

KFK 2471

Juni 1977 Institut für Experimentelle Kernphysik

Einfach nonunique verbotener Betazerfall und Struktur der Kerne ⁴²K, ¹⁴²Pr und ¹⁷⁰Tm

H.-J. Gehrhardt

Als Manuskript vervielfältigt

Für diesen Bericht behalten wir uns alle Rechte vor

GESELLSCHAFT FÜR KERNFORSCHUNG M.B.H. KARLSRUHE

KERNFORSCHUNGSZENTRUM KARLSRUHE

KFK 2471

Institut für Experimentelle Kernphysik

Einfach nonunique verbotener Betazerfall und Struktur der Kerne 42 K, 142 Pr und 170 Tm +)

H.-J. Gehrhardt

Gesellschaft für Kernforschung m.b.H., Karlsruhe

+) von der Fakultät für Physik der Universität Karlsruhe genehmigte Dissertation

EINFACH NONUNIQUE VERBOTENER β -ZERFALL UND STRUKTUR DER KERNE 42 K, 142 Pr und 170 Tm

Zusammenfassung

 $\beta-\gamma$ -Winkelkorrelationen an einfach nonunique verbotenen β -Zerfällen der Kerne ⁴²K, ¹⁴²Pr und ¹⁷⁰Tm wurden gemessen. Mit Hilfe zusätzlicher Observablen, wie Shape-Faktor, $\beta-\gamma$ -Zirkularpolarisationskorrelation, Elektronenpolarisation und Anisotropie von γ -Strahlung bei polarisierten Kernen wurde die Kernstruktur berechnet.

Die Kerne ⁴²K und ¹⁴²Pr können mit einem Schalenmodell mit Konfigurationsmischungen beschrieben werden. Aus den experimentellen Daten konnten durch Anpassung die Mischungskoeffizienten festgelegt werden.

Für den deformierten Kern ¹⁷⁰Tm ergibt sich eine Beschreibung im Nilsson-Modell mit einem deformierten Saxon-Woods-Potential. Hier konnte aus den experimentellen Daten der Deformationsparameter bestimmt werden. Der gefundene Parameter ist in guter Übereinstimmung mit Werten, die sich aus Messungen des Kernquadrupolmoments an diesem Kern ergeben.

Die Rechnungen zeigen, daß Beiträge höherer Ordnung und Beiträge, die durch die induzierte Wechselwirkung entstehen, bei den hier untersuchten β -Übergängen nur klein sind. NONUNIQUE FIRST-FORBIDDEN β -DECAY AND STRUCTURE IN 42 K, 142 Pr and 170 Tm

Abstract

 $\beta-\gamma$ -angular correlations of nonunique first-forbidden β transitions in 42 K, 142 Pr and 170 Tm have been measured. Employing further available data like spectrum shape, $\beta-\gamma$ circularly polarized correlation, electron polarization and anisotropy of γ -rays from oriented nuclei the nuclear wave functions could be extracted.

In the case of 42 K and 142 Pr only the extended shell-model which allows the mixture of different configurations of valence nucleons describes these nuclei and the mixing-coefficients are obtained from the experimental data.

For the highly deformed nucleus ¹⁷⁰Tm the Nilsson-model with a deformed Saxon-Woods potential is applicable. For this nucleus the theoretical calculations allow to adjust the deformation parameter to the experimental data. The deformation parameter is in good agreement with values from electric quadrupol hyperfine interaction measurements.

The sensitivity of the results to induced interactions and higher order terms of the transition matrix elements turns out to be negligible for the investigated β -decays.

Inhaltsverzeichnis

1.	EINLEITUNG	
1.1	Kernbetazerfall	1
1.2	Aufgabenstellung	2
2.	MESSAPPARATUR UND MESSMETHODE	
2.1	Meßprinzip	3
2.2	Experimentelle Anordnung	5
2.3	Datenerfassung und Verarbeitung	7
2.4	Quellen und Eichpräparate	9
2.5	Testmessungen	10
3.	MESSERGEBNISSE	
3 1	42 _K	12
3 2	142 _{Pr}	13
3.3	170 _m	15
5.5		15
4.	THEORETISCHE UNTERSUCHUNGEN DER GEMESSENEN	
	ÜBERGÄNGE	
4.1	Grundlagen	16
4.2	42 _K	18
4.3	142 _{Pr}	29
4.4	170 _{Tm}	38
5.	ZUSAMMENFASSUNG	49
6.	ANHANG	
6.1	Korrekturen der Meßdaten	50
6.1.1	Zufällige Koinzidenzen	50
6.1.2	Vielfachstreuung und Rückstreuung	51
6.1.3	Bremsstrahlung	51
6.1.4	γ-γ-Koinzidenzen	52
6.1.5	Endlicher Raumwinkel	52
6.2	Nilsson-Wellenfunktionen für deformierte Kerne	53
6.3	Eigenfunktionen für ein deformiertes Saxon-Woods-Potential	56

Se	i	t	е
----	---	---	---

6.4	Beziehungen zwischen den Formfaktor- koeffizienten und den reduzierten Kernmatrixelementen für einfach nonunique verbotene β-Übergänge	58
6.5	Formeln zur Berechnung der β- Zerfallsobservablen	59
7.	LITERATURVERZEICHNIS	65

•

1. EINLEITUNG

1.1 Kernbetazerfall

Erscheinungen der schwachen Wechselwirkung werden schon seit langem untersucht. Nachdem sich die V-A-Struktur in der Wechselwirkung beim β -Zerfall gezeigt hat, ist es gelungen, eine phänomenologische Theorie des Kern- β -Zerfalls zu entwickeln, die gewisse Ähnlichkeiten in der Formulierung mit der elektromagnetischen Wechselwirkung aufweist.

Auswahlregeln für Drehimpuls und Parität haben zu gewissen Klassifikationen beim Kern- β -Zerfall geführt. Die einfach nonunique verbotenen β -Übergänge, die in dieser Arbeit ausschließlich behandelt werden, sind durch eine Änderung des Kernspins um O oder 1 und einer Änderung der Parität der am Übergang beteiligten Kernzustände charakterisiert. Da umfangreiche Formalismen zur Beschreibung des Kern- β -Zerfalls existieren, die den Zerfallsvorgang exakt beschreiben, kann der β -Zerfall nun dazu benutzt werden, die Kernstrukturen der am Zerfall beteiligten Kerne zu studieren.

Bei der Beschreibung des einfach nonunique verbotenen β -Zerfalls treten vier oder sechs Übergangsmatrixelemente auf. Früher wurden diese Matrixelemente als unabhängige Parameter betrachtet und nach der Theorie des Kern- β -Zerfalls an die gemessenen Observablen angepaßt.

Meistens ergeben sich dann mehrere Sätze von Übergangsmatrixelementen, welche die Observablen (z.B. die Form des β -Spektrums, die β - γ -Winkelkorrelation, die Elektronenlongitudinalpolarisation etc) wiedergeben.

Ein weiterer Schritt ist die direkte Berechnung der Observablen aus einem Kernmodell. Entscheidend ist dabei, daß die Matrixelemente voneinander nicht mehr unabhängig sind, sondern durch das gewählte Kernmodell verknüpft werden. Bei diesem Verfahren werden jetzt die Modellparameter durch Anpassung an die Observablen festgelegt und die Matrixelemente sind in der Rechnung nur noch Zwischengrößen. Hier läßt sich nur ein Satz von Modellparametern angeben, der alle Observablen beschreibt.

1.2 Aufgabenstellung

Die Aufgabe dieser Arbeit soll es sein, die $\beta-\gamma$ -Winkelkorrelation von einfach nonunique verbotenen β -Übergängen zu messen. Unter Einbeziehung weiterer Beobachtungsgrößen aus anderen Arbeiten soll dann mit dem Formalismus von Behrens und Bühring¹ die Kernwellenfunktionen gefunden werden, welche die gemessenen Größen wiedergeben.

Die $\beta-\gamma$ -Winkelkorrelation wurde gewählt, da sie sehr empfindlich von den Übergangsmatrixelementen abhängt und daher für den Test von Kernmodellen besonders geeignet ist.

Durch die Zahl der Matrixelemente (vier oder sechs) versprechen gerade einfach nonunique verbotene β -Übergänge die Modellparameter eindeutig festzulegen. Bei γ -Übergängen z.B. können höchstens zwei Übergangsmatrixelemente beobachtet werden, daher eignen sich γ -Übergänge nicht so gut wie einfach nonunique verbotene β -Übergänge, um die Feinheiten der Kernwellenfunktionen zu analysieren.

Nichtalle β -Zerfallsobservablen sind gleichermaßen empfindlich auf Änderungen der Kernmodellparameter und sie hängen auch unterschiedlich von den Matrixelementen ab.

Für die Messung und die theoretische Beschreibung wurden die Kerne 42 K, 142 Pr und 170 Tm aus folgenden Gründen ausgesucht:

- a) Für diese Kerne gibt es genügend gemessene Beobachtungsgrößen.
- b) Diese Kerne sollten mit Kernmodellen gut zu beschreiben sein. Im Fall von ⁴²K und ¹⁴²Pr sollte das Schalenmodell diese sphärischen Kerne beschreiben, da sich nur wenige Nukleonen außerhalb von geschlossenen Schalen befinden. ¹⁷⁰Tm ist ein stark deformierter Kern, so daß hier das Nilsson-Modell für deformierte Kerne gut anwendbar ist.

c) Die Halbwertszeit dieser Kerne ist lang genug für eine Messung der β - γ -Winkelkorrelation mit der in 2. beschriebenen Apparatur.

2. MESSAPPARATUR UND MESSMETHODE

2.1 Meßprinzip

Die β - γ -Winkelkorrelation läßt sich nach Legendre-Polynomen mit normierten Koeffizienten entwickeln²:

$$W(\theta) = \sum_{m} A_{m} P_{m}(\cos\theta),$$

wobei θ der Winkel zwischen β -Teilchen und γ -Quant ist. Da die β - γ -Winkelkorrelation nur auf die Ausrichtung der Kerne nicht aber auf die Polarisation anspricht, kommen nur Terme mit geradem m vor.

Die Koeffizienten kann man als Produkt $A_m(\beta) \cdot A_m(\gamma)$ schreiben. Die $A_m(\gamma)$ hängen nur vom Kernspin des Zwischen- und Endzustandes und von der Multipolarität der γ -Strahlung ab. Sie lassen sich mit Clebsch-Gordan-Koeffizienten und der Racah-Algebra beschreiben und sind in ³ tabelliert. Die $A_m(\beta)$ lassen sich wieder in zwei Produktanteile aufspalten. Der eine wird durch die sogenannten Teilchenparameter ausgedrückt, die alle Informationen über den β -Übergang enthalten. Der zweite Anteil wird nur von den beim β -Zerfall beteiligten Drehimpulsen bestimmt. Die Darstellung der Teilchenparameter² zeigt, daß sie eine Funktion der Elektronenenergie sind und direkt mit den Übergangsmatrixelementen des Kern- β -Zerfalls zusammenhängen.

Zur Kernstrukturbestimmung sollen in dieser Arbeit die $\beta-\gamma-$ Winkelkorrelationen gemessen werden. In diesem Experiment werden daher die Anisotropiekoeffizienten A₂ und A₄ bestimmt. Sie werden als Funktion der Elektronenenergie gemessen.

Zur Messung der $\beta-\gamma$ -Winkelkorrelation hat man wenigstens zwei Detektoren in einer Koinzidenzmessung einzusetzen.

Fig. 1: Experimentelle Anordnung

2.2 Experimentelle Anordnung

Der Aufbau der Apparatur ist in ⁴ eingehend beschrieben, so daß hier nur eine kurze Darstellung erfolgen soll.

Vier β - und zwei γ -Detektoren stehen unter festen Winkeln (Vielfache von 45[°]) zueinander (s. Fig.1). Diese Aufstellung wurde gewählt, um die Zähler unter günstigen Winkeln zu fixieren, die eine Bestimmung der A₂- und A₄-Koeffizienten bei möglichst großen Zählraten erlaubt. Die Winkel ergeben sich durch den Verlauf der Legendre-Polynome P₂(cos θ) und P₄(cos θ).

Die Vakuumkammer mit den vier β -Detektoren läßt sich um 45^O nach beiden Seiten schwenken (s. Fig.2). Die Stellung der γ -Detektoren kann ausgetauscht werden, um elektronische Koinzidenzverluste zu eliminieren.

Diese Anordnung bietet folgende Vorteile gegenüber einer Zweidetektorapparatur:

- a) Die Koeffizienten ${\rm A}_2$ und ${\rm A}_4$ können gleichzeitig gemessen werden.
- b) Durch die drei einstellbaren Positionen der β -Zähler lassen sich unterschiedliche Ansprechwahrscheinlichkeiten der Zähler auf β - γ -Koinzidenzen eliminieren.
- c) Eine Korrektur auf die Quellstärke entfällt.
- d) Durch die acht möglichen Koinzidenzen wird die Statistik gegenüber einer Zweidetektoranlage verbessert, was besonders bei kurzlebigen Quellen zum Tragen kommt.
- e) Die Messung der acht Koinzidenzen erlaubt Anhaltspunkte für Korrekturen auf Bremsstrahlungseffekte.
- f) Dejustierung von Quelle oder Detektor zeigt sich in entsprechenden Testwerten.

Als β -Detektoren dienen Plastikszintillatoren NE 102 A, die über Lichtleiter mit Photomultipliern Valvo XP 2230 verbunden sind. Die Szintillatoren von 41 mm Durchmesser hatten eine Dicke bis zu 12 mm, je nach der Endpunktsenergie des β -Spektrums, und waren zur besseren Lichtausbeute mit 1 μ m Aluminium bedampft.

Als γ -Detektoren finden 2"×2" NaJ (Tl)-Kristalle Verwendung, die in direktem Kontakt zu den Multipliern Valvo 56 DVP-O3 stehen.

Der Einfluß von Magnetfeldern auf die Photomultiplier wurde durch Mu-Metallabschirmungen und eine Erdfeldkompensationsspule ausgeschlossen.

Der elektronische Anteil der Apparatur besteht aus einer "Fast-Slow-Anordnung" im γ -Zweig, um den Photopeak des beobachteten γ -Übergangs auszublenden, und ist in ⁴ im einzelnen behandelt.

Pos. III A

Fig. 2: Schematische Darstellung der Detektorpositionen

- 6 -

2.3 Datenerfassung und Verarbeitung

Die Apparatur wurde durch das Betriebssystem CALAS⁵ an die TFR 86 des KFZK^{*} angeschlossen. Dadurch konnten die Anisotropiekoeffizienten als Funktion der Elektronenenergie gleichzeitig im gesamten Energiebereich des β -Spektrums bestimmt werden, da der rechnerunterstützte Betrieb die Kontrolle und Speicherung der anfallenden Datenmenge erlaubte.

Der Ablauf der Messung, wie Einstellen der Zählerpositionen und Regeln des Meßzyklus wird automatisch nach vorgegebenen Werten gesteuert. Die jetzt auftretenden acht Koinzidenzspektren werden in einem 1024-Vielkanal aufgenommen. Während den Pausenzeiten zwischen den Zählereinstellungen wird der Inhalt des Vielkanals, die Einzelzählraten der Zähler, die Position sowie die Art der Messung (echte oder zufällige Koinzidenzen s. 6.1.1) vom Rechner aufgenommen und auf ein Band gespeichert. Dort können die Rohdaten später zur Auswertung und Anbringen von Korrekturen abgerufen werden.

Daneben erlaubt das Rechnersystem eine ständige Überwachung des Meßablaufes sowie erste Zwischenauswertungen während des Meßvorgangs.

Zur Bestimmung der Anisotropiekoeffizienten werden aus den gemessenen echten (auf zufällige Koinzidenzen korrigierten) Koinzidenzzählraten vier Größen Q_i gebildet:

$$Q_1 = \frac{K_{12} \cdot K_{21}}{K_{11} \cdot K_{22}}$$
, $Q_2 = \frac{K_{32} \cdot K_{41}}{K_{31} \cdot K_{42}}$, $Q_3 = \frac{K_{11} \cdot K_{42}}{K_{12} \cdot K_{41}}$, $Q_4 = \frac{K_{22} \cdot K_{31}}{K_{21} \cdot K_{32}}$

wobei K_{ab} die echten Koinzidenzzählraten zwischen β -Zähler a und γ -Zähler b bezogen auf ein differentielles Energieintervall des β -Spektrums bedeutet.

Diese Größen Q_i sind frei von dem Einfluß elektronischer Koinzidenzverluste und man erhält durch Zusammenfassen der Messungen in den beiden Positionen der γ-Zähler:

^{*}Kernforschungszentrum Karlsruhe

$$W_{i} = \frac{4}{\sqrt{\frac{Q_{i}(Pos.A)}{Q_{i}(Pos.B)}}}$$
 (s. Fig. 2)

Die Koeffizienten A_2 und A_4 ergeben sich nun für die drei Positionen der β -Zähler^{*}:

$$A_{2} = \frac{10}{7} \cdot \frac{4-9}{8+6} \frac{W_{m}+5}{W_{m}+W_{n}} \qquad m = 1, \quad n = 2 \quad \text{für } \beta\text{-Position I}$$
$$m = 3, \quad n = 4 \quad \text{für } \beta\text{-Position II}$$
$$A_{4} = \frac{48}{7} \cdot \frac{-2+W_{m}+W_{n}}{8+6} \qquad m = 2, \quad n = 1 \quad \text{für } \beta\text{-Position III}$$

Zur Berechnung der A_2 - und A_4 -Werte werden jeweils nur zwei der vier Größen W_1 benötigt. Die beiden anderen lassen sich zu einem Kontrollwert zusammenfassen, der nicht von A_2 und A_4 abhängt:

$$K = \frac{W_{5-n}}{W_{5-m}} .$$

Weichen diese Testwerte von 1 ab, ist das ein Hinweis auf notwendige Korrekturen (s. 6.1.3) oder fehlerhaftes Arbeiten der Apparatur. Man erhält also bei der Auswertung für jeden Kanal die A_2 - und A_4 -Werte sowie den Kontrollwert K in allen drei β -Positionen. Die Anisotropiekoeffizienten sind dann für differentielle Energiebereiche über das gesamte β -Spektrum bestimmt. Aufgrund der endlichen Energieauflösung der β -Detektoren mittelt man bei der Auswertung über eine entsprechende Anzahl von Kanälen. Hat man nun die A_2 - und A_4 -Werte als Funktion der Elektronenenergie W bestimmt, müssen weitere Korrekturen angebracht werden, z.B. Korrekturen, welche die Vielfach- und

^{*}Man ersetzt in den Q_i die Koinzidenzzählrate K_{ab} durch $\varepsilon_{ab} \cdot \omega (W, \theta_{ab})$. Dabei ist $\omega (W, \theta_{ab}) = 1 + A_2 (W) P_2 (\cos \theta_{ab}) + A_4 (W) P_4 (\cos \theta_{ab})$ die Winkelverteilung der echten Koinzidenzen K_{ab} und ε_{ab} die Ansprechwahrscheinlichkeit der Zähler a,b auf die Koinzidenzen K_{ab}. Die dann gebildeten Größen W_i sind unabhängig von den ε_{ab} . Aus zwei dieser Größen erhält man dann A₂ (W) und A₄ (W). Rückstreuung der Elektronen in der Quelle oder Bremsstrahlungseffekte berücksichtigen. Diese Korrekturen werden im Anhang 6.1 genauer behandelt.

2.4 Quellen und Eichpräparate

Die für die Messungen benötigten Nuklide wurden durch n, γ -Reaktionen im Reaktor FR2 des KFZK erzeugt. Die Quellen wurden entweder durch Aufdampfen auf eine 2-3 µm starke Glimmerfolie hergestellt oder durch Eindunsten der aktiven Lösung gewonnen, wobei dann eine 4 µm dicke Hostaphanfolie als Unterlage diente. Zur Vermeidung statischer Aufladungen wurde noch eine hauchdünne Goldschicht aufgedampft (~0.01 µm). Die aufgetropften Quellen erhielten nochmal eine 4 µm dicke Abdeckfolie, um eine Kontamination der Vakuumkammer zu vermeiden.

Die Präparatträgerfolie wird auf ein dünnes Aluminiumblech von 10×25 mm² geklebt, das ein Loch von 8 mm Durchmesser hat. Nachfolgend sind die Daten der verwendeten Quellen aufgeführt:

Nuklid	^T 1/2	Aktivität	Herstellung	Dicke mg/cm ²	Ø mm	Quellen
60 _{Co}	5.26 y	400 µCi	aufgedampft	0.11	5	1
42_* K	12.4 h	0.5-1.7mCi	aufgetropft	0.5-1.5	3-5	15
142 _{Pr}	19.2 h	1-2 mCi	aufgetropft	0.5-1.3	3-5	13
170 _{Tm}	127 d	1.2 mCi	aufgedampft	0.13	4	1

^{*}Zur Herstellung wurde Kalium-41 zu 98.1% angereichert als K CL vom Oak Ridge National Laboratory, Oak Ridge Tennessee, USA bezogen. Die Halterung für die Quellen ist ein Aluminiumstab von 3 mm Durchmesser, der zur Befestigung im Deckel der Vakuumkammer in einen dickeren Stab eingeschraubt ist. Elektronenstreuung in der Halterung kann aufgrund der geringen Massen vernachlässigt werden.

Die Kammer von 41 cm Durchmesser (s. Fig.1) ist mit 5 mm starkem Mipolam ausgekleidet, um die Rückstreuung von Elektronen aus der Wandung gering zu halten, und wird auf 10^{-2} Torr evakuiert.

Die Quellen werden durch den Deckel eingeschoben und können durch Einsetzen von Plexiglasstopfen vor der Messung justiert werden.

Zur Energieeichung des Vielkanals wurden drei Präparate benutzt: 113 Sn, 137 Cs und 207 Bi.

Mit den Konversionslinien dieser Nuklide (370 keV, 632 keV und 990 keV) konnte eine Eichung für alle β -Spektren festgelegt werden.

2.5 Testmessungen

Um eventuell vorhandene Asymmetrien der Apparatur festzustellen, wurde eine $\gamma-\gamma$ -Winkelkorrelationsmessung am ⁶⁰Co durchgeführt. Die β -Detektoren wurden dabei mit 10 mm starken Mipolam-Absorbern abgeschirmt. Im Zerfallsschema (Fig.3) ist die $\gamma-\gamma$ -Kaskade eingezeichnet.

Da es sich um eine $\gamma-\gamma$ -Winkelkorrelation handelt, findet man die Anisotropiekoeffizienten A₂(γ) und A₄(γ) in Ref.³. Nach der Korrektur auf zufällige Koinzidenzen ergaben sich die Meßwerte zu:

$$A_2(\gamma) = 0.1010 \pm 0.0010$$

 $A_A(\gamma) = 0.0097 \pm 0.0007.$

Sie stimmen gut mit den theoretischen Werten überein:

$$A_2(\gamma)_{th} = 0.1020$$

 $A_4(\gamma)_{th} = 0.0091.$

Fig. 3: Zerfallsschema von ⁶⁰Co

Eine $\beta - \gamma$ -Winkelkorrelationsmessung des erlaubten β -Übergangs der Spinfolge 5⁺ \rightarrow 4⁺ am ⁶⁰Co mit dieser Apparatur wird in ⁴ beschrieben. Diese integrale Messung bei einer mittleren Elektronenenergie von W = 1.27 ergab nach Korrekturen auf $\gamma - \gamma$ -Koinzidenzen, Vielfach- und Rückstreuung der Elektronen und endlichen Raumwinkel die Koeffizienten A₂ und A₄:

> $A_2(\overline{W} = 1.27) = -0.00010 \pm 0.00019$ $A_4(\overline{W} = 1.27) = 0.0 \pm 0.00012.$

Auch diese gemessenen Werte stimmen gut mit den theoretisch berechneten Anisotropiekoeffizienten dieser $\beta-\gamma$ -Winkelkorrelation überein:

$$A_2(W)_{th} < 5 \cdot 10^{-5}$$

 $A_4(W)_{th} < 10^{-7}$.

Man kann daher annehmen, daß die Apparatur bei $\beta-\gamma-$ und $\gamma-\gamma-$ Winkelkorrelationsmessungen frei von inneren Asymmetrien ist.

3. MESSERGEBNISSE

3.1 ⁴²K

Fig.4 zeigt das Zerfallsschema von 42 K. Der 2⁻-Grundzustand mit einer Halbwertszeit von 12.4 Stunden zerfällt zu 82% durch β -Zerfall in den Grundzustand des 42 Ca mit einer Endpunktsenergie von 3.55 MeV und zu 18% in den angeregten 2⁺-Zustand des 42 Ca mit einer Endpunktsenergie von 2.0 MeV.

Fig. 4: Zerfallsschema von ⁴²K

Der angeregte 1.524 MeV 2⁺-Zustand zerfällt dann durch einen $E2-\gamma-\overline{v}$ bergang in den 0⁺-Grundzustand des ⁴²Ca. Dieser einfach nonunique verbotene $\beta-\overline{v}$ bergang hat die Spinfolge 2⁻ \Rightarrow 2⁺.

Da ⁴²K als K Cl im Reaktor bestrahlt wurde, kamen die Quellen erst mehrere Stunden nach der Bestrahlung in die Apparatur, damit die Aktivität des entstandenen ³⁸Cl mit einer Halbwertszeit von 38 Minuten die Messung am ⁴²K nicht mehr stören konnte. Es wurden täglich Eichungen mit den Eichquellen durchgeführt und nach der Meßreihe an jeder Quelle durch Vergleich der β -Spektren, die sich aus den echten Koinzidenzspektren ergeben, sichergestellt, daß eine richtige Energiezuordnung getroffen wurde.

Da die Testwerte nur statistische Abweichungen von 1 zeigten, entfiel eine Korrektur auf Bremsstrahlungseffekte. Nach allen Korrekturen ergaben sich unter Berücksichtigung der Energieauflösung der β -Detektoren, die etwa 20% bei der 990 keV-Konversionslinie des ²⁰⁷Bi betrug, neun Meßwerte für verschiedene Elektronenenergien:

E keV	$W \mid m_e c^2 \mid$	A ₂ (W)	A ₄ (W)
434.35	1.85	-0.0068±0.0015	-0.0020±0.0010
633.64	2.24	-0.0127±0.0014	0.0014±0.0010
822.71	2.61	-0.0156±0.0014	0.0003±0.0010
1016.89	2.99	-0.0161±0.0015	-0.0011±0.0010
1211.07	3.37	-0.0167±0.0015	-0.0011±0.0011
1400.14	3.74	-0.0208±0.0016	-0.0013±0.0011
1594.32	4.12	-0.0229±0.0017	-0.0017±0.0012
1788.50	4.50	-0.0274±0.0019	0.0018±0.0014
1936.69	4.79	-0.0259±0.0026	0.0 ±0.0018

3.2 ¹⁴²Pr

Fig. 5 zeigt das Zerfallsschema von 142 Pr. Der 2⁻-Grundzustand mit einer Halbwertszeit von 19.2 Stunden zerfällt zu 96.3% durch β -Zerfall in den Grundzustand des 142 Nd mit einer Endpunktsenergie von 2.163 MeV und zu 3.7% in den angeregten 2⁺-Zustand des 142 Nd mit einer Endpunktsenergie von 0.587 MeV.

Der 1.57 MeV angeregte 2⁺-Zustand zerfällt dann durch einen $E2-\gamma-\overline{v}$ bergang in den 0⁺-Grundzustand. Der einfach nonunique verbotene $\beta-\overline{v}$ bergang hat dann die Spinfolge 2⁻ \rightarrow 2⁺.

Wie beim ⁴²K wurden auch hier täglich Eichmessungen durchgeführt. Die Testwerte zeigten nur wieder statistische Abweichungen und damit keinen Einfluß von Bremsstrahlungseffekten an.

Fig. 5: Zerfallsschema von ¹⁴²Pr

Nach den Korrekturen ergaben sich unter Berücksichtigung der Energieauflösung der β -Detektoren, die jetzt etwa 25% bei der 370 keV Konversionslinie des ¹¹³Sn betrug, neun Meßwerte für verschiedene Elektronenenergien:

E keV	$W m_e c^2 $	A ₂ (W)	A ₄ (W)
214.62	1.42	0.00009±0.00234	-0.00106±0.00168
255.50	1.50	-0.00433±0.00206	0.00325±0.00148
296.38	1.58	-0.00568±0.00217	0.00206±0.00156
342.37	1.67	-0.00113±0.00232	0.00160±0.00167
383.25	1.75	-0.00063±0.00250	-0.00119±0.00180
424.13	1.83	-0.00528±0.00273	0.00242±0.00196
465.01	1.91	0.00182±0.00302	-0.00169±0.00217
511.00	2.00	-0.00208±0.00347	0.00104±0.00250
551.88	2.08	-0.00091±0.00489	0.00176±0.00351

- 14 -

Fig. 6 zeigt das Zerfallsschema von 170 Tm. Der 1⁻-Grundzustand mit einer Halbwertszeit von 127 Tagen zerfällt zu 76% durch β -Zerfall in den Grundzustand des 170 Yb mit einer Endpunktsenergie von 0.967 MeV und zu 24% in den angeregten 2⁺-Zustand des 170 Yb mit einer Endpunktsenergie von 0.883 MeV.

Fig. 6: Zerfallsschema von ¹⁷⁰Tm

Der 84 keV angeregte 2⁺-Zustand zerfällt dann durch einen E2- γ -Übergang, der stark konvertiert ist, in den O⁺-Grundzustand des ¹⁷⁰Yb. Dieser einfach nonunique verbotene β -Übergang hat die Spinfolge 1⁻ \rightarrow 2⁺.

Wegen der hohen inneren Konversion des 84 keV γ -Zerfalls ($\alpha_{\rm K}$ = 1.7, $\alpha_{\rm L}$ = 4, $\alpha_{\rm M}$ = 1.2) kommen nur 3% 84 keV γ -Zerfälle auf einen β -Zerfall.

Ein Einfluß der Bremsstrahlung ist hier zu erwarten. Daher wichen die Testwerte K(I) und K(III) um maximal 6% von 1 ab.

Eine Korrektur auf Bremsstrahlung mußte bei dieser Messung angebracht werden.

Nach sämtlichen Korrekturen ergaben sich wieder hinsichtlich der Energieauflösung der β -Detektoren neun Meßwerte für verschiedene Energien:

E keV	w m _e c ²	A ₂ (W)	A ₄ (W)
224.9	1.44	-0.0380±0.0017	0.0013±0.0012
277.3	1.55	-0.0451±0.0016	-0.0008±0.0011
355.9	1.70	-0.0540±0.0020	0.0 ±0.0011
434.5	1.85	-0.0604±0.0017	-0.0024±0.0012
513.1	2.00	-0.0670±0.0019	-0.0038±0.0013
591.7	2.16	-0.0730±0.0021	-0.0010±0.0015
670.3	2.32	-0.0784±0.0025	-0.0047±0.0018
748.9	2.47	-0.0843±0.0034	-0.0027±0.0025
827.5	2.62	-0.0980±0.0056	0.0025±0.0040

4. THEORETISCHE UNTERSUCHUNGEN DER GEMESSENEN ÜBERGÄNGE

4.1 Grundlagen

Den für die Modellrechnungen benutzten Formalismus von Behrens und Bühring findet man in ¹ für sphärische Kerne und in ⁴⁴ für deformierte Kerne. Formeln zur Berechnung der Observablen sind im Anhang 6.5 aufgeführt.

Die β -Zerfallsobservablen können durch Größen $M_{K}(k_{e},k_{v})$ und $M_{K}(k_{e},k_{v})$ ausgedrückt werden, dabei sind die Größen M_{K} und M_{K} Linearkombinationen von Übergangsmatrixelementen, deren Koeffizienten energieabhängig sein können. K ist der Tensorrang des beteiligten β -Operators, k_{e} und k_{v} stehen in Zusammenhang mit den Drehimpulsquantenzahlen der Partialwellen von Elektron und Neutrino.

Für den Anisotropiekoeffizienten A₂(W) ist dieser Zusammenhang im Anhang 6.5 einmal ausführlich dargestellt.

- 16 -

Die Übergangsmatrixelemente selber werden als Formfaktorkoeffizienten geschrieben. Die Beziehung zwischen beiden ist im Anhang 6.4 für die führenden Terme der einfach nonunique verbotenen β -Übergänge gezeigt.

Die Berechnung der Matrixelemente wurde nach den Formeln der Tabelle 7 in Ref.¹ durchgeführt.

Vielteilchenkonfigurationen können durch Linearkombinationen von Entkopplungskoeffizienten und reduzierten Einteilchenmatrixelementen beschrieben werden⁶. Die dazu benötigten "Fractional-Parentage-Koeffizienten" sind aus Ref.⁷ entnommen worden.

Außer den führenden Übergangsmatrixelementen (vier oder sechs bei den einfach nonunique verbotenen β -Übergängen) treten noch Matrixelemente höherer Ordnung als Korrekturgrößen auf¹. Bei den theoretischen Rechnungen zeigte sich, daß diese Korrekturen nur sehr geringen Einfluß auf die Observablen der hier behandelten Übergänge haben.

Das gleiche gilt für Beiträge, die durch die "Induzierte Wechselwirkung" entstehen können. Auch hier wurde in den Rechnungen festgestellt, daß sie nur als kleine Korrekturen bei der Bestimmung der Observablen auftreten. Einfach nonunique verbotene β -Zerfälle eignen sich daher nicht, induzierte Wechselwirkungen zu studieren. Erlaubte β -Zerfälle werden dagegen stark von solchen Wechselwirkungen beeinflußt.

In dem Programm zur Berechnung der β -Zerfallsobservablen für die sphärischen Kerne können verschiedene Teilchenkonfigurationen als Bestandteil der Gesamtwellenfunktion des Kerns mit entsprechenden Amplituden a_i und b_i für den Anfangs- und Endzustand angenommen werden. Diese Amplituden sind die Modellparameter, die an die experimentellen Daten angepaßt werden.

Die Methode, diese Parameter zu bestimmen, ist die Minimisierung einer $\chi^2_T\text{-}Funktion\text{:}$

$$\chi_{\rm T}^2 = \frac{1}{n} \sum_{i=1}^{n} \chi^2(i)$$
 ,

$$\operatorname{mit} \chi^{2}(i) = \frac{1}{N(i)} \sum_{j=1}^{N(i)} \{ |Q_{th}^{(i)}(j) - Q_{exp}^{(i)}(j)| / \Delta Q_{exp}^{(i)}(j) \}^{2}$$

Hier bedeutet n die Zahl der verschiedenen β -Zerfallsobservablen (Shape-Faktor, β - γ -Winkelkorrelation etc.), die für den Kern in Betracht gezogen werden können, N(i) ist die gesamte Zahl der Meßwerte für eine Observable i (z.B. die Zahl der gemessenen Anisotropiekoeffizienten für verschiedene Elektronenenergien bei der β - γ -Winkelkorrelation). $Q_{exp}^{(i)}$, $\Delta Q_{exp}^{(i)}$ sind die experimentellen Werte mit ihren Fehlern und $Q_{th}^{(i)}$ ist der entsprechend theoretisch berechnete Wert. Für ein gutes Minimum sollte die Beziehung gelten:

 $\chi^2(i)/N(i) < 1$ für alle Observablen i.

Die Minimisierung wurde mit dem Programm 'MINUITS' aus der CERN-Programmbibliothek ausgeführt. Phasen und Amplituden der Teilchenkonfigurationen für einen Kern wurden als unabhängig angenommen mit der Normierungsbedingung:

 $\sum_{i} a_{i}^{2} = 1 \quad \text{und} \quad \sum_{i} b_{i}^{2} = 1.$

Bei i-Teilchenkonfigurationen können i-1 Parameter unabhängig innerhalb der Normierungsbedingung variiert werden.

In dem Programm zur Berechnung der Observablen für deformierte Kerne können Mischungen von mehreren Teilchenkonfigurationen nicht berücksichtigt werden. Das beschriebene Minimisierungsverfahren ist daher hier nicht durchführbar.

<u>4.2</u> 42_K

Mit 23 Neutronen und 19 Protonen sollte der Kern ⁴²K durch die folgende einfache Schalenmodellkonfiguration beschrieben werden (s. Fig.7):

 $|^{42}$ K;2 > = | v 1 f³_{7/2}, π 1 d⁻¹_{3/2}; 2 > .

Im einfachen Schalenmodell bewegen sich die Teilchen unabhängig ohne Restwechselwirkung in einem gemeinsamen Potential.

Fig. 7: Darstellung der Schalenmodellniveaus um 23 Neutronen und 19 Protonen

 42 K zerfällt durch einen einfach unique verbotenen β -Übergang zum O⁺-Grundzustand des 42 Ca und durch einen einfach nonunique verbotenen Übergang in den ersten angeregten 2⁺-Zustand dieses Kerns.

Nach dem einfachen Schalenmodell ist die $1d_{3/2}$ -Protonenschale für das ⁴²Ca gefüllt und es befinden sich zwei Neutronen in der $1f_{7/2}$ -Schale.

Im einfachen Schalenmodell können jedoch die Nukleonen in einer Schale zu verschiedenen Drehimpulsen koppeln. Mit dieser Möglichkeit ergibt sich für die Darstellung der beiden Kerne in diesem Modell:

$$| {}^{42}K; 2^- \rangle \equiv a_1 | vf_{7/2}^3(\frac{7}{2}), \pi d_{3/2}^{-1}(\frac{3}{2}); 2^- \rangle + a_2 | vf_{7/2}^3(\frac{5}{2}), \pi d_{3/2}^{-1}(\frac{3}{2}); 2^- \rangle + a_3 | vf_{7/2}^3(\frac{3}{2}), \pi d_{3/2}^{-1}(\frac{3}{2}); 2^- \rangle ,$$

$$| {}^{42}Ca; 2^+ \rangle \equiv | vf_{7/2}^2(2); 2^+ \rangle .$$

Für den β -Zerfall kommt hier nur der Übergang $\nu 1f_{7/2} \rightarrow \pi 1d_{3/2}$ in Frage.

Nach den Auswahlregeln können nur Übergangsmatrixelemente vom Rang > 2 zu diesem Zerfall beitragen. Alle Observablen sollten daher die Eigenschaften eines einfach unique verbotenen Übergangs aufweisen.

Zum Vergleich mit den theoretischen Rechnungen wurden folgende experimentelle Daten herangezogen:

- a) der Shape-Faktor C(W) nach Ref.⁸⁻¹⁰,
- b) der Anisotropiekoeffizient A₂(W) aus der eigenen Messung 3.1,⁺
- c) die $\beta \gamma Z$ irkularpolarisationskorrelation $\overline{P}^{*}_{\gamma}(\theta)$ aus Ref.¹⁰.

Für die Berechnung der Observablen wurden die Wellenfunktionen eines harmonischen Oszillators benutzt.

Die theoretischen Rechnungen nach dem einfachen Schalenmodell zeigen, daß hinsichtlich der β -Zerfallsobservablen nicht zwischen den verschiedenen Kopplungsmöglichkeiten der Neutronen unterschieden werden kann. Jede Kopplung führt in diesem Fall zu den gleichen Formfaktorkoeffizienten, so daß die Modellparameter a_i nicht mit dem in 4.1 beschriebenen Minimisierungsverfahren festgelegt werden können.

Die experimentellen Daten der Observablen a-c sind im Widerspruch zu diesem einfachen Modell mit dem β -Übergang $v^{1f}_{7/2} \rightarrow \pi^{1d}_{3/2}$ (s. Fig.8).

Es ist bekannt, daß oft Teilchenkonfigurationen innerhalb einer Schale nicht ausreichen, die dynamischen Größen eines Kerns zu erklären. Die Restwechselwirkung der Nukleonen erlaubt es, daß sie sich über verschiedene Schalen verteilen können. Dann

- 20 -

[°]Die A₄-Koeffizienten für die hier untersuchten Kerne eignen sich nicht zum Test von Kernmodellen, da sich wegen ihrer kleinen Werte mit Rücksicht auf die Fehlergrenzen kaum ein Einfluß der Kernstruktur feststellen läßt.

wird die Kernwellenfunktion durch Mischungen verschiedener Konfigurationen bestimmt.

Da man beim Nachbarkern ⁴¹Ca Neutronenzustände $v_{2p_{3/2}}$, $v_{2p_{1/2}}$ und $v_{1f_{5/2}}$ etwa 2,4 und 6 MeV oberhalb des $v_{1f_{7/2}}$ -Zustandes gefunden hat¹¹, liegt es nahe, beim ⁴²K Beimischungen anzunehmen, wo sich ein Neutron in diesen Zuständen befindet.

Dabei werden Kopplungen zugelassen, die zu Rang O und 1 Matrixelementen beim Zerfall führen, da nur diese Matrixelemente die Observablen wesentlich beeinflussen können. Für den Kern ⁴²Ca gibt es theoretische Schalenmodellrechnungen, in denen die Restwechselwirkung der Teilchen berücksichtigt wird^{12/13}.

Nach diesem Schalenmodell mit Konfigurationsmischungen ergibt sich die folgende Beschreibung für die beiden Kerne:

$$\begin{split} | {}^{42}K; \ 2^- > &\equiv a_1 | \nu f_{7/2}^3, \ \pi d_{3/2}^{-1}; \ 2^- > + a_2 | \nu f_{7/2}^2(2), \ [\nu p_{3/2}, \ \pi d_{3/2}^{-1}]_0^2; \ 2^- > \\ &+ a_3 | \nu f_{7/2}^2(2), [\nu p_{3/2}, \ \pi d_{3/2}^{-1}]_1^2; \ 2^- > \\ &+ a_4 | \nu f_{7/2}^2(2), [\nu p_{1/2}, \ \pi d_{3/2}^{-1}]_1^2; \ 2^- > \\ &+ a_5 | \nu f_{7/2}^2(2), [\nu f_{5/2}, \ \pi d_{3/2}^{-1}]_1^2; \ 2^- > \\ &+ a_5 | \nu f_{7/2}^2; \ 2^+ > + b_2 | \nu f_{7/2}, \ \nu p_{3/2}; \ 2^+ > . \end{split}$$

Nach Ref.^{12,13} haben die theoretisch bestimmten Amplituden für 42 Ca etwa den Wert: b₁ ~ 0.9 und b₂ ~ 0.3.

Beim β -Zerfall läßt sich aber zwischen den Komponenten b₁ und b₂ nicht unterscheiden. Die Komponente b₂ kann nur durch einen Zerfall aus den Beimischungen a₂ und a₃ besetzt werden, wenn dort ein f_{7/2}-Neutron ausgekoppelt wird, das dann in ein d_{3/2}-Proton zerfällt. Das führt zu den gleichen Einteilchen-Formfaktorkoeffizienten, die auch der Übergang aus der Beimischung a₁ zur Komponente b₁ erzeugt. Man erhält daher keine Information über die Beimischung b₂ zur Wellenfunktion des ⁴²Ca. Neue Beiträge liefern jetzt die Übergänge $v^{2p}_{3/2} \rightarrow \pi^{1d}_{3/2}$, $v^{2p}_{1/2} \rightarrow \pi^{1d}_{3/2}$ und $v^{1f}_{5/2} \rightarrow \pi^{1d}_{3/2}$.

Die Parameter a lassen sich mit dem Minimisierungsverfahren dann so an die experimentellen Daten anpassen, daß ein eindeutiger Satz von Modellparametern alle Observablen gut wiedergibt (s. Fig.8).

Die Ergebnisse sind in Tabelle I zusammengefaßt.

Übergang	Komponente	Amplitude	χ^2 -Funktion	
$v_{7/2} \rightarrow \pi d_{3/2}$	a ₁	0.100 + 0.057 - 0.030	Observable i	$\chi^2(i)/N(i)$
$v_{3/2} \rightarrow \pi d_{3/2}$	^a 2	0.215 ⁺ 0.052 - 0.030	C (W)	0.68
$v_{3/2} \rightarrow \pi d_{3/2}$	a ₃	0.826 ⁺ 0.056 - 0.090	A ₂ (₩) *	0.90
$vp_{1/2} \rightarrow \pi d_{3/2}$	a ₄	0.512 + 0.097 - 0.089	$\mathbf{P}^{\star}_{\gamma}(\mathbf{\theta})$	0.97
$vf_{5/2} \rightarrow \pi d_{3/2}$	a ₅	0.0		

Tabelle	I:	Ergebnisse	der	Rechnungen	für	4 Z K

			-	
	n	m	ρ	
${}^{A}_{F}{}^{O}_{OOO}$ (k _e =1)	n 1	m 1	0 1	0.060 0.087
${}^{A}F^{O}_{O11}$ (k _e =1)	n 1	m 1	O 1	0.241 0.262
V _F O (k _e =1)	. n 1	m 1	0 1	-0.456 -0.497
$v_{\rm F0}^{\rm O}$ (k _e =1)	n	m	0	0.066
${}^{A}{}_{F}{}^{O}{}_{111}$ (k _e =1)	n 1	m 1	0 1	-0.909 -0.990
${}^{A}F_{211}^{O}$ (k _e =1)	n	m	0	0.096
	log ft = 6.5	log ft	exp = 7.5	· · · · · · · · · · · · · · · · · · ·

Formfaktorkoeffizienten

Fig. 8b

Fig. 8c

<u>Fig. 8 a-c:</u> Observable für ⁴²K (--- einfaches Schalenmodell, —— Schalenmodell mit Konfigurationsmischungen)

a) Shape-Faktor nach Ref. 8-10

b) Anisotropiekoeffizient nach 3.1

c) $\beta-\gamma-Z$ irkularpolarisationskorrelation nach Ref. ¹⁰

Die Modellrechnung zeigt, daß ein Neutron wesentlich auf die $2p_{3/2}$ -Schale verteilt ist. Eine beträchtliche Beimischung mit einem Neutron in der $2p_{1/2}$ -Schale ist notwendig, um besonders die nicht erlaubte Spektrumsform zu erklären. Eine Beimischung mit einem Neutron in der $1f_{5/2}$ -Schale trägt nach der Rechnung nicht zum Grundzustand des 4^{2} K bei.

Bei den Formfaktorkoeffizienten unterscheidet man relativistische und nichtrelativistische Koeffizienten, je nach der Beschaffenheit des Operators, der Anfangs- und Endzustand verbindet.

Für die relativistischen Formfaktorkoeffizienten, welche die große und kleine Komponente der Kernwellenfunktionen verknüpfen, hätte man ein relativistisches Kernmodell zu benutzen, für das es aber bisher nur erste Ansätze gibt.

Fig. 9a:

Fig. 9 a-b: Konturen der χ_T^2 -Funktion in Abhängigkeit der Parameter a_i für χ_T^2 = 1.2

Fig. 9 c:
Kontur der
$$\chi_T^2$$
-Funktion in Abhängigkeit der
Parameter a₂ und a₄ für χ_T^2 = 1.2

Für den nichtrelativistischen Grenzfall lassen sich diese Koeffizienten berechnen, da dann die kleine relativistische Komponente durch die große Komponente ausgedrückt werden kann¹. Die beiden relativistischen Formfaktorkoeffizienten ${}^{A}_{F}{}^{O}_{OOO}$ und ${}^{V}_{F}{}^{O}_{101}$ wurden auf diese Weise berechnet.

In der CVC-Theorie^{14,15} lassen sich die relativistischen Vektor-Formfaktorkoeffizienten durch nichtrelativistische ausdrücken:

$$-(2K+1)\sqrt{\frac{K}{2K+1}} V_{F_{K,K-1,1}} = (W_{O}-2.5) R V_{F_{K,K,O}} + \alpha Z \{ \int (\frac{r}{R})^{K} U(r) T_{KKO} \}$$

Speziell für den Koeffizienten ^VF^O₁₀₁ erhält man:

$$V_{F_{101}}^{O} = -\frac{1}{\sqrt{3}} (W_{O}^{-2.5}) R F_{110}^{O} + \alpha Z \{\int_{\overline{R}}^{\overline{r}} U(r) T_{110}\}$$

Der Tensoroperator T_{KKO} und das Coulombpotential einer homogenen Ladungsverteilung $V_C = \frac{\alpha \cdot Z}{R} \cdot U(r)$ ist in ¹ definiert. Mit dieser Relation ergibt sich für den relativistischen Vektor-Formfaktorkoeffizient:

$$V_{\rm F}^{\rm O}_{\rm 101}$$
 = 0.039 (CVC).

Der Koeffizient kommt also etwa 40% kleiner heraus als im nichtrelativistischen Grenzfall.

Das Minimisierungsverfahren findet in diesem Fall aber keinen Satz von Modellparametern, bei dem alle Observablen mit den experimentellen Werten übereinstimmen.

Eine Berechnung des relativistischen Vektor-Formfaktorkoeffizienten aus der CVC-Relation setzt voraus, daß diese Beziehung modellunabhängig ist. Dies gilt aber nicht mehr streng für den letzten Term in der Formel. Zudem führen auch nur etliche Näherungen zu dieser Relation. Die universelle Anwendbarkeit dieser Formel steht daher in Frage. Es gibt Fälle, wo man bei korrektem Einbau der CVC-Theorie in den benutzten Modellraum zum gleichen Ergebnis kommt wie bei einer Berechnung im nichtrelativistischen Grenzfall.

Eine weitere Schwierigkeit ist der relativistische Axialvektor-Formfaktorkoeffizient ${}^{A}F_{OOO}^{O}$. Er läßt sich nur für den nichtrelativistischen Grenzfall bestimmen, da es hier keine Beziehung zu nichtrelativistischen Matrixelementen gibt. In solch einem Falle ist es sicher richtiger, bei einem konsistenten Berechnungsverfahren zu bleiben.

*In Ref.⁶⁶ wird gezeigt, daß die Relation aus der CVC-Theorie nicht modellunabhängig ist, sondern von Konfigurationsmischungen und Core-Polarisationseffekten mit bestimmt werden kann. Es wird dort auf verschiedene Fälle hingewiesen, wo diese Relation im Widerspruch zu dem experimentell bestimmten Wert $\Lambda_{exp} = \int \dot{\vec{\alpha}} / \int i \vec{r}$ steht.

- 27 -

Es gibt verschiedene Kerne, bei denen Modellrechnungen im nichtrelativistischen Grenzfall die experimentellen Daten gut wiedergeben. Beim Zerfall des 2O9 Pb¹⁶, bei dem die beteiligten Wellenfunktionen gut bekannt sind, werden Shape-Faktor und ft-Wert ausgezeichnet bestimmt. Für den Zerfall des 210 Bi (RaE)¹⁷ gibt es einen Satz von Modellparametern, der die β -Zerfallsobservablen bei der Rechnung im nichtrelativistischen Grenzfall wiedergibt. Hier läßt sich auch ein etwas unterschiedlicher Satz von Parametern finden, der die Observablen bei Ausnutzung der Beziehung aus der CVC-Theorie richtig bestimmt.

Beim dreifach verbotenen β -Zerfall des 87 Rb¹⁸ scheint ein Fall vorzuliegen, der nur erklärt werden kann, wenn man den relativistischen Vektor-Formfaktorkoeffizienten ${}^{V}_{F_{321}^{O}}$ nach der CVC-Relation ausrechnet.

Der Anisotropiekoeffizient $A_2(W)$ für den einfach nonunique verbotenen β -Übergang des 42^{K} K ist auch schon in anderen Messungen bestimmt worden^{10,19,20}. Bei den Arbeiten^{19,20} ist der Anisotropiekoeffizient um etwa 40% größer gemessen worden, die Messung aus Ref.¹⁰ liegt etwa zwischen diesen Arbeiten und der Messung 3.1. Bei den Arbeiten^{10,20}sind die Übergangsmatrixelemente (NME) durch eine Anpassung an die experimentellen Daten bestimmt worden. Bei der Modellrechnung in dieser Arbeit werden dagegen die Modellparameter an die Daten angepaßt.

In den Arbeiten^{10,20} finden sich mehrere Sätze von Matrixelementen, welche die Observablen beschreiben, während diese Rechnung nur einen Satz ergibt.

Ein Vergleich zeigt, daß die Matrixelemente aus ²⁰ etwa mit denen aus dieser Arbeit übereinstimmen (s.Tabelle S.29).

In Ref.^{13,21,22} wird für den angeregten 2⁺-Zustand des ⁴²Ca auch eine Beimischung deformierter Zustände angenommen, um die Anregungsenergien und γ -Übergangswahrscheinlichkeiten für diesen Kern zu erklären. Die gute Übereinstimmung der Modellrechnung mit den experimentellen Ergebnissen deutet aber darauf hin, daß solche Beimischungen hinsichtlich des β -Zerfalls von ⁴²K keine Bedeutung haben.
NME's	Ref. 10	Ref. ²⁰	diese Arbeit
∫r ₅		0.943±3.208	0.539
$\left \int i \frac{\vec{\sigma} \cdot \vec{r}}{R}\right $	1.861	11.321±15.094	2.169
$ \int \vec{\alpha} $		0.321±0.208	0.742
$\left \int i \frac{\vec{r}}{R}\right $	0.011 0.828 0.900	2.075±1.132	2.955
$\left \int \frac{\vec{\sigma} \times \vec{r}}{R}\right $	0.192 1.306 2.472	2.642±1.698	6.663
$\left \int i \frac{Bij}{R}\right $	1	1	1

4.3 ¹⁴²Pr

Nach dem einfachen Schalenmodell hat der Kern 142 Pr ein Neutron in der 2f_{7/2}-Schale außerhalb der magischen Neutronenzahl 82 und ein Proton in der 2d_{5/2}-Schale (s. Fig.10).

Das ¹⁴²Pr zerfällt durch einen einfach unique verbotenen β -Übergang zum O⁺-Grundzustand des ¹⁴²Nd und durch einen einfach nonunique verbotenen Übergang zum ersten angeregten 2⁺-Zustand des ¹⁴²Nd. Nach dem einfachen Schalenmodell befinden sich dann zwei Protonen in der 2d_{5/2}-Schale, während die Neutronen magisch abgeschlossen sind.

Folgende Darstellung haben dann die Kerne in diesem Modell:

$$|^{142}$$
Pr; 2 > \equiv $|_{vf_{7/2}}$, $\pi d_{5/2}$; 2 > ,
 $|^{142}$ Nd; 2 + > \equiv $|_{\pi d_{5/2}}^2$; 2 + >.

Für den β -Zerfall findet dann der Übergang $\nu 2f_{7/2} \rightarrow \pi 2d_{5/2}$ statt.

Nach den Auswahlregeln können hier Übergangsmatrixelemente vom Rang 1 und 2 zum Zerfall beitragen. Zum Vergleich mit den theoretischen Rechnungen werden folgende experimentelle Daten herangezogen:

- a) der Shape-Faktor C(W) nach Ref.²³,
- b) der Anisotropiekoeffizient A₂(W) aus der eigenen Messung 3.2,
- c) die Winkelverteilung der γ-Strahlung bei orientierten Kernen nach Ref.²⁴, wobei die Ausrichtungsparameter (s. 6.5) aus Ref.²⁵ entnommen wurden,
- d) die β - γ -Zirkularpolarisationskorrelation nach Ref.²³.

Für die Berechnung der Observablen wurden wieder die Wellenfunktionen des harmonischen Oszillators benutzt. Die Modellrechnungen mit diesem einfachen Modell zeigen, daß die Observablen b und c nicht wiedergegeben werden (s. Fig.11).

Berücksichtigt man wieder die Restwechselwirkung, so können sich die Nukleonen auf andere Schalen verteilen. Durch den einfach magischen Abschluß der Neutronenschalen kann man das 83te Neutron beim ¹⁴²Pr mit großer Sicherheit der $2f_{7/2}$ -Schale zuordnen. Durch die Restwechselwirkung kann aber ein Proton aus der $1g_{7/2}$ -Schale auf die darüberliegende $2d_{5/2}$ -Schale ausgedehnt werden. Dann erhält man als Beimischung einen Zustand mit einem Loch in der $1g_{7/2}$ -Protonenschale und 2 Protonen in der $2d_{5/2}$ -Schale.

Koppeln die beiden Protonen zum Gesamtdrehimpuls 2, wird jetzt der Zerfall $v2f_{7/2} \rightarrow \pi 1g_{7/2}$ möglich, bei dem die $1g_{7/2}$ -Protonenschale wieder aufgefüllt wird.

Für den angeregten 2⁺-Zustand des ¹⁴²Nd gibt es theoretische Rechnungen mit Restwechselwirkung für die Nukleonen²⁶.

Mit diesem Modell erhält man dann:

$$|^{142}Pr; 2^{-} \rangle \equiv a_{1} | vf_{7/2}, \pi d_{5/2}; 2^{-} \rangle + a_{2} | [vf_{7/2}, \pi g_{7/2}^{-1}]_{0}^{2}, \pi d_{5/2}^{2}(2); 2^{-} \rangle + a_{3} | [vf_{7/2}, \pi g_{7/2}^{-1}]_{1}^{2}, \pi d_{5/2}^{2}(2); 2^{-} \rangle ,$$

$$|^{142}$$
Nd; $2^+ > \equiv b_1 | \pi d_{5/2}^2$; $2^+ > + b_2 | \pi d_{5/2}$, $\pi g_{7/2}^{-1}$; $2^+ >$

+Komponenten, die nicht durch den β -Zerfall besetzt werden können.

Dabei wurden nur Kopplungen zugelassen, die zu Rang O und 1 Matrixelementen beim β -Zerfall führen, da die Observablen Übergänge mit einem einfach unique verbotenen Charakter ausschließen.

Beim β -Zerfall kann zwischen den Komponenten b_1 und b_2 nicht unterschieden werden. Ein Zerfall in die Komponente b_2 ist nur aus den Beimischungen a_2 und a_3 möglich. In der Konfiguration b_2 befinden sich drei Protonen in der $2d_{5/2}$ -Schale, von denen zwei zum Drehimpuls O koppeln und nicht zum Gesamtspin des Kerns beitragen.

Der Zerfall in die Komponente b_2 geht nur durch den Übergang $vf_{7/2} \rightarrow \pi d_{5/2}$ und führt zu den gleichen Formfaktorkoeffizienten wie der Zerfall aus der Beimischung a₁ zur Konfiguration b₁.

- 31 -

Die Minimisierung mit den Parametern a_i führt auch hier zu einem Satz von Modellparametern, der die experimentell bestimmten β -Zerfallsobservablen gut wiedergibt (s. Fig.11).

Für den Shape-Faktor aus Ref.²³ läßt sich keine χ^2 -Funktion finden mit der Beziehung: $\chi^2(i)/N(i) \leq 1$ (s.Tabelle II). Für die experimentellen Werte dieser Observablen scheinen aber die Fehler zu klein angegeben worden zu sein^{*}, so daß ein Wert von 2.18 für die χ^2 -Funktion noch akzeptiert werden kann.

Eine Berechnung des relativistischen Vektor-Formfaktorkoeffizienten ${}^{V}F_{101}^{O}$ nach der Relation aus der CVC-Theorie ergibt einen um etwa 80% größeren Wert als die Berechnung im nichtrelativistischen Grenzfall. Hier gibt aber trotzdem fast der gleiche Satz von Modellparametern die Observablen gut wieder (s. Tabelle II).

Durch die Größe der Koeffizienten vom Rang O scheinen die Observablen nur wenig von diesem Formfaktorkoeffizienten abzuhängen.

Bei den meisten Analysen für diesen β -Zerfall wurde die Gültigkeit der ξ -Approximation angenommen^{23,24,27}. Unter der Voraussetzung, daß die gesamte Zerfallsenergie W_o klein gegen die Coulombenergie des Elektrons am Kernrand ist $(2\xi = \frac{\alpha Z}{R} >> W_o)$, kann eine gewisse Kombination V und Y

^{*}Für den Fall der einfach nonunique verbotenen β-Übergänge kann der Shape-Faktor allgemein durch die Formel C(W) = 1+aW+b/W+cW² ausgedrückt werden. Die Größen a,b und c sind Konstanten, die von den Formfaktorkoeffizienten abhängen. Behandelt man diese Konstanten wie früher als freie Parameter, so ergibt ein Minimisierungsverfahren einen besten Satz von Konstanten, bei dem die χ^2 -Funktion des Shape-Faktors den Wert 2.0 annimmt. Das deutet darauf hin, daß die Fehler der experimentellen Werte zu klein bemessen wurden. In der theoretischen Rechnung, bei der die Konstanten durch das Kernmodell voneinander abhängen, ergab sich ein bester Wert von 2.18 für die χ^2 -Funktion des Shape-Faktors.

- 32 -

der Rang O und 1 Formfaktorkoeffizienten die Zerfallsobservablen alleine bestimmen:

$$\frac{V}{Y} = \frac{A_F_{000}^0 - \xi_R A_F_{011}^0}{V_F_{101}^0 + \xi_R \sqrt{\frac{2}{3}} A_F_{111}^0 + \xi_R \sqrt{\frac{1}{3}} V_F_{110}^0}.$$

Mit dieser Näherung ergibt sich ein statistischer Shape-Faktor und eine isotrope Winkelverteilung bei der $\beta-\gamma-Winkelkorrelation$.

Die Größe ω in der Formel für die $\beta-\gamma-Z$ irkularpolarisationskorrelation ist dann energieunabhängig und ergibt sich nach ² g zu:

$$\omega = \frac{1}{6} \frac{1 - 4 \cdot 9 \ V/Y}{1 + V^2/Y^2} .$$

Die Reorientierungsparameter für die Berechnung der γ-Winkelverteilung bei ausgerichteten Kernen werden in dieser Näherung auch nur durch diesen Quotienten bestimmt²⁴:

$$B_{22} = 1 - \frac{1}{2(1+V^2/Y^2)}$$
$$B_{44} = 1 - \frac{5}{3(1+V^2/Y^2)}$$

Nach der Anpassung der Modellparameter an die experimentellen Daten hat der Quotient V/Y den Wert -0.58.

Damit berechnen sich die Größen $\omega = 0.48$, $B_{22} = 0.626$ und $B_{44} = -0.247$ in der ξ -Approximation. Diese Werte geben aber die gemessene β - γ -Zirkularpolarisationskorrelation und die γ -Winkelverteilung nicht wieder. Obwohl hier die Voraussetzung $2\xi = 27.0 > W_0 = 2.16$ gegeben ist, wird die ξ -Approximation nicht erfüllt.

Noch zwei weitere Messungen^{23,29} außer der eigenen Messung sind bekannt, in denen der Anisotropiekoeffizient A₂(W) für den einfach nonunique verbotenen β-Zerfall beim ¹⁴²Pr bestimmt wurde.

Fig. 11b: Anisotropiekoeffizient nach 3.2

<u>Fig. 11a - d:</u> Observable für ¹⁴²Pr (--- einfaches Schalenmodell —— Schalenmodell mit Konfigurationsmischungen)

Fig. 11c: γ-Winkelverteilung bei ausgerichteten Kernen nach Ref.^{24/25}

Fig. 11d: $\beta - \gamma - Zirkularpolarisationskorrelation nach Ref.²³$

<u>Fig. 12:</u> Kontur der χ_T^2 -Funktion in Abhängigkeit der Parameter a_1 und a_3 für χ_T^2 = 1.2

Übergang	Komponente	Amplit	ude	mit	CVC
^{νf} 7/2 ^{→ πd} 5/2	2 ^a 1	0.097	+0.073 -0.069	0.107	+0.068 -0.076
^{∨f} 7/2 ^{→ πg} 7/2	2 ^a 2	0.941	+0.037 -0.058	0.901	+0.052 -0.073
νf _{7/2} → ^{πg} 7/2	2 ^a 3	0.326	+0.112 -0.121	0.421	+0.112 -0.121

χ ² -Funktion			Reorientierungsparameter		
Observable i	χ^{2} (i)/N(i)	mit CVC	B mm	ohne CVC	mit CVC
C (W)	2.18	2.18	^B 22	0.941	0.942
A ₂ (W)	0.98	0.98	B ₄₄	0.804	0.807
w(0.70	0.70			
$\overline{P_{\gamma}}(\theta)$	0.04	0.05			

Formfaktorkoeffizienten

	n	m	ρ	ohne CVC	mit CVC
A ()	n	m	0	0.304	0.292
$F_{000}^{F} (k_{e} = 1)$	1	1	1	0.444	0.425
$A_{\rm D}O$ (1) (1)	n	m	0	1.220	1.169
$F_{011}(k = 1)$	1	1	1	1.297	1.243
$V_{F_{101}^{O}}(k_{e} = 1)$	n	m	0	0.018	0.033
	n	m	0	-0 371	-0 466
${}^{A}F_{111}^{O}(k_{1} = 1)$		4	4	0.071	0.400
III e /	1	1	1	-0.404	-0.506
${}^{A}F_{211}^{O}(k_{e} = 1)$	n	m	0	0.090	0.099

Tabelle II: Ergebnisse der Rechnungen für ¹⁴²Pr

Beide Messungen unterscheiden sich aber im Vorzeichen und in der Größe des Koeffizienten. Diese Messung bestätigt den in ²³ gemessenen integralen Wert.

Durch Kernstrukturuntersuchungen am ¹⁴²Pr mit (p,n γ), (d,p γ), (n, γ) und (d,p)-Reaktionen^{30,31} liegen Anhaltspunkte für die Wellenfunktionen vor. Die Daten aus der (p,n γ)-Reaktion ³⁰ lassen eine Lösung zu, bei der die Hauptkomponente der Wellenfunktion durch einen Zustand mit einem Loch in der 1g_{7/2}-Protonenschale gegeben ist. (d,p γ), (n, γ) und (d,p)-Reaktionen dagegen schreiben die größere Amplitude dem Zustand $|\nu 2f_{7/2}, \pi 2d_{5/2}; 2^- > zu.$

Betrachtet man den Grundzustandsspin für ${}^{141}\text{Pr}$, ${}^{142}\text{Pr}$ und ${}^{143}\text{Pr}$ mit 5/2⁺, 2⁻, 7/2⁺, so deutet das auf eine Umbesetzung des Protons aus der 2d_{5/2}-Schale beim ${}^{141}\text{Pr}$ zu einem Protonenloch in der 1g_{7/2}-Schale beim ${}^{143}\text{Pr}$ hin. Von daher kann man gut die starken Beimischungen a₂ und a₃ zur Wellenfunktion für den Grundzustand des ${}^{142}\text{Pr}$ verstehen, wie sie die Daten aus dem β -Zerfall ergeben.

<u>4.4</u> 170_{Tm}

¹⁷⁰Tm ist ein stark deformierter Kern im Deformationsbereich 150 \leq A \leq 190 und daher für die Beschreibung mit dem Nilsson-Modell für deformierte Kerne³²⁻³⁴ besonders geeignet. Ein Neutron in dem Zustand n $\frac{1}{2}$ - [521] und ein Proton im Zustand p $\frac{1}{2}$ + [411] außerhalb eines Cores von 100 Neutronen und 68 Protonen sollten nach diesem Modell den Grundzustand vom ¹⁷⁰Tm beschreiben (Zustand 63 und 43 in Fig. 13).

Neutron und Proton koppeln dabei parallel mit $\Omega = K = \frac{1}{2} + \frac{1}{2} = 1$. Ω ist die Komponente des gesamten intrinsischen Drehimpulses in Richtung der Symmetrieachse des Kerns und eine gute Quantenzahl im Nilsson-Modell.

Nach dem β -Zerfall befinden sich zwei Protonen gepaart im doppelt entarteten Zustand p $\frac{1}{2}$ + [411] und beschreiben den ersten angeregten 2⁺-Zustand des ¹⁷⁰Yb. Die Protonen koppeln dabei antiparallel zu $\Omega = K = \frac{1}{2} - \frac{1}{2} = 0$. Der 84 keV-Zustand des ¹⁷⁰Yb ist eine Rotationsanregung und hat daher die gleiche intrinsische Wellenfunktion, die auch der Grundzustand besitzt. Die ft-Werte zum angeregten Zustand und zum Grundzustand (s. Fig.6), die im Rotationsmodell durch einfache geometrische Faktoren in Beziehung gesetzt werden können³⁵, bestätigen diese Annahme.

Folgende Änderungen der asymptotischen Quantenzahlen (s. 6.2) finden bei diesem Übergang statt:

$$|\Delta \Omega| = 1$$
, $|\Delta N| = 1$, $|\Delta n_{\gamma}| = 1$ und $|\Delta \Lambda| = 2$

Fig. 13: Nilsson-Modell-Niveaus als Funktion der Deformation um 101 Neutronen und 69 Protonen

da Neutron und Proton beim ¹⁷⁰Tm zu Ω = 1 und Λ = 2, im Endzustand die beiden Protonen zu Ω = 0 und Λ = 0 koppeln.

Nach den Auswahlregeln³⁶ sind dann die am Zerfall beteiligten Übergangsmatrixelemente zweifach behindert, dadurch ist der große log ft-Wert von 9.3 zu verstehen. Mit dem Nilsson-Modell wurde zunächst der Einfluß der Deformation auf den Anisotropiekoeffizienten A₂(W) für den β -Übergang n $\frac{1}{2}$ -[521] \rightarrow p $\frac{1}{2}$ +[411] untersucht. Für die Deformationen η = 2,4 und 6 sind die beteiligten Zustände 63 und 43 (s. Fig.13) von Nilsson in einem deformierten Oszillator-Potential nach Basisvektoren entwickelt worden:

$$n\frac{1}{2} - [521] \equiv \sum_{\ell \Lambda \Sigma} a_{\ell \Lambda} | 5\ell \Lambda \Sigma \rangle ,$$
$$p\frac{1}{2} + [411] \equiv \sum_{\ell \Lambda \Sigma} a_{\ell \Lambda} | 4\ell \Lambda \Sigma \rangle .$$

Die Entwicklungskoeffizienten $a_{\beta,\Lambda}$ in Abhängigkeit von der Deformation sind im Anhang 6.2 aufgeführt. Die Rechnungen zeigen eine leichte Zunahme des Anisotropiekoeffizienten mit der Deformation (s. Fig. 14a). In Ref.³⁷ wird für den Grundzustand des ¹⁷⁰Tm und ¹⁷⁰Yb eine Deformation $\beta = 0.314$ und $\beta = 0.308$ angegeben, das entspricht dem von Nilsson verwendeten Deformationsparameter $\eta = 5.5$ und $\eta = 5.4$. Der angeregte 2⁺-Zustand des ¹⁷⁰Yb sollte dann nach der vorausgegangenen Betrachtung die gleiche intrinsische Deformation wie der Grundzustand haben, da es sich um die gleiche Wellenfunktion handelt.

Die Modellrechnungen zeigen keine Übereinstimmung mit den experimentellen Daten im realistischen Deformationsbereich um $\eta = 5.5$.

Statt des von Nilsson verwendeten Oszillatormodells wurde nun ein Modell mit einem deformierten Saxon-Woods-Potential herangezogen³⁸. Hier werden die Eigenfunktionen nach Oszillatorwellenfunktionen entwickelt und die Entwicklungskoeffizienten für vorgegebene Deformationen β berechnet. Die Entwicklung ist in ³⁸ beschrieben und wurde für die Massenzahl A = 170 für die Zustände $n\frac{1}{2}$ - [521] und $p\frac{1}{2}$ + [411] durchgeführt. Dabei wurden Deformationen β = 0.1, 0.2, 0.3 und 0.4 angenommen.

Die in die Berechnung eingehenden Größen und die berechneten Entwicklungskoeffizienten findet man im Anhang 6.3. Bei diesem Modell nimmt der Anisotropiekoeffizient mit zunehmender Deformation ab und hängt im Bereich um $\beta = 0.3$ nur noch wenig von diesem Modellparameter ab (Fig. 14a).

In diesem Bereich, der für die Kerne ¹⁷⁰Tm und ¹⁷⁰Yb nach ³⁷ in Betracht kommt, gibt jetzt die Rechnung den gemessenen Anisotropiekoeffizienten gut wieder. In der Rechnung wird nur ein Modellparameter β (die Kerndeformation) durch Anpassung an die experimentellen Daten festgelegt und ist dabei in guter Übereinstimmung mit der Kerndeformation, die sich für diese Kerne aus der Messung des Kernquadrupolmoments³⁷ ergibt.

Die für den einfach nonunique verbotenen β -Zerfall gemessenen Shape-Faktoren³⁹⁻⁴² weichen zum Teil voneinander ab (s. Fig. 14b). Der durch die Modellrechnung mit einem deformierten Saxon-Woods-Potential (β = 0.3) bestimmte Verlauf liegt zwischen den experimentellen Messungen. Die Elektronenlongitudinalpolarisation nach Ref.⁴³ wird gut durch die Modellrechnung beschrieben (Fig. 14c). In Tabelle III sind die berechneten Größen zusammengefaßt.

Bei diesem einfach nonunique verbotenen β -Zerfall mit der Spinfolge 1 \rightarrow 2⁺ können nur vier Formfaktorkoeffizienten vom Rang \geq 1 auftreten. Es gibt daher nur einen relativistischen Koeffizienten ${}^{V}F^{O}_{1O1}$.

Dieser Formfaktorkoeffizient kann wieder mit der Relation aus der CVC-Theorie bestimmt werden (s. 4.2). Man hat dabei dann im letzten Term der Relation die Deformation des Coulomb-Potentials zu berücksichtigen⁴⁴. Der mit der CVC-Theorie berechnete Anisotropiekoeffizient gibt aber die experimentellen Ergebnisse nicht wieder (Fig. 15). Hier gibt nur die Berechnung für den nichtrelativistischen Grenzfall eine Übereinstimmung mit dem Experiment (s. Fußnote S.27).

 $\begin{array}{c} \mbox{Fig. 14a:} \\ \mbox{Misotropiekoeffizient in Abhängigkeit der Kerndeformation}_{\eta \mbox{(Rechnungen mit einem Saxon-Woods-Potential)} \ \mbox{und } \beta \ \mbox{(Rechnungen mit einem Saxon-Woods-Potential)} \end{array}$

Fig. 14b: Shape-Faktor: a) nach Ref.⁴⁰, b) nach Ref.³⁹, c) nach Ref.⁴², d) nach Ref.⁴¹ und e) nach der Modellrechnung mit einem Saxon-Woods-Potential (β = 0.3)

<u>Fig. 14c:</u> Elektronenpolarisation nach Ref.⁴³, (— Rechnung mit einem Saxon-Woods-Potential $\beta = 0.3$)

Fig. 15:Anisotropiekoeffizient: a) Rechnung mit einem Saxon-Woods-Potential $\beta=0.3$ für den nichtrelativistischen Grenzfall, b) Rechnung mit einem Saxon-Woods-
Potential $\beta=0.3$ und der Relation aus der CVC-Theorie, c) Rechnung wie b
jedoch mit Oszillator-Potential $\eta = 6$

 β -übergang: $n\frac{1}{2} - [521] \rightarrow p\frac{1}{2} + [411]$

	n	m	ρ	OszPot. n=6	SWPot. β=0.3
V_0 (, ()	n	m	0	0.178	0.125
^F 110 ^{(k} e ⁼¹⁾	1	1	1	0.222	0.163
V O				-0.026	-0.018
$F_{101}^{0} (k_{e}=1)$	n	m	0	-0.050 (CVC)	-0.037 (CVC)
A O	n	m	0	-0.257	-0.147
${}^{A}F_{111}^{O}(k_{e}=1)$	1	1	1	-0.306	-0.171
$A_{F_{211}^{O}(k_{e}=1)}$	n	m	0	0.200	0.218
log ft				6.5	7.1
5				6.1 (CVC)	6.5 (CVC)
log ft _{exp}				9.3	9.3

Formfaktorkoeffizienten

Der in dieser Arbeit gemessene Anisotropiekoeffizient stimmt gut mit den in Ref.⁴⁵⁻⁴⁹ angegebenen Meßwerten überein.

In verschiedenen Arbeiten werden auch Verhältnisse von Übergangsmatrixelementen angegeben, die für den Übergang $n\frac{1}{2} - [521] \rightarrow p\frac{1}{2} + [411]$ mit deformiertem Oszillator- und Saxon-Woods-Potential berechnet wurden. In diesen Rechnungen wurde ein Deformationsparameter n=6 bzw. β =0.3 angenommen: a) Modellrechnungen mit deformiertem Oszillator-Potential ($\eta=6$)

$$\Lambda = -\frac{2R}{\alpha Z} \frac{\int \vec{\alpha}}{\int i\vec{r}} , \quad \Lambda_1 = \frac{C_A}{C_V} \frac{\int \vec{\sigma} \times \vec{r}}{\int i\vec{r}} , \quad \Lambda_2 = -\frac{C_A}{C_V} \frac{\int iBij}{\int i\vec{r}}$$

		Ref. ⁵⁰	Ref. ^{52/53}	Ref. ⁵¹	diese Arbeit
Λ	ohne CVC	0.966			0.990
	mit CVC		2.164	2.075	1.904
Λ1		-6.048	-5.571	-1.990	-2.042
Λ2		-2.833	-2.587	-1.769	-2.247

b) Modellrechnungen mit deformiertem Saxon-Woods-Potential (β =0.3)

	Ref. ⁵³	Ref. ⁴⁴	Ref. ⁵¹	diese Arbeit
ohne CVC ^A mit CVC		 1.875	2.530	0.976 2.015
Λ ₁	-0.347	-1.077	-1.773	-1.663
^۸ 2	-0.624	-1.265	-2.916	-3.488

Der Vergleich der Matrixelemente zeigt gute Übereinstimmung mit den in ⁵¹ berechneten Werten. Der in Ref.⁵¹ nach der CVC-Theorie berechnete A₂-Koeffizient der β-γ-Winkelkorrelation kommt zu klein heraus.

Die Störung der $\beta - \gamma$ -Winkelkorrelation durch äußere Felder⁵⁴ wird in^{55,56}untersucht. Dort ergibt sich für den ungestörten Koeffizienten: A₂(W = 1.5) = -0.178±0.018. Dieser Wert liegt weit über den Werten der theoretischen Modellrechnungen (s. Fig.14a). Folgende Punkte sind aber zu dem in^{55/56} gemessenen Wert anzuführen:

- a) Die Form des nicht verzögerten Zeitspektrums der β - γ -Koinzidenzen wurde aus dem β - γ -Übergang des 60 Co gewonnen und an das Zeitspektrum des 170 Tm angepaßt. Es ist fraglich, wie weit man auf das unverzögerte Spektrum des 170 Tm vom 60 Co-Spektrum schließen darf, da sich die γ -Energien beim 170 Tm (84 keV) und 60 Co (1.17 MeV) erheblich unterscheiden.
- b) Das Auseinanderfalten integraler Gleichungen, wie es in Ref.⁵⁶ durchgeführt wurde, um den Anisotropiekoeffizienten zu bestimmen, ist ein unsicheres Verfahren, das leicht zu Fehlinterpretationen leitet.
- c) Die Störung der Winkelkorrelation kann durch den elektrischen Feldgradienten vom Kristallgitter her verursacht werden, wenn die Lebensdauer des Zwischenzustandes groß genug ist.

Der ionische Anteil dieser Störung läßt sich bei einer metallischen Quelle, wie sie in dieser Arbeit hier verwendet wurde (s. 2.4), abschätzen.

Das Metallgitter des ¹⁷⁰Tm hat eine hcp-Struktur mit den Gitterkonstanten a = 0.3523 nm und c/a = 1.58. Nach dem β -Zerfall sitzt das Yb⁺⁺-Ion als Fehlstelle im Gitter der Tm⁺⁺⁺-Ionen. Die beim β -Zerfall an den Kern übertragene Rückstoßenergie (< 8 eV) ist viel zu klein, um den Kern aus dem Gitterverband zu werfen.

Die Ladungen der Gitterionen erzeugen am Kern des Yb einen elektrischen Feldgradienten, durch den der Kernspin präzediert. Die Voraussetzung, daß die Winkelkorrelation nicht gestört wird, ist die Bedingung: $\omega_e \cdot \tau < 1$ für die Präzessionsfrequenz ω_e und die Lebensdauer τ des Zwischenzustandes. Die durch diesen ionischen Anteil hervorgerufene Grundfrequenz ω_e^0 läßt sich bestimmen⁵⁷:

$$\omega_{e}^{O} = \frac{3}{4I(2I-1)} \cdot \frac{e^{2}Q \cdot q}{\hbar}$$

Q ist das intrinsische Quadrupolmoment des Kerns, q der elektrische Feldgradient am Kern und I der Spin des Zwischenzustandes. Nach ⁶¹ kann die maximale Frequenz für einen Spin I = 2 nur $4\omega_{e}^{O}$ sein.

Der Feldgradient durch das hcp-Ionengitter läßt sich nach ⁵⁸ berechnen:

$$q = Z_{ion}[0.0065 - 4.3584 (c/a - 1.633)]/a^3.$$

Mit $Z_{ion} = 3$, $\tau = 1.58$ nsec für den 2⁺-Zustand des ¹⁷⁰Yb und Q = 7.57 barn³⁷ erhält man mit den Gitterkonstanten:

$$\omega_{\rm e} \cdot \tau \approx 0.02 < 1.$$

Durch den ionischen Anteil kann keine Störung verursacht werden. Eine weitere Störungsursache kann durch die Deformation der Elektronenhüllen im Kristallfeld hinzukommen. Dann wird der Feldgradient q mit einem 'Antishilding-Faktor' γ_{∞} multipliziert. Diese Faktoren γ_{∞} können in manchen Fällen auch Werte wesentlich größer als 1 annehmen⁵⁹. Eine Abschätzung dieses Faktors ist schwierig, da zu seiner Berechnung die genaue Kenntnis der Wellenfunktionen der Leitungselektronen erforderlich ist. Für so schwere Ionen, wie das Yb⁺⁺ sind noch keine Rechnungen durchgeführt worden.

d) Gegen solche Effekte sprechen aber Messungen des Anisotropiekoeffizienten in verschiedenen Kristallgittern⁶⁰. Hier sollten dann bei den sicherlich unterschiedlichen Kristallfeldern erhebliche Differenzen auftreten, falls der ungestörte Anisotropiekoeffizient die in ⁵⁵ gemessene Größe hat. Die Meßwerte unterscheiden sich aber nur wenig und stimmen fast innerhalb des Fehlers überein:

Quelle	A ₂ (W)
Tm ₂ O ₃	-0.0422±0.0070
TmCl ₃	-0.0568±0.0045
TmGa	-0.0729±0.0046
Tm-Metall	-0.0464±0.0255

- 47 -

Nach den Punkten a-d ist die in ⁵⁵ angegebene Größe des Anisotropiekoeffizienten unwahrscheinlich, obwohl nicht ausgeschlossen werden kann, daß eine kleine Störung der $\beta-\gamma$ -Winkelkorrelation durch die lange Lebensdauer des Zwischenzustandes von 1.58 nsec möglich ist.

In ⁶⁰ wird vorgeschlagen, den E.C.-Zerfall des ¹⁷⁰Lu auszunutzen, um eine Störung durch das Kristallgitter zu untersuchen. Baut man das ¹⁷⁰Lu in das Tm-Gitter ein und mißt die Winkelkorrelation der $4^{+}-2^{+}-0^{+}$ $\gamma-\gamma$ -Kaskade zum Grundzustand des ¹⁷⁰Yb, deren Anisotropie bestimmt ist³, kann man mögliche Einflüsse des Kristallgitters feststellen, wenn die $\gamma-\gamma$ -Winkelkorrelation gestört ist.

Auch ein Einbau des ¹⁷⁰Tm in ein kubisches Gitter wäre möglich, da im kubischen Ionengitter keine Feldgradienten auftreten, die eine Störung verursachen können.

5. ZUSAMMENFASSUNG

Das Ziel dieser Arbeit war es, durch Beobachtung des einfach nonunique verbotenen β -Zerfalls Information über die Struktur der Kerne ⁴²K, ¹⁴²Pr und ¹⁷⁰Tm zu erhalten. Dazu wurde die Energieabhängigkeit der β - γ -Winkelkorrelation für diese Kerne gemessen.

Unter Benutzung zusätzlicher Observablen, deren Meßwerte von anderen Autoren kommen, wurde die Kernstruktur berechnet. Für die Kerne ⁴²K und ¹⁴²Pr ergab sich, daß die Beschreibung mit dem einfachen Schalenmodell nicht möglich ist. Bei einem Modell, das die Restwechselwirkung der Nukleonen berücksichtigt, ergeben sich Mischungen verschiedener Konfigurationen. Mit dieser Annahme konnten die gemessenen Observablen gut wiedergegeben werden und es ergaben sich dabei die aus den experimentellen Daten bestimmten Mischungskoeffizienten.

Für den Kern ¹⁷⁰Tm war eine Beschreibung mit nur einer Konfiguration in einem deformierten Saxon-Woods-Potential möglich, so daß kein komplizierteres Modell notwendig war. Der einzige Modellparameter, der aus den experimentellen Daten bestimmt wurde, war die Kerndeformation. Der gefundene Deformationsparameter ist in guter Übereinstimmung mit Werten, die sich aus Messungen des Kernquadrupolmoments an diesem Kern ergeben.

Die Rechnungen zeigen, daß Beiträge höherer Ordnung und Beiträge, die durch die induzierte Wechselwirkung entstehen, bei den hier untersuchten einfach nonunique verbotenen β-Übergängen nur klein sind.

6.1 Korrekturen der Meßdaten

Die gemessenen Anisotropiekoeffizienten der $\beta-\gamma$ -Winkelkorrelation sollen mit Modellrechnungen verglichen werden, um daraus Aussagen über die Kernstruktur zu gewinnen. Daher sind an die Meßwerte Korrekturen anzubringen, die dem Einfluß des Meßprozesses Rechnung tragen.

6.1.1 Zufällige Koinzidenzen

Im schnellen Zweig wird festgestellt, ob Elektron und γ -Quant als koinzidentes, einer Kaskade zugehöriges Ereignis gewertet werden kann, wobei die Koinzidenzauflösungsbreite auf etwa 6-8 nsec eingestellt wurde.

Um im schnellen Zweig auftretende zufällige Koinzidenzen zu ermitteln, die zur Berechnung der echten Koinzidenzen von den gemessenen abgezogen werden müssen, werden durch Hinzuschalten eines Verzögerungskabels die zufälligen Koinzidenzen periodisch gesondert aufgenommen. Aus den zufälligen Koinzidenzen ergeben sich die Auflösungen der acht schnellen Koinzidenzen:

$$\left(\frac{2\tau}{T}\right)_{ab} = \frac{Z_{ab}}{N_{\beta a} \cdot N_{\gamma b}}$$

mit der Auflösung τ , Meßzeit T und Zahl der zufälligen Koinzidenzen Z_{ab} zwischen β -Zähler a und γ -Zähler b. N_{β a} und N_{γ b} sind die Einzelzählraten von β -Detektor a und γ -Detektor b.

Bei der Auswertung der Koinzidenzzählraten wird bei jeder Messung die Zahl der echten Koinzidenzen bestimmt, indem man mit Hilfe der bekannten Auflösung die Zahl der zufälligen Koinzidenzen berechnet und von den gemessenen abzieht. Erst dann werden die Anisotropiekoeffizienten berechnet. Diese Auswertung läßt sich zur Kontrolle schon während des Meßvorgangs am Rechner durchführen.

6.1.2 Vielfachstreuung und Rückstreuung

Nach der Auswertung der Rohdaten sind weitere Korrekturen anzubringen. Durch Streuung der Elektronen in der Quelle und der Abdeckfolie sowie durch Rückstreuung aus der Trägerfolie wird die Anisotropie der Winkelverteilung abgeschwächt.

Der Einfluß der Vielfach- und Rückstreuung wird mit einem Monte-Carlo-Programm für jede Position der β -Zähler berechnet, da die Detektoren unter verschiedenen Winkeln eine andere Quellendicke sehen. Daher ist der Einfluß der Streuung in den einzelnen Positionen verschieden. Zur Kontrolle werden die zur Korrektur berechneten elastischen Streuquerschnitte ausgegeben, die sehr gut mit denen in ⁶¹ tabellierten Werten übereinstimmen.

Eine genaue Beschreibung dieses Korrekturprogramms findet man in $^{\rm 6\,2}$.

6.1.3 Bremsstrahlung

Eine weitere Störung kann durch Bremsstrahlung von den Elektronen im β -Detektor und in der Quelle verursacht werden. Da die wesentliche Bremsstrahlung im β -Detektor erzeugt wird, entstehen Koinzidenzen zwischen Elektron und Bremsstrahlungsquant.

Da die Bremsstrahlungsquanten bevorzugt unter kleinen Winkeln zum Elektron emittiert werden, hat die an sich bei $\theta_{ab} = 45^{\circ}$ und 135[°] gleich große Winkelverteilung $\omega(\theta)$ beim Auftreten von Bremsstrahlung verschiedene Werte. Die Testwerte K (s. 2.3) weichen dann in den Positionen I und III von 1 ab. Durch Bilden des Quotienten K(I)/K(III) erhält man gerade $\omega(135^{\circ})/\omega(45^{\circ})$. Kennt man noch die Winkelverteilung der Bremsstrahlung, so lassen sich Korrekturen auf Bremsstrahlungskoinzidenzen für jede Zählerposition anbringen, daß nach der Korrektur die Testwerte den Wert 1 haben und die Bremsstrahlung der vorgegebenen Verteilung folgt. Die Kontrollwerte K dienen dazu, den absoluten Anteil falscher Koinzidenzen festzustellen. Durch einen reinen β -Strahler geeigneter Energie läßt sich mit der Apparatur die Winkelverteilung der Bremsstrahlung bestimmen. So wurde die Winkelverteilung der Bremsstrahlungskoinzidenzen von zwei β -Emittern ⁹⁰Sr (546 keV) und ⁹⁰Y (2270 keV) gemessen. Es zeigte sich, daß bei dieser Apparatur die Winkelverteilung nur wenig von der Elektronenenergie abhängt.

Durch die Bestimmung dieser Winkelverteilung und des absoluten Anteils der Bremsstrahlungskoinzidenzen aus den Testwerten können die A_2 - und A_4 -Werte korrigiert werden.

6.1.4 $\gamma - \gamma - Koinzidenzen$

Falls noch koinzidenzfähige γ -Übergänge beim Zerfall auftreten, kann die Messung durch $\gamma-\gamma$ -Koinzidenzen verfälscht werden. Die Winkelverteilung der $\gamma-\gamma$ -Koinzidenzen läßt sich messen, indem man die β -Detektoren durch Absorber gegen die Elektronen abschirmt. Der absolute Anteil der $\gamma-\gamma$ -Koinzidenzen läßt sich dann aus dem Verhältnis der Koinzidenzen mit und ohne Absorber bestimmen. Mit dem absoluten Anteil und der Winkelverteilung der $\gamma-\gamma$ -Koinzidenzen lassen sich dann wie bei der Bremsstrahlung Korrekturen an die Anisotropiekoeffizienten anbringen.

Da bei den untersuchten Kernen keine koinzidenzfähigen γ -Kaskaden mit nennenswerter Intensität vorhanden waren, ergab sich ein verschwindender Anteil an γ - γ -Koinzidenzen, so daß diese Korrektur bei den Messungen am ⁴²K, ¹⁴²Pr und ¹⁷⁰Tm entfiel.

6.1.5 Endlicher Raumwinkel

Bei zylindrischen Detektoren und punktförmiger Quelle, diese Näherung ist hier gültig, führt die endliche Ausdehnung der Detektoren zu einer Abschwächung der Korrelation⁶³.

Die Korrekturfaktoren ergeben sich aus den Öffnungswinkeln der Detektoren. Bei dieser Apparatur betragen die Korrekturfaktoren:

$$a_2 = 1.032$$

 $a_4 = 1.113$.

- 52 -

Im Nilsson-Modell wird angenommen, daß der Kern die Gestalt eines Rotationsellipsoides hat³². Zur Beschreibung der Einteilchenwellenfunktionen in diesem Modell werden folgende Größen verwendet:

N : Gesamtzahl der Knoten der Wellenfunktion Zahl der Knotenebenen senkrecht zur Symmetrieachse n_z: ٤ : Bahndrehimpuls des Teilchens Komponente des Bahndrehimpulses in Richtung der Λ: Symmetrieachse J : Gesamtdrehimpuls des Teilchens Eigendrehimpuls des Teilchens = $\frac{1}{2}$ magnetische Spinquantenzahl = $\pm \frac{1}{2}$ s : Σ: Komponente des Gesamtdrehimpulses entlang der Ω: Symmetrieachse = $\Lambda + \Sigma$ ρ: dimensionslose Größe, die mit der Variablen r verknüpft ist: $r = (\hbar/M\omega_0)^{1/2}\rho$, M ist die Nukleonenmasse, $\omega_0 \sim 41 \cdot A^{-1/3} MeV$ π : Parität des Teilchenzustandes.

Die Nilsson-Einteilchenwellenfunktionen lassen sich dann in der Basis $|N\ell\Lambda\Sigma\rangle$ darstellen:

$$\begin{split} \chi_{\Omega} &\equiv \sum_{\ell \Lambda \Sigma} a_{\ell \Lambda} | \, \text{N}\ell \Lambda \Sigma > \text{mit} \\ | \, \text{N}\ell \Lambda \Sigma > \sim \rho^{\ell} e^{-\frac{1}{2}\rho^{2}} \quad {}_{1}F_{1}(-n,\ell + \frac{3}{2}, \rho^{2}) \, \, \text{Y}_{\ell \Lambda}f_{S\Sigma} \, . \end{split}$$

 $_{1}F_{1}$ ist die konfluente hypergeometrische Funktion mit n = (N-l)/2. Y_l sind die Kugelfunktionen und f_{SE} die Spinwellenfunktionen mit S = $\frac{1}{2}$.

Jedem Zustand läßt sich ein Satz asymptotischer Quantenzahlen für große Deformationen zuordnen: $\Omega\pi[Nn_z\Lambda]$.

Die in 4.4 betrachteten Zustände $n\frac{1}{2}$ - [521] und $p\frac{1}{2}$ + [411] lassen sich dann nach dieser Basis entwickeln.

$$\begin{split} n\frac{1}{2} &= [521] \equiv a_{50} | 550+>+a_{30} | 530+>+a_{10} | 510+>+a_{51} | 551-> \\ &+a_{31} | 531->+a_{11} | 511->, \\ p\frac{1}{2} &+ [411] \equiv a_{40} | 440+>+a_{20} | 420+>+a_{00} | 400+>+a_{41} | 441-> \\ &+a_{21} | 421-> . \end{split}$$

Die Koeffizienten a_{ll} hängen von der Deformation ab, sie sind in^{32/33} für die Deformationen η = 2,4 und 6 tabelliert.

n <u>1</u> 2	- [521]	Zustand	63 im Nil	sson-Diagramm	(s.Fig.13)
	all	η = 2	η = 4	η = 6	
	a ₅₀	0.154	0.207	0.192	
	a ₃₀	-0.155	0.017	0.084	
	^a 10	-0.686	-0.527	-0.416	
	^a 51	-0.238	-0.430	-0.526	
	a ₃₁	0.644	0.657	0.637	
	a ₁₁	0.102	0.250	0.317	

 $p\frac{1}{2} + [411]$ Zustand 43 in Nilsson-Diagramm

a _{ll}	η = 2	η = 4	η = 6
^a 40	0.150	0.176	0.163
^a 20	-0.271	-0.123	-0.062
^a 00	-0.437	-0.343	-0.279
a ₄₁	-0.235	-0.373	-0.445
^a 21	0.811	0.835	0.833

Für die Berechnung der β -Zerfallsobservablen wurde die Darstellung der Wellenfunktionen in der Basis $|N\&J\Omega\rangle$ gewählt:

$$\chi_{\Omega} = \sum_{J \&} C_{J \&} | N \& J \Omega >,$$

$$\begin{split} n\frac{1}{2} &- [521] \equiv C_{\frac{1}{2}1} |51\frac{11}{22} > + C_{\frac{3}{2}1} |51\frac{31}{22} > + C_{\frac{5}{2}3} |53\frac{51}{22} > \\ &+ C_{\frac{7}{2}3} |53\frac{71}{22} > + C_{\frac{9}{2}5} |55\frac{91}{22} > + C_{\frac{11}{2}5} |55\frac{11}{2} \frac{1}{2} > , \\ p\frac{1}{2} + [411] \equiv C_{\frac{1}{2}0} |40\frac{11}{22} > + C_{\frac{3}{2}2} |42\frac{31}{22} > + C_{\frac{5}{2}2} |42\frac{51}{22} > \\ &+ C_{\frac{7}{2}4} |44\frac{71}{22} > + C_{\frac{9}{2}4} |44\frac{91}{22} > . \end{split}$$

Die Entwicklungskoeffizienten $a_{\ell\Lambda}$ lassen sich in die Koeffizienten $C_{J\ell}$ umrechnen $^{3\,4}$:

$$C_{J\ell} = \sum_{\Lambda\Sigma} < \ell \frac{1}{2} \Lambda\Sigma | \ell \frac{1}{2} J\Omega > a_{\ell\Lambda} .$$

Für die Wellenfunktionen ergeben sich dann folgende Koeffizienten:

$n\frac{1}{2} - [521]$	C _{Jl}	η = 2	η = 4	η = 6
	C 1/21	0.479	0.508	0.499
	C 3 21	-0.501	-0.286	-0.156
	C ₅₃	0.588	O.486	0.427
	$C_{\frac{7}{2}3}$	0.304	0.443	0.481
	C9 25	-0.280	-0.457	-0.518
	с ₁₁ 25	-0.047	-0.137	-0.213

$p\frac{1}{2} + [411]$	CJL	η = 2	η = 4	η = 6
	$\frac{C_{\frac{1}{2}0}}{\frac{1}{2}0}$	-0.437	-0.343	-0.279
	$C_{\frac{3}{2}2}$	0.800	0.725	0.684
	C 522	0.303	0.433	0.479
	$\frac{C}{\frac{7}{2}4}$	-0.275	- 0.395	~ 0.440
	$C_{\frac{9}{2}4}$	-0.045	-0.117	-0.175
-				

6.3 Eigenfunktionen für ein deformiertes Saxon-Woods-Potential

Zur Berechnung der Wellenfunktionen wird hier ein deformiertes Saxon-Woods-Potential mit Spin-Bahn-Kopplung benutzt³⁸. Die Zustände werden dabei nach Oszillatorfunktionen entwickelt und man erhält wieder Entwicklungskoeffizienten für die Eigenvektoren in der Basis $|N\ell J\Omega>$.

Folgende Größen gehen in die Rechnung ein:

- v: Radialquantenzahl des harmonischen Oszillators = $(N-\ell)/2+1$
- Ω : Projektion des Gesamtdrehimpulses auf die Symmetrieachse
- A : Massenzahl des Kerns
- A_o: Diffuseness-Parameter, der für Neutronen und Protonen verschiedene Werte hat
- C₀: Spin-Bahn-Kopplungskonstante
- Vo: Potentialtiefe, der Coulombwechselwirkung bei den Protonen wird durch eine entsprechende Potentialtiefe Rechnung getragen
- β : Deformationsparameter, er steht in einfacher Beziehung zu dem von Nilsson verwendeten Parameter η^{37} .

Es wurden Rechnungen für verschiedene Deformationen β durchgeführt.

$n\frac{1}{2} - [521]$: A = 170	$A_{10} = 0.6$	4 fm, V =	= 46.33 MeV,	C _o = 10 MeV
CJL	$\beta = 0.1$	$\beta = 0.2$	$\beta = 0.3$	$\beta = 0.4$	
$\frac{C}{\frac{1}{2}}$ 1	0.470	0.525	0.522	0.516	
$C_{\frac{3}{2}1}$	-0.690	-0.410	-0.264	-0.177	
С ₅₂ 3	0.328	0.271	0.193	0.129	
с _{7 2} 3	0.354	0.473	0.499	0.494	
С ₉ 25	-0.262	-0.490	-0.570	- 0.603	
$\frac{C_{11}}{2}5$	-0.053	-0.140	-0.216	-0.279	
					_
$p_2^1 + [411]$: A = 170,	$A_0 = 0.52$	fm, $V_0 =$	35.24 MeV,	C ₀ = 10 MeV
с _{Jl}	β = 0.1	$\beta = 0.2$	$\beta = 0.3$	$\beta = 0.4$	
$\frac{C}{\frac{1}{2}O}$	-0.628	- 0.478	-0.394	- 0.339	
$C_{\frac{3}{2}2}$	0.675	0.644	0.593	0.546	
C 522	0.300	0.428	0.475	0.491	
$C_{\frac{7}{2}4}$	-0.241	-0.401	-0.486	-0.541	
$C_{\frac{9}{2}4}$	-0.043	-0.114	-0.177	-0.231	

6.4 Beziehungen zwischen den Formfaktorkoeffizienten und den reduzierten Kernmatrixelementen für einfach nonunique verbotene β-Übergänge

Matrixelement	Formfaktorkoeffizient	Auswahlregeln		
		ΔJ	^π i ^π f	verboten
∫ Y ₅	$-\frac{1}{C_A} \cdot F_{OOO}^A$	0	-1	
$\int i \frac{\vec{\sigma} \cdot \vec{r}}{R}$	$-\frac{1}{C_A} \cdot {}^{A}F^{O}_{O11}$	0	-1	
$\int \dot{\alpha}$	$-\frac{1}{C_V} \cdot v_F^{O}_{101}$	0,1	-1	0 - 0
$\int i \frac{\vec{r}}{R}$	$\frac{1}{\sqrt{3}C_V} \cdot \frac{V_F^O}{F_{110}}$	0,1	- 1	0 - 0
$\int \frac{\vec{\sigma} \times \vec{r}}{R}$	$\frac{\sqrt{2}}{\sqrt{3}C_{A}} \cdot {}^{A}F_{111}^{O}$	0,1	-1	0 – 0
∫i <u>Bij</u> R	$\frac{2}{\sqrt{3}C_{A}} \cdot {}^{A}F_{211}^{O}$	0,1,2	-1	0-0, 0-1, $\frac{1}{2} - \frac{1}{2}$

 $B_{ij} = \sigma_i \cdot r_j + \sigma_j \cdot r_i - \frac{2}{3} \delta_{ij} \quad (\vec{\sigma} \cdot \vec{r}) \qquad C_A / C_V = -1.25$

Die Matrixelemente für die Hauptkorrekturen bei einfach nonunique verbotenen Übergängen sind in ² tabelliert, sie bringen aber, wie die Rechnungen zeigen, nur vernachlässigbar kleine Beiträge. Folgende Observablen wurden zum Test der Kernmodelle berechnet:

- der Anisotropiekoeffizient $A_2(W)$, a)
- b) der Shape-Faktor C(W),
- c) die $\beta \gamma Zirkularpolarisationskorrelation \overline{P}_{\gamma}(\theta)$,
- d) die γ -Winkelverteilung bei ausgerichteten Kernen W(θ_{γ}),
- die Longitudinalpolarisation der emittierten Elektronen $P_{T}(W)$. e)

Die wichtigsten Formeln sollen hier dargestellt werden, umfassende Zusammenstellungen findet man in 2/28/64.

Werden ein β -Teilchen und ein γ -Quant in einer Kaskade emittiert:

 $\beta^{-} \rightarrow J' \xrightarrow{\gamma} J''$, so ergibt sich eine Korrelation zwischen Л ihnen:

$$\omega(W,\theta) = \frac{1}{L_{O}C(W)} \left\{ \sum_{m \text{ gerade}} B^{(m)} A_{m}(\gamma) P_{m}(\cos\theta) - \tau \sum_{m \text{ ungerade}} B^{(m)} A_{m}(\gamma) P_{m}(\cos\theta) \right\}.$$

Dabei ist W die Gesamtenergie der Elektronen, θ der Winkel zwischen Elektron und γ -Quant und P_m die Legendre-Polynome. $\tau = \pm 1$ bestimmt die Zirkularpolarisation der Photonen.

Am Beispiel des Anisotropiekoeffizienten soll hier einmal gezeigt werden, wie die Observablen von den Übergangsmatrixelementen, die als Formfaktorkoeffizienten dargestellt werden, abhängen.

Wie schon erwähnt, wird die $\beta-\gamma$ -Winkelkorrelation nur durch die in m geraden Terme bestimmt.

Aus dem Term mit m = 2 erhält man den Anisotropiekoeffizienten A₂: 121

$$A_{2}(W) = \frac{B^{(2)} \cdot A_{2}(\gamma)}{C(W) \cdot L_{0}} .$$

Dabei sind die A_m auf den Koeffizienten mit m = 0 normiert. Die $\boldsymbol{A}_{m}\left(\boldsymbol{\gamma}\right)$ enthalten die Information über den $\boldsymbol{\gamma}\text{-}\boldsymbol{\ddot{\upsilon}}\text{bergang}$, auf sie wird später noch eingegangen.

Die Größen B^(m) lassen sich als Summe von zwei Faktoren darstellen, speziell für diesen Fall erhält man:

$$A_{2}(W) = \frac{b_{11}^{2}\Gamma_{11}(2) + b_{12}^{2}\Gamma_{12}(2) + b_{22}^{2}\Gamma_{22}(2) + b_{02}^{2}\Gamma_{02}(2)}{C(W) \cdot L_{0}} \cdot A_{2}(\gamma)$$

Die b_{LL}^{m} , sind die Teilchenparameter, die alle Informationen über den β -Übergang enthalten, die Γ_{LL} (m) werden nur von den beim β -Zerfall beteiligten Drehimpulsen bestimmt. Die Teilchenparameter können wiederum durch Größen $M_{K}(k_{e},k_{v})$ und $m_{K}(k_{e},k_{v})$ ausgedrückt werden, K ist der Rang des beteiligten β -Zerfall-Operators, k_{e} und k_{v} werden mit den Drehimpulsquantenzahlen der Partialwellen von Elektron und Neutrino in Zusammenhang gebracht:

$$\frac{b_{11}^2}{L_0} = -2\sqrt{3} \left[v_{12} \frac{P}{W} M_1(1,1) M_2(2,1) + \hat{v}_{12} \frac{\alpha^2 z^2}{P} M_1(2,1) m_1(1,1) \right] + \sqrt{\frac{3}{2}} \lambda_2 M_1^2(2,1)$$

$$\frac{b_{12}^2}{L_0} = -2\sqrt{3} \left[v_{12} \frac{P}{W} M_1(1,1) M_2(2,1) + \hat{v}_{12} \frac{\alpha^2 z^2}{P} M_2(2,1) m_1(1,1) \right]$$

$$-\sqrt{6}\lambda_2 M_1(2,1) M_2(2,1)$$

$$\frac{b_{22}^2}{L_0} = -\sqrt{\frac{7}{2}} \lambda_2 M_2^2(2,1)$$

$$\frac{b_{02}^2}{L_0} = -2\sqrt{2} \left[v_{12} \frac{P}{W} M_0(1,1) M_2(2,1) + \hat{v}_{12} \frac{\alpha^2 z^2}{P} M_2(2,1) m_0(1,1) \right].$$

2

W ist die Gesamtenergie der Elektronen und P der Impuls in natürlichen Einheiten.

Die Größen L_0 , λ_2 , ν_{12} und $\hat{\nu}_{12}$ sind Kombinationen von Coulombamplituden und Phasen der Elektronenwellenfunktionen und in der Größenordnung von 1. Sie hängen nur wenig von der Elektronenenergie W und der Ladung Z des Tochterkerns ab. Die Größen M_{K} und m_{K} lassen sich nun schließlich durch die Übergangsmatrixelemente bzw. Formfaktorkoeffizienten ausdrücken:

$$\begin{split} M_{O}(1,1) &= {}^{A}F_{OOO}^{O} - \frac{1}{3} \alpha Z {}^{A}F_{OOO}^{O}(1,1,1,1) - \frac{1}{3} W_{O}R {}^{A}F_{O11}^{O} \\ m_{O}(1,1) &= \frac{1}{3} R {}^{A}F_{O11}^{O} \\ M_{1}(1,1) &= - {}^{V}F_{1O1}^{O} - \frac{1}{3} \alpha Z \sqrt{\frac{1}{3}} {}^{V}F_{11O}^{O}(1,1,1,1) - \frac{1}{3} W_{O}R \sqrt{\frac{1}{3}} {}^{V}F_{11O}^{O} \\ &- \frac{1}{3} \alpha Z \sqrt{\frac{2}{3}} {}^{A}F_{111}^{O}(1,1,1,1) - \frac{1}{3} (W-q) R \sqrt{\frac{2}{3}} {}^{A}F_{111}^{O} \\ m_{1}(1,1) &= -\frac{1}{3} R \left\{ \sqrt{\frac{1}{3}} {}^{V}F_{11O}^{O} + \sqrt{\frac{2}{3}} {}^{A}F_{111}^{O} \right\} \\ M_{1}(1,2) &= -\frac{1}{3} q R \left\{ \sqrt{\frac{2}{3}} {}^{V}F_{11O}^{O} + \sqrt{\frac{1}{3}} {}^{A}F_{111}^{O} \right\} \\ M_{2}(1,2) &= -\frac{1}{3} q R {}^{A}F_{211}^{O} \\ M_{2}(2,1) &= -\frac{1}{3} P R {}^{A}F_{211}^{O} \\ \end{split}$$

 α ist die Feinstrukturkonstante (1/137), q = (W_o-W) der Neutrinoimpuls, R der Kernradius und Z die Ladung des Tochterkerns. Bei dieser Darstellung sind die Korrekturterme vernachlässigt worden.

Die $\Gamma_{I,I,I}$ enthalten im wesentlichen einen Racah-Koeffizienten:

$$\Gamma_{LL}(2) = (-1)^{J'-J} \cdot W(J'J'LL', 2J) \cdot \sqrt{2J'+1}$$
.

Für die $A_2(\gamma)$ bekommt man im Fall eines reinen E2- γ -übergangs:

$$A_{2}(\gamma) = (-1)^{J'-J''-1} \qquad 5\sqrt{2J'+1} C(222;1-1)W(J'J'22; 2J'').$$

Der Bereich L,L' ist eingeschränkt:

$$|J-J'| \leq L, L' \leq J + J',$$

 $|L-L'| \leq m \leq min (2J', L+L').$

Bei der Entwicklung der Winkelkorrelation nach Legendre-Polynomen verschwinden Summanden mit m > 2J' und m > 2 λ , wobei λ die Polarität der γ -Strahlung ist.

Der Shape-Faktor gibt die Abweichung des β -Spektrums von der erlaubten Form an und wird auch durch die M_{κ} und m_{κ} bestimmt:

$$C(W) = M_0^2(1,1) + m_0^2(1,1) - 2 \frac{\mu_1 \gamma_1}{W} M_0(1,1) m_0(1,1) + M_1^2(1,1) + m_1^2(1,1) + m_1^2(1,1) - 2 \frac{\mu_1 \gamma_1}{W} M_1(1,1) m_1(1,1) + M_1^2(1,2) + \lambda_2 M_1^2(2,1) + M_2^2(1,2) + \lambda_2 M_2^2(2,1).$$

 μ_1 und λ_2 sind wieder spezielle Coulombfunktionen und $\gamma_1 = \sqrt{1 - (\alpha Z)^2}$.

Bei der β - γ -Zirkularpolarisationskorrelation wird noch die Polarisation des γ -Quants bestimmt. Hier tragen auch Terme mit ungeradem m bei:

$$\overline{P_{\gamma}}(\theta) = - \frac{\overline{A_1(W)}P_1(\cos\theta) + \overline{A_3(W)}P_3(\cos\theta)}{1 + \overline{A_2(W)}P_2(\cos\theta) + \overline{A_4(W)}P_4(\cos\theta)} = \overline{\omega(W)} \cdot \overline{\frac{V}{c}} \cdot \cos\theta$$

Die Koeffizienten ${\rm A}_{\rm m}$ sind über das bei der Messung akzeptierte Energiefenster zu mitteln.

Für den erlaubten Übergang beim ⁶⁰Co (s. 2.5) ist $A_1(W) = \frac{1}{3} \frac{v}{c}$ und alle A mit m > 1 sind zu vernachlässigen. Man erhält für ⁶⁰Co dann: $\overline{P_{\gamma}}(\theta) = -\frac{1}{3} \frac{v}{c} \cos \theta^{-6}$.

In 4.3 werden Messungen an Kernen betrachtet, die in einem Magnetfeld ausgerichtet wurden. Während bei der β - γ -Winkelkorrelation durch Messung von Elektron und γ -Quant aus einer Zahl nicht ausgerichteter Kerne ein Assemblee von Kernen mit bestimmter Spinrichtung ausgewählt wird, ist hier eine Ausrichtung von außen erzwungen. In Ref.^{24,25} wird ein β -Übergang von einem ausgerichteten Kernzustand mit Spin und Parität 2⁻ zu einem Zwischenzustand 2⁺ betrachtet. Es findet ein nachfolgender E2- γ -Übergang zum 0⁺-Grundzustand statt. Die Elektronen werden nicht beobachtet, sondern nur die Winkelverteilung der γ -Quanten relativ zur Ausrichtung, d.h. zur äußeren Magnetfeldrichtung wird gemessen.

Die γ -Winkelverteilung ist nicht mehr isotrop und hängt unter anderem auch von den Übergangsmatrixelementen des β -Zerfalls ab.

Diese Winkelverteilung ist in ⁶⁴ beschrieben. Die dort aufgeführten Größen können einfach zu denen aus Ref.² in Beziehung gesetzt werden.

Für die hier speziell interessierende Kaskade $2^{-\beta} \rightarrow 2^{+\gamma} \rightarrow 0^{+}$ bekommt man:

$$W(\theta_{\gamma}) = 1 - \frac{10}{7} B_{22} f_2 P_2(\cos \theta_{\gamma}) - \frac{40}{3} B_{44} f_4 P_4(\cos \theta_{\gamma}).$$

Die Ausrichtungsparameter $f_m(J)$ sind eine Funktion der relativen Besetzung der magnetischen Unterzustände beim ausgerichteten Kern⁶⁵.

Die Reorientierungsparameter B_{22} und B_{44} sind durch den $\beta\text{-Zerfall bestimmt:}$

$$B_{mm} = 5 \frac{\sum_{L=0}^{2} \{2 \ 2 \ L\}}{\beta_{0} + \beta_{1} + \beta_{2}} ,$$

$$\beta_{L} = \int_{1}^{W_{0}} F_{0}(Z, W) b_{LL} / L_{0} \cdot \Gamma_{LL}(0, 2, 2) \cdot P \cdot W (W_{0} - W)^{2} dW$$

Daraus folgt dann:

$$B_{22} = \frac{\beta_{0} + \frac{1}{2}\beta_{1} - \frac{3}{14}\beta_{2}}{\beta_{0} + \beta_{1} + \beta_{2}} , \qquad B_{44} = \frac{\beta_{0} - \frac{2}{3}\beta_{1} - \frac{2}{7}\beta_{2}}{\beta_{0} + \beta_{1} + \beta_{2}}$$

Dabei bedeutet $F_{O}(Z,W)$ die Fermi-Funktion.

Man sieht, daß die Reorientierungsparameter nur von dem Gesamtdrehimpuls abhängen, der beim β -Zerfall an das Leptonenfeld abgegeben wird.

Die Ausrichtungsparameter f_m, d.h. die relative Besetzung der magnetischen Unterzustände müssen aus anderen experimentellen Daten (z.B. Neutronenbeugungsexperimenten) bestimmt werden.

Für die Longitudinalpolarisation der emittierten Elektronen erhält man:

$$P_{\rm L}(W) = -\frac{v}{c} \Lambda_1 \left[1 + \frac{1}{C(W)} \left\{\frac{2\mu_1 \gamma_1}{W} \left[M_1(1,1)m_1(1,1) + M_0(1,1)m_0(1,1)\right] -2(m_1^2(1,1) + m_0^2(1,1) + (\frac{\Lambda_2}{\Lambda_1} - 1)\lambda_2(M_1^2(1,1) + M_2^2(2,1))\right]\right].$$

Die Größen $\Lambda_{k_{e}}$, $\lambda_{k_{e}}$ und $\mu_{k_{e}}$ sind wieder spezielle Coulomb-funktionen.
7. LITERATURVERZEICHNIS

¹H. Behrens, W. Bühring, Nucl. Phys. A162 (1971) 111 ²H. Behrens, J. Jänecke, Numerical Tables For β -Decay And Electron Capture, Landolt-Börnstein New Series I/4, Springer-Verlag Berlin, 1969 ³H. Appel, Numerical Tables For Angular Correlation Computations, Landolt-Börnstein New Series I/3, Springer-Verlag Berlin, 1968 ⁴R. Wischhusen, Dissertation, Universität Karlsruhe 1973 ⁵P. Kursawe, K. Rietzschel, H. Veith, KFK-Bericht 1749, Gesellschaft für Kernforschung mbH, Karlsruhe 1975 ⁶H. Appel, H. Behrens, K. Bürk, H.-W. Müller, L. Szybisz, R. Wischhusen, KFK-Bericht 1943, Gesellschaft für Kernforschung mbH, Karlsruhe 1974 ⁷B.F. Bayman, A. Lande, Nucl. Phys. 77 (1966) 1 $^{8}\text{H}.$ Daniel, K. Springer, H.Schmitt, Kolloquium über $\beta\text{-Zerfall}$ und schwache Wechselwirkung, Max-Planck-Institut für Kernphysik, Heidelberg 1965 ⁹S. André, Thesis, University of Grenoble 1965 ¹⁰R. Hess, Helv. Acta 41 (1968) 77 ¹¹T.A. Belote, A. Sperduto, W.W. Buechner, Phys.Rev.139 (1965) B80 ¹²I. Kanestrøm, H. Koren, Nucl.Phys.A130 (1969) 527 ¹³W.J. Gerace, A.M. Green, Nucl. Phys. A93 (1967) 110 ¹⁴R.J. Blin-Stoyle, S.C.K. Nair, Adv.Phys.15 (1966) 493 15 J. Damgård, Symposium On Nuclear β -Decay And Weak Interations, Zagreb 1967 ¹⁶H. Behrens, M. Kobelt, W.G. Thies, H. Appel, Z.Phys.252 (1972) 349 ¹⁷H. Behrens, L. Szybisz, Nucl. Phys. A223 (1974) 268 ¹⁸L. Szybisz, Nucl.Phys. A267 (1976) 246 ¹⁹R.M. Steffen, Phys.Rev. 123 (1961) 1787 ²⁰B. Vema Reddy, M.L. Narasimha Raju, V. Seshagiri Rao, D.L. Sastry, J.Phys. G1 (1975) 956

- ²¹P. Federman, Phys.Lett.20 (1966) 174
- ²²G.F. Bertsch, Nucl.Phys. -89 (1966) 673
- ^{2 3}R. Hess, P. Lipnik, Chs.F. Perdrisat, J.W. Sunier, Nucl.Phys.54 (1964) 673
- ²⁴C.H. Smith, W.V. Weyman, Phys.Lett. 52B (1974) 195
- ²⁵C.H. Smith, Thesis, University of Minnesota 1971
- ²⁶M. Rao, Nucl.Phys. 65 (1965) 497
- ²⁷P. Lipnik, J.W. Sunier, Nucl. Phys. 65 (1965) 21
- ²⁸H. Schopper, Weak Interations And Nuclear β-Decay, North-Holland Publishing Company, Amsterdam 1966
- ²⁹A. Khayyoom et al., Nuov.Cim. 7A (1972) 695
- ³⁰C. Berks, E. Hummel, K.H. Schedl, Z.Phys. A273 (1975) 385
- ³¹K.H. Schedl, Dissertation, Universität Erlangen-Nürnberg 1971
- ³²S.G. Nilsson, Dan.Mat. Fys.Medd.29, No.16 (1955)
- ^{3 3}B.R. Mottelson, S.G. Nilsson, Mat.Fys.Skr.Dan.Vid.Selsk., No.8 (1959)
- ³⁴J.P. Davidson, Collective Models Of The Nucleus, Academic Press, New York 1968
- 35 C.S. Wu, S.A. Moszkowski, β -Decay, Interscience Monographs And Texts In Physics And Astronomy, Vol.16, 1966
- ³⁶G. Alaga, Nucl. Phys. 4 (1957) 625
- ³⁷K.E.G. Löbner, M. Vetter, V. König, Nuclear Data Tables A7 (1970) 495
- ³⁸A. Faessler, R.K. Sheline, Phys.Rev. 148 (1966) 1003
- ³⁹S.Y. van der Werf, H.de Waard, H. Beekhuis, Nucl.Phys. A134 (1969) 215
- ⁴⁰S. André et al., Compt.Rend.264 (1967) 819
- ⁴¹F. Greverie, G. Ambrosino, Compt. Rend. 264 (1967) 651
- ⁴²E.H. Spejewski, Nucl. Phys. 82 (1966) 481
- ⁴³A.J. Alikhanov, G.P. Eliseiev, V.A. Liubimov, Nucl.Phys.7 (1958) 655
- ⁴⁴H. Behrens, D. Bogdan, Nucl.Phys. A143 (1970) 468

- ⁴⁵A. Khayyoom, M.L. Narashima Raju, V. Seshagiri Rao, D.L. Sastry, Phys.Rev. C7 (1973) 1166
- ⁴⁶H. Daniel, Z.Phys. 220 (1969) 181
- ⁴⁷K. Runge, Z.Phys. 183 (1965) 184
- ⁴⁸H. Dulaney, C.H. Braden, E.T. Patronis, L.D. Wyly, Phys.Rev.129 (1963) 283
- ⁴⁹J. Lachkar, Rap.CEA-R-3659, 1969
- ⁵⁰Nguyen Duc Tong, H. Dulaney, H.R. Brewer, Phys.Rev.159 (1967) 862
- ⁵¹S.Y. van der Werf, Dissertation, Groningen 1971
- ⁵²D. Bogdan, P. Lipnik, Nuov.Cim. 51B (1967) 376
- ⁵³D. Bogdan, C. Protop, I.Vata, Nucl.Phys. A119 (1968) 113
- ⁵⁴D.A. Shirley, H. Haas, Ann.Rev.Phys.Chem. 23 (1972) 385
- ⁵⁵J.K. Tuli, G.T. Emery, Phys.Rev. C13 (1976) 799
- $^{5\,6}\dot{J}.K.$ Tuli, Thesis, Indiana University 1971
- ⁵⁷R.M. Steffen, Phil.Mag.4 (1955) 293
- ^{5.8}T.P. Das, M. Pomerantz, Phys.Rev. 123 (1961) 2070
- ⁵⁹E.G. Wikner, T.P. Das, Phys.Rev.109 (1958) 360
- ⁶⁰D. Pfeifer, K. Runge, Z.Phys.183 (1965) 195
- ⁶¹Theoretical Electron-Atom Scattering Cross-Sections, Atomic Data And Nuclear Data Tables 15 (1975) 443
- ⁶²H.W. Müller, Diplomarbeit, Universität Karlsruhe 1973
- ⁶³S. Frankel, Phys.Rev. 83 (1951) 673

⁶⁴H.A. Weidenmüller, Rev.mod.Phys. 33 (1966) 574

- ⁶⁵J.A.M. Cox, T.A. Toelhoek, Physica 19 (1953) 101
- ⁶⁶J. Fujita, T. Une, Supplement Of The Progress Of Theoretical Physics 60 (1976) 63, Research Institute For Fundamental Physics, Japan