am unteren Ende durch "kalte" Keramikfenster abgeschlossen, um das Vakuum der Leitungen von dem Vakuum des Resonators zu trennen. Durch das mittlere, dünnwandige Rohr (Durchmesser = 2,5 cm) aus Edelstahl, welches fest mit dem Resonator verbunden ist, wird der Resonator gepumpt. Eine unten im Pumprohr an einem beweglichen dünnen Rohr angebrachte metallische Halbkugel ermöglicht es, bei tiefen Temperaturen das Resonatorvakuum von den warmen Teilen des Aufbaues abzuschließen ("kaltes" Ventil). Dadurch soll eine Kondensation von Gasen an der kalten Resonatoroberfläche durch Kryowirkung vermieden werden.

Zum Pumpen stehen eine Turbopumpe und eine Ionengetterpumpe, die

sich außerhalb des Kryostaten befinden, zur Verfügung. In günstigen Fällen wird bei Raumtemperatur an der Ionenpumpe ein Druck von etwa 10⁻⁷ Torr erreicht.

Durch Erniedrigung des Dampfdruckes über dem He-Bad von 760 Torr bis auf etwa 2 Torr wird die Temperatur zwischen 4.2 K und etwa 1.4 K variiert. Die Temperatur wurde entweder aus dem Druck über dem He-Bad oder mit einem geeichten Kohlewiderstand bestimmt.

Um die Messungen mit den kondensierten Gasschichten durchzuführen (Abschnitt 4.3), wurde das "kalte" Ventil im Pumprohr durch ein bewegliches Röhrchen (Durchmesser 10 x 1 mm), welches in den Pumpkamin des Resonators hineinragte, ersetzt. Das thermisch isolierte Röhrchen war so dimensioniert, daß seine Temperatur im stationären Zustand (Wärmezufuhr durch Wärmeleitung = Wärmeabgabe durch Wärmestrahlung) überall höher als etwa 200 K war. Die durch ein D erventil eingelassenen Gase konnten daher, bis auf Wasserdampf, nicht im Röhrchen kondensieren.

Die benutzten Gase wurden Stahlflaschen entnommen. Die angegebenen Verunreinigungen dieser Gase waren kleiner als 0.01% Vol. Um N_2/O_2 -Mischungsverhältnisse zwischen 1% und 100% Vol. herzustellen, wurde eine Gasmischpumpe der Firma Wösthoff OHG, Bochum, benutzt. N_2/O_2 -Gemisch im Volumenverhältnis 80/20 ("synthetische" Luft) wurde auch direkt einer Stahlflasche entnommen. Vor Einlassen eines Gases in den Resonator wurden die Gaszuleitungen mehrmals mit Hilfe einer Pumpe gespült, so daß die Verunreinigungen der eingelassenen Gase sich nicht wesentlich erhöhen dürften.

Für die Messung der Hf-Verluste, die durch eingefrorenes Magnetfeld verursacht werden (Abschnitt 4.4), wurden zwei Spulen innerhalb der Cryopermabschirmung angebracht. Mit einer Solenoidspule konnte ein Magnetfeld parallel zur Resonatorachse ($H_{dc_{\parallel}}$) erzeugt werden. Eine oval verformte Helmholtzanordnung ermöglichte es, ein senkrechtes Feld ($H_{dc_{\perp}}$) zu erzeugen. Die Homogenität von $H_{dc_{\parallel}}$ über dem Resonatorvolumen betrug etwa 5%. Beim senkrechten Feld $H_{dc_{\perp}}$ war die gleichzeitig im Resonatorvolumen erzeugte Parallelkomponente maximal 15% der senkrechten Komponente. Mit zwei Hallsonden, die in der Mitte des unteren Deckels und in der Mitte des zylindrischen Teiles des Außentanks angebracht waren, konnten Veränderungen des Magnetfeldes, insbesondere beim Übergang zur Supraleitung, beobachtet werden.

Abb. 3: Schematische Darstellung des gesamten Versuchsaufbaues

3.2 Aufbau und Behandlung der Wendelresonatoren

Die vorliegenden Messungen wurden an zwei Wendelresonatoren (Helix I, Helix II) aus Niob durchgeführt. Die beiden Resonatoren unterscheiden sich nur durch die Abmessungen ihrer Wendeln, der Außenzylinder war der gleiche. In Tab. II sind die Parameter der beiden Resonatoren zusammengestellt. Abb. 4 zeigt einen solchen Wendelresonator.

Tab. II: Parameter der Wendelresonatoren

In einem Nb-Außentank, der aus einem 3 mm Nb-Blech gerollt wurde,

ist eine Nb-Wendel eingeschweißt. Der Abstand der Wendel zum oberen

Deckel ("Koppelteil") wurde so gewählt, daß eine ausreichende Ankopplung an das Hf-Feld des Resonators mit der verwendeten Stiftkopplung möglich war. Der Abstand der Wendel zu dem angeflanschten unteren Deckel wurde dagegen so festgelegt, daß durch die Kontaktschneide zwischen dem Außentank und dem unteren Deckel ein hinreichend kleiner Strom fließen sollte, um Hf-Verluste an diesem Kontakt klein zu halten. Vorübergehendes Festschweißen des unteren Deckels an den Außentank bestätigte, daß die Verluste in dem Kontakt Deckel – Außentank gegenüber anderen Verlusten vernachlässigbar sind. Der untere Deckel wird mit einer Klammer angeflanscht. Ein eingelegter Indiumdraht wird zum Abdichten verwendet.

Der Resonator wurde in Transmission betrieben. Die Ein- und Auskopplung der Hochfrequenzleistung erfolgte durch zwei koaxiale Stiftkopplungen, die jeweils das Ende einer koaxialen Leitung (Wellenwiderstand = 50 Ω) bildeten. Durch Verändern der Stiftstellung konnte der Koppelfaktor β (Gl. A 6) im Bereich um β = 1 mehrere Größenordnungen variiert werden.

Durch den mittleren Kamin, an dessen oberen Ende sich das kalte Ventil befindet, wird der Resonator gepumpt. Um die Oberflächenbeschaffenheit der gezogenen Nb-Rohre zu verbessern, wurde das 6.3 cm Nb-Rohr (Helix I) mechanisch poliert. Das Nb-Rohr der Helix II hatte schon bei der Lieferung eine glatte Oberfläche. Nach dem Wickeln wurden die Wendeln bei 1100° C und p $\leq 10^{-5}$ Torr etwa 1 Stunde lang spannungsfrei geglüht. Anschließend wurden die Wendeln und der Außentank getrennt nach einem bei der Firma Siemens entwickelten Verfahren elektropoliert¹³. Dabei wurde von der Oberfläche eine Schicht von etwa 50 µ abgetragen.

Das Elektropolierverfahren besteht im wesentlichen darin, daß in einer Lösung aus 85 Vol. Teilen 98%iger Schwefelsäure und 10 Vol. Teilen 40%iger Flußsäure bei einer konstanten Spannung zwischen 9 und 15 V und einer Temperatur zwischen 25 und 30°C gedämpfte Stromschwingungen auftreten. Die dabei abgetragene Oberfläche wird eingeebnet. Nach Abklingen der Stromschwingungen (\approx 1 Min.) wird der Strom abgeschaltet. Nach einer Pause von etwa 10 Min., in der die an der Nb-Oberfläche gebildeten Oxidationsprodukte gelöst werden, kann der Poliervorgang wiederholt werden. Beim Polieren des Resonators mit eingeschweißter Wendel wurde, ähnlich wie bei Separatorstrukturen⁵¹, wegen der starken Wasserstoffentwicklung an der Kathode, die zu einer starken Verwirbelung des Elektrolyten führt, der waagrecht liegende Resonator nur halbvoll mit der Polierlösung gefüllt. Ein runder Stab, der durch den mittleren Kamin axial eingeführt wurde, diente als Kathode. Vor jedem Polierdurchgang wurde der Resonator etwa um 180⁰ gedreht.

Vor dem Einschweißen in den Außentank wurden die Wendeln bei etwa 1200[°] C wasserstoffentgast, da der beim Elektropolieren entstehende Wasserstoff teilweise vom Nb aufgenommen wird. Nach dem Einschweißen der Wendel wurde die dabei hervorgerufene Verunreinigung der Oberfläche entfernt und zwar entweder durch ein chemisches Polierverfahren (Helix I) in einer Lösung aus HF und HNO₃ ⁹ oder durch das Elektropolierverfahren.

Zum Abschluß des Poliervorganges wird der Resonator sorgfältig mit destilliertem Wasser, dem anfangs H2O2 zur Lösung von Fluorverbindungen beigegeben wird, gespült. Da, wie frühere Messungen zeigten, ein Anodisieren der Nb-Oberfläche zu reproduzierbar besseren Ergebnissen führte, sind alle hier beschriebenen Messungen mit anodisierten Oberflächen durchgeführt worden. Zum Anodisieren wurde der aufrecht stehende Resonator mit einem Elektrolyten (12%ige Ammoniaklösung oder 0.1 N H₂SO₄ in dest. Wasser) gefüllt. Beim Anlegen einer Spannung zwischen dem Resonator (= Anode) und einer durch den mittleren Kamin eingeführten Kathode fließt ein Strom und es bildet sich an der Resonatoroberfläche eine Oxydschicht aus amorphen Nb205, deren Dicke durch die angelegte Spannung gegeben ist. Der Elektrolytstrom wurde auf maximal 1 A begrenzt, da bei zu hohen Stromdichten sich kristalline Modifikationen des Nioboxyds bilden können⁸,⁵², welche wegen erhöhter Leitfähigkeit und ungleichmäßigen Schichten die Resonatoreigenschaften ungünstig beeinflussen. Die elektrolytisch erzeugten Oxydschichten zeigen je nach Dicke der Schicht charakteristische Interferenzfarben. Die vorliegenden Messungen wurden vorwiegend bei Schichtdicken von 240 A° (Anodisierspannung V_A = 12 V; Farbe: goldbraun) bzw. 400 A° (V_A = 20 V; Farbe: blau) durchgeführt. Nach dem Anodisieren wird der Resonator erneut sorgfältig mit destilliertem Wasser gespült und anschließend mit Methanol getrocknet bevor er an den Meßaufbau angeflanscht und gepumpt wird. Bei einer Neubehandlung vor einer neuen Meßreihe wurde ein Resonator nach Lösen der alten Oxydschicht in Flußsäure entweder chemisch oder elektrochemisch poliert oder auch nur neu anodisiert.

Nachdem an Helix II mehrere Meßreihen und Neubehandlungen durchgeführt worden waren, verschlechterte sich die Güte vor allem bei hohen Feldstärken. Zur Regeneration wurde der Resonator im UHV-Ofen bei p $\leq 10^{-7}$ Torr und T $\approx 1200^{\circ}$ C zwei Stunden lang mit Erfolg geglüht (s. Abschnitt 4.2.2).

3.3 Hochfrequenzapparatur

Wegen der hohen Güte haben supraleitende Resonatoren eine sehr kleine Bandbreite $\Delta f = f/Q$. Bei 90 MHz und einer typischen Güte $Q > 10^8$ ist $\Delta f < 1$ Hz. Um Hf-Leistung in den Resonator einzukoppeln, muß die Senderfrequenz im Bereich dieser Bandbreite liegen. Das Problem wird noch dadurch komplizierter, daß die Wendel wegen ihrer geringen mechanischen Stabilität von den Erschütterungen in der Umgebung mechanisch deformiert wird und dadurch Änderungen ihrer Eigenfrequenz erfährt. Bei den hier beschriebenen Wendelresonatoren waren die Eigenfrequenzänderungen durch mechanische Erschütterungen typisch etwa 1 kHz, was einem Vielfachen der supraleitenden Bandbreite entspricht.

Die Hf-Schaltungen wurden so eingerichtet, daß der Resonator frequenzbestimmendes Element war. Abb. 5 zeigt schematisch die Schaltung eines Frequenzregelkreises. In einer Phasenvergleichsbrücke wird das vom Sender zum Resonator vorlaufende Hf-Signal mit einem aus dem Resonator ausgekoppelten Signal verglichen. Eine der Phasendifferenz proportionale Gleichspannung wird über einen Niederfrequenz (Nf)-Verstärker und ein Frequenzkorrekturglied dem Steuereingang eines frequenzmodulierbaren Senders zugeführt. Der Fangbereich des Regelkreises betrug bei 90 MHz etwa ±1 MHz. Eine ausführliche Darstellung findet man bei H. Strube⁵⁴. Durch geeignete Einstellung der Phasen im Regelkreis können Instabilitäten auf Grund einer Wechselwirkung zwischen der Hochfrequenz und der Mechanik vermieden werden²⁴.

Abb. 5: Schematische Darstellung des Frequenzregelkreises

Wahlweise wurde auch anstatt eines Frequenzregelkreises ein selbsterregter Kreis⁵⁰ mit dem Resonator als frequenzbestimmenden Element verwendet. Werden zwischen dem Ausgang und Eingang des Resonators genügend viele Hf-Verstärker geschaltet, so bildet der Kreis bei geeigneter Phasenlage und bei einer Kreisverstärkung > 1 einen selbstschwingenden Oszillator, wobei die Schwingfrequenz durch das schmalbandigste Element, den supraleitenden Resonator, bestimmt wird.

Für ausreichende Hf-Leistung sorgte ein Leistungsverstärker (5 bzw. 50 Watt) am Ausgang des Senders. Die im Resonator verbrauchte Hf-Leistung, P_{cav}, wurde durch Messung der vorlaufenden und der reflektierten Leistung, P_{vor} und P_{refl}, hinter einem geeichten Richtkoppler bestimmt, $P_{cav} = P_{vor} - P_{refl}$. Beim Bau der Koppelleitungen wurde darauf geachtet, daß entlang der Leitungen möglichst keine Reflexionsstellen auftraten, die das am Resonatoreingang reflektierte Signal modifizieren würden. Bei den langen Wellenlängen (λ (100 MHz) \approx 3 m) bedeutet es kein großes Problem.

Nach Abschalten des Senders mit einem Koaxialschalter wird zur Bestimmung der Abklingzeit τ der gespeicherten Energie W das gleichgerichtete ausgekoppelte Hf-Signal auf einem Speicheroszillographen festgehalten. Um gleiche Belastungsverhältnisse am Resonator zu haben, wird der Eingang des Resonators auf eine 50 Ω -Last abgeschaltet. Die Frequenz f wird mit einem Zähler gemessen.

3.4 Meßdurchführung und Auswertung der Meßgrößen

Der behandelte Resonator wurde an den Aufbau (Abb. 3) angeflanscht, in den Kryostaten eingebaut und gepumpt. Nach einer Pumpzeit von mindestens 12 Stunden wurde der Resonator bei einem Druck von $\leq 10^{-6}$ an der Ionenpumpe durch Einfüllen von flüssigem Stickstoff und Helium abgekühlt.

Zunächst wurde die Güte beikleinen Hf-Feldstärken in den verschiedenen Hf-Moden nach der Dekrementmethode gemessen. Anschließend wurden die Abhängigkeit des Oberflächenwiderstandes von der Hf-Feldstärke und die bis zum Zusammenbruch maximal erreichbaren Feldstärken untersucht. Bevor höhere Feldstärken erreicht werden konnten, mußten mehrere Elektronenbegrenzungen, die durch den Multipactoreffekt^{29,67}. verursacht werden, überwunden werden. Dies geschah durch längeres (mehrere Stunden) Betreiben des Resonators in der Begrenzung ("Processing").

Bei den Messungen mit kondensierten Gasschichten wurden anschliessend durch Öffnen des Dosierventils bestimmte Gasmengen zwischen 10⁻³ und 10⁺³ Torrliter in den Resonator hineingelassen. Der Haftkoeffizient (sticking coefficient) ist bei den tiefen Temperaturen für alle Gase außer Helium praktisch gleich 1⁵⁵. Das Gas kondensierte daher nicht gleichmäßig verteilt über die Oberfläche. Aus der Richtungsverteilung der Gasmolekeln am Austritt des Röhrchens kann abgeschätzt werden, daß etwa 95% des Gases an der Bodenplatte des

- 25 -

Resonators und nur etwa 5% an der Wendel kondensieren. Die eingelassenen Gase kondensieren vorwiegend an den Flächen, die dem Einlaßröhrchen zugewandt sind, d. h. vor allem an der Innenseite der Wendel und an der oberen Seite zwischen den Windungen. Während des Einlassens des Gases ist der Resonator supraleitend geblieben, was zeigt, daß die Kondensationswärme die Oberfläche nicht über 9 K aufgeheizt hat. Die Menge des Gases, d. h. die Schichtdicke des Kondensats, wurde durch wiederholtes Einlassen bestimmter Gasmengen variiert. Dadurch konnten die Eigenschaften in Abhängigkeit von der Schichtdicke d_s des ausgefrorenen Gases untersucht werden. Am Ende einer Messung wurde der Resonator auf T = 295 K aufgewärmt. Nach Abpumpen der kondensierten Gase wurde der Resonator erneut abgekühlt. In keinem Fall beobachteten wir eine durch des Kondensieren der Gase verursachte bleibende Erhöhung des Restwiderstandes.

Es wurden kondensierte Schichten folgender Gase und Gasgemische untersucht: N₂, O₂, CO₂, Laborluft, synthetische Luft und N₂/O₂-Mischungen im Volumenverhältnis zwischen 1% und 50%. Die Messungen mit kondensierten Gasen wurden nur bei kleinen Hf-Feldstärken durchgeführt (H_{max} \leq 5 Gauß, E_{max} \leq 2 kV/cm). Höhere Hf-Feldstärken konnten wegen sehr harter Multipactor-Begrenzungen (s. Abschnitt 4.1) nicht erreicht werden.

Um den Einfluß von eingefrorenem Magnetfeld zu untersuchen (Abschnitt 4.4), wurde oberhalb T_c ein äußeres Magnetfeld erzeugt, das entweder parallel (H_{dcu}) oder senkrecht (H_{dc1}) zur Wendelachse war. Beim Übergang in den supraleitenden Zustand wird ein Magnetfeld wegen des unvollständigen Meißnereffektes teilweise eingefangen. Nur bei sehr reinen Nb-Vollzylindern (Restwiderstandsverhältnis RRR \geq 1000), die kein Pinnning aufweisen, ist ein nahezu vollständiges Verdrängen eines Magnetfeldes beim Übergang in die Meißnerphase beobachtet worden⁵⁷. Bei gleichen Nb-Proben mit RRR \approx 155 bzw. 120 wurden 30% und 60% des Magnetfeldes eingefangen. Ein eingefangenes Magnetfeld verursacht in supraleitenden Hf-Resonatoren erhöhte Verluste. Bei den vorliegenden Messungen wurden Magnetfelder beider Richtungen bis zu 6 Gauß angelegt. Die Hallsonden, die in der Mitte des unteren Deckels und in der Mitte des zylindrischen Teils des Außentanks angebracht waren, zeigten, daß das parallele Feld H_{dcu} beim Übergang zur Supraleitung in der Nähe der Resonatorachse sprunghaft etwa um einen Faktor 2 ansteigt, während das senkrechte Feld H_{dc}keine Änderungen erfährt. Das bedeutet, daß H_{dc} beim Übergang zur Supraleitung zur Resonatorachse hin zusammengedrückt wird. H_{dc} wird dagegen nicht merklich verdrängt.

Alle Messungen mit angelegtem äußeren Feld H_{dc} wurden in Nullmessungen mit H_{dc} = 0 eingeschlossen. Der Resonator wurde innerhalb einer Meßreihe auf nicht mehr als etwa 50 K erwärmt. Die Nullmessungen zu Anfang und Ende einer Meßreihe stimmten in allen Fällen gut überein.

Bei allen Messungen wurde die Abhängigkeit der Meßgrößen von der Temperatur 1.4 K <u>< T < 4.2 K untersucht. Die Messungen in den höhe-</u> ren Hf-Moden konnten teilweise wegen Fehlens eines Hf-Leistungsverstärkers nur bis zu mittleren Hf-Feldstärken (H_{max} ≈ 100 Gauß) durchgeführt werden.

Zusammenhänge zwischen belasteter Güte Q_L, unbelasteter Güte Q_o, der Koppelgüte Q_k und dem Koppelfaktor β , die im folgenden benutzt werden, sind im Anhang I zusammengestellt. Q_L wurde aus der Messung der Abklingzeit τ der gespeicherten Energie W nach Abschalten des Senders bestimmt, Q_L = $\omega \cdot \tau$. Bei feldabhängiger Güte wurde τ aus der Anfangssteigung des Abklingvorganges ermittelt. Der Koppelfaktor β , der Q' aus Q_L zu berechnen gestattet (Gl.A 8), wird aus der Messung der vorlaufenden und der am Resonatoreingang reflektierten Leistung, P_{vor} und P_{refl}, nach Gleichung (A 7) bestimmt. Q' enthält sowohl die Oberflächenverluste als auch die Koppelverluste (Gl. A 5). Eine andere Möglichkeit zur Bestimmung von Q', die insbesondere bei höheren Feldstärken und feldabhängiger Güte angewandt wurde, ergibt sich aus Gleichung (2.13). Beim gleichzeitigen Messen von Δf_{stat} und P_{cav} erhält man Q' aus:

$$Q'_{o} = k \cdot \frac{\Delta f_{stat}}{P_{cav}}$$
(3.1)

wobei k zuvor in Eichmessungen ermittelt wurde. Abb. 6 zeigt als Beispiel den experimentellen Zusammenhang zwischen P_{cav} . Q' und Δf_{stat} im Grundmode (91.4 MHz) bei Helix II. In Tabelle I sind die für alle untersuchten Hf-Moden ermittelten Werte für k angegeben.

(91.4 MHz) bei Helix II

Die unbelastete Güte Q_0 des Resonators erhält man nach Abzug der Koppelverluste (« $1/Q_k$). Die Koppelgüte Q_k , die im allgemeinen nur von der Stellung z des Koppelstiftes abhängt, wurde in Eichmessungen, bei denen Q' in Abhängigkeit von z gemessen wurde, ermittelt.

Abb. 7 zeigt als Beispiel die Koppelgüte Q_k bei 91.4 MHz. Außerdem ist in Abb. 7 noch $Q_{rad} = Q'_0/\beta$ mit eingetragen. Der exponentielle Verlauf von Q_k (« exp($\alpha \cdot z$)) stimmt mit der Abklinglänge des TE₁₁- cut - off Modes ($\alpha_{th} = 0.29/mm$) gut überein. Q_{rad} wird hingegen durch den TM₀₁- cut - off Mode (Abklinglänge $\alpha_{th} = 0.38/mm$), der an den TEM-Mode der Koaxialleitung ankoppelt, bestimmt.

 $Q_k \propto \exp(\alpha_{exp_1} \cdot z) \text{ mit } \alpha_{exp_1} = 0.26/\text{mm}$ $Q_{rad} \propto \exp(\alpha_{exp_2} \cdot z) \text{ mit } \alpha_{exp_2} = 0.38/\text{mm}$

Bei allen Messungen war der Auskoppelstift so weit herausgezogen, daß er keinen Einfluß auf die Gütemessung hatte (Q_k (aus), Q_{rad} (aus) >> Q_o). Auch die Einkopplung war bei allen Messungen bei kleinen Hf-Feldstärken und bei einem Großteil der Messungen bei höheren Feldern nur sehr schwach ($\beta_{ein} \stackrel{<}{_{\sim}} 0.01$, Q_k >> Q'_o), so daß die gemessene Güte praktisch gleich der unbelasteten Güte Q_0 entspricht. Der Oberflächenwiderstand R hängt mit der unbelasteten Güte Q_0 über den Geometriefaktor G zusammen (Gl. 2.7). G wurde experimentell aus der Messung der Güte Q_0 bei Raumtemperatur und aus dem berechneten (normaler Skineffekt) Oberflächenwiderstand R_{sk} bestimmt, G = $Q_0 R_{sk}$.Der Beitrag der kondensierten Gase zu den Verlusten wird durch die Güte $Q_{D,m}$ charakterisiert (Gl. 2.16, 2.17). $Q_{D,m}$ wird aus der Güte des Resonators vor (1) und nach (2) Einlassen des Gases bestimmt:

$$Q_{D,m}^{-1} = Q_0(2)^{-1} - Q_0(1)^{-1}$$
 (3.2)

Die durch das Kondensat verursachte Frequenzverschiebung $\Delta f_{\mbox{D}}$ ist entsprechend definiert:

$$\Delta f_{\rm D} = f(1) - f(2) \tag{3.3}$$

Wegen der hohen Güten können die Resonanzfrequenzen im zeitlichen Mittel sehr genau gemessen werden und zwar bis auf etwa ± 1 Hz.

Aus der relativen Frequenzverschiebung $\Delta f_D/f$ (Gl. 2.14) und aus Q_D (Gl. 2.16) wurde mit der Beziehung (2.18) tan δ_D bestimmt. Dabei wurde für alle Gase $\varepsilon_2' = 1.5$, unabhängig von der Frequenz, angenommen⁵⁹,⁶⁰.

Für die Bestimmung von $\tan \delta_m$ bei O_2 und synthetischer Luft wurde die Beziehung (2.19) verwendet. Die Größen G_E und G_m wurden der Tab. AII im Anhang II, b entnommen.

Die zusätzlichen Verluste, die durch eingefrorene Magnetfelder verursacht werden, werden zweckmäßigerweise durch einen zusätz-lichen Oberflächenwiderstand $R_{\rm H}$ beschrieben.

$$R(H_{dc}) = G\left\{\frac{1}{Q_{o}(H_{dc})} - \frac{1}{Q_{o}(H_{dc}=0)}\right\} = R(H_{dc}) - R(H_{dc}=0) \quad (3.4)$$

Unkorrekterweise wird zur Bestimmung von R_H der totale Geometriefaktor G (Tab. I) benutzt. Wegen der inhomogenen Verteilung der eingefrorenen Felder über der Oberfläche müßte ein partieller Geometriefaktor G_p , der diese Verteilung in Gl. (2.8) berücksichtigt, verwendet werden. Nur bei geometrisch einfachen Resonatoren kann der partielle Geometriefaktor bei gewissen Annahmen über die Verteilung des eingefrorenen Feldes berechnet werden. Durch die Bestimmung von R_H nach Gl. (3.4) wird jedoch nur die Frequenzabhängigkeit und der absolute Wert von R_H um G/G_p = g(f) modifiziert. Die Abhängigkeit von der Temperatur und der Hf-Feldstärke sowie die Frequenzabhängigkeit von relativen Größen wird von dem verwendeten Geometriefaktor nicht beeinflußt. Für den Vergleich des feldstärkeabhängigen Terms von R_H (Abschnitt 4.4.2) wird der partielle Geometriefaktor benötigt, der dazu im Anhang III für beide Feldrichtungen, H_{dcH} und H_{dcL} , abgeschätzt werden.

Die maximalen Oberflächenfeldstärken, $H_{max} = Max(H_{zmax}, H_{rmax})$ und $E_{max} = Max(E_{zmax}, E_{rmax})$ werden aus der Messung der statischen Frequenzverschiebung Δf_{stat} bestimmt. Der Zusammenhang zwischen Δf_{stat} und H_{max} und E_{max} ergibt sich aus Gl. (2.13) mit dem Proportionalitätsfaktor und den Oberflächenfeldstärken aus Tab. I. Bei Helix I wurden soweit vorhanden die experimentell korrigierten Werte für die maximalen Feldstärken verwendet.

3.5 Fehlerdiskussion

Aus Gl. (A 5) und (A 8) ergibt sich entsprechend dem Fehlerfortpflanzungsgesetz⁶¹ für die Fehlerabschätzung von Q¹ und Q₀:

$$\frac{\Delta Q_0}{Q_0^{\dagger}} = \frac{\Delta \omega}{\omega} + \frac{\Delta \tau}{\tau} + \frac{\beta}{1+\beta} \frac{\Delta \beta}{\beta}$$
(3.5)

und

$$\frac{\Delta Q_{0}}{Q_{0}} = \frac{Q_{K}Q_{0}'}{Q_{K}-Q_{0}'} \left\{ \frac{\Delta Q_{0}'}{Q_{0}'^{2}} + \frac{\Delta Q_{K}}{Q_{K}^{2}} \right\}$$
(3.6)

Der Fehler in der Frequenz $\frac{\Delta \omega}{\omega} < 10^{-5}$ ist gegenüber den anderen Fehlern vernachlässigbar. Der Fehler in τ setzt sich aus den Eichfehlern des Oszillographen und der Diode (≤ 2 %) und dem Ablesefehler von τ (< 5%) zusammen. Insgesamt beträgt daher der Fehler in τ maximal 7%. Alle Messungen bei kleinen Hf-Feldstärken und auch die meisten bei mittleren und höheren Feldstärken sind bei weit herausgezogenem Einkoppelstift mit $\beta < 0.01$ und $Q_k \gtrsim 10$ Q' durchgeführt worden. Mit den Gleichungen (4.4) und (4.5) kann der Einfluß der Fehler von β und Q_k auf den Fehler von Q_0 zu maximal 1% abgeschätzt werden. Der gesamte Fehler in Q_0 beträgt somit maximal 8%.

Zur Bestimmung der Proportionalitätskonstante kzwischen $P_{cav} \cdot Q'_{o}$ und Δf_{stat} wurden mehrere Eichmessungen bei $\beta \approx 1$ durchgeführt. Für den Fehler in k erhält man aus den Gleichungen (3.1) und (3.5) nach dem Fehlerfortpflanzungsgesetz den Ausdruck:

$$\frac{\Delta k}{k} = \frac{\Delta (\Delta f_{stat})}{\Delta f_{stat}} + \frac{\Delta P_{vor}}{P_{cav}} + \frac{\Delta P_{refl}}{P_{cav}} + \frac{\Delta \tau}{\tau} + \frac{\beta}{1+\beta} \frac{\Delta \beta}{\beta}$$
(3.7)

Der Fehler in ß rührt vorwiegend von dem Fehler in P_{vor} und P_{refl} und von Reflexionen in der Einkoppelleitung her. $\Delta\beta/\beta$ wird für $\beta \ ^{\sim} 1$ zu etwa 5% abgeschätzt. Der Fehler in Δf_{stat} beträgt nur etwa 10⁻³ und ist daher vernachlässigbar. P_{vor} und P_{refl} werden hinter einem geeichten Richtkoppler mit einem Powermeter gemessen. Der Eichfehler des Richtkopplers und der Fehler des Powermeters betragen zusammen etwa 6%. $\beta \ ^{\sim} 1$ bedeutet P_{refl} << P_{vor}. Daher ist der Fehler in P_{refl} vernachlässigbar. Der maximale Fehler von k beträgt somit bei einer Einzelmessung etwa 16%. Da die Eichmessung mehrmals bei verschiedenen Δf_{stat} wiederholt wurde, reduziert sich der statistische Beitrag (Ablesefehler, Einstellfehler etwa 8%) zum Gesamtfehler von k. Daher gilt $\frac{\Delta k}{k} \lesssim 10$ %.

In die Bestimmung der Hf-Felder nach der Gleichung (2.13) geht der Fehler von k wegen E, H $\propto \sqrt{P_{cav} \cdot Q'_o}$ nur zur Hälfte ein.

Der Fehler im Oberflächenwiderstand R (Gl. 2.7) setzt sich aus $\frac{\Delta R}{R} = \frac{\Delta Q_0}{Q_0} + \frac{\Delta G}{G}$ zusammen. Die Unsicherheit im Geometriefaktor G, der aus der Messung der Güte bei Raumtemperatur bestimmt wurde, ist nicht größer als 5%. Dazu wurde die Gleichstromleitfähigkeit σ des Nb bei Raumtemperatur, die zur Berechnung des normalleitenden Oberflächenwiderstandes benötigt wird, experimentell zu $\sigma = 6,7\cdot10^4(\Omega \text{ cm})^{-1}$ bestimmt, wobei der Fehler maximal etwa 4% betrug. Der gesamte Fehler von R ergibt sich somit maximal zu 13%.

4. MESSERGEBNISSE UND DISKUSSION

Zunächst wird in den ersten beiden Abschnitten (4.1) und (4.2) zusammenfassend über die Ergebnisse aus zahlreichen Messungen, die im Rahmen dieser Arbeit an supraleitenden Wendelresonatoren durchgeführt wurden, berichtet. Diese Ergebnisse sollen zuverlässigere Parameterwahl bei der Anwendung von Wendelresonatoren als Beschleunigerstrukturen ermöglichen. Im Abschnitt 4.1 wird ein kurzer Überblick über die maximal erreichten Hf-Feldstärken und die auftretenden Zusammenbruchsmechanismen gegeben. Typische Verhaltensweisen des Restwiderstandes, insbesondere in Abhängigkeit von der Hf-Feldstärke, werden im Abschnitt 4.2 beschrieben. Anschließend wird über systematische Messungen, die quantitative Aussagen über den Einfluß von kondensierten Gasschichten (Abschnitt 4.3) und von eingefrorenem Magnetfeld (Abschnitt 4.4) auf den Restwiderstand in supraleitenden Wendelresonatoren ermöglichen sollten, berichtet.

4.1 Maximal erreichte Hf-Feldstärken und feldbegrenzende Effekte

Die Erreichung hoher Hf-Feldstärken ist für die Anwendung von supraleitenden Resonatoren in der Beschleunigertechnik von entscheidender Bedeutung. Die maximal erreichbaren Feldstärken, die sogenannten kritischen Feldstärken H_C^{ac} , werden durch mehrere, teilweise nicht verstandene, Effekte begrenzt. Beim Überschreiten der kritischen Feldstärke H_C^{ac} , die in allen bisher untersuchten Niobresonatoren unterhalb von H_C (= thermodynamisch kritisches Feld) liegt¹⁴, ändert sich die Güte eines supraleitenden Resonators um mehrere Größenordnungen. Man spricht von einem Zusammenbruch. Er erfolgt z. B. dann, wenn makroskopische Teile eines Resonators plötzlich normalleitend werden. Im folgenden werden Arten von Feldbegrenzungen, die bei den vorliegenden Messungen an Wendelresonatoren beobachtet wurden, besprochen.

a) Thermischer Zusammenbruch

Ein thermischer Zusammenbruch, der insbesondere bei supraleitenden Wendelresonatoren beobachtet wird, erfolgt, wenn die Hf-Verlustleistung auf der Wendel die maximal im Rohrquerschnitt der Wendel durch das Helium abführbare Wärmemenge Q_{max} überschreitet. Bei den untersuchten Wendelresonatoren (Helix I und Helix II) betrug Q_{max} im superfluiden Zustand des Heliums (T < T $_{\lambda}$ = 2.17 K) etwa 1.5 bzw. 2.5 Watt²². Im normalfluiden Zustand war Q_{max} überraschenderweise sogar etwas höher. Der Grund dafür liegt in der vertikalen Anordnung der Wendeln im He-Bad (Abb. 3). Bei einem thermischen Zusammenbruch können kurzzeitig (je nach Feldstärke für min oder sec) die über längere Zeit stabil erreichbaren Feldstärken beträchtlich überschritten werden. In einer Reihe von Messungen wurden stabil maximale Hf-Feldstärken zwischen H $_{\rm max}$ $\stackrel{\sim}{\sim}$ 500 und 1000 Gauß, und zwar sowohl bei T < 2 K als auch bei 4.2 K erreicht. Den höchsten Wert erreichten wir im Grundmode (80 MHz) bei Helix I. Dabei wurde stabil H $_{
m max}^{\sim}$ 1000 G ($^{\circ}$ E $^{\sim}$ 24 MV/m) und kurzzeitig H $^{\sim}$ 1250 Gauß bei T = 1.4 und 4.2 K erreicht. Die maximal stabil erreichbaren Feldstärken werden beim thermischen Zusammenbruch durch den Oberflächenwiderstand bei hohen Hf-Feldstärken bestimmt. Ein thermischer Zusammenbruch wurde bei allen Messungen an Helix I und bei einigen Messungen an Helix II beobachtet.

b) Magnetischer ("lokal thermischer") Zusammenbruch

Im Gegensatz zum thermischen Zusammenbruch kann beim magnetischen Zusammenbruch⁶³ die maximal stabil erreichbare Feldstärke beim schnellen Erhöhen der angebotenen Hf-Leistung auch kurzzeitig kaum überschritten werden. Solche Art von Zusammenbruch wird üblicherweise im GHz-Gebiet beobachtet¹⁰,³². Bei Messungen an Helix II haben wir auch im 100 MHz-Bereich magnetische Zusammenbrüche gesehen, und zwar vorwiegend bei Messungen, deren Restwiderstand bei hohen Hf-Feldstärken relativ klein war ($R_{res} \approx 2$ bis 10·10⁻⁹ Ω). Bei kleinen Restwiderständen ist der Oberflächenwiderstand wegen dem supraleitenden Anteil $R_{sl} \propto \frac{1}{T} \exp(-\Delta/kT)$ (Gl. 2.10) stärker abhängig von der Temperatur. Dies könnte ein explosionsartiges Ausbreiten eines mikroskopisch kleinen Gebietes mit erhöhten Verlusten begünstigen. Eine eindeutige Korrelation zwischen der Zusammenbruchsfeldstärke, die bei mehreren Messungen im Grundmode (91.4 MHz) zwischen 600 und 830 Gauß lag, und dem Oberflächenwiderstand wurde nicht gefunden. Die Verlustleistung des Resonators P_{cav} kurz vor dem Zusammenbruch war deutlich unter der maximalen Kühlleistung der Wendel, so daß ein thermischer Zusammenbruch ausgeschlossen werden kann. Bei einer Messung betrug z. B. die Verlustleistung des Resonators bei T = 1.4 K im Grundmode (91.4 MHz) kurz vor dem Zusammenbruch bei 700 Gauß nur $P_{cav} \approx 60$ mW, während die maximale Kühlleistung der Wendel etwa 2.5 Watt beträgt. Die maximal erreichten Feldstärken liegen teilweise unter den Feldstärken, die beim thermischen Zusammenbruch erzielt wurden. Eine Messung der Temperaturabhängigkeit zeigte, daß die maximal erreichbare Feldstärke H $_c^{ac}$ mit zunehmender Temperatur leicht abnimmt.

<u>Abb. 8:</u> Abhängigkeit der maximal erreichbaren Feldstärke H_c^{ac} von der Temperatur bei einem "magnetischen" Zusammenbruch in zwei Hf-Moden bei Helix II. $T_c = 9.25$ K. Bei H_c^{ac} ist der Nullpunkt unterdrückt.

In Abb. 8 ist H_c^{ac} über $\{1-(T/T_c)^2\}$ aufgetragen. Der Zusammenhang zwischen H_c^{ac} und $\{1-(T/T_c)^2\}$ ist zwar näherungsweise linear, jedoch schneidet die durch die Meßpunkte gelegte Gerade die Ordinate nicht bei $T/T_c = 1$ sondern erst bei etwa $T/T_c \approx 1.6$. Für T_c wurde die Springtemperatur des Niobs genommen, $T_c = 9.25$ K. Eine Interpretation der Temperaturabhängigkeit wird durch mögliche lokale Erwärmung der Oberfläche erschwert. Die Temperaturabhängigkeit, die auch bei Messungen an TE-Resonatoren im GHz-Gebiet beobachtet wurde, könnte auf lokales Überschreiten der kritischen Feldstärke $H_c(T) \propto \{1-(T/T_c)^2\}$ hinweisen.

Die Messung der Zusammenbruchsfeldstärken in den verschiedenen Hf-Moden zeigte, daß H_c^{ac} mit steigender Frequenz eine abnehmende Tendenz aufweist (Abb. 9). Eine mögliche Ursache könnte in dem relativ größeren Beitrag des temperaturabhängigen supraleitenden Oberflächenwiderstandes R = $R_{sl} + R_{res}$ liegen ($R_{sl} \approx \omega^2$; während $R_{res} \approx \omega$ in den dazugehörigen Messungen).

<u>Abb. 9:</u> Maximal erreichbares Magnetfeld H_c^{ac} bei T = 1.4 K in einigen Hf-Moden bei Helix II in zwei verschiedenen Messungen (x, o). Der Zusammenbruch war "magnetischer" Art.

Die physikalischen Ursachen, die zu einem magnetischen Zusammenbruch führen, sind nicht geklärt. Alle vorgeschlagenen Erklärungen^{63,64,65} haben jedoch gemeinsam, daß ein mikroskopisch kleines Gebiet mit erhöhten Verlusten sich oberhalb einer Feldstärke explosionsartig ausbreitet und zum Zusammenbruch führt. Dieses kleine Gebiet kann entweder schon bei schwachen Feldern vorhanden sein (z. B. eingefrorener Flußschlauch, Staubteilchen) oder aber es entsteht durch lokales Überschreiten des kritischen Feldes an Rauhigkeiten und Verunreinigungen. Auch energiereiche Elektronen könnten durch lokales Aufheizen der Oberfläche ein solches Gebiet erzeugen.

c) Feldbegrenzende Elektroneneffekte

Neben den besprochenen feldbegrenzenden Effekten können auch Elektronen in Wechselwirkung mit den elektrischen Hf-Feldern zu Feldbegrenzungen und zum Zusammenbruch führen. Ähnlich wie in normalleitenden Resonatoren treten auch in supraleitenden Resonatoren zwei Effekte auf, der Multipactor-Effekt⁵⁴ und Feldemission⁶⁶.

Beim Multipactor-Effekt führen Elektronen im Gleichtakt mit den Hf-Feldern Bewegungen zwischen den Resonatorwänden aus. Durch Aufprallen auf die Wände wird bei einem Sekundäremissionsfaktor für Elektronen > 1 ein lawinenartiges Ansteigen der Elektronen im Resonator verursacht, was zu einer Feldbegrenzung durch die stark erhöhten Verluste führt.

Im Grundmode der beiden untersuchten Wendelresonatoren wurden bei kleinen Hf-Feldstärken (H_{max} \leq 50 Gauß, E_{max} \leq 1.7 MV/m) jeweils drei solche Begrenzungen beobachtet. Durch längeres Betreiben ("Processing") des Resonators in den Begrenzungen können diese zum Verschwinden gebracht werden⁶⁷. Wenn der Resonator auf tiefen Temperaturen (T \leq 50 K) gehalten wird, tauchen sie meistens nicht mehr auf. In den verschiedenen Messungen lag die Dauer des Processing etwa zwischen einer und 20 Stunden. Bei den Messungen mit kondensierten Gasschichten konnten die Begrenzungen jedoch auch nach 60 Stunden nicht überwunden werden. Durch Einlassen der Gase sind Begrenzungen, die nach vorherigem Processing verschwunden waren, wieder aufgetaucht. An der Oberfläche kondensierte Gasschichten,

- 37 -

insbesondere O₂, erhöhen offensichtlich den Emissionsfaktor für Sekundärelektronen.

Bei höheren elektrischen Feldstärken werden außerhalb des Kryostaten γ -Strahlen (Energie E $_{\gamma} \approx 100$ bis 300 keV), deren Intensität exponentiell⁶⁶ ($\propto \exp(-1/E_{max})$)mit zunehmender Feldstärke ansteigt, beobachtet. Parallel dazu erhöhen sich die Resonatorverluste. Bei den γ -Strahlen handelt es sich um die Bremsstrahlung, die beim Aufprall feldemittierter Elektronen auf die Resonatorwände, entsteht. Je nach Beschaffenheit der Oberfläche wurde in zahlreichen Messungen der Einsatz der Feldemission zwischen $E_{max} \approx 11$ bis 15 MV/m bei chemisch polierten und anodisierten Wendeln (Helix I) und zwischen $E_{max} \approx 16$ bis 24 MV/m bei elektropolierten und anodisierten Oberflächen (Helix I und Helix II) beobachtet. Dabei wurde diejenige Feldstärke als Einsatzfeldstärke für Feldemission definiert, bei der zuerst entweder γ -Strahlen oder ein exponentielles Anwachsen der Verluste beobachtet wurde.

Die durch Feldemission erhöhten Verluste können zum früheren thermischen Zusammenbruch führen, insbesondere dann, wenn die feldemittierten Elektronen auf die Wendel aufschlagen. Außerdem können, wie Messungen an 10 GHz-Resonatoren vermuten lassen¹⁴, energiereiche Elektronen auch einen magnetischen Zusammenbruch initieren.

4.2 Überblick über charakteristisches Verhalten des Oberflächenwiderstandes in Wendelresonatoren

Die beobachteten Abhängigkeiten des Oberflächenwiderstandes, insbesondere des Restanteils in Abhängigkeit von der Temperatur, Frequenz und Hf-Feldstärke sind recht verschiedenartig. Die physikalischen Ursachen für die auftretenden Effekte sind nicht in allen Einzelheiten verstanden, obwohl mehrere Verlustmechanismen von verschiedenen Autoren vorgeschlagen wurden (s. Abschnitt 2.2.2). Die bei einem Großteil der Messungen gemachten Beobachtungen lassen sich in drei Gruppen mit charakteristischem Verhalten, insbesondere in der Abhängigkeit von der Hf-Feldstärke, einteilen. Im folgenden werden die charakteristischen Merkmale kurz beschrieben und die jeweiligen Oberflächenbehandlungen angegeben.

- 38 -

4.2.1 Oberflächenwiderstand R etwa unabhängig von der Hf-Feldstärke

Abb. 10 zeigt das Ergebnis einer Messung an Helix II, bei der der Oberflächenwiderstand nahezu unabhängig von der Hf-Feldstärke ist und bei T = 1.4 K im Bereich um $10^{-9} \Omega$ liegt. Der Anstieg von R oberhalb etwa 600 Gauß ($\stackrel{\circ}{=} E_{max} \approx 20$ MV/m) hängt mit Verlusten durch Feldemission zusammen. Bei 4.2 K überwiegt im Oberflächenwiderstand der supraleitende Anteil R_{sl}, während bei 1.4 K der Restwiderstand R_{res} praktisch den gesamten Oberflächenwiderstand bestimmt.

Abb. 10: Oberflächenwiderstand R in Abhängigkeit von der maximalen Oberflächenfeldstärke H_{max} in verschiedenen Hf-Moden bei T = 1.4 und 4.2 K.(↑) "magnetischer" Zusammenbruch

Der Resonator hat folgende Behandlung erfahren: die gewickelte Wendel wurde bei 1100° C etwa 1 h lang spannungsfrei geglüht, anschliessend elektropoliert (etwa 50µ). Danach wurde die Wendel im UHV-Ofen bei 1200° C und p $\leq 10^{-7}$ Torr 1 h lang ausgeheizt. Nach dem Einschweissen wurde die Wendel mit dem Außentank zusammen nochmal elektropoliert (etwa 30 μ). Vor der endgültigen Montage wurde die Oberfläche in einer 0.1 N H₂SO₄-Lösung bei 20 V (= 400 A^O) und einem maximalen Elektrolytstrom von 1 A etwa 10 Min. lang anodisiert.

Abb. 11 zeigt den Oberflächenwiderstand bei kleinen Hf-Feldstärken $(H_{max} \leq 2 \text{ Gauß})$ in Abhängigkeit von der Frequenz bei 4.2 und 1.4 K. R_{slexp} (4.2 K) in Abb. 1 ist aus der Differenz von R (4.2 K) und R (1.4 K) = R_{res} gebildet. Der Restwiderstand R_{res} ist etwa proportional zu $\omega^{0.9}$. Außerdem ist R_{res} nahezu temperaturunabhängig. Die Multipactorbegrenzungen konnten durch ein Processing von etwa 2 h in einer Begrenzung bei 50 Gauß überfahren werden. Der Restwiderstand für $H_{max} \leq 50$ Gauß verschlechterte sich dabei um etwa 20 bis 30%.

<u>Abb. 11:</u> Oberflächenwiderstand R in Abhängigkeit von der Frequenz bei kleinen Hf-Feldstärken (H_{max} < 2 Gauß). (•) vor und (•) nach dem Processing.

4.2.2 Kontinuierlicher Anstieg des Restwiderstandes mit steigender Hf-Feldstärke

In Abb. 12, Messung I,wird ein anderes typisches Verhalten des Restwiderstandes bei Wendelresonatoren in Abhängigkeit von der Hf-Feldstärke gezeigt. Bei kleinen Hf-Feldstärken liegt der Restwiderstand im 10⁻⁹ Ω Bereich. Er steigt jedoch oberhalb H_{max} \approx 10 Gauß bei T = 1.6 K etwa linear mit zunehmender Feldstärke an. Bei H_{max} = 500 Gauß liegt der Oberflächenwiderstand um mehr als eine Größenordnung über dem Wert bei kleinen Hf-Feldstärken. Der Restwiderstand bei kleinen Hf-Feldstärken ist leicht temperaturabhängig, $R_{res} \propto T^{0.5-1}$. Seine Frequenzabhängigkeit läßt sich durch $R_{res} \propto \omega^{1-2}$ beschreiben.

Der Resonator wurde nach der Messung, die im Abschnitt 4.2.1 beschrieben ist, zwei weitere Male elektropoliert (\approx je 10 µ) und anodisiert. Ähnliche Ergebnisse wurden bei mehreren Meßreihen an Helix I beobachtet (z. B. Abb. 13, Messung III) und zwar nach mehrfacher Anwendung des chemischen oder elektrochemischen Polierverfahrens. In besonders ausgeprägter Weise trat diese Abhängigkeit hervor, nachdem ein anodisierter Wendelresonator für mehrere Stunden auf etwa 80° C erwärmt wurde. Ein Ausheizen der Helix II im UHV-Ofen bei T = 1200° C und p $\leq 10^{-7}$ Torr für etwa 3 Stunden hat die Abhängigkeit des Restwiderstandes in Richtung auf eir Verhalten wie in Abb. 10 geändert, und zwar ist dabei der Restwiderstand bei 500 Gauß um mehr als einen Faktor 5 kleiner geworden (Abb. 12, Messung II).

Die Ursache für dieses Verhalten der Restverluste liegt offenbar in anderen Modifikationen des Nb-Oxydes (z. B. NbO oder kristallines Nb₂O₅), die sich neben dem amorphen Nb₂O₅ an der Oberfläche befinden. Da ein Teil dieser Oxyde ("graue Oxyde")⁸,⁵³ in Flußsäure nur schwer löslich ist, sammeln sich diese unerwünschten Oxyde nach mehrfachen chemischen oder elektrochemischen Behandeln in größerer Menge an der Oberfläche an. Die größere Leitfähigkeit und Inhomogenität dieser Oxyde verursacht höhere Verluste. Erst beim Ausheizen bei höheren Temperaturen (\geq 1000[°] C) werden diese Oxyde von der Oberfläche entfernt, sei es durch Abdampfen oder durch Diffusion des Sauerstoffs ins Materialinnere⁶⁸

Ein ähnliches Verhalten in Abhängigkeit von der Hf-Feldstärke und Temperatur zeigt der Zusatzwiderstand durch eingefrorene Magnetfelder, der genauer im Abschnitt 4.4 beschrieben wird.

- 41 -

<u>Abb. 12:</u> Oberflächenwiderstand R in Abhängigkeit von der maximalen Oberflächenfeldstärke H_{max} im Grundmode (91.4 MHz) bei Helix II. M e s s u n g I: (•, •) nach mehrmaligem Elektro--polieren; M e s s u n g II: (△, ▲) nach anschließendem Ausheizen bei T = 1200° C für etwa 3 Stunden.

4.2.3 Stufenverhalten im Restwiderstand in Abhängigkeit von der Hf-Feldstärke

Bei mehreren Messungen, insbesondere auch bei supraleitenden Beschleunigungsstrukturen²³, wurde eine Abhängigkeit des Restwiderstandes ähnlich wie in Abb. 13, Messung II, beobachtet. Der supraleitende Anteil R_{sl} ist im Oberflächenwiderstand R bei dieser Messung gegenüber dem Restwiderstand vernachlässigbar. Bei kleinen Hf-Feldstärken (H_{max} < 10 Gauß) ist R_{res} T, ω^2 . Mit zunehmender HfFeldstärke steigt der Widerstand mit der Feldstärke an. Für $H_{max} \geq 100$ Gauß erreicht R_{res} annähernd einen Sättigungswert, der nahezu unabhängig von der Temperatur ist. Bei T = 1.4 K ist der Sättigungswert etwa 10mal größer als der Restwiderstand bei kleinen Feldstärken (Abb. 13, Messung II). Ein derartiger Verlauf des Restwiderstandes tritt auf, wenn ein Resonator unter schlechten Vakuumbedingungen abgekühlt wird und daher Luft an der Oberfläche kondensiert.

- Messung II: Aufwärmen auf T≃140 K und Abkühlen beim Vorhandensein eines Lecks.
- Messung III: Aufwärmen auf T = 295 K und Abkühlen unter verbesserten Vakuumbedingungen, p $\approx 10^{-7}$ Torr.

Bei der in Abb. 13 dargestellten Meßreihe wurde der anodisierte (400 A⁰) Resonator zunächst bei einem Vakuum von p \approx 10⁻⁶ Torr, gemessen an der Ionenpumpe, abgekühlt (Messung I). Nach einem Aufwärmen auf T \approx 140 K wurde der Resonator beim Vorhandensein eines Lecks erneut abgekühlt (Messung II). Zweimaliges Aufwärmen auf Stickstofftemperaturen und Abkühlen unter gleichen Vakuumbedingungen änderte die Verluste nicht. Erst ein Aufwärmen auf Raumtemperatur und Abkühlen unter verbesserten Vakuumbedingungen nach Beseitigung des Lecks erniedrigte den Restwiderstand um mehr als eine Größenordnung und beseitigte die Stufe (Messung III).

4.2.4 Zusammenfassender Rückblick

In einer Reihe von Messungen sind im Grundmode der beiden Wendelresonatoren für längere Zeiten (> 5 min) maximale Oberflächenfeldstärken H_{max} zwischen 600 und 1000 Gauß erreicht worden. Der Zusammenbruch erfolgte entweder durch Überschreiten der maximal abführbaren Wärmemenge ("thermischer" Zusammenbruch) oder durch Überschreiten einer kritischen Feldstärke ("magnetischer" Zusammenbruch).

Der Einsatz von Feldemission lag bei elektropolierten Oberflächen zwischen E_{max} = 16 MV/m und 20 MV/m. Dagegen wurde bei chemisch polierten Oberflächen Feldemission schon ab $E_{max} \approx 11$ bis 16 MV/m beobachtet.

Zur Erreichung hoher Hf-Feldstärken wird wegen der begrenzten Kühlleistung der Wendel²² eine ausreichende Hochfeldgüte benötigt. Die Messung in Abb. 10 zeigt, daß das im 100 MHz-Bereich häufig beobachtete Ansteigen^{2,5,39} des Oberflächenwiderstandes mit zunehmender Hf-Feldstärke nicht prinzipieller Art ist. Eine Ursache für das Ansteigen des Restwiderstandes mit steigender Hf-Feldstärke scheint mit den Verlusten in den Oberflächenoxyden des Nb zusammenzuhängen (Abschnitt 4.2.2). Zwei weitere Ursachen für einen feldstärkeabhängigen Restwiderstand sind: a) an der Oberfläche kondensierte Luftschichten und b) eingefrorene äußere Magnetfelder. Beide Ursachen sind für die Anwendung von gewissem Interesse und wurden daher quantitativ untersucht (Abschnitt 4.3 und 4.4). 4.3 Einfluß von kondensierten Gasen auf die Hochfrequenzverluste in supraleitenden Wendelresonatoren

Das abweichende Verhalten des Restwiderstandes bei Wendelresonatoren im 100 MHz-Gebiet im Vergleich zu Hohlraumresonatoren im GHz-Gebiet wird teilweise durch kondensierte Restgase verursacht (Abb. 13, Messung II). Um diese genauer zu kennzeichnen, wurden systematische Messungen durchgeführt. Durch Untersuchung der Hf-Verluste in mehreren Hf-Moden in Abhängigkeit von der Schichtdicke und der Temperatur, und zwar sowohl in kondensierten Schichten aus Luft und ihren reinen Hauptkomponenten (N₂, O₂, CO₂) als auch in Schichten aus N₂/O₂-Mischungen, wollten wir etwas über den Mechanismus der Verluste erfahren.

4.3.1 Meßergebnisse

4.3.1.1 Relative Frequenzverschiebung Δf_D/f

Bei allen eingelassenen Gasen wurde beobachtet, daß die Frequenzverschiebung Δf_D , die durch die kondensierte Gasschicht verursacht wird, proportional zu der eingelassenen Gasmenge V_G ist, $\Delta f_D \propto V_G$. Abb. 14 zeigt die relative Frequenzverschiebung $\Delta f_D/f$ in den verschiedenen Helixmoden. Dabei wurden die Gase bei einer bestimmten Ventilstellung 5 min lang durch das Einlaßröhrchen in den Resonator hineingelassen. Die in den Resonator hineingelangte Gasmenge betrug jeweils etwa 200 Torrliter (1 Torrliter $\stackrel{\circ}{}3,5 \cdot 10^{19}$ Moleküle).

Die Größe von $\Delta f_D/f$ ist in den einzelnen Helixmoden bei N₂, O₂ und N₂/O₂ etwa gleich. Die Abweichung bei CO₂ deutet auf ein höheres ε ' im Vergleich zu den anderen Gasen hin. Das beobachtete Ansteigen von $\Delta f_D/f$ mit steigender Frequenz rührt von der Modeabhängigkeit des Geometriefaktors G_E her (Siehe Anhang II). Physikalisch bedeutet das Anwachsen von G_E, daß bei höheren Hf-Moden in der Nähe der Helixoberfläche relativ mehr elektrische Energie konzentriert ist. Daher ist die relative Änderung der gespeicherten Energie, $\Delta W_F/W \propto \Delta f_D/f$, durch die dielektrische Schicht größer.

 5×10^{-5}

<u>Abb. 14:</u> Die relative Frequenzverschiebung Δf_D^{\prime} f in den verschiedenen Helixmoden bei einer eingelassenen Gasmenge von etwa 200 Torrlitern. Die berechneten Werte (**m**) wurden für eine mittlere Schichtdicke d_s \approx 1 µ nach Gl. (2.14) mit ϵ' = 1.5 ermittelt.

Der Beitrag der am unteren Deckel kondensierten Gasmenge (~ 95%) zu $\Delta f_D/f$ ist wegen der dort herrschenden sehr kleinen Felder gegenüber dem Einfluß des an der Wendel kondensierten Gases (~ 5%) vernachlässigbar. Eine mittlere Schichtdicke d_s der an der Innenseite der Wendel kondensierten Gasschicht kann aus der eingelassenen Gasmenge abgeschätzt werden. Eine eingelassene Gasmenge von 200 Torrlitern liefert eine mittlere Schichtdicke d_s ~ 1 µ. Etwa in Übereinstimmung damit ist eine Abschätzung der Schichtdicke d_saus der beobachteten Frequenzverschiebung Δf_D . Mit einer Schichtdicke d_s = 1 µ und einem von der Frequenz unabhängigen ε' = 1.5 wurde $\Delta f_D/f$ mit Gl. (2.14) berechnet. $G_E \approx g_E \cdot d_s$ wurde der Tab. AII im Anhang IIb entnommen. Die berechnete Frequenzverschiebung stimmt in allen untersuchten Hf-Moden befriedigend mit den beobachteten Werten bei einer eingelassenen Gasmenge von 200 Torrliter überein (Abb. 14).

Die dielektrischen Eigenschaften von festem N₂, O₂, CO₂ und Luft sind bisher anscheinend kaum untersucht worden. In der Literatur⁵⁹,⁶⁰ wird die statische Dielektrizitätskonstant ε_{stat} des festen N₂ mit ε_{stat} (N₂ fest) \approx 1.46 angegeben. Außerdem wurde der Brechungsindes n von festen CO₂-Schichten gemessen, n²(CO₂ fest) = ε_{∞} (CO₂ fest) = 1.5⁵⁹. Für O₂ und Luft existieren nur Werte für den flüssigen Zustand, $\varepsilon'(O_2$ fl.) $\approx \varepsilon'(Luft$ fl.) $\approx 1.5^{59}$,⁸². Für die Auswertung der Meßergebnisse wurde für alle untersuchten Gasschichten ε' = 1.5 unabhängig von der Frequenz angenommen.

Die beobachtete gleiche Frequenzverschiebung durch N₂, O₂ und Luft weist daraufhin, daß die Frequenzverschiebung Δf_D bei kondensierten O₂- und Luftschichten im wesentlichen durch dielektrische Eigenschaften verursacht wird. Diese Tatsache wird durch die Ergebnisse bei X-Bandresonatoren⁷⁰ bestätigt. Dort wurde bei kondensierten O₂-Schichten im TM₀₂₁-Mode eine um etwa 60mal größere Frequenzverschiebung beobachtet als im TE₀₁₁-Mode, wobei der TE₀₁₁-Mode im Unterschied zum TM₀₂₁-Mode keine elektrischen Felder an der Oberfläche hat. In Übereinstimmung damit ist auch die im Vergleich zurelektrischen Suszeptibilität χ_e ($\chi_e = \epsilon_2^i - 1 \simeq 0.5$)⁵⁹,⁶⁰ kleine magnetische Suszeptibilität ($\chi_m = \mu_2^i - 1 \simeq 10^{-4}$)⁶⁹.

Bei N₂ und CO₂ sind die Frequenzverschiebungen bei 1.4 K und 4.2 K gleich groß. Bei Luft ist $\Delta f_D/f$ bei 4.2 K um etwa 2 bis 3% kleiner als bei 1.4 K. Bei O₂ beträgt der Unterschied nur etwa 0.5%.

4.3.1.2 Zusätzliche Verluste und der Verlustwinkel tanδ_{D,m} der kondensierten Gasschichten

In Abb. 15 ist $\tan \delta_D$ über der relativen Frequenzverschiebung $\Delta f_D/f$ bei 91.4 MHz aufgetragen. Der Verlauf bei den anderen Frequenzen ist sehr ähnlich. $\Delta f_D/f$ ist der eingelassenen Gasmenge und daher auch der Schichtdicke d_s proportional. $\tan \delta_D$ wurde aus den gemessenen Größen Δf_D (G. 3.3) und Q_D (Gl. 3.2) nach der Gl. (2.18) bestimmt. $\tan \delta_D \propto 1/Q_D$ ist ein Maß für die Verluste in den kondensierten Gasschichten. Bei N₂, CO₂ und Luft ist $\tan \delta_D$ im Rahmen der Meßgenauigkeit unabhängig von $\Delta f_D/f$. Das ist gleichbedeutend damit, daß die zusätzlichen Verluste der eingelassenen Gasmenge proportional sind ("Volumeneffekt"). Bei kondensierten O₂-Schichten bis zu einer Dicke von etwa 1µ nimmt $\tan \delta_D$ mit zunehmender Belegung ab. Als obere Grenze für $\tan \delta_D(O_2)$ erhielten wir bei Schichtdicken in der Größenordnung einer Monolage $\tan \delta_D(O_2) \leq 5 \cdot 10^{-3}$. Eine meßbare Änderung der Güte wurde erst für Schichtdicken mit mehr als 10 Monolagen ($\stackrel{\circ}{=}$ d_s \approx 33 A⁰) beobachtet. Auch die Verluste durch O₂-Schichten dürften daher ein Volumeneffekt sein. Ausführlicher werden diese Verluste im nächsten Abschnitt (4.3.2.2) diskutiert werden.

<u>Abb. 15:</u> $\tan \delta_{D}$ als Funktion von $\Delta f_{D}/f$ (\propto eingelassener Gasmenge \propto Schichtdicke d_s) bei f = 91.4 MHz. Für CO₂ ist 0.1 · $\Delta f_{D}/f$ aufgetragen. $\Delta f_{D}/f$ = 10⁻⁵ entspricht einer mittleren Schichtdicke d_s = 1µ. Bei O₂ ist tan δ_{D} für kleine $\Delta f_{D}/f$ vergrößert herausgezeichnet.

In Abb. 16 ist $\tan \delta_{D}$ in Abhängigkeit von der Frequenz aufgetragen. Für N₂ und CO₂-Schichten ist der Verlustwinkel $\tan \delta_{D}$ unabhängig von der Frequenz und zwischen T = 1.4 und 4.2 K für N₂, CO₂ und O₂ auch unabhängig von der Temperatur. Bei Luft, und zwar sowohl bei synthetischer als auch bei Laborluft, steigen die Verluste mit der Temperatur etwa linear an, $\tan \delta_{D,m}$ (Luft) $\approx \infty$ T.

Das magnetische Moment des O₂-Molekels legt die Vermutung nahe, daß die im Vergleich zu N₂ und CO₂ größeren Verluste in O₂- und N₂/O₂- Schichten durch eine Wechselwirkung des Hf-Feldes mit dem magneti-

schen Moment des O₂-Moleküls verursacht wird. Im Falle von O₂-Schichten wird diese Vermutung durch Messungen an X-Band-Resonatoren⁷⁰ gestützt. Eine ausführlichere Diskussion wird im nächsten Abschnitt durchgeführt. Die magnetischen Verluste können durch einen magnetischen Verlustfaktor $\tan \delta_m = \frac{\mu''}{\mu^{\dagger}}$ (Gl. 2.19) beschrieben werden, wobei $\tan \delta_m$ ähnlich wie $\tan \delta_D$ bei dielektrischen Verlusten nur von den Materialeigenschaften abhängt. Wegen des magnetischen Ursprungs der Verluste hat das bei O₂- und N₂/O₂-Schichten bestimmte $\tan \delta_D$ (Abb. 15; 16) nur formale Bedeutung als ein Maß für die Verluste in der kondensierten Schicht ($\propto Q_{D,m}$) und es enthält noch die Geometriefaktoren G_E und G_m (Gl. A15a, b). Bei Kenntnis der Geometriefaktoren kann $\tan \delta_m$ mit den Gl.(2.19 bzw. 2.20) bestimmt werden.

In Abb. 17 ist für kondensierte O_2 und N_2/O_2 -Schichten tan δ_m in Abhängigkeit von der Frequenz aufgetragen.

 $\tan \delta_m$ wurde mit den im Anhang II b abgeschätzten Geometriefaktoren (Tab. A II) nach Gl. 2.19 ermittelt. Während $\tan \delta_m$ bei O₂ im Rahmen

der Genauigkeit etwa unabhängig von der Frequenz ist, steigt $\tan \delta_m$ bei Luft etwa linear mit der Frequenz an und zwar sowohl bei T = 1.4 K als auch bei T = 4.2 K, $\tan \delta_m$ (Luft) $\approx \omega$. Messungen mit kondensierten 0₂-Schichten (Dicke d_s \approx 10 µ) an X-Band-Resonatoren⁷⁰ ergaben für $\tan \delta_m(O_2)$ einen Wert, der in Übereinstimmung mit unseren Ergebnissen etwa bei 10⁻⁴ liegt. Bei der Berechnung von $\tan \delta_m$ für Luft wurden die dielektrischen Verluste von N₂, die jedoch nach Abb. 15 bzw. 16 nur etwa 11% der gesamten Verluste ausmachen, vernachlässigt.

Aus den Messungen geht hervor, daß die Verluste (« tan $\delta_{D,m}$) bei kondensierten Luftschichten sich nicht additiv aus den Verlusten bei Stickstoff und Sauerstoff zusammensetzen. Wie den Abb. 15, 16 entnommen werden kann, sind z. B. bei T = 1.4 K und f = 91.4 MHz bei einer Frequenzverschiebung $\Delta f_D/f$ = 1.5 · 10⁻⁵ ($\cong \approx$ 300 Torrlitern eingelassener Gasmenge) die zusätzlichen Verluste (« tanb_n) durch kondensierte Luftschichten etwa 7mal größer als die Verluste in reinen N2- und um 40% größer als in reinen O2-Schichten. Der Unterschied ist bei T = 4.2 K und in den höheren Hf-Moden noch ausgeprägter. Die Verluste bei Luft sind im Gegensatz zu den Verlusten bei N_2 und O_2 -Schichten temperaturabhängig. Auch die Abhängigkeit der Verluste von der Frequenz ist bei Luft anders als bei N_2 und O_2 . Da kein Unterschied in den Hf-Verlusten von Laborluft und synthetischer Luft festgestellt wurde, kann das abweichende Verhalten von Luft nicht durch irgendwelche Verunreinigungen wie z. B. CO, H2O erklärt werden.

Um zu untersuchen, in welchem Maße die Verluste in kondensierten Luftschichten durch die Anwesenheit von O_2 verursacht werden, wurden kondensierte N_2/O_2 -Schichten in Abhängigkeit von der O_2 -Konzentration untersucht. Das Ergebnis ist für 2 Hf-Moden in den Abb. 18 a, b dargestellt. Als ein Maß für die Verluste ist $\tan \delta_D$ über der Volumenkonzentration $C(O_2)$ des Sauerstoffes in kondensierten N_2/O_2 -Schichten aufgetragen. Die Messungen sind bei T = 1.4 K durchgeführt worden. Die Abhängigkeit der Verluste von $C(O_2)$ ist bei allen gemessenen Helixmoden ähnlich. Schon bei kleinen O_2 -Konzentrationen $(C(O_2) \simeq 1\%)$ nehmen die Verluste im Vergleich zu den Verlusten vom reinen N_2 stark zu. Mit steigender Sauerstoffkonzentration wird die Zunahme von $\tan \delta_D$ langsamer. Bei einer Sauerstoffkonzentration zwischen 10% und 20% erreicht $\tan \delta_D$ ein flaches Maximum. Zu höheren

Konzentrationen C(O₂) nimmt $tan\delta_{D}$ wieder leicht ab.

<u>Abb. 18 a:</u> $tan\delta_D$ in Abhängigkeit vom Volumenanteil C(O₂) des Sauerstoffs in kondensierten N₂/O₂-Schichten für T = 1.4 K.

In Abb. 18 b sind die spezifischen Verluste der O₂-Molekeln $\propto \tan \delta_D/C(O_2)$ über der Konzentration C(O₂) aufgetragen. Die dielektrischen Verluste von N₂, die bei C(O₂) = 1% maximal 20% der gesamten Verluste ausmachen, wurden vernachlässigt. Ähnlich wie bei Messungen⁷⁴ an flüssigen N₂/O₂-Gemischen, bei denen die spezifische Suszeptibilität des Sauerstoffs $\chi(O_2)$ mit steigender O₂-Konzentration wegen der Dimerisierung von O₂-Molekeln zu O₂-O₂ - Paaren abnimmt, nehmen auch die spezifischen Verluste ($\propto \tan \delta_D/C(O_2)$) in kondensierten N₂/O₂-Schichten mit steigender O₂-Konzentration ab.

<u>Abb. 18 b:</u> Spezifische Verluste von $O_2 \propto \tan \delta_D / C(O_2)$ in N_2 / O_2 -Schichten für T = 1.4 K. (•) bei 91.4 MHz; (•) bei 288,8 MHz.

4.3.2 Diskussion der Verluste in den untersuchten kondensierten Gasschichten

4.3.2.1 Dielektrische Verluste in N2- und CO2-Schichten

Die Hf-Verluste in den kondensierten N_2 - und CO_2 -Schichten sind dielektrischer Natur. Die Kleinheit dieser Verluste $(\tan \delta_D(N_2)$ $\simeq 3.3 \cdot 10^{-5}$ und $\tan \delta_D(CO_2) \simeq 6.7 \cdot 10^{-6}$) und die Tatsache, daß $\tan \delta_D$ weder von der Temperatur noch von der Frequenz abhängt (Abb. 16), weist auf Verluste durch Verschiebungspolarisation hin, wie sie in verlustarmen dielektrischen Stoffen, wie z. B. Quarz,

4.3.2.2 Magnetische Verluste in O_2 und N_2/O_2 -Schichten

Der Grundzustand eines O₂-Moleküls ist ein ${}^{3}\Sigma$ -Zustand, und daher ist ein Sauerstoffmolekül im Unterschied zu N₂ und CO₂ paramagnetisch. Es hat im Grundzustand ein magnetisches Dipolmoment $\mu_{0_{2}} = 2.8 \cdot \mu_{B}^{72}$ (μ_{B} = Bohrsches Magneton). Die beobachteten höheren Hf-Verluste bei O₂ und N₂/O₂-Gemischen rühren von der Wechselwirkung der magnetischen Dipole des O₂ mit der magnetischen Komponente des Hochfrequenzfeldes her. Diese Behauptung wird gestützt durch Ergebnisse an X-Band-Resonatoren⁷⁰, die ergeben haben, daß die Hf-Verluste in kondensierten O₂-Schichten im TM₀₂₁-Mode und im TE₀₁₁-Mode nahezu gleich sind, wobei im Gegensatz zum TM₀₂₁-Mode der TE₀₁₁-Mode keine elektrischen Felder an der Oberfläche hat.

Messungen an festem^{69,73} und flüssigem Sauerstoff und Sauerstoff-Stickstoffgemischen⁷⁴ deuten auf eine Dimerisierung von O₂-Molekülen hin, wobei beim O₂-O₂-"Doppelmolekül" die Spins sich teilweise absättigen⁷⁴. Messungen der Suszeptibilität χ an festem O₂ führten zu der Vermutung, daß fester Sauerstoff ferrimagnetische Eigenschaften besitzt⁶⁹. Streuungen von Neutronen an festem O₂ deuten dagegen auf eine antiferromagnetische Struktur hin⁸⁰.

a.) Hf-Verluste in kondensierten N_2/O_2 -Schichten. Paramagnetische Spinresonanzabsorption

Die Verluste bei N_2/O_2 -Gemischen setzen sich nicht additiv aus den Verlusten von N_2 und O_2 zusammen. Sie sind größer und weisen eine andere Frequenz- und Temperaturabhängigkeit auf (Abb. 16, 18). Diese Verluste scheinen, wie im folgenden diskutiert wird, wesentlich mit der Absorption durch paramagnetische Spinresonanz (ESR)⁷⁵ der O₂-Moleküle zusammenzuhängen. Am Ort eines O2-Moleküls herrscht ein Magnetfeld H_{loc}, welches von den magnetischen Dipolen anderer benachbarter 02-Moleküle erzeugt wird. Das Dipolfeld eines O_2 -Moleküls (= $2\frac{(2.8 \mu_B)^2}{r^3}$) beträgt im Abstand von 12 A⁰ maximal 30 Gauß. Der Gitterabstand im festen O_2 und N_2 beträgt nur etwa 3.3 A⁰ ⁷³. In dem Magnetfeld H_{loc} spaltet der Grundzustand eines 02-Moleküls (Zeemaneffekt im "Nullfeld": $\Delta E_z = \mu_{0_2} \cdot H_{loc}$) auf. In einem Feld $H_{loc} \approx 30$ Gauß beträgt ΔE_z etwa 100 MHz. Im Hf-Feld können Übergänge zwischen den Zeemanniveaus induziert werden ("Paramagnetische Spinresonanz"). Durch die Spin-Gitter-Wechselwirkung wird in dieser Weise ein Teil der Hochfrequenzenergie an das Gitter abgegeben^{75,76}. Bei kleinen 02-Konzentrationen (* 1% Vol) hat ein O2-Molekül vorwiegend N2-Moleküle zu seinen nächsten Nachbarn. Es kommt daher kaum zu einer Bildung von 02-02-Paaren mit abgesättigten Spins und daher reduzierter Wechselwirkung mit einem äußeren Magnetfeld. Mit zunehmender 02-Konzentration wird der Anteil der O2-Moleküle, die mit benachbarten O2-Molekülen O2-O2abgesättigten Spins bilden, immer größer. Wegen der Paare mit abgesättigten Spins wechselwirken die O2-Doppelmoleküle nicht mit dem Hochfrequenzfeld und tragen somit nicht zu den Hf-Verlusten bei. Die Verluste nehmen daher mit zunehmender Konzentration von O_2 immer langsamer zu. Bei einer 02-Konzentration von etwa 20% erreichen die Verluste (∝ tanδ_{D,m}) ein Maximum (Abb. 18 a). Die Lage des Maximums der Verluste bei einer Sauerstoffkonzentration von etwa 20%Vol läßt sich mit der Vorstellung von den 02-02-Doppelmolekülen mit abgesättigten Spins plausibel machen. Ein 02-Molekül hat etwa 6 nächste Nachbarn⁷³. Übersteigt die O₂-Konzentration 1/6, so nimmt die Zahl der O2-Moleküle, die keine weiteren O2-Moleküle zu nächsten Nachbarn haben, ab. Die Verluste sind etwa der Zahl der ungepaarten 02-Moleküle proportional. Daher sollten für 02-Konzentrationen grösser etwa 1/6 🖴 17% die Verluste durch paramagnetische Resonanzabsorption abnehmen.

Aus der Theorie der paramagnetischen Spinresonanz (ESR) erhält man für die Absorption (« $\chi'' \approx \frac{1}{4\pi}$ · tan δ_m) bei kleinen Hf-Feldstärken⁷⁵,⁸³:

$$d\chi'' = \chi_0 \cdot n(\omega_0) \frac{\omega_0 \cdot T^*}{1 + (\omega_0 - \omega)^2 T^{*2}} d\omega_0$$
(4.1)

 $\chi_0 \simeq (2.8 \mu_B)^2/3 \text{ kT}$ ist die statische Suszeptibilität eines O_2 -Mo-

leküls bei der Temperatur T (Curie-Gesetz). χ " = Imaginärteil der Suszeptibilität. n(ω_0) ist die Zahl der O₂-Moleküle pro Frequenzeinheit, die bei ω_0 Resonanz haben, wobei ω_0 die paramagnetische Resonanzfrequenz im Feld H_{loc} ist, $\hbar\omega_0 = \mu_{0_2} \cdot H_{loc} \cdot T^*$ ist ein Maß für die Lebensdauer der angeregten Zustände. In verdünnten paramagnetischen Stoffen wird T^{*} im wesentlichen durch die Spingitterwechselwirkung bestimmt⁷⁶, T^{*} \approx T₁ (T₁ = Spingitterrelaxationszeit). Bei ferro- und ferrimagnetischen Stoffen ist T^{*} vorwiegend durch die Spin-Spin-Relaxationszeit T₂ gegeben⁷⁶.

Die gesamten Verluste erhalten wir, indem wir über alle O₂-Moleküle aufsummieren. Die Integration ist von $\omega_0 \approx 0$ bis zu einem maximalen ω_{\max} auszuführen. ω_{\max} entspricht etwa der maximalen Zeemanaufspaltung eines O₂-Moleküls im Feld seiner Umgebung und dürfte etwa bei 10 GHz liegen. Eine mögliche Aufspaltung durch das Kristallfeld wird vernachlässigt. Da der Grundzustand eines O₂-Moleküls ein Σ -Zustand (Bahndrehimpuls = O) ist, und außerdem die Kristallfelder wegen des van der Waalsschen Charakters der Bindung klein sind, sollte die Kristallfeldaufspaltung gering sein.

$$\chi'' = \int_{\substack{\omega_0 = \omega_{\text{max}} \\ \omega_0 = 0}} \frac{\omega_0 T^*}{\chi_0 \cdot n(\omega_0) \frac{\omega_0 T^*}{1 + (\omega_0 - \omega)^2 T^{*2}} d\omega_0}$$

Für Konzentrationen von paramagnetischen Störstellen $\geq 1\%$ Vol erhält man aus einer Beziehung, die in²⁰ abgeleitet ist, daß im Frequenzbereich um 100 MHz näherungsweise $n(\omega_0) \approx konst \propto \rho(O_2)/\omega_{max}$ ist, wobei $\rho(O_2)$ die Dichte der paramagnetischen nicht abgesättigten O_2 -Moleküle bedeutet. Bei $\omega_{max} \gg \omega$ und mit der Annahme, daß die Relaxationszeit T* $\gg 1/\omega$ (d. h. T* $\geq 10^{-6}$ sec) ist, erhält man nach Ausführung der Integration:

$$\chi'' \approx \frac{1}{4\pi} \cdot \tan \delta_{m} \propto \chi_{0} \cdot \frac{\rho(O_{2})}{\omega_{max}} \cdot \frac{1}{T^{*}} \ln \frac{\omega_{0}}{\omega}$$
(4.2)

Die Spin-Gitter-Relaxationszeit ist für direkte Prozesse (Ein-Phonon-Übergänge) « 1/T^a mit a = 1 bzw. a = 2, wobei a = 2 bei tieferen Temperaturen gilt, wenn der Relaxationseffekt durch den sog. Phononenengpaß gehemmt wird^{75,81}. Relaxationsprozesse wie der Raman- oder Orbach-Prozeß (Zwei-Phononen-Übergänge) hängen stärker von der Temperatur ab und spielen daher bei tiefen Temperaturen nur eine untergeordnete Rolle⁷⁵. Aus Gl. (4.2) folgt damit, daß beim Auftreten eines Phononenengpasses tan $\delta_{\rm m} \propto \chi_0/T^* \propto T$ etwa linear mit der Temperatur ansteigen sollte. Dies ist qualitativ in Übereinstimmung mit den Messungen an kondensierten Luftschichten bei kleinen Hf-Feldstärken (Abb. 17). Wegen der großen Unsicherheit sowohl bei der Annahme einer Relaxationszeit T^{*} als auch bei der Abschätzung von n(ω) ist eine quantitative Interpretation der Beziehung (4.2) nicht sinnvoll. Außerdem sind Hf-Feldstärken H_{max} \approx 1 bis 5 Gauß nicht unbedingt immer klein im Sinne der Voraussetzung bei Gl. (4.1).

Zusammenfassend kann gesagt werden, daß die Hf-Verluste in N_2/O_2 und insbesondere auch in Luftschichten im wesentlichen durch die Anwesenheit der paramagnetischen O_2 -Moleküle in einer diamagnetischen Umgebung verursacht werden.

b.) Verluste in kondensierten O₂-Schichten

Die Verluste in kondensierten 0_2 -Schichten sind größer als die Verluste in N₂ und CO₂. Außerdem zeigt der Verlustfaktor tan δ im Gegensatz zu N₂ und CO₂ eine ausgeprägte Abhängigkeit von der Schichtdikke d_g (Abb. 15). Aus Messungen an X-Bandresonatoren⁷⁰ weiß man, daß die Verluste in kondensierten O₂-Schichten im wesentlichen magnetischen Ursprungs sind. Fester Sauerstoff bildet bei tiefen Temperaturen eine geordnete magnetische Struktur, wobei einige Autoren⁶⁹ eine ferrimagnetische andere⁸⁰ dagegen eine antiferromagnetische Ordnung der Spins vermuten. In beiden Fällen sind die Spins teilweise abgesättigt. Eine Ursache für die bei O₂-Schichten beobachtete Abhängigkeit des Verlustfaktors von der Schichtdicke (Abb. 15) liegt vermutlich in einer Abnahme der Zahl der Störungen im Gittersystem mit zunehmender Schichtdicke. Mit steigender Zahl der Störungen ist die gegenseitige Absättigung der O₂-Moleküle weniger vollständig. Dies kann zu höheren Hf-Verlusten führen.

Nimmt man an, daß die Verluste in einer Oberflächenschicht der Dikke d_o durch den Verlustfaktor $\tan \delta_0$ und die Verluste im Materialinnern durch den Verlustfaktor $\tan \delta_{\infty}$ beschrieben werden, so erhält man für die Abhängigkeit des Verlustfaktors $\tan \delta$ (d_s) von der Schichtdicke d_s folgende Beziehung:

$$\tan\delta (d_s) = \{\tan\delta_0 - \tan\delta_\infty\} \frac{d_0}{d_s} + \tan\delta_\infty$$
(4.3)

Diese Beziehung gilt nur für $d_s \ge d_o$. Die Dicke d_o gibt an, ab welcher Schichtdicke sich ungestörte Volumeneigenschaften auszubilden beginnen. tano ist der Verlustfaktor für große Schichtdicken d_s >> d_o, bei denen der Einfluß der Oberflächenschicht d_o auf die gesamten Verluste (∝ d_s• tanδ(d_s))vernachlässigbar wird. Aus Abb. 15 kann tano ~ 1.3 x 10⁻⁴ entnommen werden. Für d_s ≥ d_o wird der gemessene Verlauf von tan $\delta(d_s)$ durch Gl. (4.3) gut beschrieben, wenn d = 1000 A⁰ gewählt wird. Der dazugehörige Verlustfaktor tan δ_0 beträgt 5 x 10⁻⁴ (Abb. 15). Für Schichtdicken d_s < 1000 A⁰ liefert Gl. (4.3) keine Übereinstimmung mit den Meßwerten. Dies bedeutet, daß in kondensierten 02-Schichten ungestörte Volumeneigenschaften sich erst oberhalb 1000 A⁰ ausbilden. Wäre die Schichtdickenabhängigkeit des Verlustfaktors durch Oberflächeneffekte verursacht, so müßte d_ in der Größenordnung einer Monoschicht (≈ einige A°) liegen, ähnlich wie bei Messungen⁷⁹, bei denen O₂ auf dünne supraleitende Schichten kondensiert wurde.

Falls fester Sauerstoff, wie in⁶⁹ angenommen wird, ferrimagnetische Eigenschaften besitzt, könnte die Abhängigkeit von tan& von der Schichtdicke mit der Größe der ferrimagnetischen Bezirke zusammenhängen. Die Ausbildung Weißscher Bezirke setzt nämlich voraus, daß die Dimensionen eines Körpers bestimmte Minimalwerte überschreiten⁷⁶.

Bei paramagnetischen Verlusten, wie sie für kondensierte N_2/O_2 -Schichten vorgeschlagen wurden, wechselwirken die paramagnetischen O_2 -Moleküle über ihr Dipolfeld nur mit einer Umgebung etwa im Abstand $\leq 20 \ A^0$. Es gibt keine Fernordnung wie beim ferri- bzw. antiferromagnetischen Verhalten. Für Schichtdicken, die größer als 20 A^0 sind, sollte man daher keine Abhängigkeit von tanð von der Schichtdicke erwarten. Dies ist in Übereinstimmung mit einem von der Schichtdicke unabhängigen tanð bei Luft (Abb. 15).

4.3.2.3 Verhalten von kondensierten Luftschichten bei hohen Hf-Feldstärken

Die im Abschnitt 4.3.1 beschriebenen Messungen, bei denen Gasschichten systematisch ausgefroren wurden, sind wegen sehr harter Multipactorbegrenzungen nur bei kleinen Hf-Feldstärken durchgeführt worden (H_{max} \leq 5 Gauß, E_{max} \leq 2 kV/cm). Bis zu diesen Feldstärken ist keine Abhängigkeit von der Hf-Feldstärke in tan $\delta_{D,m}$ beobachtet worden.

Im Abschnitt 4.2.3 wurden Messungen beschrieben, bei denen durch ein zufällig aufgetretenes Leck, Luft an der Oberfläche kondensierte. Als Folge der Kondensation erhöhte sich der Oberflächenwiderstand in typischer Weise (Abb. 13, Messung II). Bei kleinen Feldstärken zeigt der zusätzliche Oberflächenwiderstand $R_D(\propto 1/Q_{D,m})$ sowohl bezüglich der Temperatur als auch der Frequenz ($R_D \propto T, \omega^2$) ein Verhalten, welches mit den Ergebnissen der Hf-Verlustmessungen an Luftschichten (Abschnitt 4.3.2) übereinstimmt (tan δ_m (Luft) $\propto T, \omega$). Zu höheren Hf-Feldstärken steigt R_D in typischer Weise an ("Stufenverhalten").

Das Ansteigen von R_D scheint zunächst im Widerstpruch zu der Erklärung der Verluste in kondensierten Luftschichten durch paramagnetische Resonanzabsorption (ESR) zu stehen. Bei ESR in einem äußeren statischen Magnetfeld wird nämlich eine Sättigung der Hf-Verluste bei höheren Hf-Feldstärken beobachtet⁸³. Eine Sättigung der Verluste ist gleichbedeutend mit einer Abnahme des entsprechenden Oberflächenwiderstandes R_D . Die beiden folgenden Gründe können jedoch in unserem Fall (ESR im Nullfeld) ein Ansteigen von R_D verursachen.

Die Zeemanaufspaltung $\Delta E_Z = \mu_0 \cdot H_{loc} = \hbar\omega_0$ ist für die einzelnen 0_2 -Moleküle verschieden und hängt davon ab, welches Magnetfeld H_{loc} am Ort des betreffenden 0_2 -Moleküls von den umgebenden 0_2 -Molekülen erzeugt wird. Bei einer bestimmten Frequenz werfüllt nur ein Bruchteil der 0_2 -Moleküle, für die $\omega = \omega_0$ ist, die Resonanzbedingung $\Delta E_Z = \hbar\omega$. Die Absorption wird vorwiegend von diesem Teil der 0_2 -Moleküle verursacht. Mit steigender Hf-Feldstärke treten neben Einquantenübergängen immer häufiger auch Mehrquantenübergänge⁹⁴ auf. Ein Mehrquantenübergang bedeutet, daß ein Übergang zwischen zwei Zeemanniveaus durch mehrere Hf-Quanten ($\hbar\omega$) induziert wird, $\Delta E_Z = n\hbar\omega$. Die Mehrquantenübergänge bewirken, daß neben den 0_2 -Molekülen, deren Aufspaltung $\omega_0 = \omega$ ist, auch 0_2 -Moleküle mit einer Aufspaltung $\omega_0 = n \cdot \omega$ (n = 2, 3....) verstärkt zu Verlusten beitragen. Die Wahrscheinlichkeit für Mehrquantenübergänge ist vergleichbar mit der für Einquantenübergänge, sobald die Hf-Feldstärke von etwa gleicher Größenordnung ist wie die statischen Felder H_{loc}, die zur Aufspaltung führen.

zweite Ursache für ein Ansteigen der Verluste bei paramagne-Die tischer Spinabsorption kann mit dem Auftreten eines Phononenengpasses 75,81 zusammenhängen. Da bei He-Temperaturen wegen der kleinen anharmonischen Kopplung zwischen den einzelnen Gitterschwingungen und wegen einer eventuellen akustischen Fehlanpassung zwischen dem Gittersystem und dem Kühlbad die Lebensdauer T der Phononen relativ groß wird, kann bei direkten Prozessen (Ein-Phonon-Übergänge) der Energietransport vom gestörten Spinsystem über das Gitter zum Kühlbad stark gehemmt sein. Der gehemmte Energietransport wird durch eine effektive Relaxationszeit T_{eff}, die erheblich größer als die Spingitterrelaxationszeit T_1 sein kann, beschrieben⁸¹, $T_{eff} \approx T_1 + b\tau$. Dabei ist T die Lebensdauer der erzeugten Phononen, während b eine Größe ist, die unter anderem umgekehrt proportional zur Phononendichte $\rho(\omega)$ ist, b $\propto 1/\rho(\omega)$. Bei paramagnetischer Hf-Absorption werden bei direkten Prozessen Phononen erzeugt, deren Energie $E_{\rm ph}$ = $\hbar\omega$ dem Energieabstand $\Delta E_{\rm z}$ der beiden am Relaxationsvorgang beteiligten Spinníveaus entspricht. Wegen der langen Lebensdauer τ der erzeugten Phononen ist die Phononendichte $\rho(E_{\rm ph})$ im Energiebereich $E_{ph} = \Delta E_z$ nicht im thermischen Gleichgewicht mit dem Gitter und dem Kühlbad. $\rho(E_{ph})$ erreicht je nach absorbierter Hf-Leistung Werte, die erheblich über dem thermischen Gleichgewicht liegen können⁷⁵. Als Folge der erhöhten Phononendichte wird die anharmonische Kopplung zwischen den einzelenen Gitterschwingungen erhöht und somit die Lebensdauer τ der Phononen verkürzt. Gleichzeitig wird die effektive Relaxationszeit T_{eff} kürzer. Eine kürzere Relaxationszeit bedeutet erhöhte Hf-Absorption und dementsprechend größeren Verlustfaktor $\tan \delta_m \propto \chi_0 \cdot \frac{1}{Teff}$. Das beobachtete Ansteigen des durch kondensierte Luftschichten verursachten zusätzlichen Oberflächenwiderstandes (∝ tan8_m) (Abb. 13) kann somit qualitativ verstanden werden. Für große Hf-Absorption wird schließlich wegen der stark erhöhten Phononendichte der Einfluß des Phononenengpasses vermindert, bis Teff T1 wird. Wegen T1 ∝ 1/T erwartet man, daß dann der zusätzliche Oberflächenwiderstand (« tan $\delta_m \propto \chi_0/T_{eff}$) unabhängig von der Temperatur T wird. Dies ist in Übereinstimmung mit experimentellen Ergebnissen (Abb. 13, Messung II), wo bei höheren Hf-Feldstärken (H_{max} > 100 Gauß) die Verluste durch kondensierte Schichten unabhängig von der Temperatur sind.

Soll die Güte eines Wendelresonators einen minimalen Wert nicht unterschreiten, so darf entsprechend den Beziehungen (A18, A19, A21) die Schichtdicke d_s eines kondensierten Gases einen Maximalwert nicht überschreiten. Mit dem gemessenen Verlustwinkel tan δ_m für T = 1.4 K (Abb. 17) wurde abgeschätzt (Gl. A 19, A 21, Tab. AI), daß bei einer gleichmäßigen Belegung eines Wendelresonators (Abb. 3) mit einer Schicht d_s = 600 A⁰ (≙≈ 170 Monolagen⁷³), die Güte der kondensierten Luftschicht bei kleinen Hf-Feldstärken (H_{max} < 5 Gauß) etwa 10°, bei großen Hf-Feldstärken (H > 100 Gauß) nur 10° beträgt. Bei Anwendungen von Wendelresonatoren in Beschleunigern wird eine Mindestgüte bei hohen Hf-Feldern von etwa 10⁸ angestrebt. Soll der Beitrag der Hf-Verluste in einer kondensierten Luftschicht nicht mehr als etwa 10% der gesamten Verluste ausmachen, so darf diese aus nicht mehr als etwa 17 Monolagen bestehen. Diese Abschätzung ist mit einem Fehler behaftet, der hauptsächlich von der Größe G_m (s. Anhang II) herrührt. Die Abschätzung ist daher nicht besser als bis etwa auf einen Faktor 2. Wegen der verstärkt auftretenden Multipactorbegrenzungen sollte jedoch ein Kondensieren von Gasen an der Resonatoroberfläche möglichst gänzlich vermieden werden.

Bei den Versuchen mit der ersten Wendelbeschleunigersektion²,²³ lag die Hochfeldgüte des Resonators bei etwa 3.107. Der Verlauf der Güte in Abhängigkeit von der Hf-Feldstärke ist typisch für kondensierte Luftschichten (Abb. 13, Messung II). Die folgende Abschätzung soll zeigen, daß die an der Oberfläche kondensierten Gase die relativ hohen Verluste zum wesentlichen Teil mitverursacht haben. Am Eingang der Wendelsektion²,²³ herrschte ein Druck von etwa 10⁻⁶ Torr. Während des Abkühlvorganges gelangen durch das Strahlrohr (Durchmesser = 4.5 cm) in den schon kalten Resonator etwa 1.6 × 10⁻⁴ Torrliter/sec. Bei einer typischen Abkühlzeit von etwa 10 Stunden kondensieren im Resonator etwa 6 Torrliter Gas. Die Lage der Wendelstruktur und ihre relativ tiefe Temperatur läßt erwarten, daß die Gase vorwiegend an der Wendeloberfäche kondensieren. Bei einer Wendeloberfläche F \approx 2000 cm² beträgt die mittlere Dicke des Kondensats etwa 200 Monolagen (1.5 × 10⁻⁵ Torrliter ≙ 1 Monolage \times cm²). Die Verluste in dem Kondensat entsprechen einer

Hochfeldgüte von etwa 8 x 10⁷. Dabei wurde vorausgesetzt, daß die kondensierten Gasschichten Sauerstoff in einer Volumenkonzentration von einigen % enthielten und ihre Verluste daher den Verlusten in N_2/O_2 -Schichten ähnlich sein sollten. Da die Abschätzung der in den Resonator hineingelangten Gasmenge eher zurückhaltend ist, kann angenommen werden, daß die niedrigen Güten von 3 x 10⁷ wesentlich durch Verluste in einer kondensierten Gasschicht bewirkt wurden. Im abgekühlten Zustand war ein Teil des Strahlrohres kalt, so daß die Wendeloberfläche vor weiterer Kondensation geschützt war.

4.4 Einfluß von eingefrorenem Magnetfeld auf die Hf-Verluste in supraleitenden Wendelresonatoren im 100 MHz-Bereich

In supraleitenden Resonatoren im 100 MHz-Bereich existierten bisher keine Messungen über den Einfluß von eingefrorenem Magnetfeld auf die Resonatorverluste bei höheren Hf-Feldstärken. Es erschien uns daher als sinnvoll, sowohl für die Anwendung als auch zur Identifizierung der Ursachen der Restverluste, die zusätzlichen Verluste durch eingefrorenes Feld genauer zu untersuchen, insbesondere, da in geometrisch komplizierten Strukturen beim Abkühlen Thermoströme auftreten können, deren Magnetfeld²⁵ beim Übergang zur Supraleitung eingefroren werden könnte.

Bei beiden Wendelresonatoren wurden äußere Felder bis zu 6 Gauß angelegt. Es wurde das Temperaturverhalten bei kleinen Hf-Feldstärken und die Abhängigkeit des zusätzlichen Oberflächenwiderstandes R_H von der Hf-Feldstärke in mehreren Helixmoden zwischen 80 und 300 MHz untersucht. Die im Vergleich zu Ergebnissen im GHz-Gebiet^{51,84} gefundene Abweichung, insbesondere bei höheren Hf-Feldstärken, wird anhand eines Modells, bei dem die Biegebewegung eines Flußschlauches unter Einfluß des Hf-Feldes betrachtet wird, diskutiert.

4.4.1 Meßergebnisse

In Übereinstimmung mit anderen Messungen²¹,²⁶,²⁷,⁴² haben wir beobachtet, daß bei den angelegten äußeren Feldern ($H_{dc} \leq 6$ Gauß) der zusätzliche Oberflächenwiderstand $\rm R_{H}$ (Gl. 3.4) etwa proportional zu $\rm H_{dc}$ ist.

(4.4)

Bei Helix II streuen die gemessenen Werte um einen Mittelwert bis etwa 20%, was nicht durch einen Meßfehler erklärt werden kann. Die Ursache könnte im unterschiedlichen Einfrieren des Magnetfeldes liegen.

Im folgenden soll zunächst über Messungen bei kleinen Hf-Feldstörken (H_{max} < 5 Gauß), anschließend über Messungen in Abhängigkeit von der Hf-Feldstärke berichtet werden.

4.4.1.1 Kleine Hochfrequenzfeldstärken, H ~ 5 Gauß

Für kleine Hf-Feldstärken ist der zusätzliche Oberflächenwiderstand $R_{\rm H}$ unabhängig von $H_{\rm max}$. In diesem Bereich ist die Temperaturabhängigkeit von $R_{\rm H}$ zwischen T = 4.2 K ($\stackrel{\circ}{=}$ T/T_c = 0.455) und T = 1.4 K ($\stackrel{\circ}{=}$ T/T_c = 0.151) in den verschiedenen Hf-Moden gemessen worden.

Abb. 19: R_H in Abhängigkeit von der Temperatur in verschiedenen Hf-Moden a) bei Helix I mit H_{dc} = 6 Gauß b) bei Helix II mit H_{dc} = 1.5 Gauß

In Abb. 19 a, b ist $R_{\dot{H}}$ über $\{1-(T/T_{c})^{2}\}^{-1}$ aufgetragen. Aus der gra-

phischen Darstellung von $R_{H}(T)$ folgt, daß $R_{H}(T)$ sich etwa als Summe aus zwei Termen darstellen läßt, $R_{H}(T) = R_{H}(0) + R_{T} \cdot (T/T_{C})^{2}/$ {1-(T/T_C)²}. Diese Darstellung ist äquivalent mit folgender, die gewählt wurde, um Vergleiche mit anderen Messungen zu erleichtern:

$$R_{H}(T, f) = R_{H}(0, f) \cdot \frac{1}{1 - (T/T_{c})^{2}} \left[1 + r_{T}(f) (\frac{T}{T_{c}})^{2} \right]$$
$$= \frac{H_{dc}}{H_{c}(0)} \cdot \frac{R_{NL}}{\gamma(f)} \cdot \frac{1 + r_{T}(f) (T/T_{c})^{2}}{1 - (T/T_{c})^{2}}$$
(4.5)

Dabei ist $H_{c}(0) = 1980$ Gauß = das kritische thermodynamische Feld bei T = 0, $R_{NL} = 0.13 \times 10^{-3} \times \sqrt{f/MHz} [\Omega]$ = normalleitender Oberflächenwiderstand oberhalb von T_c beim normalen Skineffekt. Es wurde ein mittleres Restwiderstandsverhältnis RRR = 32 verwendet⁸⁵. $\gamma(f) = \gamma_0 \cdot (\frac{100 \text{ MHz}}{f})^{\alpha}$ und $r_T(f) = r_T \cdot (\frac{100 \text{ MHz}}{f})^{\beta}$ sind Fitparameter.

 $\gamma(f)$ wird durch den verwendeten totalen Geometriefaktor G anstatt des wirklichen partiellen Geometriefaktors G_p in (3.4) modifiziert. $r_{\rm T}(f)$ ist eine relative Größe und daher vom verwendeten Geometriefaktor unabhängig. In einer Helix ist, wie aus Abb. 20 a, b ersehen werden kann, $r_{\rm T}$ daher auch unabhängig von der Richtung des angelegten äußeren Feldes.

Aus Abb. 20 a, b geht weiter hervor, daß' $r_{T}(f)$ etwas verschieden für beide Helices ist. In Tabelle III sind die gemessenen Werte für $r_{T}(f)$ und $\gamma(f)$ zusammengestellt.
Tabelle III: Experimentelle Fitparameter für die beiden Wendelresonatoren bezogen auf 100 MHz

	He	lix I	Helix II			
	H _{dc} "	H _{dc}	^H dc"	H _{dc} r		
Υo	95	115	75	55		
α	1,35	0,7	1,3	0,7		
r _T	10	10	13	13		
β	0,4	0,4	0,7	0,7		

Um einen Eindruck von der Größe des zusätzlichen Oberflächenwiderstandes R_H in einem Wendelresonator bei kleinen Hf-Feldstärken zu vermitteln, soll $R_H(T, f)$ in etwas übersichtlicher Form dargestellt werden.

Helix I:

$$R_{\rm H}(T = 0, H_{\rm dc_{\parallel}}, f) \simeq 0,7 \cdot 10^{-8} H_{\rm dc}/{\rm Gauß} (f/100 \text{ MHz})^{1}, {}^{85}[\Omega]$$
(4.6 a)
$$R_{\rm H}(T = 0, H_{\rm dc_{\perp}}, f) \simeq 0,6 \cdot 10^{-8} H_{\rm dc}/{\rm Gauß} (f/100 \text{ MHz})^{1}, {}^{2}[\Omega]$$
(4.6 b)

Helix II:

 $R_{\rm H}(T = 0, H_{\rm dc_{\rm H}}, f) \simeq 0.9 \cdot 10^{-8} H_{\rm dc}/{\rm Gauß} (f/100 \text{ MHz})^{1} \cdot {}^{8} [\Omega] \quad (4.6 \text{ c})$ $R_{\rm H}(T = 0, H_{\rm dc_{\rm H}}, f) \simeq 1.2 \cdot 10^{-8} H_{\rm dc}/{\rm Gauß} (f/100 \text{ MHz})^{1} \cdot {}^{2} [\Omega] \quad (4.6 \text{ d})$

In Abb. 21 sind die gemessenen Werte von $R_{\rm H}(f)$ auf ein angelegtes äußeres Feld $H_{\rm dc}$ = 1 Gauß bezogen. Die Meßpunkte sind ein Mittelwert aus jeweils mehreren Messungen mit äußeren Feldern $H_{\rm dc}$ 6 Gauß. Bei 4.2 K nimmt $R_{\rm H}(f)$ mit zunehmender Frequenz weniger stark zu als bei 1.5 K. In Gleichung (4.5) wird das durch die verschiedene f-Abhängigkeit beider auftretender Terme berücksichtigt.

Hf-Feldstärken für T → O und T = 4.2 K bezogen auf H_{dc} = 1 Gauß bei parallelem (o, •) und senkrechtem äußeren Feld (Δ, ▲)

4.4.1.2 R_H in Abhängigkeit von der Hochfrequenzfeldstärke H_{max}

Für kleine Hochfrequenzfeldstärken ($H_{max} \leq 5$ Gauß) ist R_H unabhängig von H_{max} . Mit steigender Hf-Feldstärke beobachten wir eine monotone Zunahme von R_H , z. B. ist bei T = 1.4 K und f = 91.4 MHz, für $H_{max} = 500$ Gauß R_H etwa achtmal größer als für $H_{max} \leq 5$ Gauß. Bei tieferen Frequenzen und niedrigen Temperaturen ist die relative Zunahme stärker als bei höheren Frequenzen und Temperaturen. In Abb. 22 ist der zusätzliche Oberflächenwiderstand R_H (H_{max}) in Abhängigkeit von H_{max} mit T und H_{dc} als Parameter dargestellt. Abb. 23 a, b zeigt den gesamten Oberflächenwiderstand R mit eingefrorenem Feld H_{dc} und die dazugehörige Nullmessung ($H_{dc} = 0$) für f = 91.4 MHz. R_H ist entsprechend Gleichung (3.4) die Differenz aus beiden Kurven.

4×10-1 T = 4.2 K10⁻⁷ 4×10⁻⁸ 3×10⁻⁷ △ H_{dc⊥} 3 Gauss o H_{dc.} 6 Gauss H_{dc1} 6 Gauss H_{dc1} 45 Gauss 10⁻⁷ ित्र म_म T = 1.4 K 10⁻⁸ 0.1 100 1000 1 10 Hmax [Gauss]

Abb. 22: R_H in Abhängigkeit von der maximalen Oberflächenfeldstärke H_{max} bei T = 1.4 K und T = 4.2 K mit verschiedenen angelegten äußeren Feldern bei 80 MHz bei Helix I. (Δ)H_{dc1} = 3 Gauß; (ο)H_{dc1} = 6 Gauß; (•)H_{dc1} = 4.5 Gauß

Der Verlauf von $R_{H}(H_{max})$ läßt sich analytisch als Summe aus zwei Termen etwa folgendermaßen darstellen:

$$R_{H}(H_{max}, T, f) = R_{H}(0, T, f) \left[1 + r_{H}(T, f) \left\{\frac{H_{max}}{H_{c}(0)}\right\}^{\delta}\right]$$
 (4.7)

mit $\delta = 1$ für H_{max} ≤ 100 Gauß bei Helix II und H_{max} ≤ 15 Gauß bei Helix I und 0.5 $\leq \delta \leq 1$ für größere Hf-Feldstärken. R_H(0, T, f) ist der H_{dc} proportionale zusätzliche Oberflächenwiderstand für kleine Hf-Feldstärken (Gl. 4.5).

 $r_{H}(T, f)$ für T = 1.4 K ist in Abb. 24 a, b dargestellt.

<u>Abb. 23:</u> R(H_{max}) in Abhängigkeit von der maximalen Oberflächenfeldstärke H_{max} bei T = 1.4 K und 4.2 K für H_{dc} = 1.5 Gauß und H_{dc} = 0 Gauß bei Helix II a) bei 91.4 MHz; b) bei 288 MHz

Abb. 24: r_H(T, f) in Abhängigkeit von f bei T = 1.4 K für H_{dc}(0) und H (•) a) Helix I; b) Helix II

 $r_{\rm H}$ ist etwa unabhängig von der Richtung des angelegten äußeren Feldes, es ist jedoch etwas verschieden in beiden Resonatoren. Zu höheren Frequenzen hin nimmt $r_{\rm H}$ (T, f) ab, $r_{\rm H}$ (T, f) « 1/f¹⁻². Die Abnahme von $r_H(T, f)$ mit steigender Frequenz bedeutet, daß die relative Zunahme von $R_H(H_{max})$ zu höheren Frequenzen hin geringer wird. Dies wird auch durch Experimente an Nb-Resonatoren im GHz-Gebiet^{51,84} bestätigt. Bei 4.2 K ist $r_H(T, f)$ etwa 2 bis 3mal kleiner als bei 1.4 K. Die absolute Zunahme von $R_H(H_{max})$ mit steigendem Hf-Feld ist daher für 1.4 und 4.2 K etwa gleich. Der Verlauf von $R_H(H_{max})$ unterscheidet sich in den beiden gemessenen Wendelresonatoren bezüglich ihrer Zunahme mit H_{max} . Für den Exponenten δ aus Gleichung (4.7) haben wir für Hf-Feldstärken H_{max} bis zu etwa 500 Gauß im Grundmode beider Resonatoren folgende Werte erhalten:

Helix I		Helix II			
f = 80 MHz		f = 91.4 MHz			
T/K	δ	δ			
1.4	0,7 - 0,85	0,6 - 0,9			
4.2	1	0,5			

Die Übereinstimmung beider Resonatoren bei 1.4 K ist recht gut, bei 4.2 K ist jedoch die Abweichung im Verlauf von $R_H(H_{max})$ beträchtlich. Bei Helix II ist $R_H(H_{max})$ auch bei 288 MHz bis zu hohen Feldstärken gemessen worden. Bei 1.4 K war $\delta \approx 0,6 - 0,85$ ähnlich wie bei 91.4 MHz. In den anderen Hf-Moden wurde $R_H(H_{max})$ jeweils bis $H_{max} \approx 100$ Gauß įemessen, wobei $\delta \approx 1$ war.

Zusammenfassend kann festgestellt werden, daß das Verhalten des zusätzlichen Oberflächenwiderstandes R_H im 100 MHz-Bereich komplizierter ist als im GHz-Bereich⁸⁴. Bei kleinen Hf-Leistungen zeigt R_H eine stärkere Abhängigkeit von der Temperatur, die in den beiden untersuchten Wendelresonatoren etwas verschieden ist (Gl. (4.5), Tab. III). Außerdem nimmt im Gegensatz zu Messungen im GHz-Gebiet⁵¹,⁸⁴ R_H mit steigender Hf-Feldstärke stark zu (Abb. 22, 23; Gl. (4.7)). Die Zunahme von R_H wird zu höheren Frequenzen hin schwächer (Abb. 23).

4.4.2 Diskussion der Meßergebnisse

Zunächst soll auf Ergebnisse von Messungen an Nb-Resonatoren im GHz-Gebiet und an Helixresonatoren aus reinem Zinn⁴² im 100 MHz-

Bereich eingegangen werden. P. Kneisel und O. Stoltz⁸⁴ haben an Resonatoren aus reinem Nb den Einfluß von eingefrorenem Magnetfeld untersucht, und zwar zwischen 2 und 5 GHz im Temperaturbereich t = T/T_c = 0.455 bis 0.15.

Der beobachtete zusätzliche Oberflächenwiderstand R_{H} wird ähnlich wie bei Blei²⁶,²⁷ durch

$$R_{\rm H} = \frac{{}^{\rm H}{}_{\rm dc}}{{}^{\rm H}{}_{\rm c}} \cdot \frac{{}^{\rm R}{}_{\rm N1}}{\gamma} \cdot \frac{1}{1 - ({}^{\rm T}{}^{\rm T}{}_{\rm c})^2}$$
(4.8)

gut wiedergegeben. γ ist ein Fitparameter und liegt bei diesen Messungen in der Nähe von 1. Mit steigendem Hf-Feld wird im Rahmen der Meßgenauigkeit ähnlich wie in⁵¹ keine Zunahme von R_H beobachtet.

 In^{42} wird über Messungen an Zinn ($T_c = 3.72$ K, $H_c(0) = 306$ Gauß)³³ zwischen 60 und 350 MHz berichtet. Die Messungen wurden bei kleinen Hf-Feldstärken in einem Temperaturbereich zwischen t $\simeq 0.5$ und 0.89 durchgeführt. Die Temperaturabhängigkeit von R_H wird durch einen ähnlichen Term wie in Gleichung (4.8) beschrieben. Auf die Frequenzabhängigkeit von R_H wird in⁴² nicht näher eingegangen.

Ein einfaches Modell²⁶,²⁷,⁴², welches das Innere eines Flußschlauches ("Flußschlauchcore") als normalleitend betrachtet, beschreibt qualitativ die beobachteten Abhängigkeiten, Gl. (4.8). Durch diese normalleitenden Gebiete werden die Hf-Ströme hindurchgetrieben. Bei einem eingefrorenem Fluß $\phi \propto H_{dc}$ ist der Anteil der normalleitenden Fläche F_{N1} an der gesamten Oberfläche etwa gegeben durch $F_{N1} \cdot H_c(T)^* = \phi$, wobei $H_c(T) = H_c(0) [1 - (T/T_c)^2]$ das thermodynamisch lritische Feld ist. Die zusätzlichen Verluste $P_H = \oint \frac{1}{2} R_H \cdot H_H^2 df$ sind der normalleitenden Fläche F_{N1} proportional. Daher ist auch R_H proportional zu F_{N1} und zum normalleitenden Oberflächenwiderstand R_{N1} , $R_H \propto F_{N1} \cdot R_{N1} \propto \frac{H_{dC}}{H_c(T)} \cdot R_{N1}$. Für R_H ergibt sich daraus Gleichung (4.8). Sowohl bei den Messungen an Pb²⁶,²⁷ als auch an Nb-Resonatoren im GHz-Gebiet⁸⁴ wurde beobachtet, daß $R_H \propto \omega^{0.5-0.7}$ sich bezüg-

* In Übereinstimmung mit Berechnungen von J. Bardeen et al.³⁴ und C. Caroli et al.⁸⁹ sollte anstatt H_C(T) korrekterweise H_{C2}(T) genommen werden.

lich der Frequenzabhängigkeit ähnlich wie der normalleitende Oberflächenwiderstand R_{N1} beim normalen bzw. anormalen Skineffekt verhält. Um die Proportionalität zwischen R_{H} und R_{N1} zu verstehen, müßte die Eindringtiefe des Hf-Feldes im Flußschlauch oder Flußschlauchcluster durch eine Eindringtiefe « $\omega^{-1/2}$ gegeben sein. In²⁶ wird daher angenommen, daß bei Pb mehrere Flußquanten einen Flußschlauch mit einem Durchmesser groß gegen die normalleitende Eindringtiefe δ_{sk} bilden, so daß im Flußschlauch die Hf-Eindringtiefe durch $\delta_{sk}^{\alpha} \omega^{-1/2}$ bestimmt wird. Bei Nb (Supraleiter 2. Art) sind mehrere Flußquanten in einem Flußschlauch energetisch ungünstiger. Wegen des Unterschwingens des Magnetfeldes⁸⁶ ziehen sich jedoch bei Nb die Flußschläuche an und können Flußschlauchcluster bilden. Ein Flußschlauchcluster könnten sich bezüglich des Eindringens des Hf-Feldes ähnlich verhalten, wei ein normalleitendes Gebiet gleicher Größe und eine Eindringtiefe des Hf-Feldes $\propto \omega^{-1/2}$ aufweisen.

Vor allem zur Erklärung der Hf-Verluste (« R_H) bei hohen magnetischen Gleichfeldern ($H_{dc} > H_{cl}$) wird die Bewegung der Flußschläuche unter Einfluß der Lorentzkraft und die dabei auftretenden Reibungsverluste (flux-flow-Verluste) betrachtet. Anhand einer Bewegungsgleichung⁶⁷ lassen sich für den Fall hoher Frequenzen, bei denen die Pinningkräfte p(x) gegenüber dem flux-flow-Widerstand $\eta \cdot \dot{x}$ vernachlässigbar sind, die Hf-Verluste bestimmen. Für R_H wird in^{76,67,86} ein Ausdruck abgeleitet, der etwa mit Gl. (4.8) übereinstimmt.

Die im 100 MHz-Bereich beobachtete im Vergleich zu Gl. (4.8) stärkere Temperaturabhängigkeit (Gl. 4.5, Abb. 19 a, b) könnte mit den tiefliegenden Zuständen im Gap⁸⁹ zusammenhängen. In reinen Materialien (freie Weglänge l > Kohärenzlänge $\xi_{\rm Nb} \simeq 400 \ {\rm A}^0$) sind die tiefliegenden Zustände in der Energielücke in einem Flußschlauch etwa durch $\Delta^2/{\rm E}_{\rm F}$ (Δ = Gapparameter, ${\rm E}_{\rm F}$ = Fermienergie) gegeben⁸⁹. Bei Nb entspricht die Aufspaltung der Zustände etwa 30 MHz. Da R_H \propto R_{N1} (Gl. 4.8) ist, sind bei Frequenz f, die mit der Aufspaltung der tiefliegenden Zustände vergleichbar sind, Abweichungen in R_{NL} somit auch in R_H nicht ganz unverständlich.

Diskussion der Abhängigkeit von der Hf-Feldstärke

Während nach dem Modell der normalleitenden Flußschlauchcores^{26,27} keine Abhängigkeit des Oberflächenwiderstandes R_H von der Hf-Feldstärke erwartet wird, enthält die allgemeine Bewegungsgleichung für Flußschläuche⁸⁷ nichtlineare Terme, die mit dem Pinningverhalten und der Lorentzkraft zusammenhängen und die zu einer Abhängigkeit des Oberflächenwiderstandes R_H von der Hf-Feldstärke führen können⁸⁸.

Im folgenden wird R_H(H_{max}) anhand eines Modells, in welchem die Biegebewegung der Flußschläuche unter Einfluß der Lorentzkraft beim Vorhandensein sowohl von Pinning- als auch Reibungskräften betrachtet wird, qualitativ diskutiert.

Um ein Ansteigen der Wechselstromverluste an Nb-Proben beieingefrorenen Magnetfeldern^{57,90} zu erklären, hat Melville⁹¹ folgendes Modell vorgeschlagen. Die zur Oberfläche senkrecht eingefrorenen Flußschläuche führen unter dem Einfluß der Lorentzkraft, $K_{\rm L} = \frac{1}{c} \left[j_{\rm ac} \times \phi_0 \right]$ eine Biegebewegung aus (Abb. 25).

<u>Abb. 25:</u> Biegebewegung eines Flußschlauches unter Einfluß der Lorentz-Kraft $K_L = \frac{1}{C} [j_{Hf} \times \phi_0]$, (aus⁹¹).

Die Pinningkräfte (p(x)) und die flux-flow-Kräfte⁹² (K_f = $\eta \cdot \dot{x}$), die einer Bewegung entgegenwirken, geben Anlaß zu Verlusten. Für den Fall, daß die Pinningkräfte den flux-flow-Widerstand überwiegen (p(x) >> $\eta \dot{x}$), leitet Melville⁹¹ folgenden Ausdruck für die Verluste (= Hystereseverluste) P_{Hyst} pro Flächeneinheit ab:

$$P_{\text{Hyst}} \propto \frac{H_{\text{dc}}}{H_{\text{c1}}} \cdot \frac{H_{\text{ac}}^3}{I_{\text{c}}} \cdot f \Rightarrow R_{\text{Hyst}} \propto \frac{H_{\text{dc}}}{H_{\text{c1}}} \cdot \frac{H_{\text{ac}}}{I_{\text{c}}} \cdot f \qquad (4.9)$$

 H_{C1} ist das untere kritische Magnetfeld, I_{C} ist eine kritische Stromdichte. I_{C} ist ein Maß für das Pinningverhalten in der Nähe der Oberfläche und ist daher abhängig von den Materialeigenschaften. Die Hystereseverluste pro Periode, $L = P_{Hyst}/f$, sind solange unabhängig von der Frequenz, solange die Biegeamplitude x_{O} eines Flußschlauches im Wechselfeld nur von der Lorentzkraft abhängt.

Zu höheren Frequenzen hin, d. h. zu höheren Flußschlauchgeschwindigkeiten, werden neben Pinningkräften p(x) auch die Reibungskräfte $K_f = \eta \cdot \dot{x}$ wesentlich. Die Bewegung eines Flußschlauches kann dann etwa durch

$$\eta \cdot \dot{x} + p \cdot x = \frac{1}{c} j_{Hf} \cdot \phi_0$$
 (4.10)

beschrieben werden⁹³. j_{Hf} ist der Hf-Strom, $j_{Hf} \, H_{Hf}$; x ist die Biegeauslenkung. p·x enthält sowohl die linearisierte Pinningkraft p(x) als auch die linearisierte elastische Spannung, D(x) = D_o·x, die mit der Biegebewegung eines Flußschlauches zusammenhängt. D(x) kann etwa aus der Verlängerung eines Flußschlauches bei einer Biegebewegung und der damit verbundenen Energieänderung bestimmt werden. Die Energie E_φ eines Flußschlauches der Länge 1 ist E_φ = H_{C1}· ϕ_0 ·l. Die Längenänderung bei einer Biegebewegung (Abb. 25) beträgt etwa x²/ δ_z , so daß man für D(x) = $-\frac{\partial E_{\phi}}{\partial x}$ $\simeq -H_{C1} \cdot \phi_0 \cdot \frac{x}{\delta_z}$ erhält. Diese Kraft ist etwa von derselben Größenordnung wie die Pinningkräfte³⁺.

Mit dem Ansatz x = $x_0 e^{i(\omega t + \gamma)}$ erhält man für die Auslenkung x_0 eines Flußschlauches:

$$x_{o} \propto H_{Hf} \cdot [1+(f/f_{p})^{2}]^{-1/2}; \tan \gamma = -f_{p}/f$$
 (4.11)

Die Pinningfrequenz $f_p = p/\eta$ ist diejenige Frequenz, bei der der flux-flow-Widerstand gleich der Pinningkraft ist. $1/f_p$ entspricht einer Relaxationszeit für die Bewegung von Flußschläuchen in der Nähe der Oberfläche. Die Verluste, die durch die Biegebewegung verursacht werden, lassen sich aus der am Flußschlauch geleisteten Arbeit bestimmen. Die Wechselwirkung eines Flußschlauches mit den Pinningzentren verursacht Verluste (Hystereseverluste), die pro Periode gegeben sind durch:

$$P_{Hyst} / f \propto \int_{0}^{0} p \cdot x_{0}^{2} dz \propto p \cdot x_{0}^{3} \propto H_{Hf}^{3} \{1 + (f/f_{p})^{2}\}^{-3/2}$$
(4.12)

Dabei wurde vorausgesetzt⁷⁸, daß $\delta_z \propto x_0$ ist. Die durch Biegebewegung verursachten flux-flow-Verluste P_f erhält man aus:

$$P_{f} \propto \int_{0}^{\delta_{z}} \eta |\dot{x}|^{2} dz \propto \eta |\dot{x}|^{2} \delta_{z} \propto \omega^{2} \cdot x_{0}^{3} \propto H^{3}_{Hf} \frac{(f/f_{D})^{2}}{|1+(f/f_{D})^{2}|^{3/2}}$$
(4.13)

Die gesamten Verluste P_{H} sind eine Summe aus den beiden Anteilen, $P_{H} = P_{Hyst} + P_{f}$. Berücksichtigt man, daß entsprechend der Definition der Pinningfrequenz f_{p} die Verluste P_{Hyst} und P_{f} bei $f = f_{p}$ gleich sind, so erhält man für den Oberflächenwiderstand $R_{H} \propto P_{H}/H_{Hf}^{2}$ als Folge der Biegebewegung bei einem eingefrorenen Feld H_{dc} :

$$R_{\rm H} \propto H_{\rm dc} \frac{f/f_{\rm p} + (f/f_{\rm p})^2}{\{1 + (f/f_{\rm p})^2\}^{3/2}} \cdot H_{\rm Hf}$$
(4.14)

Für kleine Frequenzen (f << f) geht Gl. (4.14) in Gl. (4.9) über, d. h. die Verluste werden vorwiegend durch Hystereseverluste verursacht. Für f > f überwiegen die flux-flow-Verluste (Gl. 4.13), die für f > 2 · f etwa \propto 1/f sind.

Das Modell ist nur gültig, solange die Bewegung eines Flußschlauches durch eine Biegebewegung (Abb. 25) angenähert werden kann. Bei kleinen Auslenkungen ($x_0 \leq$ Ausdehnung eines Flußschlauches $\approx 2 \cdot \xi_{GL}$), entweder bei kleinen Hf-Feldern oder bei hohen Frequenzen (f >> f_p), ist das Modell nicht anwendbar. In diesen Fällen wird auch kein feldstärkeabhängiger Oberflächenwiderstand beobachtet. Die Größe von R_H (Abb. 22) bei H_{max} = 500 Gauß und f = 80 MHz läßt sich entsprechend einer Abschätzung in⁹¹ mit einer Biegeamplitude $x_0 \approx 1-2\mu$ erklären. Der Grund dafür, daß R_H für höhere Hf-Feldstärken langsamer als linear mit H_{max} ansteigt (Gl. 4.7), kann durch die Näherung bei der Linearisierung der Kräfte in Gl. (4.10) erklärt werden.

In Abb. 26 ist die durchgezogene Kurve nach Gl. (4.14) berechnet.

<u>Abb. 26:</u> R₂(f) bezogen auf H_{dc} = 1 Gauß (weitere Erläuterungen im Text)

Dabei wurde die Pinningfrequenz f_p und ein Proportionalitätsfaktor so gewählt, daß sowohl Messungen von R_H bei tiefen Frequenzen $(f \leq 10 \text{ kHz})^{57}$ als auch unsere Messungen im 100 MHz-Bereich möglichst gut wiedergegeben werden. Die Werte für R_H bei tiefen Frequenzen wurden einer Messung, bei der die Wechselstromverluste an Nb-Proben in Abhängigkeit vom eingefrorenen Magnetfeld H_{dc} $(H_{dc} \leq 10 \text{ Gauß})$ untersucht wurden⁵⁷, entnommen. Die zusätzlichen Verluste lassen sich durch einen Oberflächenwiderstand R_H beschreiben, der etwa proportional zur Frequenz f und zur Wechselstromamplitude H_{ac} ist, $R_H \propto f \cdot H_{ac}$. Bezogen auf $H_{dc} = 1$ Gauß und f = 1 kHz läßt sich aus⁵⁷ ein Oberflächenwiderstand

$$R_{\rm H} \simeq 1.6 \times 10^{-10} \times \frac{H_{\rm ac}}{H_{\rm c}(o)} \times \frac{H_{\rm dc}}{[Gauß]} \times \frac{f}{[kHz]} [\Omega]$$

ableiten. Um unsere Messungen damit vergleichen zu können, wurde der mit dem partiellen Geometriefaktor G_p korrigierte feldstärkeabhängige Teil des Oberflächenwiderstandes (Gl. 4.7) in ähnlicher Form dargestellt.

$$R_2(H_{max}, f) = R_2(f) \cdot \frac{H_{max}}{H_c(o)}$$
 (4.15)

 $R_2(f)$ wird aus den Meßgrößen (Gl. (4.7), Abb. 24 a, b) und dem im Anhang III abgeschätzten partiellen Geometriefaktor G nach Gleichung (A 32) bestimmt. In Abb. 26 ist $R_2(f)$ auf $H_{dc} = 1$ Gauß bezogen.

Die Pinningfrequenz von etwa 20 MHz ist in Übereinstimmung mit Messungen an stärker gestörten Proben^{78,93}. Nach Gl. (4.9) sollten stärker gestörte Proben (höheres I_c, höhere Pinningfrequenz f_p) kleineren feldabhängigen Oberflächenwiderstand R_H aufweisen, da ihre Biegeamplitude x_o (Gl. (4.11)) bei gleichen Hf-Feldern kleiner ist. Eine Messung⁸⁵ des Restwiderstandsverhältnisses (RRR), welches ein Maß für die Reinheit und somit das Pinningverhalten eines Materials ist, ergab für das Nb-Material der beiden Wendeln (Helix I, Helix II) ein RRR \approx 30 bzw. 40. In qualitativer Übereinstimmung damit ist das Ergebnis, daß R₂(H_{max}, f) bei Helix II grösser ist als bei Helix I (Abb. 26).

Zusammenfassend kann gesagt werden, daß der zusätzliche Oberflächenwiderstand $R_{_{\rm H}}$, der durch eingefrorenes Magnetfeld verursacht wird, im 100-MHz-Bereich ein im Vergleich zum GHz-Bereich komplizierteres Verhalten aufweist. Neben einer stärkeren Temperaturabhängigkeit (Gl. 4.5) bei kleinen Hf-Feldstärken wird eine Zunahme von R_{H} mit steigender Hf-Feldstärke (Gl. 4.7, Abb. 22, 23) beobachtet. Die Abhängigkeit von der Hf-Feldstärke kann qualitativ durch eine Biegebewegung der eingefrorenen Flußschläuche im Hf-Feld erklärt werden. Die Beobachtung, daß zu höheren Frequenzen die Zunahme von R_H mit steigender Hf-Feldstärke schwächer wird, ist eine Folge der kleineren Biegeauslenkung x_0 (Gl. 4.11) oberhalb einer Pinningfrequenz f_{D} . $1/f_{D}$ entspricht einer Relaxionszeit für die Bewegung von Flußschläuchen in der Nähe der Oberfläche. Die Zunahme von R_H mit der Hf-Feldstärke verlangt bei Anwendungen bei hohen Hf-Feldstärken bessere magnetische Abschirmungen als man es von Messungen bei kleinen Hf-Feldstärken erwarten würde²¹.

5. ZUSAMMENFASSUNG

Die vorliegenden Messungen haben gezeigt, daß es auch im 100 MHz-Bereich möglich ist, bei hohen Hf-Feldstärken (\geq 500 Gauß) Oberflächenwiderstände von etwa 1 bis 2 x 10⁻⁹ Ω zu erreichen (Abb. 10). Die in diesem Frequenzbereich häufig beobachtete Zunahme des Oberflächenwiderstandes mit steigender Hf-Feldstärke ist daher nicht prinzipieller Art.

Die Untersuchung des Einflusses kondensierter Gasschichten auf die Verluste in supraleitenden Resonatoren zeigte, daß es sich bei den auftretenden Hf-Verlusten um Volumeneffekte handelte. Kondensierte O_2 - und N_2/O_2 -Schichten verursachen höhere Verluste als reine N_2 und CO_2 -Schichten. Die Ursache dafür wird im permanenten magnetischen Moment des Sauerstoffs vermutet, welches zu magnetischen Verlusten führt. Die Verluste in kondensierten N_2/O_2 -Schichten (insbesondere auch Luftschichten) können durch paramagnetische Spinresonanzabsorption der O_2 -Moleküle, die im Feld ihrer Nachbarn aufspalten, qualitativ erklärt werden.

Der zusätzliche Oberflächenwiderstand R_{D} , der durch Verluste in kondensierten Luftschichten verursacht wird, weist in Abhängigkeit von der Hf-Feldstärke ein charakteristisches Verhalten auf (Abb. 13, Messung II). R_D steigt mit zunehmender Hf-Feldstärke und erreicht bei Feldstärken oberhalb H $_{max} \ge 100$ Gauß nahezu einen Sättigungswert, der bei T = 1.4 K etwa um einen Faktor 10 über dem Widerstand bei kleinen Hf-Feldstärken liegt. Aus dem gemessenen Verlustwinkel $\tan \delta_{\rm m}$ kann abgeschätzt werden, daß die Verluste in einer etwa 600 Aº (≙≃ 170 Monolagen) dicken an der Wendeloberfläche eines 90 MHz Resonators kondensierten Luftschicht bei hohen Feldstärken einer Güte von ungefähr 108 entspricht. Kondensierte Gasschichten sollten jedoch möglichst ganz vermieden werden, da sie durch Erhöhung des Emissionsfaktors für Sekundärelektronen den Multipactoreffekt verstärken. Nach einem Aufwärmen auf Raumtemperatur und Abkühlen unter verbesserten Vakuumbedingungen verschwinden die Verluste durch kondensierte Gasschichten.

Der Einfluß von ausgefrorenem Magnetfeld auf den Restwiderstand ist insbesondere auch in Abhängigkeit von der Hf-Feldstärke untersucht worden. Der durch das eingefrorene Feld verursachte zusätzliche Oberflächenwiderstand $R_{_{\rm H}}$ zeigt im Vergleich zum GHz-Gebiet anderes Verhalten, und zwar sowohl bei der Abhängigkeit von der Temperatur als auch von der Hf-Felstärke. Das Ansteigen von R_{μ} mit zunehmender Hf-Feldstärke kann anhand eines Modells, welches eine Biegebewegung der eingefrorenen Flußschläuche unter Einfluß der Lorentzkraft betrachtet, qualitativ erklärt werden. Oberhalb einer für das Material charakteristischen Pinningfrequenz, die in unserem Fall bei etwa 20 MHz liegt, nimmt die Biegeauslenkung wegen des zunehmenden flux-flow-Widerstandes ab. Als Folge davon wird die Zunahme von R_H mit steigendem Hf-Feld zu höheren Frequenzen hin schwächer (Abb. 26). Im GHz-Gebiet ist in Übereinstimmung damit R_H unabhängig vom Hf-Feld. Bei 90 MHz und T = 1.4 K ist die Zunahme von R_H mit steigendem Hf-Feld beträchtlich. Bei H_{max} = 500 Gauß ist R_{H} etwa achtmal größer als bei kleinen Hf-Feldstärken (Abb. 23). Aus den vorliegenden Messungen kann abgeschätzt werden, daß in einem Nb-Wendelresonator bei f ~ 90 MHz, T = 1.4 K und H_{max} = 500 Gauß die zusätzlichen Verluste, die durch Einfrieren des nicht abgeschirmten Erdfeldes (≃ 0.5 Gauß) verursacht werden, einer Güte von etwa 1 bis 2 x 10⁸ entsprechen. Der genaue Wert hängt von Materialeigenschaften, wie Pinningverhalten in der Nähe der Oberfläche, ab.

6. ANHÄNGE

Anhang I

Zusammenhang zwischen unbelasteter Güte Q $_{\rm o}$, belasteter Güte Q $_{\rm L}$, der Koppelgüte Q $_{\rm k}$ und dem Koppelfaktor ß

Drei Größen, die Resonanzfrequenz ω , die Güte Q_L und der Koppelfaktor β zwischen dem Resonator und einer Meßapparatur bestimmen im wesentlichen die Eigenschaften eines Resonators⁵⁰. Die Güte Q_L eines Resonators wird definiert durch:

$$Q_{\rm L} = \frac{\omega W}{P} = \frac{\omega}{\Delta \omega} \tag{A 1}$$

 $\omega = 2\pi f$ ist die Resonanzfrequenz, $\Delta \omega$ ist die Bandbreite der Reso-

nanzkurve. W ist die im Resonator gespeicherte Energie (Gl. 2.5). P enthält die gesamten Verluste des Resonators. Im allgemeinen setzt sich P aus drei Anteilen zusammen.

$$P = P_{o} + P_{k} + P_{rad}$$
(A 2)

Dabei ist P_o die Leistung, die in den Resonatorwänden absorbiert wird. P_k gibt die joulschen Verluste in der Koppelgegend an, während P_{rad} die vom Resonator in die Koppelleitungen abgestrahlte Leistung ist. Entsprechend den drei Anteilen an der Gesamtverlustleistung P des Resonators, wird Q_t in folgender Weise zerlegt:

$$\frac{1}{Q_{\rm L}} = \frac{1}{Q_{\rm o}} + \frac{1}{Q_{\rm k}} + \frac{1}{Q_{\rm rad}}$$
(A 3)

Dabei wird die unbelastete Güte Q_{o} durch

$$Q_{o} = \frac{\omega W}{P_{o}}$$
 (A 4)

definiert. Entsprechend wird auch die Koppelgüte Q_k und die Strahlungsgüte Q_{rad} definiert. Häufig ist es nützlich eine Güte Q' einzuführen, die ein Maß für die gesamten joulschen Verluste im Resonator, $P_{cav} = P_o + P_k$, ist.

$$Q_{o}' = \frac{\omega W}{P_{cav}} \qquad bzw. \qquad \frac{1}{Q_{o}'} = \frac{1}{Q_{o}} + \frac{1}{Q_{k}} \qquad (A 5)$$

Der Koppelfaktor wird definiert durch:

$$\beta = \frac{Q_0'}{Q_{rad}} = \frac{P_{rad}}{P_{cav}}$$

β bzw. Q_{rad} sind ein Maß dafür, wie stark ein Resonator mit einer äußeren Quelle bzw. mit einem äußeren Verbraucher gekoppelt ist.

$$\frac{1}{Q_{rad}} = \frac{\beta}{Q_0'}$$

hängt nur von der Hf-Feldkonfiguration und von geometrischen Abmessungen ab. Zur Bestimmung des Koppelfaktors an der Einkoppelseite wird bequemerweise folgende Beziehung verwendet:

$$\beta = \frac{1(-)\sqrt{P_{refl}/P_{vor}}}{1(-)\sqrt{P_{refl}/P_{vor}}} \qquad \text{für } \beta < 1 \qquad (A 7)$$

 P_{refl} ist die am Eingang des Resonators reflektierte Leistung, während P_{vor} die vom Hf-Generator gelieferte Leistung ist. Gleichung (A 7) gilt im eingeschwungenen Zustand und bei Resonanz. Für $\beta = 1$ ("Anpassung") ist die reflektierte Leistung $P_{refl} = 0$. Aus einer Umformung der Gl. (A 3, A 4, A 5) erhält man zwischen Q'_{o} und Q_{L} die Beziehung:

$$Q_{O}^{\dagger} = (1+\beta) \cdot Q_{I} \qquad (A \ 8)$$

Die belastete Güte Q_L wird aus der Messung der Abklingzeit τ der gespeicherten Energie W gewonnen. Wird nämlich der Hf-Generator abgeschaltet, so klingt die gespeicherte Energie W mit einer Zeitkonstante τ ab.

$$W = W_{O} \exp(-t/\tau)$$
 (A 9)

 τ hängt mit der belasteten Güte Q $_{\rm L}$ des Resonators über die Resonanzfrequenz f = $\omega/2\pi$ zusammen:

$$Q_{L} = \omega \cdot \tau$$
 (A 10)

Aus Q_L und β kann bei bekannter Koppelgüte Q_k die unbelastete Güte Q_0 bestimmt werden. Bei einer variablen Ankopplung kann Q_k experimentell in Abhängigkeit von der Koppelstiftstellung bestimmt werden.

Anhang II

a) Einfluß einer dielektrischen Schicht auf die Eigenschaften eines Resonators

Mit Störungsrechnungen⁵⁰ kann der Einfluß von dielektrischen Störkörpern auf die Eigenfrequenz f und Güte Q eines Resonators bestimmt werden. Für die Frequenzverschiebung Δf_D , die durch einen dielektrischen Störkörper verursacht wird, gilt allgemein folgende Beziehung:

$$\frac{\Delta f_{\rm D}}{f} = -\frac{\Delta W}{W} \tag{A 11}$$

AW bedeutet die Änderung der gespeicherten Feldenergie W (Gl. 2.6) des Resonators durch Einbringen des dielektrischen Störkörpers.

$$\Delta W = \frac{1}{4} \epsilon_0 \int (\epsilon_2 - \epsilon_1) \cdot E_2 E_1 dV + \frac{1}{4} \mu_0 \int (\mu_2 - \mu_1) H_2 \cdot H_1 dV \quad (A \ 12)$$

$$V_{res}$$

Dabei ist ε_2' , μ_2' = Realteil der relativen Dielektrizitätskonstante und Permeabilität des Störkörpers. ε_1' , μ_1' = Realteil der relativen Dielektrizitätskonstante und Permeabilität vor Einbringen des Störkörpers. In unserem Fall ist $\varepsilon_1' = \mu_1' = 1$, da im Resonator Vakuum herrscht. E_1 , H_1 und E_2 , H_2 = Hf-Felder vor (1) und nach (2) Einbringen der Störung. In unserem Fall ist der dielektrische Störkörper eine dünne (\leq einige μ) an der Oberfläche kondensierte Gasschicht. Da das elektrische Feld E_1 senkrecht und das Magnetfeld H_1 parallel zur Resonatoroberfläche sind, sind die Felder E_2 und H_2 in der dünnen an der Oberfläche kondensierten Schicht wegen allgemeiner Stetigkeitsbedingungen für die dielektrische Verschiebung D (D₄ stetig) und magnetische Induktion B (B₁₁ stetig) gegeben durch:

$$E_{2} = \frac{\varepsilon_{1}}{\varepsilon_{2}^{2}} \cdot E_{1} = \frac{1}{\varepsilon_{2}^{2}} \cdot E_{1} \quad \text{und} \quad (A \; 13a)$$

$$H_{2} = \frac{\mu_{1}^{'}}{\mu_{2}^{'}} \cdot H_{1} = \frac{1}{\mu_{2}^{'}} \cdot H_{1} \quad (A \; 13b)$$

Für die relative Frequenzverschiebung $\Delta f_D/f$ erhält man somit:

$$\frac{\Delta f_0}{f} = -\frac{1}{4W} \begin{bmatrix} \frac{\epsilon_2' - 1}{\epsilon_2'} & \int \epsilon_0 E_1^2 dV + \frac{\mu_2' - 1}{\mu_2'} & \int \mu_0 H_1^2 dV \end{bmatrix}$$
(A 14)

V_s ist das Volumen des dielektrischen Störkörpers. Führt man die Abkürzungen

$$G_{E} = \frac{1}{4W} \int_{V_{S}} \varepsilon_{0} E_{1}^{2} dV \quad \text{und}$$

$$G_{m} = \frac{1}{4W} \int_{V_{S}} \mu_{0} H_{1}^{2} dV \quad (A \ 15b)$$

ein, so erhält man aus Gl. (A 14):

$$\left|\frac{\Delta f_{0}}{f}\right| = \frac{\varepsilon_{2}^{\prime} - 1}{\varepsilon_{2}^{\prime}} G_{E} + \frac{\mu_{2}^{\prime} - 1}{\mu_{2}^{\prime}} G_{m}$$
 (A 16)

Die Größen G_E und G_m sind Geometriefaktoren und hängen nicht vom Feld ab. Solange das Feld über die Dicke d_s der kondensierten Schicht als konstant angenommen werden kann (dünne Schichten), sind G_E und G_m proportional zur d_s bzw. zur eingelassenen Gasmenge.

Die magnetische Suszeptibilität $\chi'_m = \mu_2' - 1$ ist bei den untersuchten Gasen⁵⁹,⁶⁰ sehr viel kleiner als die elektrische Suszeptibilität $\chi'_e = \varepsilon_2' - 1 \simeq 0.5$ ⁵⁹,⁶⁰. Da außerdem G_E und G_m bei einem Wendelresonator von der gleichen Größenordnung sind (siehe Anhang II b), wird die Frequenzverschiebung Δf_D im wesentlichen nur durch die dielektrischen Eigenschaften verursacht. Vernächlässigt man den zweiten Term in Gl. (A 16), so erhält man Gl. (2.14) im Abschnitt 2.4.

Die in einem Dielektrikum absorbierte Leistung ${\rm P}_{\rm D}$ ist gegeben durch:

$$P_{D} = \frac{1}{2} \omega \varepsilon_{2}^{"} \int_{V_{S}} E_{2} D_{2} dV = 2 \omega W_{E} \frac{\varepsilon_{2}^{"}}{\varepsilon_{2}^{!}} = 2 \omega W_{E} \cdot \tan \delta_{D}$$
 (A 17)

 ϵ_2'' ist der Imaginärteil der Dielektrizitätskonstant.

$$W_{\rm E} = \frac{1}{4} \int_{V_{\rm S}} \varepsilon_0 E_1^2 dV$$

ist die in V_s gespeicherte elektrische Energie. Für die Güte Q_D des dielektrischen Störkörpers ergibt sich somit mit den Gleichungen (A 13a; 2.6):

$$Q_{\rm D} = \frac{\omega W}{P_{\rm D}} = \frac{1}{2} \frac{W}{W_{\rm E}} \frac{1}{\tan \delta_{\rm D}} = \frac{1}{2} \frac{1}{\tan \delta_{\rm D}} \cdot \frac{1}{G_{\rm E}}$$
(A 18)

Hängen die Verluste mit den magnetischen Eigenschaften des Störkörpers zusammen, so ergibt sich entsprechend für die Güte Q_m :

$$Q_{\rm m} = \frac{\omega W}{P_{\rm m}} = \frac{1}{2} \frac{1}{\tan \delta_{\rm m}} \cdot \frac{1}{G_{\rm m}}$$
(A 19)

Dabei ist

 $P_{m} = \frac{1}{2} \cdot \omega \mu_{2}^{"} \int_{V_{m}} H_{2}B_{2}dV = 2\omega W_{m} \cdot \frac{\mu_{2}^{"}}{\mu_{2}} = 2\omega W_{m} \cdot \tan \delta_{m}$

die absorbierte Leistung.

 $W_{\rm m} = \frac{1}{4} \int_{\rm V_{\rm S}} \mu_0 H_1^2 dV$

ist die in V_s gespeicherte magnetische Energie.

b) Abschätzung der Größen G_E und G_m für einen Wendelresonator

Im folgenden werden die Geometriegrößen G_E und G_m für den Wendelresonator (Helix II) mit Hilfe der berechneten maximalen Felder (Tab. I) näherungsweise bestimmt.

Wegen der im Vergleich zu anderen Abmessungen des Resonators (\geq 4 mm) kleinen Schichtdicken d_s (\leq einige μ) ist die Abhängigkeit der Felder von der Schichtdicke vernachlässigbar. Das Integral in Gl. (A 15a, b) über das Störvolumen V_s kann daher in ein Integral über die Oberfläche F_s, die mit der dielektrischen Schicht belegt ist, überführt werden:

$$\int_{V_{s}} \varepsilon_{0} E_{1}^{2} dV = d_{s} \oint_{F_{s}} \varepsilon_{0} \cdot E_{1}^{2} dF \quad \text{und} \quad (A 20a)$$

$$\int_{V_{s}} \mu_{0} H_{1}^{2} dV = d_{s} \oint_{F_{s}} \mu_{0} H_{1}^{2} dF \quad (A 20b)$$

Dabei wurde noch angenommen, daß die Schichtdicke d_s etwa konstant über F_s ist. Die Geometriegrößen G_E und G_m (Gl. A 15a, b) lassen sich somit darstellen durch:

$$G_E = g_E \cdot d_s$$
 und $G_m = g_m \cdot d_s$ (A 21)

- 84 -

Die Größen g_E und g_m sollen nun abgeschätzt werden. Der experimentell meßbare Geometriefaktor G (Tab. I), der die Güte mit dem Oberflächenwiderstand verbindet, ist durch Gl. (2.8) gegeben. Für eine über die ganze Resonatoroberfläche verteilte Schicht ist das Oberflächenintegral in Gl. (A 20b) gleich dem Oberflächenintegral in Gl. (2.8). Für g_m ergibt sich daher bei gleichmäßiger Verteilung der dielektrischen Schicht über der ganzen Oberfläche:

$$g_{\rm m} = \frac{1}{2} \frac{2\pi f \cdot \mu_0}{G}$$
 (A 22)

Durch Umformen der Gl. (A 15; A 20; A 21) erhält man für g_E:

$$g_{E} = g_{m} \frac{\varepsilon_{0} \oint E_{1}^{2} dF}{\mu_{0} \oint H_{1}^{2} dF} \approx g_{m} \cdot \frac{\varepsilon_{0}}{\mu_{0}} \frac{E_{zmax}^{2} + E_{rmax}^{2}}{H_{rmax}^{2} + H_{zmax}^{2}}$$
(A 23)

Dabei wurde berücksichtigt, daß E_z und H_r ebenso wie E_r und H_z bis auf eine Verschiebung um $\lambda/4$ jeweils die gleiche Verteilung über der Oberfläche haben⁴⁸ und daher $\oint E_1^2 dF \simeq (E_{rmax}^2 + E_{zmax}^2) \cdot \oint f(r, z) dF$ bzw. $\oint H_1^2 dF \simeq (H_{rmax}^2 + H_{zmax}^2) \cdot \oint f(r, z) dF$ ist. f(r, z) beschreibt die Feldverteilung über der Oberfläche. In Tab. AI sind die nach den Gl. (A 22; A 23) berechneten Werte für g_E und g_m angegeben. Der Geometriefaktor G und die maximalen Hf-Feldstärken wurden der Tab. I entnommen.

Tab. AI:

f/MHz	g _m /Å ⁻¹	g _E /Å ⁻¹			
91.4	0.84 x 10 ⁻⁸	0.95 x 10 ⁻⁸			
160.6	1.15 x 10 ⁻⁸	1.29 x 10 ⁻⁸			
224.9	1.5 x 10 ⁻⁸	1.59 x 10 ⁻⁸			
288.6	1.82 x 10 ⁻⁸	1.93 x 10 ⁻⁸			

In den durchgeführten Messungen bedeckten die kondensierten Schichten nicht die ganze Resonatoroberfläche. Die genaue Verteilung der kondensierten Schicht über der Oberfläche ist nicht bekannt. Näherungsweise war außer dem unteren Resonatordeckel vorwiegend die Innenseite der Wendel und die obere Seite zwischen den Windungen, d. h. Flächen, die dem Einlaßröhrchen zugewandt sind, mit kondensiertem Gas belegt. Der Einfluß der Gasschicht am Resonatordeckel kann vernachlässigt werden, da dort die Felder im Vergleich zu Feldern an der Wendeloberfläche sehr klein sind. Mit gleicher Begründung wie bei Gl. (A 23) erhält man für die Geometriegrößen g_{Ep} und g_{mp} bei einer teilweisen Belegung der Wendeloberfläche (Innenseite und obere Seite zwischen den Windungen) mit einer mittleren Schichtdicke d_c:

$$g_{Ep} \approx g_{E} \cdot \frac{E_{rimax}^{2} + 0.5 \cdot E_{zmax}^{2}}{E_{ramax}^{2} + E_{zmax}^{2}}$$
(A 24)
$$g_{mp} \approx g_{m} \cdot \frac{H_{zmax}^{2} + 0.5 \cdot H_{rmax}^{2}}{H_{zmax}^{2} + H_{rmax}^{2}}$$
(A 25)

 g_E und g_m sind die Geometriefaktoren bei einer gleichmäßigen Belegung der ganzen Resonatoroberfläche (Tab. AI). Der Faktor 0.5 vor H^2_{rmax} und E^2_{zmax} rührt von der Annahme her, daß nur die dem Röhrchen zugewandte Seite zwischen den Windungen mit einer Gasschicht belegt war. In Tab. AII sind die Größen g_{Ep} und g_{mp} für die verschiedenen Hf-Moden angegeben.

Tab. AII:

f/MHz	g _{mp} /Å ⁻¹	g _{Ep} /A ⁻¹		
91.4	0.65 x 10 ⁻⁸	0.3 x 10 ⁻⁸		
160.6	0.76 x 10 ⁻⁸	0.57 x 10 ⁻⁸		
224.9	0.95 x 10 ⁻⁸	0.77 x 10 ⁻⁸		
288.6	1.12 x 10 ⁻⁸	0.98 x 10 ⁻⁸		

Daß die Abschätzung für g_{mp} und g_{Ep} nicht ganz falsch sein kann, zeigt die nach Gl. (2.14) berechnete Frequenzverschiebung $\Delta f_D/f$ (Abb. 14). Sowohl die absolute Größe als auch die relative Frequenzabhängigkeit von $(\Delta f_D/f)_{\text{berechnet}}$ stimmt mit den gemessenen Werten gut überein (Abb. 14). Danach dürfte der absolute Fehler in g_{mp} und g_{Ep} (Tab. AII) kleiner als ein Faktor 2 sein. Relativ in den verschiedenen Hf-Moden dürften die Größen genauer sein.

Anhang III

Abschätzung der partiellen Geometriefaktoren G und G für einp Pl pl gefrorenes Magnetfeld parallel (H_{dc}) und senkrecht (H_{dc1}) zur Resonatorachse

Der partielle Geometriefaktor läßt sich nicht nach der Definition des Geometriefaktors (Gl. 2.8) exakt berechnen, da sowohl die Feldverteilung von H_u als auch die Verteilung des eingefrorenen Flusses an der Wendeloberfläche nur näherungsweise bekannt sind. Daher sollen hier die partiellen Geometriefaktoren G_{pu} und G_{pu} unter Heranziehung der Meßergebnisse (Abschnitt 4.4) bestimmt werden.

Der zusätzliche Oberflächenwiderstand $R_{\rm H}(H_{\rm dc})$ wurde unkorrekterweise nach Gl. (3.4) mit dem Gesamtgeometriefaktor G (Tab. I) bestimmt. Die Unterschiede im Frequenzverhalten (Gl. (4.5) bzw. Abbildung 20 a, b) zwischen den beiden Feldrichtungen werden durch die Verwendung von G anstatt eines physikalisch korrekten partiellen Geometriefaktors G_p verursacht. Der korrigierte zusätzliche Oberflächenwiderstand

$$R_{Hkorr}(H_{dc_{\perp}}) = R_{H}(H_{dc_{\perp}}) \cdot \frac{G}{G_{P_{\perp}}} bzw. R_{Hkorr}(H_{dc_{\parallel}}) = R_{H}(H_{dc_{\parallel}}) \cdot \frac{G}{G_{P_{\parallel}}}$$
 (A 26)

sollte, wie es die relativen Größen (Abb. 21 a, b; 24 a, b) zeigen, nicht von der Feldrichtung abhängen, $R_{Hkorr}(H_{dc_{\perp}}) = R_{Hkorr}(H_{dc_{\parallel}})$.

Der Geometriefaktor G (Gl. 2.8) ist umgekehrt proportional zum Oberflächenintegral über die ganze Resonatoroberfläche F_{res} , G \propto { $\oint_{Fres} H_{\parallel}^2 \cdot dF$ }. Um die partiellen Geometriefaktoren zu bekommen, wird nur über den Teil der Oberfläche integriert, in dem Magnetfeld eingefroren ist. Bei $H_{dc_{\parallel}}$ ist es vorwiegend der Teil der Wendeloberfläche zwischen den Windungen $F(H_{dc_{\parallel}})$, bei $H_{dc_{\parallel}}$ dagegen die innere und äußere Seite der Wendel, $F(H_{dc_{\parallel}})$. Die Summe aus den beiden Oberflächen ergibt näherungsweise die gesamte Wendeloberfläche.

$$F_{res} \simeq F(H_{dc_{H}}) + F(H_{dc_{L}})$$
 (A 27)

Das Oberflächenintegral aus Gl. (2.8) kann daher zerlegt werden in:

$$\oint H_{\parallel}^{2} dF \simeq \oint H_{\parallel}^{2} dF + \oint H_{\parallel}^{2} dF \simeq \oint H_{\parallel}^{2} dF + \oint H_{\parallel}^{2} dF \quad (A 28)$$

$$F_{res} = F(H_{dc_{\parallel}}) = F(H_{dc_{\perp}}) = F(H_{dc_{\parallel}}) = F(H_{dc_{\parallel}})$$

Im zweiten Teil der Gleichung wurde berücksichtigt, daß im Bereich von $F(H_{dc_{\parallel}})$ das Hf-Feld $H_{\parallel} \simeq H_{r}$ ist und daß für $F(H_{dc_{\perp}})$, $H_{\parallel} \simeq H_{z}$ ist (Abb. 2)⁴⁸. Die partiellen Geometriefaktoren sind somit etwa gegeben durch:

$$G_{p_{\parallel}} \propto \{ \oint_{\Gamma} H_{dG_{\parallel}}^{2} dF \}^{-1} \text{ und } G_{p} \propto \{ \oint_{\Gamma} H_{2}^{2} dF \}^{-1}$$
(A 29)
$$F(H_{dG_{\parallel}}) = F(H_{dG_{\parallel}}) = F(H_{dG_{$$

Bei den Helixmoden, 80 MHz bei Helix I und 160 MHz bei Helix II, sind die unkorrigierten Werte R_H für beide Feldrichtungen gleich (Abb. 20 a, b), $R_H(H_{dc_H}) = R_H(H_{dc_H})$. Sollen die korrigierten Werte des zusätzlichen Widerstandes (Gl. A 26) unabhängig von der Feldrichtung sein, so muß in den beiden Moden jeweils $G_{p_H} = G_{p_H}$ sein. Dies ist in Übereinstimmung mit einer Abschätzung der partiellen Geometriefaktoren mit Hilfe der maximalen Oberflächenfeldstärken (Tab. I). Mit der Annahme (Gl. A 27) ergibt sich mit der Gl. (A 29) für diese beiden Hf-Moden, daß

$$G_{P_{H}} = G_{P_{A}} \simeq 2G \tag{A 30}$$

ist. Die partiellen Geometriefaktoren in den anderen Hf-Moden bestimmen wir aus der Annahme, daß bei kleinen Hf-Feldstärken der korrigierte Zusatzwiderstand proportional zu $R_{N1} \propto f^{1/2}$ ist,

$$R_{Hkorr}(T = 0, f) = R_{H}(T = 0, f) \cdot G/G_{p} \propto f^{1/2}$$
 (A 31)

 $R_{H}(T = 0, f)$ ist der experimentelle Wert für kleine Hf-Feldstärken und T = OK (Abb. 20 a, b; bzw. Gl. (4.6 a-d)). Eine solche Abhängigkeit ist in Übereinstimmung mit Messungen im GHz-Gebiet und wird bei kleinen Hf-Feldstärken sowohl nach dem Modell der normalleitenden Cores²⁶ als auch nach flux-flow-Berechnungen⁷⁸ erwartet (Abschnitt 4.4).

Aus den Meßwerten (Abb. 20 a, b) erhält man bei Berücksichtigung der Gl. (A 30; A 31) die partiellen Geometriefaktoren für die untersuchten Hf-Moden der beiden Wendeln. In Tab. AIII sind diese Werte zusammengestellt. G ist der gesamte Geometriefaktor (Tab. I).

<u>Tab. AIII:</u> Partielle Geometriefaktoren $G_{p_{H}}$ und G_{p}

f/MHz	80	139.5	195.2	251	305	91.4	160.6	2.24.9	288.6
G/G Pu	2	0.85	0.50	0.37	0.33	3.78	2	0.95	0.74
G/G Pl	2	1.49	1.17	0.84	0.76	2.24	2	1.19	1.0

Die relative Genauigkeit der partiellen Geometriefaktoren hängt mit der Annahme der Gl. (A 31) zusammen. Die absolute Genauigkeit hängt dagegen im wesentlichen von Gl. (A 28) ab. Eine Abschätzung des Verhältnisses G /G unter Zuhilfenahme der maximalen Felder ist mit der Gl. (A 30) in Übereinstimmung.

Der feldstärkeabhängige Teil des Oberflächenwiderstandes $R_2(H_{max}, f)$ (Gl. 4.15) ist gegeben durch:

$$R_{2}(H_{max}, f) = R_{H}(T, f) \cdot r_{H}(T, f) \cdot \frac{G_{p}}{G} + \frac{H_{max}}{H_{c}(0)} = R_{2}(f) + \frac{H_{max}}{H_{c}(0)}$$
 (A 32)

 $R_{\rm H}(0, T, f)$ und $r_{\rm H}(T, f)$ sind experimentelle Werte (Abb. 20 a, b; 24 a, b). In Abb. 26 ist $R_2(f)$ bezogen auf $H_{\rm dc}$ = 1 Gauß über der Frequenz aufgetragen.

7. LITERATURVERZEICHNIS

- ¹ M. S. McAshan, H. A. Schwettman, L. Suelzle, J. P. Turneaure High Energy Physics Laboratory Report 665, Stanford, January 1972
- A. Brandelik, A. Citron, P. Flécher, J. L. Fricke, R. Hietschold, G. Hochschild, G. Hornung, H. Klein, G. Krafft, W. Kühn, M. Kuntze, B. Piosczyk, E. Sauter, A. Schempp, D. Schulze, L. Szecsi, J. E. Vetter, K. W. Zieher Proc. 1972 Prot. Accelerator Conf., Los Alamos, Oct. 1972; Part. Accelerator 4, 111-126, 1972
- ³ W. Bauer, G. Dammertz, H. Eschelbacher, H. Hahn, W. Jüngst, E. Rathgeber, J. Votruba Proc. Int. Conf. Instrumentation High Energy Physics, Dubna, UdSSR (1970)
- ⁴ A. O. Hanson IEEE Trans. NS-18, No. 3, 149 (1971)
- ⁵ R. Benaroya, A. H. Jaffey, K. Johnson, T. Khoe, J. J. Livinghood, J. M. Nixon, G. W. Parker, W. J. Ramler, J. Aron, W. A. Wesolowski Appl. Phys. Lett., <u>21</u>, 5, 235 (1972)
- ⁶ H. Klein Habilitationsschrift, Universität Frankfurt (1968)
- ⁷ Studie über einen supraleitenden Protonen-Linearbeschleuniger im GeV-Bereich, KFZ Karlsruhe, IEKP, Juli 1967 (unveröffentlicht)
- ⁸ P. Kneisel Dissertation, Universität Karlsruhe (1972); KFK 1645
- ⁹ J. P. Turneaure, I. Weissman J. Appl. Phys. <u>39</u>, 4417 (1968); Appl. Phys. Letters <u>13</u>, 390 (1968)
- ¹⁰ J. P. Turneaure, Nguyen Tuong Viet Appl. Phys. Letters 16, 333 (1970)
- ¹¹ H. J. Halama Proc. Part. Accelerator Conf. Chicago (1971)
- ¹² C. Lyneis, M. McAshan, Nguyen Tuong Viet Proc. Prot. Lin. Accelerator Conf. Los Alamos (1972)
- ¹³ H. Diepers, O. Schmidt, H. Martens, R. K. Sun Phys. Letters <u>37A</u>, 139 (1971)
- ¹⁴ H. Martens, H. Diepers, R. K. Sun Phys. Letters <u>34A</u>, 439 (1971) H. Diepers, H. Martens Phys. Letters <u>38A</u>, 337 (1972) H. Diepers, H. Martens, O. Schmidt, K. Schnitzke, Y. Uzel Trans. IEEE <u>NS-20</u>, 3, 68 (1973)

15 P. Kneisel, O. Stoltz, J. Halbritter IEEE Trans. Nucl. Sci. NS-18, No. 3, 159 (1971) 16 J. L. Fricke, B. Piosczyk, J. E. Vetter, H. Klein Part. Acc. 3, 35 (1972) 17 I. M. Khalatnikov, A. A. Abrikosov Adv. Physics 8, 45 (1959) 18 J. P. Turneaure HEPL Report No. 507 (1967) 19 J. Halbritter Z. Physik 238, 466 (1970); Ext. Bericht 3/69-2, KFZ Karlsruhe (1969)20 P. Ceperley Thesis, Stanford University 1971, Stanford 21 J. E. Vetter, B. Piosczyk, K. Mittag, R. Hietschold Proc. Proton Linear Accelerator Conf., Batavia, p. 249 (1970) 22 G. Krafft Dissertation, Universität Karlsruhe (1973); KFK 1786 23 J. L. Fricke Dissertation, Universität Karlsruhe (1973); KFK 1907 24 D. Schulze Dissertation, Universität Karlsruhe (1971); KFK 1493 25 H. A. Schwettman, J. P. Turneaure, W. M. Fairbank, T. F. Smith, M. S. McAshan, P. B. Wilson, E. E. Chambers; IEEE NS-14, No.3, 336(1967) 26 J. M. Pierce J. Appl. Phys. 44, 3, 1342 (1973) 27 J. Halbritter, K. Hoffmann Ext. Bericht 3/67-8, Karlsruhe, 1967 28 L. D. Landau, E. M. Lifschitz Elektrodynamik der Kontinua, Akademieverlag Berlin (1967) 29 J. Halbritter Part. Acc. 3, 163 (1972) 30 J. Halbritter J. Appl. Phys. 42, 82 (1971); 41, 4581 (1970) 31 M. A. Allen, Z. D. Farkas, H. A. Hogg, E. W. Hoyt, P. B. Wilson IEEE Trans. Nucl. Sci. NS-18, 168 (1971) Proc. Part. Accelerator Conf. San Francisco (1973) 32 P. Kneisel, O. Stoltz, J. Halbritter Proc. Appl. Superconducting Conf. 1972, Annapolis (USA) 33 E. A. Lynton Supraleitung, BI Hochschulbücher, Mannheim (1964)

- ³⁴ R. D. Parks (Ed.) Superconductivity, M. Decker, Inc. New York (1969)
- ³⁵ J. Auer, H. Ullmaier Phys. Rev. B, <u>7</u>, 1, 136 (1973)
- ³⁶ J. Hasse in J. Halbritter (Ed.), Ext. Bericht 3/72-11, KFZ Karlsruhe (1972)
- ³⁷ P. Flécher Dissertation, Universität Karlsruhe (1970)
- ³⁸ J. Halbritter in J. Halbritter (Ed.), Ext. Bericht 3/72-11, KFZ Karlsruhe (1972)
- ³⁹ A. Citron, J. L. Fricke, C. M. Jones, H. Klein, M. Kuntze, B. Piosczyk, D. Schulze, H. Strube, J. E. Vetter Proc. Int. Conf. High Energy Accelerator, Geneva, 278 (1971) J. E. Vetter, B. Piosczyk, J. L. Fricke Proc. Proton Lin. Accelerator Conf. Los Alamos 1972 p. 145-150
- ⁴⁰ M. Rabinowitz Lett. Nuovo Cimento <u>4</u>, 549 (1970); J. Appl. Phys. <u>42</u>, 88 (1971)
- ⁴¹ M. Danielsen Thesis, Technical University of Denmark, Lyngby, 1971
- ⁴² C. R. Haden, W. H. Hartwig Phys. Rev. <u>148</u>, 313 (1966) J. M. Victor, W. H. Hartwig J. Appl. Phys. <u>39</u>, 2539 (1968) C. R. Haden, W. H. Hartwig, J. M. Victor IEEE Trans. Magn. Vol. Mag. 2, 3, 331 (1965)
- ⁴³ H. J. Halama Appl. Phys. Lett. <u>19</u>, 90 (1971)
- 44 J. Halbritter Phys. Lett. <u>43A</u>, 3, 309 (1973)
- ⁴⁵ K. Johnson Chr. Michelson Inst. Beretn. 16, Bergen (1954)
- ⁴⁶ H. Klein, N. Merz, O. Siart Part. Accelerator <u>3</u>, 235 (1972)
- ⁴⁷ O. Siart Dissertation, Universität Frankfurt (1970)
- ⁴⁸ A. J. Sierk, C. J. Hammer, T. A. Tombrello Part. Accelerator 2, 149 (1971)
- ⁴⁹ L. B. Mullett A. E. R. E., G/R 853, Harwell, Berkshire (1957)

- ⁵⁰ M. Sucher, J. Fox Handbook of Microwave Measurements, Vol. I-III, Polytechnic Press, Brooklyn (1963)
- ⁵¹ W. Bauer, A. Citron, G. Dammertz, H. Eschelbacher, W. Jüngst, H. Lengeler, H. Miller, E. Rathgeber, H. Diepers Proc. Appl. Superconducting Conf. Annapolis, Proc. Part. Accelerator Conf. San Francisco (1973)
- ⁵² L. Young Anodic Oxide Films, Academic Press, London (1961)
- ⁵³ F. T. Sisco Columbium and Tantalum, J. Wiley, N. York (1963)
- ⁵⁴ H. Strube IEKP Karlsruhe, Juli 1971 (unveröffentlicht)
- ⁵⁵ E. A. Trendelenburg <u>Ultrahochvakuum</u>,G. Braun Karlsruhe, 1963
- ⁵⁶ D. A. Degras Techniques et appl. d l'ultravide, Paris, VI, 129 (1969)
- ⁵⁷ Y. A. Rocher, J. Septfonds Cryogenics, April 1967, S. 96
- ⁵⁸ J. Halbritter, R. Hietschold, P. Kneisel, H. Schopper KFK-Bericht 758, KFZ, Karlsruhe (1968)
- ⁵⁹ Gmelins Handbuch der anorganischen Chemie Verlag Chemie, Weinheim (Bergstraße)
- ⁶⁰ Johnson (Ed.) Properties of Materials at low temperature (Phase 1) Pergamon Press 1961
- ⁶¹ I. N. Bronstein, K. A. Semendjajew <u>Taschenbuch der Mathematik</u>, Leipzig (1963)
- ⁶² H. Hahn in J. Halbritter (Ed.), Ext. Bericht 3/72-11, KFZ Karlsruhe (1972)
- ⁶³ J. Halbritter Ext. Bericht 3/72-2, KFZ, Karlsruhe (1972)
- ⁶⁴ M. Rabinowitz Appl. Phys. Letters <u>16</u>, 419 (1969), <u>19</u>, 73 (1971)
- ⁶⁵ J. P. Turneaure Trans. IEEE <u>NS-18</u>, No. 3, 166 (1971)
- ⁶⁶ H. Schopper, H. Strube, L. Szecsi Ext. Bericht 3/68-6, KFZ Karlsruhe (1968)
- ⁶⁷ B. Bischoff Nucl. Instr. and Meth., 97, 81 (1971)

68 M. Strongin, H. H. Farrell, H. J. Halama, O. F. Kammerer, C. Varmazis, J. M. Dickey Part. Accelerator 3, 209, (1972) 69 E. Kanda, T. Haseda, A. Otsuvo Physica XX, 131 (1954) 70 J. Wahl Diplomarbeit, Universität Karlsruhe (1973) 71 K. Mittag, R. Hietschold, J. E. Vetter, B. Piosczyk Proc. Proton Linear Acc. Conf., Batavia, p. 257 (1970) 72 A. H. Cooke, H. Meyer, W. P. Wolf, D. F. Evans, R. E. Richards Proc. Toy. Soc. A225, 112, 319 (1954) 73 G. E. Jelinek, L. J. Slutsky, A. M. Karo J. Phys. Chem. Solids 33, 1279 (1972) 74 G. N. Lewis J. A. C. S. 46, 2027 (1924) 75 Ch. H. Poole, H. A. Farach Relaxation in Magnetic Resonance, Academic Press (1971) 76 B. Lax, K. J. Button Microwave Ferrites and Ferrimagnetics, McGraw-Hill (1962) 77 A. H. Morrish The Principles of Magnetism, J. Wiley (1965) 78 J. Gilchrist, P. Monceau Phil. Mag. 18, 237 (1968) 79 G. Wurzbacher, P. Gebhardt Surface Science 21, 324 (1970) 80 M. F. Collings Proc. Phys. Soc. 89, 415 (1966) 81 H. Kalbfleisch Z. Phys. <u>188</u>, 186 (1965); H. G. Kahle, H. Kalbfleisch, U. Kump Z. Phys. 188, 193 (1965) 82 R. S. Yadava, D. C. Dube, R. Parshad Indian J. Pure Appl. Phys. 7, 442 (1969) 83 N. Bloembergen Nuclear Magnetic Relaxation, W. A. Benjamin (1961) 84 B. Piosczyk, P. Kneisel, O. Stoltz, J. Halbritter Proc. Part. Accelerator Conf. San Francisco (1973) 8 5 W. Hauser IEKP Karlsruhe, Diplomarbeit 1973 86 J. Halbritter Z. Physik, 2, 43, 201 (1971)

- ⁸⁷ F. Irie, K. Yamufui J. Phys. Soc., Japan, <u>23</u>, 2, 225 (1966)
- ⁸⁸ J. Halbritter IEKP Karlsruhe (1973 unveröffentlicht)
- ⁸⁹ C. Caroli, P. G. de Ginnes, J. Matricon Phys. Lett. <u>9</u>, 4, 307 (1964)
- ⁹⁰ J. C. Male Cryogenics <u>10</u>, 381 (1970)
- ⁹¹ P. H. Melville Advances in Phys. <u>21</u>, 647 (1972)
- ⁹² Y. B. Kim, C. F. Hempstead, A. R. Strnad Phys. Rev. <u>139</u>, 4A, 1163 (1965)
- ⁹³ J. Gittlemann, B. Rosenblum J. Appl. Phys. <u>39</u>, 2617 (1968)
- ⁹⁴ G. W. Series Rep. on Progr. in Phys. 22, 280 (1959)