

K E R N F O R S C H U N G S Z E N T R U M

KARLSRUHE

Juni 1977 Institut für Kernverfahrenstechnik KFK 2466

Einfluß der Verfahrensgastemperatur auf die Entmischung der Uranisotope in der Trenndüse

W. Berkhahn, P. Bley, H. Breton, W. Ehrfeld

GESELLSCHAFT FÜR KERNFORSCHUNG M.B.H.

KARLSRUHE

Als Manuskript vervielfältigt

ī

Für diesen Bericht behalten wir uns alle Rechte vor

GESELLSCHAFT FÜR KERNFORSCHUNG M.B.H. KARLSRUHE

KERNFORSCHUNGSZENTRUM KARLSRUHE

KFK 2466

Institut für Kernverfahrenstechnik

EINFLUSS DER VERFAHRENSGASTEMPERATUR AUF DIE ENTMISCHUNG DER URANISOTOPE IN DER TRENNDÜSE

von

- W. Berkhahn
- P. Bley
- H. Breton
- W. Ehrfeld

Gesellschaft für Kernforschung m.b.H., Karlsruhe

.

.

,

(c) A second s

Zusammenfassung:

Der Einfluß der Verfahrensgastemperatur auf die Entmischung der Uranisotope in der Trenndüse wurde im Temperaturbereich zwischen 23°C und 130°C durch Trennversuche mit H_2/UF_6 -Gemischen untersucht. Die Messungen zeigen, daß der für die Isotopentrennung optimale Einlaßdruck p_0^+ überproportional mit der absoluten Temperatur T des Verfahrensgases ansteigt $(p_0^+ - T^{1.4} \pm 0.2)$, wobei es gleichzeitig zur schwachen Zunahme des Elementareffektes ε_A der Isotopentrennung kommt $(\varepsilon_A^{max} - T^{0.12} \pm 0.05)$. Die Temperaturabhängigkeit der Trenneigenschaften kann durch Modellrechnungen, die auf der Ähnlichkeitstheorie der Strömungs- und Transportvorgänge basieren und die keinerlei Einschränkungen hinsichtlich der Trennelementgeometrie und der Art des verwendeten Zusatzgases unterliegen, mit guter Genauigkeit erfaßt werden.

Ordnet man in einer technischen Trenndüsenanlage die Trennelemente auf der heißen Seite des Verfahrensgaskühlers an, so lassen sich damit die spezifischen Aufwandsgrößen merklich absenken. Bei einer Erhöhung der Trennelementtemperatur von z. B. 40°C auf 120°C hätte diese Maßnahme eine Absenkung des spezifischen Energieverbrauchs um ca. 5 % (± 2 %), des spezifischen Ansaugvolumens um ca. 31 % (± 5 %) und der spezifischen Schlitzlänge um ca. 23 % (± 7 %) zur Folge.

Influence of process gas temperature on uranium isotope separation in the separation nozzle

Summary

The influence of temperature on the separation of the uranium isotopes in the separation nozzle was investigated experimentally in a temperature range between $23^{\circ}C$ and $130^{\circ}C$, using an H_2/UF_6 mixture as a process gas. The measurements show that the optimum inlet pressure p_0^+ for isotope separation increases with the absolute temperature T of the gaseous mixture $(p_0^{+}-T^{1.4+t}0.2)$. Moreover, a slight increase of the elementary effect ε_A of isotope separation occurs ($\varepsilon_A \sim T^{0.12+0.05}$). The temperature dependence of separation can be described accurately by model calculations which are based on the gas kinetic scaling relations of transport phenomena. The calculations are not restricted by the nozzle geometry and the composition of the gaseous mixture, respectively.

The specific expenditure of the separation nozzle process might be reduced by inserting the separation nozzle elements in the hot part of the separative stage, i. e. upstream of the gas cooling system. Increase of the temperature of the separation nozzle systems from 40° C to 120° C, for instance, would decrease by about 5 % (\pm 2 %) the specific energy consumption, by about 31 % (\pm 5 %), the specific suction volume and by about 23 % (\pm 7 %) the specific slit length.

Inhaltsverzeichnis

			Seite
1.	Einl	leitung	2
2.	Definition der zur Beschreibung der Trenneigen- schaften einer Trenndüse wichtigen Größen		5
3.	Der nach der Ähnlichkeitstheorie zu erwartende Temperatureinfluß		6
	3.1	Die wichtigsten Ähnlichkeitszahlen für die Strömungs- und Entmischungsvorgänge in der Trenndüse	6
	3.2	Modellrechnungen ohne Berücksichtigung der unterschiedlichen Temperaturabhängigkeiten der gaskinetischen Wirkungsquerschnitte der Gemischkomponenten	8
	3.3	Modellrechnungen unter Berücksichtigung der unterschiedlichen Temperaturabhängigkeiten der gaskinetischen Wirkungsquerschnitte der Gemischkomponenten	9
4.	Apparativer Aufbau		
	4.1	Trennelement	11
	4.2	Heizbare Trennelementkammer	14
	4.3	Funktionsprinzip der Trennapparatur	16
5.	Meßergebnisse		
	5.1	Versuchsdurchführung	19
	5.2	Einfluß der Verfahrensgastemperatur auf den maximalen Elementareffekt der Isotopentren- ^{nung E} A,max	20
	5.3	Einfluß der Verfahrensgastemperatur auf den optimalen Einlaßdruck p _o ⁺	24
	5.4	Einfluß des Expansionsverhältnisses ¶ auf die Isotopentrennung bei unterschiedlichen Verfahrensgastemperaturen	24
	5.5	Einfluß der Verfahrensgastemperatur auf den Gasdurchsatz p ⁺ im optimalen Betriebspunkt	27
	5.6	Einfluß der Verfahrensgastemperatur auf die spezifischen Aufwandsgrößen	29
6.	Diskussion		
Li	terat	curverzeichnis	35

1. Einleitung

Bei dem im Kernforschungszentrum Karlsruhe entwickelten Trenndüsenverfahren zur Anreicherung des leichten Uranisotops U²³⁵ beruht die partielle Entmischung der Uranisotope auf der Massenabhängigkeit der Zentrifugalkräfte in einer schnellen, gekrümmten Strömung aus gasförmigem Uranhexafluorid (UF₆), dem in hohem Überschuß ein leichtes Zusatzgas (He oder H₂) beigefügt ist /1/, /2/.

Das leichte Zusatzgas erhöht die Strömungsgeschwindigkeit des UF₆ und damit die für die Isotopentrennung maßgebliche Zentrifugalkraft. Zusätzlich verläuft die Gleichgewichtseinstellung der beiden Uranisotope unter dem Einfluß der Druckdiffusion im Zusatzgas unterschiedlich schnell, so daß höhere Trenneffekte als im Fall der Gleichgewichtsentmischung erreicht werden /3/.

Die bisher für die Realisierung des Trenndüsenverfahrens in einer großtechnischen Anreicherungsanlage günstigsten Ergebnisse wurden mit der in Abb. 1 dargestellten Trenndüsenanordnung unter Verwendung von H₂ als Zusatzgas erzielt.

<u>Abb. 1:</u> Schnitt durch eine schlitzförmige Trenndüse mit schematischer Darstellung der Stromlinien.

Bei dieser Anordnung strömt ein bandförmiger Strahl aus UF_6 -Zusatzgasgemisch aufgrund eines Druckgefälles durch eine schlitzförmige Düse und wird an einer gekrümmten Wand umgelenkt. Der teilweise entmischte Gasstrom L_0 wird am Ende der Umlenkung in zwei Absaugfraktionen ϑL_0 und $(1-\vartheta)L_0$ aufgeteilt. In der nahe der Umlenkwand strömenden schweren Fraktion $(1-\vartheta)L_0$ ist das UF₆ gegenüber dem Zusatzgas und das schwere gegenüber dem leichten Isotop angereichert. Für die von der Umlenkwand entfernt strömende leichte Fraktion ϑL_0 gilt das Umgekehrte.

Im Rahmen einer systematischen Optimierung wurden unter Verwendung von UF₆/H₂-Gemisch die Düsengeometrie, der Einlaßdruck, das Expansionsverhältnis, das Uranabschälverhältnis und die Gemischkonzentration variiert.

Von einer systematischen Variation der Verfahrensgas<u>tempera-</u> <u>tur</u> wurde beim Gemisch UF_6/H_2 zunächst abgesehen, da für die erste technische Anwendung des Trenndüsenverfahrens vorgesehen ist, daß sich die Trennelemente auf der <u>kalten</u> Seite des Verfahrensgaskühlers befinden, dessen Gasaustrittstemperatur nur wenig oberhalb von Zimmertemperatur liegen wird (ca. 40° C). Die Gasaustrittstemperatur des Kühlers läßt sich nur geringfügig verändern, da sie nach unten durch das Kühlsystem und nach oben durch die resultierende Gasaustrittstemperatur des Kompressors begrenzt ist.

Bei dem früher für die technische Anwendung in Erwägung gezogenen UF₆/<u>Helium</u>-Gemisch wurde die Abhängigkeit der Isotopenentmischung von der Temperatur untersucht /4/, /5/, da wegen der bekannten, relativ guten thermischen Beständigkeit des UF₆/He-Gemisches eine Anordnung der Trennelemente auf der <u>heißen</u> Seite des Kühlers in Erwägung gezogen wurde. Diese Anordnung ergibt merklich niedrigere Werte des spezifischen Ansaugvolumens und der spezifischen Schlitzlänge bei innerhalb der Fehlergrenze konstantem spezifischen Energiever-

- 3 -

brauch /6/. Sie könnte damit eine Reduzierung der Trennarbeitskosten bewirken, sofern durch die erhöhte Temperatur das Langzeitverhalten der Trennelemente nicht ungünstig beeinflußt wird.

In der Zwischenzeit mit dem System UF₆/<u>Wasserstoff</u> gewonnene Erfahrungen haben die Bedenken bezüglich der geringeren thermischen Beständigkeit dieses Gemisches weitgehend ausgeräumt, weshalb im Rahmen der Weiterentwicklung des Trenndüsenverfahrens ein Hochtemperaturbetrieb der Trennelemente auch für das System UF₆/H₂ in Erwägung gezogen wird. In der vorliegenden Arbeit sollte daher der Einfluß der Verfahrensgastemperatur auf die Entmischung der Uranisotope in der Trenndüse bei Verwendung von UF₆/H₂-Gemisch als Verfahrensgas untersucht werden.

Um die im Institut für Kernverfahrenstechnik vorhandene aufwendige Einrichtung zur Optimierung von Trenndüsensystemen /7/ ohne bleibende Veränderung für die Hochtemperaturversuche mitbenutzen zu können, wurde eine über temperierbare Metallschläuche angekoppelte heizbare Trennkammer entwickelt. Damit im Temperaturbereich zwischen 23°C und 130°C mit H₂/UF₆-Gemisch durchgeführte Isotopentrennversuche zeigen, daß sich auch bei Verwendung von Wasserstoff als leichtes Zusatzgas unter den für dieses Gemisch optimalen übrigen Betriebsbedingungen das spezifische Ansaugvolumen und die spezifische Schlitzlänge durch Temperaturerhöhung relativ stark vermindern lassen. Gleichzeitig zeigt sich eine hart an der Fehlergrenze liegende Abnahme des spezifischen Energieverbrauchs.

Die Ergebnisse werden auf der Grundlage der Ähnlichkeitstheorie für Strömungs- und Entmischungsvorgänge diskutiert, wobei sich weitgehende Übereinstimmung zwischen Theorie und Experiment ergibt.

- 4 -

2. <u>Definition der zur Beschreibung der Trenneigenschaften</u> einer Trenndüse wichtigen Größen

Die Entmischung der Uranisotope in der Trenndüse wird durch den Elementareffekt der Isotopentrennung ε_A beschrieben, der aus den Molenbrüchen des Uran-235 in der leichten und der schweren Fraktion (n₁ bzw. n_c) bestimmt wird:

$$\epsilon_{A} = \frac{n_{1}(1-n_{s})}{n_{s}(1-n_{1})} - 1.$$

Zur Charakterisierung der Trennleistung

$$\delta U = \frac{L_u}{2} \epsilon_A^2 \vartheta_u (1 - \vartheta_u)$$

muß neben dem Uran-Moldurchsatz L_u noch das Uranabschälverhältnis 🗞 bestimmt werden, welches sich aus Materialbilanzen zu

$$\vartheta_{u} = \frac{N_{1}(N_{s}-N_{o})}{N_{o}(N_{s}-N_{1})}$$

ergibt. Hierbei bezeichnen N_o, N_l und N_s die UF₆-Konzentrationen im Ausgangsgas und in der leichten und schweren Fraktion.

Zur Bewertung der Wirtschaftlichkeit einer Trenndüsenanlage werden die in /1/ definierten spezifischen Aufwandsgrößen herangezogen:

Der spezifische Energieverbrauch bei idealer isothermer Kompressionsarbeit

$$E_{s} = \frac{L_{o}RT_{v}ln(p_{o}/p_{1})}{\delta U} ,$$

das spezifische Ansaugvolumen 🖉

$$V_{\rm s} = \frac{L_{\rm o} RT_{\rm v}}{P_{\rm o} \delta U}$$
 und

die spezifische Schlitzlänge

$$l_s = \frac{1}{\delta U}$$
, wobei

L_o den Moldurchsatz des Gémisches, R die allgemeine Gaskonstante, T_v die Ansaugtemperatur des Verdichters und 1 die Schlitzlänge des Trennelementes bedeuten.

3. <u>Der nach der Ähnlichkeitstheorie zu erwartende Temperatur-</u> einfluß

3.1 <u>Die wichtigsten Ähnlichkeitszahlen für die Strömungs- und</u> Entmischungsvorgänge in der Trenndüse

In der Trenndüsenströmung werden immer dann gleiche Entmischungen zwischen zwei Komponenten erzielt, wenn für jede Komponente überall in der Düse das Verhältnis von Teilchenstrom L in Strömungsrichtung zu Teilchenstrom B quer zur Strömungsrichtung konstant bleibt.

Der Teilchenstrom L in Strömungsrichtung ist proportional zu dem Produkt aus Teilchendichte v, Strömungsgeschwindigkeit v und engster Düsenweite a⁺

$$L \sim v \cdot v \cdot a^+$$

Der entmischende Teilchenstrom B quer zur Strömungsrichtung ist proportional zur Teilchendichte v, zur Diffusionskonstanten D sowie zum relativen radialen Druckgradienten $\frac{1}{p} \frac{\partial p}{\partial r}$

$$B \sim v \cdot D \cdot \frac{1}{p} \frac{\partial p}{\partial r}$$

In der Trenndüsenströmung läßt sich der Druckgradient durch die <u>Mach-Zahl</u> Ma bzw. das <u>Geschwindigkeitsverhältnis</u>¹⁾ S ausdrücken

$$\frac{1}{p} \cdot \frac{\partial p}{\partial r} = \frac{2S^2}{r} ,$$

so daß der entmischende Teilchenstrom B für konstantes Geschwindigkeitsverhältnis S nur dem Produkt aus Teilchendichte und Diffusionskonstante D proportional ist:

Somit ist für ein konstantes Geschwindigkeitsverhältnis S eine Konstanz des Verhältnisses L/B gleichbedeutend damit, daß sich die <u>Péclet-Zahl</u> Pé = va⁺/D nicht ändert. Die Péclet-Zahl Pé läßt sich bei Erhöhung der Gastemperatur T_o durch entsprechende Anhebung der Teilchendichte bzw. des Druckes konstant halten.

Die Péclet-Zahl Pé ist über die Schmidt-Zahl Sc = $\frac{\eta}{\rho \cdot D}$ (η = Zähigkeit, ρ = Dichte) mit der <u>Reynolds-Zahl</u> Re = $\frac{a^+ \cdot v \cdot \rho}{\eta}$ verknüpft (Re.Sc = Pé), welche eine weitere, für die Trenndüsenströmung wesentliche Kennzahl darstellt, da in der Düsenströmung die dissipativen Verluste im wesentlichen auf Rei-

 $S = \sqrt{\kappa/2}$ • Ma (κ = Verhältnis der spezifischen Wärmen)

Als Geschwindigkeitsverhältnis S bezeichnet man das Verhältnis von Strömungsgeschwindigkeit zur wahrscheinlichsten thermischen Geschwindigkeit der Moleküle im Schwerpunktsystem der Strömung.

bung beruhen /8/. Mit zunehmender Reynolds-Zahl nehmen die Verluste ab, so daß bei konstantem Expansionsverhältnis π (= $p_0/p_1 = p_0/p_s$) das Geschwindigkeitsverhältnis S ansteigt.

3.2 <u>Modellrechnungen ohne Berücksichtigung der unterschied-</u> lichen Temperaturabhängigkeiten der gaskinetischen Wirkungsquerschnitte der Gemischkomponenten

In einem Gasgemisch, bei dem die gaskinetischen Wirkungsquerschnitte der beiden Komponenten gleiche Temperaturabhängigkeiten besitzen²⁾, sind auch die Temperaturabhängigkeiten der Zähigkeit η und des Produktes aus Dichte ρ und Diffusionskonstante D gleich, d. h. die Schmidt-Zahl Sc ist von der Temperatur unabhängig. Bei einer Temperaturvariation ändert sich also bei konstanter Péclet-Zahl Pé auch die Reynolds-Zahl der Düsenströmung nicht, so daß in der Trenndüsenströmung jeweils gleiche Geschwindigkeitsverhältnisse S erreicht werden.

Nach dieser Modellvorstellung werden bei einer Temperaturerhöhung in einer Trenndüse dann gleiche Entmischungen erreicht, wenn der Düsenvordruck p_o entsprechend so erhöht wird, daß die Péclet-Zahl bzw. die Reynolds-Zahl der Trenndüsenströmung konstant bleibt. Der bei einer Druckänderung maximal erreichbare Trenneffekt wird durch eine Temperaturvariation also nicht verändert.

Um bei einem UF_6/H_2 -Gasgemisch eine Konstanz der Péclet-Zahl Pé zu erreichen, muß bei einer Temperaturerhöhung infolge des unterschiedlichen Anstiegs der Strömungsgeschwindigkeit v (v~T_0^{0,5}) und der Diffusionskonstanten D (D~T_0^{1,83}) der Einlaßdruck entsprechend p₀~ T_0^{1,33} erhöht werden.

- 8 -

²⁾ Dies gilt im einfachsten Fall für ein Modellgas starrer Kugeln und i. a. auch für einheitliche Gase, z. B. Isotopengemische.

Nach diesen einfachen Modellvorstellungen verschiebt sich also in einem UF_6/H_2 -Gasgemisch bei einer Temperaturerhöhung der für die Entmischung optimale Düsenvordruck p_0^+ proportional $T_0^{1,33}$.

3.3 <u>Modellrechnungen unter Berücksichtigung der unter-</u> schiedlichen Temperaturabhängigkeiten der gaskinetischen Wirkungsquerschnitte der Gemischkomponenten

Im Unterschied zu den hier dargelegten Modellvorstellungen besitzen die Komponenten der in der Trenndüse verwendeten UF_6/H_2 - oder UF_6/He -Gasgemische – die UF_6 -Moleküle und die Zusatzgasmoleküle – unterschiedliche Temperaturabhängigkeiten der gaskinetischen Wirkungsquerschnitte³⁾. Das Verhältnis von Zähigkeit n zu dem Produkt aus Dichte und Diffusionskonstante $\rho \cdot D$ bleibt deshalb bei einer Temperaturvariation nicht, wie im einfachen Modell angenommen, konstant, sondern wird bei einer Temperaturerhöhung geringfügig kleiner⁴⁾. Dadurch steigt bei konstanter Péclet-Zahl die Reynolds-Zahl Re an, so daß bei konstantem Expansionsverhältnis das Geschwindigkeitsverhältnis S und damit auch die Gemisch- und Isotopentrennung geringfügig ansteigen.

3) Der Stoßquerschnitt des UF₆-Moleküls o_{UF} nimmt mit steigender Temperatur T viel stärker ab als⁶die Stoßquerschnitte der Zusatzgasmoleküle o_H bzw. o_{He}

 $(\sigma_{\rm UF_6}^{-T^{-0,47}}, \sigma_{\rm H_2}^{-T^{-0,18}}, \sigma_{\rm He}^{-T^{-0,19}}).$

4) In einem UF₆-Zusatzgasgemisch mit hohem molaren Überschuß an Zusatzgas unterscheiden sich die Temperaturabhängigkeiten der Zähigkeit η und des Produktes aus Dichte und Diffusionskonstante P.D. Die Änderung der Zähigkeit wird weitgehend vom Verhalten der relativ "harten" Zusatzgasmoleküle, die Temperaturabhängigkeit der Diffusionskonstanten hingegen gleichermaßen von den "harten" Zusatzgasmolekülen und den relativ "weichen" UF₆-Molekülen bestimmt. In der Trenndüse diffundieren die schweren UF₆-Moleküle schneller durch das Zusatzgas zur Umlenkwand als die leichten UF₆-Moleküle und ermöglichen während des Einstellvorganges höhere Elementareffekte der Isotopentrennung als im Fall der Gleichgewichtsentmischung. Dieser positive Effekt des Zusatzgases wird durch Stöße der unterschiedlichen UF₆-Moleküle miteinander verringert, so daß die relativ stärkere Abnahme des UF₆-Stoßquerschnittes bei einer Temperaturerhöhung, d. h. die Verringerung der Anzahl der UF₆-UF₆-Stöße, zu einem Anstieg des Elementareffektes der Isotopentrennung ϵ_A und zu einer weiteren Erhöhung des optimalen Einlaßdrukkes p₀⁺ führt⁵.

Der aufgrund der unterschiedlichen Temperaturabhängigkeiten der gaskinetischen Wirkungsquerschnitte vorhandene Einfluß der Temperatur auf die Isotopentrennung wurde unter Zuhilfenahme von Sondenmessungen /9/, numerischen Berechnungen der gaskinetischen Transportkoeffizienten /10/ und numerischen Lösungen der klassischen Diffusionsgleichung /3/ anhand der Ähnlichkeitsparameter der Trenndüsenströmung auch quantitativ berechnet /11/.

Ein Vergleich mit dem einfachen Modell, welches die unterschiedlichen Temperaturabhängigkeiten der Wirkungsquerschnitte von UF₆- und Zusatzgas-Molekülen nicht berücksichtigt, ergibt jedoch nur einen geringfügig stärkeren Anstieg des optimalen Einlaßdruckes p₀⁺ mit der Temperatur (p₀⁺ ~ T₀^{1,4}; UF₆/H₂-Gemisch; N₀ = 4 - 10 %), und der maximal erreichbare Elementareffekt der Isotopentrennung ε_A steigt mit zunehmender Verfahrensgastemperatur nur sehr schwach an, für UF₆/H₂-Gemische mit 4 Mol-% bis 10 Mol-% ergibt sich etwa $\varepsilon_A ~ T_0^{0,08}$.

⁵⁾ Durch die Abnahme der UF₆-UF₆-Stöße erreicht die Entmischung in der Trenndüse schneller ihren Maximalwert, so daß der optimale Einlaßdruck p₀⁺ zu höheren Werten verschoben wird /3/.

Diese Berechnungen zeigen also, daß die einfache Modellvorstellung ohne Berücksichtigung der unterschiedlichen Temperaturabhängigkeiten der Wirkungsquerschnitte von UF₆ und Zusatzgas den Einfluß der Verfahrensgastemperatur auf die Isotopentrennung schon recht gut beschreibt.

4. Apparativer Aufbau

4.1 Trennelement

Die Geometrie des Trennelementes, das bei den Trennversuchen mit erhöhter Verfahrensgastemperatur verwendet wurde, ist mit der Geometrie identisch, bei der bisher bei Laborversuchen die günstigsten spezifischen Aufwandsgrößen erreicht werden konnten.

Abbildung 2 zeigt eine Konstruktionszeichnung des Trennelementes, die Maße der wichtigsten Geometrieparameter sind hierbei in einer Tabelle zusammengestellt.

Abbildung 3 zeigt den Aufbau des Trennelementes mit verstellbarem Abschäler auf der Trennelementgrundplatte. Das Trennelement selbst ist auf einer gabelförmigen Halterung montiert, in deren mittleren Steg die Umlenkrille eingeschliffen ist. Auf den beiden äußeren Stegen sind links das Düsenblech und rechts der Abschäler befestigt, deren Abstände zur Umlenkwand (die engste Düsenweite a⁺ und die Abschälerweite f) über Stellschrauben zwischen Steg und Trennelementgrundplatte verstellt werden können. Im unteren Teil der Grundplatte erkennt man die Gaszuführung für das Düsengas und symmetrisch dazu den Kanal der schweren Fraktion. Die leichte Fraktion expandiert durch Bohrungen im oberen Teil der Grundplatte.

Im Düsenkanal erkennt man den Temperaturfühler zur Bestimmung der Verfahrensgastemperatur unmittelbar vor Einlauf in

Abb. 2: Schnitt durch das bei den Trennversuchen mit erhöhter Verfahrensgastemperatur verwendete Trennelement.

Abmessungen de	Abmessungen des Trennelementes		
Schlitzlänge	15 mm		
Umlenkradius	0,75 mm		
ano	0,303 mm		
a _{g00}	0,333 mm		
Abschälerweite f	0,110,19 mm		

Tabelle: Abmessungen und Justierung des Trennelementes mit verstellbarer Abschälerweite.

Abb. 3: Aufbau des Trennelementes auf der Trennelementgrundplatte. das Trennelement. Die seitliche Abdichtung des Trennelementes erfolgt über zwei Abdeckplatten. Als Dichtung zwischen Trennelement und Abdeckplatten wird 0,5 mm starke Teflonfolie verwendet. Zur direkten und gleichmäßigen Beheizung des Trennelementes ist jeweils auf den Rückseiten der Abdeckplatten ein Heizleiter in einer spiralförmig eingefrästen Nut versenkt aufgebracht.

Die gabelförmige Trennelementhalterung ist auf die hintere Trennelementabdeckplatte aufgeschraubt, um geometrische Veränderungen beim Aufheizen des Trennelementes zu verhindern⁶⁾.

4.2 Heizbare Trennelementkammer

Abbildung 4 zeigt einen Schnitt durch die Trennelementkammer mit eingebautem Trennelement. Das zylindrische Kammergehäuse (\emptyset = 30 cm) wird an den Stirnflächen durch zwei Flansche abgedichtet. Auf dem hinteren Flansch ist über 8 Abstandshalter die Trennelementgrundplatte mit dem Trennelement zwischen den beiden heizbaren Trennelementabdeckplatten aufgeschraubt.

Auf der Außenseite des Flansches sind die über einen aufgelöteten Heizleiter beheizbare Düsengaszuführung und der Anschlußflansch für die schwere Fraktion angebracht und mit der hinteren Trennelementabdeckplatte über Rohrzwischenstücke verbunden.

Die leichte Fraktion wird der Kammer direkt über den oberen Anschlußflansch entnommen. Für die Heizleiter- und Thermoelementanschlüsse sind auf dem Kammermantel fünf hochvakuumdichte Durchführungen angebracht.

⁶⁾ Versuche, bei denen das Trennelement unter dem Meßmikroskop auf über 120°C aufgeheizt wurde, zeigten innerhalb einer Fehlergrenze von ± 1 μm keine Veränderungen der Trennelementgeometrie.

Abb. 4: Heizbare Trennelementkammer mit eingebautem Trennelement.

Die gesamte Trennelementkammer sowie das Trennelement sind aus V2A-Stahl (1.4301) gefertigt, der gegen die bei hoher Temperatur stark korrosiven UF_6/H_2 -Gasgemische eine hohe Widerstandsfähigkeit aufweist.

Da das Trennelement direkt über die Abdeckplatten aufgeheizt wird und diese über die Abstandshalter relativ gut isoliert in der Trennelementkammer angebracht sind, heizt sich die Trennelementkammer selbst bei einer Trennelementtemperatur von 130[°]C wesentlich geringer auf, so daß die korrosive Beanspruchung der nicht beheizten Kammerteile herabgesetzt ist und z. B. zur Abdichtung der Kammerflansche einfache Viton-O-Ringe verwendet werden können.

4.3 Funktionsprinzip der Trennapparatur

Das Funktionsprinzip der gesamten Trennapparatur geht aus dem in Abbildung 5 gezeigten, stark vereinfachten Blockschaltbild hervor.

Das Verfahrensgas wird dem Vorratsbehälter über ein Regelventil entnommen und über einen elektrisch beheizbaren Ringwellschlauch und ein - hier nicht eingezeichnetes - heizbares Verbindungsstück der separaten Trennelementkammer zugeführt, in welcher das Trennelement über die beiden seitlichen Abdeckplatten ebenfalls beheizt werden kann.

Im Trennelement wird das Ausgangsgas in die leichte und schwere Fraktion aufgeteilt. Beide Fraktionen werden jeweils zunächst in einem doppelwandigen Ringwellschlauch mit Leitungswasser auf eine Temperatur kleiner als Raumtemperatur abgekühlt, die Thermostatisierung genau auf Raumtemperatur erfolgt dann in einem zweiten Ringwellschlauch mit Wasser, welches in einem Thermostaten aufgeheizt werden kann.

Stromabwärts von den Regelventilen für die Absaugdrucke werden die Fraktionen wieder zusammengeführt, das UF₆ wird

<u>Abb. 5:</u> Fließschema der Trennapparatur mit heizbarer Trennelementkammer sowie Heizsystem für das Düsengas und Kühlsystem für die leichte und schwere Fraktion mit anschließender Thermostatisierung.

in einer Tiefkühlfalle aus dem Verfahrensgas ausgeschieden und das Zusatzgas über eine Drehschieberpumpe nach außen abgepumpt und mit einem nachgeschalteten Drehkolbenzähler wird der Gasdurchsatz p bestimmt.

Die Heizleistung der einzelnen Teile des Heizsystems und der Thermostaten wird jeweils über einen eigenen Regelkreis gesteuert. Als Regelgröße dient für das Heizsystem die jeweilige Temperatur des Heizschlauches, des Verbindungsstükkes bzw. der Trennelementabdeckplatten, für die Thermostaten des Kühlsystems die Gastemperatur am Ende des jeweils zweiten Doppelwandschlauches.

Die Bestimmung der UF₆-Konzentration erfolgt über eine Messung des Gasdruckes p, des IonenstromsI eines α -Ionisationsdetektors /12/ und der Gastemperatur T vor der Heiz- bzw. hinter der Kühlstrecke bei Raumtemperatur⁷⁾.

Da die Druckabfälle in dem Heizschlauch bzw. den Kühlschläuchen zwischen der Trennelementkammer und den Konzentrationsmeßgeräten nicht zu vernachlässigen sind, werden der Einlaßdruck p_0 und die Absaugdrucke der leichten und schweren Fraktion, p_1 bzw. p_s , unmittelbar an der Trennelementkammer gemessen.

Zur Bestimmung der UF₆-Isotopenkonzentrationen in den Absaugfraktionen bzw. des Elementareffektes der Isotopentrennung ε_A des Trennelementes wird vor den Regelventilen für die Absaugdrucke über ein Probenentnahmesystem jeweils ein geringer Teilstrom der leichten und schweren Fraktion einem Massenspektrometer zugeführt.

7) Die Bestimmung der Konzentration aus den gemessenen Größen erfolgt nach der Beziehung

$$N = \frac{\underline{I \cdot T}}{\underline{P}} - a$$

wobei a und b Eichkonstanten darstellen.

- 18 -

Die heizbare Trennelementkammer mit dem zugehörigen Heizund Kühlsystem (im Fließschema umrandet) ist eine Erweiterung einer schon bestehenden Trennapparatur. Die heizbare Trennelementkammer ist auf einem fahrbaren Gestell montiert, welches zusätzlich die Regelelektronik und die Thermostaten aufnimmt und kann bei Bedarf über den Heizschlauch und die Kühlschläuche an den Verfahrensgaskreislauf der vorhandenen Trennapparatur angeschlossen werden.

Alle an der Apparatur anfallenden Meßdaten werden über eine Meßwerterfassungsanlage registriert, auf Lochstreifen gespeichert und mit Hilfe einer Großrechenanlage ausgewertet.

5. Meßergebnisse

5.1 Versuchsdurchführung

Um die Abhängigkeit des optimalen Einlaßdruckes und des Elementareffektes der Isotopentrennung von der Temperatur zu bestimmen, wurde mit Gasgemischen von N_o = 4 und 10 Mol-% UF₆ in H₂ und bei Temperaturen von T_o = 296°K bis T_o = 403°K jeweils der Einlaßdruck p_o variiert, wobei das Expansionsverhältnis π und die Abschälerweite f konstant gehalten wurden (N_o = 4 %; π = 2,1; f = 0,123 mm; N_o = 10 %: π = 2,3; f = 0,179 mm).

Zu einem besseren Vergleich der Experimente wurde der Elementareffekt der Isotopentrennung ε_A mit der für Gleichgewichtsentmischung gültigen Beziehung

$$\varepsilon_{A} \sim \frac{\ln \vartheta_{u}}{\vartheta_{u} - 1}$$

auf ein konstantes UF₆-Abschälverhältnis $\vartheta_u = 0,25$ umgerechnet /3/. Abbildung 6 zeigt als Beispiel den Verlauf des Elementareffektes der Isotopentrennung ϵ_A über dem Einlaßdruck p_o bei einer Gastemperatur von T_o = 296 K und von T_o = 353 K für Gemische von 4 und von 10 Mol-% UF₆ in H₂.

Die durchgezogenen Kurven stellen jeweils Kurven minimaler Fehlerquadratabweichung dar, aus denen der optimale Einlaßdruck p_0^+ und der hierbei erreichte maximale Elementareffekt der Isotopentrennung $\epsilon_{A,max}$ bestimmt werden.

Um den Einfluß der Gastemperatur auf das optimale Expansionsverhältnis und die spezifischen Aufwandsgrößen zu untersuchen, wurde mit einem Gasgemisch von 4 Mol-% UF₆ in H₂ für T₀ = 296 K und T₀ = 353 K jeweils die Abhängigkeit des Elementareffektes der Isotopentrennung ϵ_A von Einlaßdruck p₀ und Expansionsverhältnis p₀/p₁ untersucht. Dabei wurde wie in /7/ erläutert, bei verschiedenen Abschälerweiten (f = 0,110 mm bis f = 0,180 mm) jeweils der Einlaßdruck p₀ variiert und durch entsprechende Wahl des Expansionsverhältnisses $\pi = p_0/p_1 = p_0/p_s$ ein konstantes Uranabschälverhältnis $\vartheta_n = 0,25$ eingestellt.

Abbildung 7 zeigt den so gewonnenen Verlauf der Kurven gleichen Elementareffektes der Isotopentrennung ϵ_A in der Einlaßdruck-Expansionsverhältnis-Ebene.

5.2 Einfluß der Verfahrensgastemperatur auf den maximalen Elementareffekt der Isotopentrennung $\epsilon_{A,max}$

Abbildung 8 zeigt den Verlauf des maximalen Elementareffektes der Isotopentrennung $\epsilon_{A,max}$ über der Temperatur T_o für Gemische von N_o = 4 Mol-% und N_o = 10 Mol-% UF₆ in H₂ bei konstantem Uranabschälverhältnis ϑ_u = 0,25. Die durchgezogene Kurve gibt jeweils den unter Berücksichtigung der unterschiedlichen Temperaturabhängigkeiten der gaskinetischen Wirkungsquerschnitte theoretisch abgeschätzten, an den Meßwert bei T_o = 313 K angepaßten Verlauf wieder (vgl. 3.2).

<u>Abb. 6:</u> Einfluß des Einlaßdruckes p_auf den Elementareffekt der Isotopentrennung ϵ_A bei konstantem Uranabschälverhältnis ϑ_u = 0,25 bei einer Verfahrensgastemperatur T_o = 296 K und T_o = 353 K für Gasgemische mit N_o = 4 Mol-% UF₆ in H₂ (p_o/p₁ = p_o/p_s = 2,1) und mit N_o = 10 Mol-% UF₆ in H₂ (p_o/p₁ = p_o/p_s = 2,3). Die durchgezogenen Kurven stellen Kurven minimaler Fehlerquadratabweichung dar.

- 21

1

<u>Abb. 7:</u> Linien konstanten Elementareffektes ε_A in der Einlaßdruck-Expansionsverhältnis-Ebene bei konstantem Uranabschälverhältnis $\vartheta_u = 0,25$ bei Verfahrensgastemperaturen von $T_0 = 296$ K und $T_0 = 353$ K für ein Gasgemisch mit $N_0 = 4$ Mol- ϑ UF₆ in H_2 .

<u>Abb. 8:</u> Einfluß der Verfahrensgastemperatur T_o auf den maximalen Elementareffekt der^o Isotopentrennung ϵ_A max (Versuchsbedingungen wie in Abb. 6). Die durchgezogenen Kurven stellen den theoretisch berechneten Verlauf dar (an den Meßwert bei T_o = 313 K angepaßt).

Man erkennt, daß der maximale Elementareffekt der Isotopentrennung $\epsilon_{A,max}$ mit der Temperatur nur sehr schwach ansteigt, wobei für N = 4 % der experimentell gefundene Anstieg ($\epsilon_{A,max} \sim T_{o}^{0,16}$) geringfügig stärker ist als der theoretisch ermittelte und für N = 10 % die Meßwerte ($\epsilon_{A,max} \sim T_{o}^{0,07}$) den theoretisch berechneten Verlauf genau wiedergeben.

5.3 <u>Einfluß der Verfahrensgastemperatur auf den optimalen</u> <u>Einlaßdruck po</u>⁺

Abbildung 9 zeigt den Einfluß der Verfahrensgastemperatur T_o auf den optimalen Einlaßdruck p_o^+ für Gemische von $N_o = 4$ Mol-% und $N_o = 10$ Mol-% UF₆ in H_2 bei konstantem Uranabschälverhältnis $\vartheta_n = 0.25$.

Die durchgezogene Kurve gibt wiederum den an den Meßwert bei $T_0 = 313$ K angepaßten theoretisch berechneten Verlauf wieder.

Der optimale Einlaßdruck p_0^+ steigt mit der Temperatur etwas stärker als porportional an, wobei die gute Übereinstimmung der Experimente (N₀ = 4 % : $p_0^+ \sim T_0^{1,3}$; N₀ = 10 % : $p_0^+ \sim T_0^{1,6}$) mit dem theoretisch berechneten Verlauf für beide Konzentrationen erkennbar ist.

5.4 Einfluß des Expansionsverhältnisses π auf die Isotopentrennung bei unterschiedlichen Verfahrensgastemperaturen

Abbildung 10 zeigt für $T_0 = 296$ K und $T_0 = 353$ K den jeweils optimalen Einlaßdruck p_0^+ in Abhängigkeit vom Expansionsverhältnis π . Man erkennt, daß mit zunehmendem Expansionsverhältnis π der optimale Einlaßdruck ansteigt und, wie schon in 5.3 dargelegt, bei $T_0 = 353$ K größer ist als bei $T_0 = 296$ K.

In Abbildung 11 ist bei jeweils optimalem Einlaßdruck p_0^+ der maximale Elementareffekt der Isotopentrennung $\epsilon_{A,max}$ für

<u>Abb. 9:</u> Einfluß der Verfahrensgastemperatur T auf den Einlaßdruck p⁺ bei dem jeweils ein maximaler Elementareffekt der Isotopentrennung erreicht wird (Versuchsbedingungen wie in Abb. 6). Die durchgezogenen Kurven stellen den theoretisch berechneten Verlauf dar (an den Meßwert bei T_o = 313 K angepaßt).

<u>Abb. 10:</u> Einfluß des Expansionsverhältnisses p_0/p_1 auf den Einlaßdruck p_0^+ , bei dem jeweils ein maximaler Elementareffekt der Isotopentrennung erreicht wird, für die Verfahrensgastemperaturen $T_0 = 296$ K und $T_0 = 353$ K ($N_0 = 4$ %, $\vartheta_u = 0,25$).

<u>Abb. 11:</u> Einfluß des Expansionsverhältnisses po/pl auf den maximalen Elementareffekt der Isotopentrennung $\varepsilon_{A, \max}$ für die Verfahrensgastemperaturen T = 296 K und T₀ = 353 K (N₀ = 4 %, ϑ_{u}^{o} = 0,25). - 26 -

 $T_o = 296$ K und $T_o = 353$ K aufgetragen. Man erkennt, daß unabhängig vom Expansionsverhältnis der maximale Elementareffekt $\epsilon_{A,max}$ bei $T_o = 353$ K stets um etwa 2 - 3 % über dem entsprechenden Wert für $T_o = 296$ K liegt.

5.5 Einfluß der Verfahrensgastemperatur auf den Gasdurchsatz p⁺ im optimalen Betriebspunkt

Die durch Reibungsverluste bedingte Abweichung der bei überkritischem Expansionsverhältnis in der Trenndüse erzielten Durchsätze von den Durchsätzen einer reibungsfreien Düsenströmung wird vom Durchsatzfaktor Γ^{8} beschrieben.

Abbildung 12 zeigt den Verlauf des Durchsatzfaktors Γ über der Reynolds-Zahl Re der Trenndüsenströmung für N_o = 4 %, π = 2,1 und für N_o = 10 %, π = 2,3, wobei der Durchsatzfaktor jeweils bei verschiedenen Temperaturen bestimmt wurde. Man erkennt, daß eine systematische Beeinflussung des Verlaufs des Durchsatzfaktors über der Reynolds-Zahl durch die Gastemperatur nicht auftritt. Der bei gleicher Reynolds-Zahl etwas größere Durchsatzfaktor Γ bei N_o = 10 % dürfte auf das etwas höhere Expansionsverhältnis π = 2,3 zurückzuführen sein.

Betreibt man die Trenndüse bei einer Temperaturerhöhung jeweils im optimalen Betriebspunkt, so wird der Düsenvordruck p_o gerade so angepaßt, daß die Péclet-Zahl Pé konstant gehalten wird und sich damit auch die Reynolds-Zahl Re praktisch nicht ändert. Daher bleibt auch der Durchsatzfaktor $\Gamma(Re)$ konstant, so daß sich bei Temperaturerhöhung der Gasdurchsatz $\dot{\rho}^+$ entsprechend der allgemeinen Gasgleichung und

- 27 -

B) Der Durchsatzfaktor Γ ist definiert als das Verhältnis des experimentell bestimmten Durchsatzes zum Durchsatz der reibungsfreien Düsenströmung bei überkritischem Expansionsverhältnis.

I.

der Temperaturabhängigkeit der Schallgeschwindigkeit wie $\dot{\rho}^+ \sim p_0^+ / \sqrt{T_0}$ verhält. Da der starke Anstieg des optimalen Düsenvordruckes p_0^+ (vgl. 5.3) die Abnahme der Dichte überwiegt, steigt der optimale Gasdurchsatz $\dot{\rho}^+$ mit der Temperatur an.

Abbildung 13 zeigt den experimentell bestimmten Anstieg des optimalen Gasdurchsatzes $\dot{\rho}^+$ mit der Temperatur bei jeweils optimalem Einlaßdruck p_0^+ für die beiden verwendeten Gemischkonzentrationen (N = 4 % : π = 2,1; $\dot{\rho}^+ \sim T_0^{0,90}$; N = 10 % : π = 2,3; $\dot{\rho}^+ \sim T_0^{0,96}$). Man erkennt wiederum die gute Übereinstimmung zwischen Experiment und Theorie (durchgezogene Kurve).

5.6 Einfluß der Verfahrensgastemperatur auf die spezifischen Aufwandsgrößen

Mit Hilfe der in Abbildung 7 dargestellten Abhängigkeit des Elementareffektes der Isotopentrennung ε_A von Einlaßdruck und Expansionsverhältnis wurden die spezifischen Aufwandsgrößen E_s, V_s und 1_s berechnet, welche in Abbildung 14 in Form von Höhenlinien in der Einlaßdruck-Expansionsverhältnis-Ebene aufgetragen sind.

Die beiden oberen Abbildungen zeigen die Höhenlinien des spezifischen Energieverbrauchs E_s für T_o = 296 K und für T_c = 353 K.

Da der für den Elementareffekt der Isotopentrennung optimale Düsenvordruck p_o⁺ mit der Temperatur ansteigt (vgl. 5.3), verschiebt sich auch der bezüglich des spezifischen Energieverbrauchs optimale Betriebspunkt gleichermaßen zu höheren Drucken.

Man erkennt, daß eine Erhöhung der Temperatur die Lage des optimalen Expansionsverhältnisses π^+ nicht beeinflußt. Dies

<u>Abb. 13:</u> Einfluß der Verfahrensgastemperatur T_o auf den Massendurchsatz $\dot{\rho}^+$ jeweils maximaler Isotopenentmischung für Gasgemische von N_o = 4 Mol-% UF₆ in H₂ (π = 2,1) und von N_o = 10 Mol-% UF₆ in H₂ (π = 2,3). Die durchgezogenen Kurven stellen den theoretisch berechneten Verlauf dar (an den Meßwert bei T_o = 313 K angepaßt).

- 31 -

<u>Abb. 14:</u> Linien konstanten spezifischen Energieverbrauchs E, konstanten spezifischen Ansaugvolumens V_s und kon-⁵ stanter spezifischer Schlitzlänge l_s bei T_o = 296 K und bei T_o = 353 K für ein Gemisch von 4 Mol-% UF₆ in H₂ und für ein Uranabschälverhältnis ϑ_u = 0,25. (+ = Betriebspunkt minimalen spezifischen Energieverbrauchs).

wird verständlich, wenn man berücksichtigt, daß eine Temperaturerhöhung von 296 K auf 353 K unabhängig vom Expansionsverhältnis zu einer Steigerung des maximalen Elementareffektes von ca. 2,5 % führt (vgl. 5.4, Abb. 11). Der minimale spezifische Energieverbrauch läßt sich daher bei einer Erhöhung der Verfahrensgastemperatur von 296 K auf 353 K um ca. 5 % absenken.

Im Betriebspunkt minimalen spezifischen Energieverbrauchs, welcher etwa dem Betriebspunkt einer technischen Trenndüsenanlage entspricht, läßt sich eine deutliche Absenkung des spezifischen Ansaugvolumens V_s und der spezifischen Schlitzlänge l_s aus Abbildung 14 entnehmen. Hier verringert sich bei einer Temperaturerhöhung von 296 K auf 353 K das spezifische Ansaugvolumen V_s um ca. 20 % und die spezifische Schlitzlänge l_s um ca. 15 %.

Aus den Einlaßdruck-Expansionsverhältnis-Variationen ergibt sich also, daß sich der optimale Betriebspunkt einer Trenndüsenanlage mit zunehmender Temperatur nur zu höheren Einlaßdrucken verschiebt, während das optimale Expansionsverhältnis praktisch unverändert bleibt.

Sofern die Kompression des Verfahrensgases jeweils bei der gleichen Temperatur T_v erfolgt, läßt sich durch eine Erhöhung der Verfahrensgastemperatur T_o neben einer deutlichen Absenkung des spezifischen Ansaugvolumens und der spezifischen Schlitzlänge auch eine geringfügige Absenkung des spezifischen Energieverbrauchs erreichen.

6. Diskussion

Die an einer speziellen Trenndüsengeometrie bei erhöhter Verfahrensgastemperatur gewonnenen Ergebnisse stimmen gut mit Modellrechnungen überein, bei denen die Temperaturabhängigkeit der Isotopenentmischung in der Trenndüse mit Hilfe der Ähnlichkeitstheorie erfaßt wird. Da in der Ähnlichkeitstheorie nur der Einfluß der Temperatur auf die dimensionslosen Kenngrößen untersucht wird, kann die Theorie auch auf andere Trennsysteme, andere Betriebsbedingungen und andere Gasgemische übertragen werden.

Frühere Versuche mit UF_6/\underline{Helium} /4/, /5/ haben bei Verwendung von zwei verschiedenen Düsenformen im einen Fall eine schwächere, im anderen eine stärkere Abhängigkeit des optimalen Einlaßdrucks von der Temperatur ergeben als die vorliegenden Untersuchungen mit $UF_6/Wasserstoff^{9}$. Eine Mittelung der früheren Ergebnisse liefert für $UF_6/Helium$ praktisch dieselben Temperaturabhängigkeiten wie sie für $UF_6/Wasserstoff$ gefunden wurden. Eine weitgehende Übereinstimmung in der Temperaturabhängigkeit des Trennverhaltens der beiden Gasgemische wäre auch nach der Ähnlichkeitstheorie zu erwarten.

Die Ergebnisse der vorliegenden Arbeit zeigen, daß der maximale Elementareffekt der Isotopentrennung $\varepsilon_{A,max}$ mit zunehmender Verfahrenstemperatur nur geringfügig ansteigt ($\varepsilon_{A,max} \sim T^{0,12\pm0,05}$), während der optimale Einlaßdruck p ⁺ relativ stark mit der Temperatur anwächst ($p_0^{+} \sim T^{1,4\pm0,2}$). Aufgrund dieses starken Anstiegs des

⁹⁾ Bei den früheren, mehr orientierenden Versuchen wurden relativ wenige Meßpunkte aufgenommen. Bei der Bewertung des Ergebnisses ist zu berücksichtigen, daß die Lage des optimalen Einlaßdruckes infolge des flachen Kurvenverlaufs (vgl. Abb 6 der vorliegenden Arbeit) mit wenigen Meßpunkten nur relativ ungenau bestimmt werden kann.

optimalen Einlaßdruckes p_0^+ steigt im optimalen Betriebspunkt der Massendurchsatz etwa proportional mit der Temperatur an ($\dot{\rho}^+ \sim T^{0,9\pm0,3}$).

Verlegt man die Trennelemente von der kalten ($T_0 = 313$ K) auf die heiße ($T_0 = 393$ K) Seite des Verfahrensgaskühlers, so führt dies bei den für das Trenndüsenverfahren infrage kommenden Betriebsbedingungen zu einer Absenkung des spezifischen Energieverbrauchs E_s um ca. 5 % (± 2 %), des spezifischen Ansaugvolumens V_s um ca. 31 % (± 5 %) und der spezifischen Schlitzlänge l_s um ca. 23 % (± 7 %).

Dieser Gewinn in den spezifischen Aufwandsgrößen wäre bei einer technischen Trenndüsenanlage allerdings gegen mögliche verfahrenstechnische Nachteile abzuwägen, die sich aus dem anderen Aufbau der Trennstufen und der höheren Trennelementtemperatur ergeben könnten.

Herrn Prof. Dr. E.W. Becker danken wir für das der Arbeit entgegengebrachte Interesse und für die stete Förderung.

Literaturverzeichnis

- /1/ Becker, E.W., Bier, K., Bier, W., Schütte, R., Seidel, D.: Angew. Chemie, Internat. Edition <u>6</u>, 507 (1967)
- /2/ Becker, E.W., Bier, W., Ehrfeld, W., Schubert, K., Schütte, R., Seidel, D.: Physics and Technology of Separation Nozzle Process. Proceedings of the Paris Conference, Progress in Nuclear Energy Series 1976, Pergamon Press, Oxford and New York
- /3/ Becker, E.W., Bier, W., Ehrfeld, W., Eisenbeiß, G.: Z. Naturforsch. <u>26a</u>, 1377 (1971)
- /4/ Bier, W.: Trennung der Uranisotope in Abhängigkeit von der Temperatur des Trennsystems und vom UF₆-Gehalt im He/UF₆-Gemisch bei Verwendung eines 180°-Umlenksystems einer konvergenten Düse (1963) unveröffentlicht
- /5/ Bier, W.: Der Einfluß der Temperatur von He/UF₆-Gemischen auf die Entmischung der Uranisotope, den Durchsatz und die Trennleistung, beobachtet am Trenndüsenlaborelement X (1976) unveröffentlicht
- /6/ Schubert, K.: Abhängigkeit der Trennarbeitskosten einer Trenndüsenanlage zur Uran²³⁵-Anreicherung vom Lastzustand. KFK 1439 (1971)
- /7/ Bley, P., Ehrfeld, W., Jäger, F.M., Knapp, U.: Entwicklung und Erprobung einer Versuchsapparatur für die Optimierung von Trenndüsensystemen zur Anreicherung von Uran-235. KFK 2092 (1975)
- /8/ Bley, P., Dürr, R., Ehrfeld, W., Eisenbeiß, G.: Z. Naturforsch. <u>28a</u>, 1273 (1973)
- /9/ Bier, K., Brandtstädter, H., Ehrfeld, U., Ehrfeld, W.: Untersuchung des Strömungsverlaufs von He/Ar- und He/SF₆-Gemischen in der Trenndüse mit molekular angeströmten Drucksonden. KFK 1440 (1971)

- /10/ Schmid, J., Schütte, R.: Experimentelle Untersuchung der Tieftemperatur-Desublimation von Uranhexafluorid aus Gemischen mit Wasserstoff in Gegenstrom-Kompaktwärmetauschern. KFK 2428 (1976)
- /11/ Berkhahn, W., Bley, P., Breton, H.: Abschätzung des Einflusses der Verfahrensgastemperatur auf die Isotopentrennung sowie die spezifischen Aufwandsgrößen mit Hilfe der Temperaturabhängigkeit der gaskinetischen Transportkoeffizienten sowie der Ähnlichkeitsparameter der Trenndüsenströmung. (1976) unveröffentlicht

~

/12/ Bley, P., Ehrfeld, W.: Bestimmung der dissipativen Verluste in der Trenndüsenströmung mit Pitot-Sonden. KFK 1562 (1972)

20