KfK 2959 Mai 1980

Über die Verbesserung der Adsorptionskapazität von Aktivtonerde für Phosphat und Chromat durch Dotieren

Samir Anwar Aly Ahmed Institut für Radiochemie

Kernforschungszentrum Karlsruhe

KERNFORSCHUNGSZENTRUM KARLSRUHE

Institut für Radiochemie

KfK 2959

Über die Verbesserung der Adsorptionskapazität von Aktivtonerde für Phosphat und Chromat durch Dotieren ⁺⁾

Samir Anwar Aly Ahmed

Kernforschungszentrum Karlsruhe GmbH, Karlsruhe

+) Von der Fakultät für Chemie der Universität Karlsruhe (T.H.) genehmigte Dissertation

Als Manuskript vervielfältigt Für diesen Bericht behalten wir uns alle Rechte vor

> Kernforschungszentrum Karlsruhe GmbH ISSN 0303-4003

Zusammenfassung

- Durch Fällen einer Lösung von Aluminiumnitrat und dem Nitrat oder Oxid eines Dotierungskations mit Ammoniak, Abfiltrieren und Calcinieren des Niederschlages wurden Ca, Sr, Ba, Fe und Ge-dotierte Aktivtonerden hergestellt.
- 2. Mittels Röntgenstrahlenbeugung, Titration und Untersuchung des Sorptionsverhaltens wurde nachgewiesen, daß bis zu 1 % Ca, 3,2 % Sr oder 2,4 % Ba in das Al₂0₃-Gitter eingebaut werden. Der von der Herstellung her vorhandene Überschuß wird durch verdünnte Salzsäure (pH < 5) ausgewaschen. Die Menge an in das Gitter einbaubarem Calcium nimmt mit der Calcinierungstemperatur zu. Überschüssiges Calcium liegt als CaO und Ca-Aluminat vor.

Fe und Ge ließen sich, vermutlich wegen der Schwerlöslichkeit der Oxide, mit Salzsäure nicht merklich auswaschen.

- 3. Die spezifische Oberfläche der Aktivtonerde wird durch den Einbau von Calcium, Strontium, Barium und Germanium in das Gitter bis zu 70 % (Ca) erhöht. Die maximal festgestellte Oberfläche nimmt in der Reihenfolge Ba < Sr < Ge < Ca zu. Eisen erhöht die spezifische Oberfläche nicht. Die Oberflächenzunahme ist eine Funktion der Calcinierungstemperatur, für Ca liegt das Maximum bei 600 ^OC. Sie basiert auf der thermischen Stabilisierung der γ -Phase des Al₂O₃.
 - 4. Ein Überschuß an Ca, Sr oder Ba ergibt Präparate mit gegenüber Überschußfreier dotierter Aktivtonerde niedrigerer spezifischer Oberfläche, wobei diese um so kleiner ist, je größer der Überschuß ist. Dadurch zeigt die spezifische Oberfläche ein Maximum, wenn man sie als Funktion des Gehaltes an Dotierungskation aufträgt.
 - 5. Durch die Dotierung mit Calcium wird die Löslichkeit des Al_20_3 in Salzsäure stark und in Natronlauge merklich vermindert.
 - 6. Die Adsorption von Phosphat bzw. Chromat an undotierter Aktivtonerde zeigt ein Maximum, das je nach verwendeter Oxidqualität zwischen pH 3 - 4 bzw. bei pH≈4,5 liegt. Bei Anwesenheit von überschüssigem Calcium zeigt die pH-Beladungskurve für Phosphat ein zweites Maximum bei pH 7 - 8, nicht jedoch die für Chromat. Dieser Effekt wird mit der Bildung schwerlöslicher Ca-Phosphate aus dem "überschüssigen" Calcium interpretiert.

- Die Isotherme der Adsorption von Phosphat und Chromat an dotierter und undotierter Aktivtonerde zeigt eine Stufe und läßt sich mit zwei voneinander unabhängigen Adsorptionsreaktionen, die jede der Langmuirgleichung gehorchen, beschreiben.
- 8. Durch die Dotierung mit Calcium wird die Adsorptionskapazität der Aktivtonerde für Phosphat erhöht und zwar mit und ohne überschüssiges Calcium. Es besteht ein linearer Zusammenhang zwischen erreichter Phosphatbeladung und spezifischer Oberfläche. Die Erhöhung ist um 16 % größer als der Zunahme der spezifischen Oberfläche entspricht. Insgesamt erreicht man eine bis zu 70 % höhere Kapazität.
- 9. Die Sorptionskapazität für Chromat wird durch Dotieren mit Calcium ebenfalls erhöht, jedoch weniger als bei Phosphat. Der Zusammenhang von Beladung und spezifischer Oberfläche ist komplexer als bei Phosphat.
- 10. Die Dotierung mit Sr, Ba, Fe und Ge erhöht die Sorptionskapazität für Phosphat und Chromat, jedoch weniger als die Dotierung mit Ca, mit der Ausnahme, daß Ba-dotierte Aktivtonerde mit Ba-Überschuß eine besonders hohe Adsorptionskapazität für Chromat hat. Dies wird mit der Schwerlöslichkeit von Ba-Chromat interpretiert.
- Die Ergebnisse zeigen, daß durch Dotieren mit Calcium Aktivtonerden entstehen, die für die Wasserreinigung bessere Eigenschaften aufweisen als undotierte Aktivtonerde.

ON THE IMPROVEMENT OF THE ADSORPTION CAPACITY OF ACTIVATED ALUMINA DOPING

CHROMATE BY FOR PHOSPHATE AND

Summary

- 1) Activated aluminas doped with Ca, Sr, Ba, Fe and Ge respectively were prepared by precipitation of $A1(OH)_3$ from a solution containing aluminium nitrate and the nitrate or oxide of a doping cation with ammonia, filtration and firing of the precipitate.
- 2) By application of X-ray analysis, titration and investigations on the adsorption behaviour it was proved that up to 1% Ca, 3.2% Sr or 2.4% Ba respectively are incorporated into the lattice of the Al₂O₃, the excess due to the preparation is leached with diluted HCl ($pH\langle 5$). The amount of the Ca incorporated into the lattice is increasing with the temperature of firing, the Ca in excess being existent as CaO or Ca-aluminate.

Fe and Ge in excess are not leached with HCl to a remarkable extent probably due to the difficulty of dissolution of the corresponding oxides in HCl.

- 3) The specific surface area of the activated alumina is increased up to 70% by incorporation of Ca, Sr, Ba or Ge respectively into the lattice, the surface area obtained increases in the sequence Ba (\$r (Ge < Ca. Fe does not increase the specific surface area. The increasing of the surface area is a function of the temperature of calcination, the maximum for Ca being 600⁰C and is based upon a thermical stabilization of the \mathcal{J} -phase of the A1₂0₃.
- 4) An excess of Ca, Sr or Ba yields products with a lower surface area compared with doped A1203 without an excess. The greater the excess of the doping ion, the more the inner surface area is decreasing. Therefore a maximum of the specific surface area plotted versus the amount of the foreign cation in the Al₂O₃ is found.
- 5) Doping of Al_2O_3 with Ca effects a diminishing of the solubility, slightly in HCl and remarkably in NaOH.
- 6) The adsorption of phosphate and chromate respectively on undoped activated alumina shows a maximum in the pH-range 3 to 4 and at a pH of about 4,5, respectively, dependent on the quality of the activated alumina used. In presence of excess Ca the slope of pH versus the oxide load shows a second maximum at pH 7,8 for phosphate, but not for chromate. This effect is explained with the formation of a nearly insoluble Ca-phosphate with the excess Ca.

- 7) The isotherms of the adsorption of phosphate and chromate onto doped as well as onto undoped activated alumina show a step in the slope and may be described with 2 different independent adsorption reactions, each following the Langmuir equation.
- 8) The adsorption capacity of activated alumina for phosphate is increased by doping with Ca, with or without an excess of Ca. A linear correlation of the phosphate load versus the specific surface area is existing, the increase of the phosphate load of the doped Al_2O_3 being about 16% higher than the corresponding increase of the inner surface area, totally a capacity being about 70% higher may be obtained.
- 9) The sorption capacity for chromate is increased by doping with Ca,too, but to a less extent than for phosphate, the relation oxide load versus the specific surface area being more complex.
- 10) The sorption capacity for phosphate and chromate is increased by doping the activated alumina with Sr, Ba, Fe and Ge, too, but to a less extent than with Ca with the one exception that Ba-doped activated alumina containing excess Ba has a very high sorption capacity for chromate, due to the insolubility of Ba-chromate probably formed.
- 11) The results proved that the activated aluminas doped with Ca show better properties for water purification purposes than undoped ones.

Ínhaltsverzeichnis

	Seite
Zusammenfassung	I
Verwendete Abkürzungen im Text	VII
Formelzeichen	VIII
1. Einleitung und Aufgabenstellung	1
2. Literaturübersicht über Al-Hydroxide und -Oxide	3
2.1. Einteilung	3
2.2. Herstellung der Aktivtonerden	4
2.3. Kristallstruktur der Aluminiumhydroxide und -oxide	7
2.4. Dotierte Aktivtonerden	9
3. Röntgenographische Untersuchung der verwendeten technischen	
Aktivtonerden	11
3.1. Oxide der Firma Merck	11
3.2. Oxide der Firma Giulini	11
4. Herstellung von dotierter und undotierter Aktivtonerde durch	1
Fällung	13
5. Chemische und physikalische Untersuchung der selbst herge-	
stellten dotierten und undotierten Aktivtonerden	15
5.1. Einfluß einer HCl-Behandlung auf den Fremdionengehalt	15
5.2. Titration von Ca-dotierter und undotierter Aktivton-	
erde mit Salzsäure	18
5.3. Löslichkeit der dotierten und undotierten Aktivton-	
erden in Salzsäure und Natronlauge	22
5.3.1. Löslichkeit in Salzsäure	22
5.3.2. Löslichkeit in Natronlauge	25
5.4. Einfluß der Calcinierungstemperatur auf die erreich-	
bare Dotierung	27
5.5. Einfluß der Dotierung auf die spezifische Oberfläche	29
5.6. Röntgenstrahlenbeugungsmessungen	33
5.7. Zusammenfassende Diskussion der chemischen und physi-	
kalischen Untersuchungen	36
6. Untersuchung der pH-Abhängigkeit der Adsorption von Phosphat	
und Chromat an Aktivtonerde	39
6.1. Einfluß des pH auf die Phosphatadsorption	39
6.2. Einfluß des pH auf die Chromatadsorption	46
6.3. Untersuchung des Herauslösens von Calcium aus den dotie	ir-
ten Aktivtonerden bei der Adsorption von Phosphat und C	hromat 51

		Seite
7.	Isothermen der Adsorption von Phosphat und Chromat an Aktiv-	
	tonerden	53
	7.1. Isothermengleichungen	53
	7.2. Phosphatadsorptionsisothermen	55
	7.3. Chromatadsorptionsisothermen	67
	7.4. Isothermen bei konstanter Ionenstärke	71
	7.5. Einfluß des Verhältnisses zwischen der eingesetzten Oxidmen-	
	ge und den Volumina der Phosphatlösung auf die Oxidbeladung	73
	7.6. Bemerkung zur Frage der "besten" Isothermengleichung	74
8.	Vergleich der dotierten und undotierten Aktivtonerden	76
	8.1. Adsorptionskapazität der mit verschiedenen Kationen dotier-	
	ten Aktivtonerden	76
	8.2. Adsorptionskapazität Ca-dotierter Aktivtonerden ohne über-	
	schüssiges Calcium	78
	8.3. Adsorptionskapazität Ca-dotierter Aktivtonerden mit und	
	ohne überschüssigem Calcium	81
	8.4. Spezifischer Platzbedarf der Sorptivionen	82
9.	Diskussion	86
10.	Experimentelle Durchführung	
	10.1.Röntgenstrukturaufnahmen	88
	10.2.Photometrische Al-Bestimmung	88
	10.3.Bestimmung der spezifischen Oberfläche	89
	10.4.Phosphatbestimmung	90
	10.5.Chromatbestimmung	91
	10.5.1. durch Titration	91
	10.5.2. Photometrische Bestimmung	92
11.	Tabellenanhang	94
12.	Literaturverzeichnis	109

.

- VII -

Verwendete Abkürzungen im Text

RFA	: Röntgen-Fluoreszenz-Analyse	
S	: saures Al ₂ 03	
GS (T)	: selbst hergestelltes Aluminiumoxid, das bei einer Temperatur T(^O C) geglüht wur- de	
рН _о	: pH-Wert einer 0,4%-igen Oxidsuspension in H ₂ O nach 6 Minuten	
pH ₁	: pH-Wert des 1. Aquivalenzpunktes	
рН ₂	: pH-Wert des 2. Aquivalenzpunktes	
pH _{max}	: pH-Wert der maximalen Adsorption	
G.K.	: Gleichgewichtskonzentration	
VM-Verfahren	: Vanadat-Molybdat-Verfahren	
ZUA-Modell	: Modell zweier unabhängiger additiver Adsorptionsreaktionen	
SBA-Model1	: Modell einer sukzessiven bimolekularen Adsorptionsreaktion	

Formelzeichen

Symbol	Einheit	Bedeutung
с _о	mMo1/1	Ausgangskonzentration
С	mMo1/1	Gleichgewichtskonzentration
Q	mMol/kg	Oxidbeladung
Q _{max}	mMol/kg	maximal erreichte (experi- mentelle) Oxidbeladung
V	1	Volumen der wässrigen Phase
Μ	kg	Oxidmenge
S	m ² /g	spezifische Oberfläche
s _b	m ² /g	spezifische Oberfläche des beladenen Oxids
S _{max}	m ² /g	maximale spezifische Ober- fläche
FS	A ² /Molekül	spez. Flächenbedarf
Ε	%	Elimination des Adsorptivs am Adsorbens
KF	mMol ^{1-EF} , j ^{EF} · kg ⁻¹	Adsorptionskonstante der Freundlichgleichung
EF	. -	Exponent der Freundlich- gleichung
QT	mMol/kg	Grenzbeladung der BET-Glei- chung
КТ	mMo1/1	Konzentration des Adsorp- tivs in gesättigter Lösung

.

Symbol	Einheit	Bedeutung
KB	_	Konstante der BET-Glei- chung
QR	(mMol/kg)· (l/mMol) ^{B-1}	Konstante der Rædke- Prausnitz-Gleichung
KR	(mMo1/1) ^{β-1}	Konstante der Radke- Prausnitz-Gleichung
ß	-	Exponent der Radke- Prausnitz-Gleichung
QL	mMol/kg	Grenzbeladung der Langmuirgleichung
KL	mMo1/1	Konstante der Langmuir- gleichung
R	-	Exponent der Langmuir- gleichung
A	mMol/kg	Grenzbeladung der 1. Stufe der Kombination von zwei Langmuirgleichungen
A ₂	mMol/kg	Grenzbeladung der 2. Stufe der Kombination von zwei Langmuirgleichungen
ĸ	mMo]/]	Konstante der 1. Stufe der Kombination von zwei Lang- muirgleichungen
K ₂	mMo]/1	Konstante der 2. Stufe der Kombination von zwei Lang- muirgleichungen
σ ^Q re]	-	Standardabweichung (= relativer mittlerer quadratischer Fehler)
I	mMo1/1	Ionenstärke

1. Einleitung und Aufgabenstellung

Der Verwendung von technischem Aluminiumoxid (Aktivtonerde) als Adsorptionsmittel in der Wasserreinigung kommt schon heute, obwohl diesbezügliche Versuche erst jüngeren Datums sind (1), dank der Erkenntnis über seine große Adsorptionskapazität aus wässriger Lösung eine bedeutende Rolle zu.

In zahlreichen Arbeiten wird das Sorptionsverhalten des Oxids gegenüber organischen Säuren und Basen (2,3), sauren und basischen Farbstoffen (4,5) und anorganischen Stoffen wie Phosphat (6 - 10), Ligninsulfonsäure (11), arsenige Säure (12) etc. untersucht.

Sehr große Affinität zum Al_2O_3 zeigte sich bei organischen und anorganischen Verbindungen mit sauren Gruppen. Stoffe mit basischen Gruppen werden allerdings nur mäßig und Neutralstoffe praktisch nicht adsorbiert (13).

 Al_2O_3 ist durch eine im Vergleich zur Aktivkohle kleinere und stärker polare innere Oberfläche charakterisiert. Seine Adsorptionskapazität, die beim $\gamma - Al_2O_3$ am größten ist, liegt in Bezug auf einige Stoffe, wie z.B. Chromat, über derjenigen der Aktivkohle. Huang (14) spricht in diesem Zusammenhang von einer mindestens fünfmal höheren Entchromatisierung durch $\gamma - Al_2O_3$.

Die Verfahrenskosten beim Einsatz von Al_2O_3 zur Wasserreinigung hängen in erster Linie vom Oxidverlust und dem spezifischen Oxideinsatz, der die Apparatgröße bedingt, ab. Eine konkurrenzfähige Wasserreinigung durch Al_2O_3 erfordert daher eine möglichst hohe Beladekapazität, die ihrerseits von der inneren Oberfläche des Oxids bestimmt wird.

Die maximal erreichbare innere Oberfläche des $\gamma - Al_2O_3$ liegt bei ca. 300 m²/g und wird bei einer Glühtemperatur von 300 - 400 ^oC erhalten. Für die thermische Regeneration ist aber eine Temperatur von mindestens 500 - 600 ^oC erforderlich, was eine Abnahme der spezifischen Oberfläche des Al₂O₃ auf ca. 200 m²/g zur Folge hat.

Es ist aus der Literatur bekannt, daß sich durch Einbau von mehrwertigen Fremdionen in das Kristallgitter des Al_2O_3 die Umwandlung der Tieftemperaturformen des Al_2O_3 zu α - Al_2O_3 von 1000 ^OC zu höheren Temperaturen hin verschieben läßt und daß dadurch eine im Vergleich zu undotiertem Al_2O_3 größere spezifische Oberfläche erreicht wird.

Ziel dieser Arbeit war es,festzustellen, ob durch Dotierung auch eine Vergrößerung der Adsorptionskapazität erreicht werden kann. Dabei mußte der

-1-

Schwerpunkt aus dem vorgenannten Grund auf dem Temperaturbereich 500 - 600 ^OC liegen, über den in Bezug auf die Vergrößerung der spezifischen Oberfläche noch wenig bekannt war.

Die Untersuchungen wurden mit anorganischem Phosphat und Chromat als Adsorptiv durchgeführt, wobei der wachsenden Dringlichkeit einer verstärkten Eliminierung dieser beiden Substanzen aus den Abwässern (15 – 17) Rechnung getragen wurde. Als Dotierungselemente wurden Ca, Sr, Ba, Ge und Fe untersucht.

2. Literaturübersicht über Al-Hydroxide und -Oxide

2.1. Einteilung

Aluminiumoxide und -hydroxide werden nach einem Vorschlag von Krischner (18), nach abnehmendem Wassergehalt geordnet, in folgende Gruppen eingeteilt:

a. <u>Aluminiumtrihydroxide</u>

Ohne Zusatz von Fremdionen ist nur der Bayerit beständig, während die beiden anderen noch bekannten Formen, der Hydrargillit und der Nordstrandit, aus reinsten Lösungen nicht erhalten werden können. Es ist aber möglich, Bayerit durch einen länger dauernden Alterungsprozeß nach Zugabe von geeigneten Fremdionen, wie Na⁺ oder Erdalkaliionen, in Hydrargillit umzuwandeln.

b. <u>Aluminiumoxidhydroxide AlO(OH)</u>

Darunter versteht man die beiden unter Diaspor und Böhmit bekannten Formen, außerdem eine schlecht kristallisierte Modifikation des Böhmit, den sog. Pseudoböhmit.

c. Oxide der Gamma-Gruppe

Dazu sind alle Formen zu zählen, die zu ihrer Stabilisierung geringe, nicht stöchiometrische Mengen an Wasser benötigen und bis ca. 700° C beständig sind. Sie weisen Ahnlichkeit mit dem primären Abbauprodukt des Böhmit, dem eigentlichen γ -Al₂O₃, auf. Zu dieser Gruppe gehören alle als Tieftemperaturformen bekannten Abbauprodukte der Aluminiumhydroxide, außerdem auch diejenigen Aluminiumoxide, die trotz anderer Herstellungsverfahren Ahnlichkeiten mit den primären Abbauprodukten der Aluminiumhydroxide zeigen. Schließlich gehören auch diejenigen Präparate, die bei der thermischen Zersetzung von Aluminiumverbindungen, wie z.B. Al(NO₃)₃, entstehen, dieser Gruppe an.

d. <u>Oxide_der_Delta-Gruppe</u>

Diese Formen können ihren Eigenschaften nach zu der Υ -Gruppe gezählt werden. Sie entstehen aus den Υ -Formen bei Temperaturen über 700[°]C und sind bis ca. 1000[°]C beständig.

e. <u>Wasserfreies</u> <u>Aluminiumoxid</u>

Der einzige Vertreter dieser Gruppe ist das α -Al₂O₃, auch Korund genannt. Er ist das Endprodukt aller thermischen Abbaureihen des Al(OH)₃, denn beim Erhitzen wandeln sich alle Aluminiumoxid-Modifikationen ab ca. 1000 ^OC in das α -Al₂O₃ um.

2.2. Herstellung der Aktivtonerden

Technische Aktivtonerden werden fast ausschließlich durch Entwässern von Aluminiumhydroxid bzw. -oxidhydrat hergestellt. Die Art der entstehenden Aluminiumhydroxide im Laboratorium hängt von der Herstellungsmethode und dem pH-Wert der Ausgangsprodukte ab, außerdem auch noch von der Kristallisation der Ausgangsprodukte (19). Die wichtigsten in der Literatur vorkommenden Herstellungsmethoden sind in Tabelle 1 zusammengestellt. In der Literatur wird auf verschiedene Parameter hingewiesen, denen beim thermischen Abbau von Aluminiumhydroxid eine bedeutende Rolle zukommt. Es sind dies unter anderem:

- Entwässerungsbedingungen

Einer der wichtigsten Parameter, der die Eigenschaften der entstehenden Al₂O₃-Modifikation in starkem Maße beeinflußt, ist der Wasserdampfdruck. Wird z.B. Bayerit bei sehr geringen Wasserdampfdrucken entwässert, z.B. im Vakuum, bildet sich ein sehr schlecht kristallisiertes Aluminiumoxid (28). Bei der Entwässerung bei hohen Wasserdampfdrucken, z.B. im Autoklaven, entsteht hingegen quantitativ Böhmit (26).

- Reinheitsgrad

Ein wesentlicher Faktor ist der Reinheitsgrad der Ausgangsprodukte, d.h. die im Gitter eingebaute Menge an Fremdionen (29).

- Kristallisationszustand

In der Regel geben gut kristallisierte Hydroxide beim thermischen Abbau relativ gut ausgebildete Abbauformen, schlecht kristallisierte oder röntgenamorphe Ausgangsmaterialien entwässern sukzessive meist zu schlecht kristallisierten Oxiden, die diffuse Röntgeninterferenzen aufweisen.

Generelle Formel	Hydroxide	Herstellungsmethode	Lit.
А1 (ОН) _З	Bayerit	 Fällung aus Al(NO₃)₃ und NH₄OH bei pH > 9 Hydrolyse von alu- miniumorganischen Ver- bindungen,z.B. Al-Athy- lat 	20 21
	Hydrargillit	 Neutralisation von Na- triumaluminat mit CO₂ Auflösung von Al-Spänen in einer kalt gesättig- ten NaOH 	22 23
	Nordstrandit	Fällung von mit Alkyl- diaminen versetzter Al- Salzlösung mittels NH ₃	24
A10 (OH)	Diaspor	Hydrothermale Behand- lung von metallischem Aluminium mit Wasserdampf unter Druck	25
	Böhmit	Behandlung von Al(OH) ₃ unter Wasserdampfdruck im Autoklaven bei 400 ^O C	26
A1 ₂ 03* nH ₂ 0	Pseudo- böhmit	Fällung von Aluminiumsalz- lösung mittels NH ₄ OH bei pH = 9	27

.

<u>Tabelle 1</u> Herstellungsmethoden der verschiedenen Al(OH)₃- und AlO(OH)-Formen aus der Literatur

Auffallend ist das Entwässerungsverhalten von Böhmit. Während gut kristallisierter Böhmit zu Gamma-Al $_20_3$ entwässert (29), entsteht beim thermischen Abbau von schlecht kristallisiertem Böhmit Eta-Al $_20_3$ (30).

- <u>Teilchengröße</u>

Die Teilchengröße des Ausgangsmaterials hat ebenfalls einen beträchtlichen Einfluß auf das Entwässerungsverhalten. Während z.B. feinteiliger Bayerit bevorzugt zu Eta-Al₂O₃ entwässert, entsteht unter sonst gleichen Bedingungen bei der thermischen Zersetzung von grobem Bayerit bevorzugt Böhmit (30), dies deshalb, weil in den großen Körnern ein größerer Wasserdampfpartialdruck vorherrscht als bei feinen Al(OH)₃-Teilchen.

Krischner (18) hat die Abbaufolge der verschiedenen Aluminiumhydroxide in Abhängigkeit von Teilchengröße und Kristallisationszustand schematisch zusammengestellt (Tab.2). Die entsprechenden Glühtemperaturen wurden von K. Torkar (30) übernommen.

2.3. Kristallstruktur der Aluminiumhydroxide und -oxide

Die wesentlichen Strukturmerkmale sind in Tabelle 3 zusammengestellt. Da sich diese Arbeit überwiegend mit der Adsorption an Y-Aluminiumoxide beschäftigt, soll näher auf diese eingegangen werden. Die Y-Aluminiumoxide kristallisieren in einem den Spinellen ähnlichen Kristallgitter, wobei aber keine völlige Übereinstimmung, insbesondere nicht hinsichtlich der Platzbevorzugung der einzelnen Ionen,vorliegt.

Unter Spinellen werden allgemein Verbindungen der Formel Me $^{2+}$ Me $_{2}^{3+}$ X₄ verstanden. Das Anion X ist in der Regel Sauerstoff, daneben gibt es aber auch Spinelle, die stattdessen Sulfid, Fluorid etc. enthalten. Außer den II/III-Spinellen kennt man auch II/IV- und I/III-Spinelle, d.h., daß auch in Bezug auf die Wertigkeit der Kationen Variationen möglich sind. Die Struktur hat man sich als ein Ionengitter vorzustellen, bei dem die Anionen (vorzugsweise Sauerstoff mit r=1,32 Å) in kubisch dichtester Packung angeordnet sind, während die Kationen, deren Ionenradius in den Grenzen von 0,4 bis 1,0 Å schwankt, die tetraedrischen bzw. oktaedrischen Plätze zwischen den Anionen besetzen. Die Elementarzelle enthält acht Formeleinheiten, d.h. 24 Kationen und 32 Anionen. Die 32 Sauerstoffionen bilden 64 tetraedrische und 32 oktaedrische Gitterplätze (auch A- und B-Plätze genannt), von denen aber aus Neutralitätsgründen nur 8 A- und 16 B-Plätze besetzt sind. F.A. Kröger hat folgende Reihe abnehmender Tendenz zur Besetzung der Tetraederplätze angegeben (40):

Zn²⁺, Cd²⁺, Ge⁴⁺, Ga³⁺, In³⁺, Mn²⁺, Fe²⁺, Fe³⁺, Co²⁺, Al³⁺, Cu²⁺, Mg²⁺, Li⁺, Sn⁴⁺, Ti⁴⁺, Ni²⁺, Cr³⁺, V³⁺, V⁴⁺, Rh³⁺

Nach A. Miller kann das Calcium in diese Reihe zwischen Zn^{2+} und Cd^{2+} eingeordnet werden (41).

Bei den Y -Oxiden entfallen auf 32 Sauerstoffionen lediglich 21 1/3 Aluminiumionen (42,43). In Spinellschreibweise formuliert lautet die Grenzformel der Y-Oxide nach Hoffmann (44), auf der idealisierten Formel von Houben (45) aufbauend (\Box = Leerstellen), Al₈(\Box_4 Al₁₂) O₂₈(OH)₄, wobei sich die Leerstellen je nach Herstellungsart der einzelnen Präparate auf Tetraeder- oder Oktaederplätzen befinden können.

Es ist eine Vielzahl von Formen der Y-Aluminiumoxide bekannt, die sich in der Kationenbesetzung und in der Art der Anionenfehlstellen unter-

-7-

		11	
Name Formel	Gittermerkmale	charakteristische ¹⁾ Röntgeninterferenzen (Å)	Literatur
Bayerit Al(OH) ₃	ABABAB-Schichtgitter hexagonal dichteste Packung	d = <u>2,22</u> ; 4,35; <u>4,71</u>	18,31
Hydrargillit Al(OH) ₃	Typisches Schichtgitter hexagonalen Charakters, Schichtfolge: ABBAABBA	d = 2,39; <u>4,37</u> ; <u>4,85</u>	18,32
Böhmit, Dias- por A10(OH)	0-A]-O-Ketten, die Doppelschichten	Böhmit: d = 2,35; 3,16; <u>6,11</u>	33,34
	bilden. Böhmit und Dias- por haben unterschiedli-	Diaspor: d = <u>2,32; 3,99</u> ; 4,71	35
· ·	che Kettenanordnung. Pseudoböhmit ist eine schlecht kristallisierte Böhmitmodifikation mit höherem Wassergehalt		36,37
eta-a1 ₂ 0 ₃	Spinellgitter mit Kationenfehlstellen auf Oktaederplätzen	$d = \frac{1,40}{4,50}; 1,98; \frac{2,35}{4,50};$	38,39
Gamma-A1 ₂ 0 ₃	Spinellgitter mit Kationenfehlstellen (s. Text) tetraedri- scher Natur	d = <u>1,39;</u> 1,95; <u>1,98;</u> (4,50)	38,39
Chi-A1 ₂ 0 ₃	Hexagonale Symmetrie, Analogien zum Spinell- gitter	d = <u>1,39;</u> 2,12; <u>2,40</u>	
Theta-Al ₂ 0 ₃ u. Delta-Al ₂ 0 ₃	Spinellgitter mit Kationenfehlstellen, Sauerstoff kubisch	Theta-A1 $_{2}0_{3}$ d = 1,39; 2,73; 2,85	38
		d.≓: <u>1,39;2,00</u> ; 2,45	
Kappa-Al ₂ 03	hexagonale Kugel- Packung aus Sauer- stoffschichten, Ka- tionen auf tetraedri- schen und oktaedri- schen Positionen	d = <u>1,39;</u> 2,12; <u>2,54;</u> 6,06	18,38
A]pha-A] ₂ 0 ₃	hexagonal dichteste Packung der Sauer- stoffionen, Kationen auf Oktaederpositionen	d = 1,37; 1,60; <u>2,08;</u> <u>2,55</u>	18,38

TABELLE 3 Strukturdaten der Aluminiumhydroxide und -oxide

1) stärkste Linien unterstrichen

scheiden. Ihre wichtigsten Vertreter sind das η - und das γ -Aluminiumoxid.

Nach einem Vorschlag von O.Glemser (46) können die zu dieser Gruppe gehörenden Formen auch als nicht stöchiometrische Hydroxide bezeichnet werden, da sie wechselnde Mengen Wassers, die ohne Veränderung des Gitters zwischen 0,9 und 10 % liegen können, enthalten und völlig wasserfrei nicht existent sind.

Nach de Boer et al. (47) ist dieses Wasser an der Oberfläche des Aluminiumoxids gebunden, wofür zwei Mechanismen verantwortlich sind:

- 1. eine starke Chemisorption
- 2. eine etwas schwächere Physisorption

Peri (48) konnte in einer mit einer hochauflösenden IR-Apparatur durchgeführten detaillierten Studie die Existenz von fünf verschiedenen OH-Banden im Spektrum von evakuiertem, auf 650 ^OC geglühtem Al₂O₃ nachweisen: bei 3800, 3780, 3744, 3733 und 3700 cm⁻¹. Er ordnete diese IR-Banden fünf isoliert liegenden Oberflächen-OH zu, in deren Nachbarschaft sich jeweils eine verschiedene Anzahl von Sauerstoffionen befindet. Jedes OH-Ion liegt nach Peri (49) genau über einem Aluminiumion. Der Wasserstoff wird an den Sauerstoff gebunden angenommen und nicht auf einem Gitterplatz befindlich, womit die OH-Banden im IR-Spektrum ihre plausible Erklärung finden.

2.4. Dotierte Aktivtonerde

- Herstellung

Dotierte Aktivtonerde kann aus Aluminium- und Fremdionensalzlösung durch Fällung mit Ammoniak, Altern des Gels und darauffolgendes Glühen gewonnen werden.

Hoffmann (44) hat festgestellt, daß durch Konstanthalten des Fällungs-pH und der Behandlung des Niederschlages die reproduzierbare Herstellung dotierter Aktivtonerden möglich ist. Bei der Fällung muß mehr Calcium anwesend sein, als dem gewöhnlichen Gehalt im Endprodukt entspricht. Das Ausmaß der "Ca-Mitfällung" nimmt mit dem Fällungs-pH zu (untersuchter Bereich pH 8 -10). Ein Ansatz mit 2 % Ca bezogen auf entstehendes Al₂0₃ ergab ein Produkt mit 0,19 %Ca.

- Einfluß der Dotierung auf die Eigenschaften des Al₂O₃

Die für diese Arbeit wesentlichen Literaturangaben über dotiertes Al₂0₃

sind in Tabelle 3 a zusammengestellt; sie betreffen die Dotierung mit Ca, Sr, Ba, Fe und Cr. In (50,58,74,75) sind Referenzen über den Einfluß von Alkalien, Mg, Ni, Zu, B, Phosphat, Borat und Sulfat auf die Al₂0₃-Bildung aus Al-hydroxid zusammengestellt.

Der wesentliche Effekt der Dotierung mit Erdalkalien, Cr und Fe ist eine Verschiebung der Bildung von α -Al₂O₃ und eine Stabilisierung des γ -Al₂O₃ bei höheren Temperaturen, begleitet von einer Vergrößerung der spezifischen Oberfläche relativ zu undotiertem Al₂O₃ (44,51, 52,58). Es wird z.B. eine Vergrößerung um ca. 50 % bei 500 °C angegeben (s. Tab. 3 a). Bei konstanter Calcinierungstemperatur nimmt die spezifische Oberfläche mit dem Gehalt an Dotierungskation zunächst zu und dann ab, sie durchläuft ein Maximum (52,58). Als Ursache der Oberflächenvergrößerung bzw. der Stabilisierung der γ -Phase wird der Einbau des Dotierungskations auf Zwischengitterplätze angesehen. Die Dotierung mit Ca verringert nach (75) den mittleren Porenradius geringfügig von 26 auf 20 Å. Als Grund für die Wiederabnahme der spez. Oberfläche bei zu hohem Gehalt wird die Bildung von Ca-Aluminat angegeben. Es wurde nicht untersucht, wieviel Dotierungskation wirklich in das Gitter eingebaut ist.

Die Annahme, daß analog der spez. Oberfläche auch die Adsorptionskapazität verbessert wird, war der Ausgangspunkt dieser Arbeit. Untersuchungen hierzu wurden in der Literatur nicht gefunden.

Tabelle 3 a

 Doti	erungskation	CalcinierungstempBET-Oberfl. (^o C - m ² /g)	Literatur
Ca	0,2 - 11 %CaO	950 - 82 * / 1050 - 65 *	52
	2,4 %Ca	500 - 232 / 800 -154	75
	0,1 - 5 %CaO	800 - 170 / 950 -112	44
	0,6 - 1,6 %CaO	500 - 300 [×] / 800 - 182 [×]	44
Sr	1 - 9 %Sr0	950 - 95 / 1050 - 70	52
Ba	0,5 - 6 %BaO	950 - 93 [×] / 1050 - 70 [×]	52
Cr	0,2 - 8 %Cr	600 - 325 [×]	58
Fe	0,2 - 5 %Fe	600 - 275 [×]	58
undoti	ert (Bsp.)	500 - 207 / 800 - 151	75
		600 - 260	58

* Maximalwert f
ür den untersuchten Bereich des Gehaltes an Dotierungskation 3. Röntgenographische Untersuchung der verwendeten technischen

Aktivtonerde

In dieser Arbeit wurden zu Vergleichszwecken Adsorptionsmessungen mit technischen Oxiden von zwei Lieferanten ausgeführt.

3.1. Oxide der Firma Merck

Es handelt sich hierbei um zwei Standardoxide M 90 S und M 150 S zur Chromatographie. Ihre mittleren Porendurchmesser betragen 90 bzw. 150 Å, ihre spezifische Oberfläche 95 bzw. 73 m²/g. Der pH ihrer 10 %igen wässrigen Suspension beträgt 4,5. Die Korngröße war ca. 0,1 mm.

Die d-Werte der beiden Oxide im Vergleich zu den Angaben der Lit. (38) sind in Tabelle A 1 zusammengestellt (Tabellenanhang).

Die Auswertung der Röntgenaufnahme (Abschnitt 10.1) des M 150 S zeigte, daß es sich um ein Gemisch von $\delta + \varkappa - \text{Al}_20_3$, also um Hochtemperaturformen handelt.

Das $\delta -Al_2O_3$ wurde an Hand der Interferenzlinien bei d = 2,00 und d = 1,945 Å identifiziert. Daneben treten aber auch einige Linien von Kappa-Al₂O₃ auf. Die Glühtemperatur dürfte bei ca. 900 ^OC liegen.

Das M 90 S ist ein schlecht kristallisiertes Oxid aus der γ -Phase, also ein bei 500 - 600 ^OC geglühtes Al₂0₃, das nicht genau zugeordnet werden kann.

3.2. Oxide der Firma Giulini

Es handelt sich um Produkte mit den Bezeichnungen: CTG 100, CTG 200, CTG 300, S-11-4 und P-10.

Bei CTG 300 S wurde das aus dem Herstellungsprozeß stammende Alkalt des CTG 300 mit 0,01n HCl so lang ausgewaschen, bis der pH der 10 %igen Suspension ca. 4,5 betrug. Dadurch stieg die spezifische Oberfläche von 145 m²/g auf 177 m²/g.

Oxide	BET-Oberfl. (m ² /g)	pH der 10 %igen Suspension
CTG 100	162	8,7
CTG 200	169	6,0
CTG 300	145	8,5
CTG 300 S	177	4,5
S-11-4	227	8,2
P-10	9	9,4

Tabelle 4 Die wichtigsten Eigenschaften der Giulini-Oxide

Die Röntgenaufnahmen (Tabelle A 2 des Tabellenanhanges) der oben erwähnten Oxide ließen folgendes erkennen:

Strukturell gesehen handelt es sich bei CTG 100, CTG 200 und CTG 300 überwiegend um Böhmit, daneben sind noch vereinzelt die Linien von Gamma-Al₂O₃ zu beobachten. Es liegt also ein bei etwa 400 ^OC geglühtes Gemisch aus Böhmit und Gamma-Aluminiumoxiden vor. Beim S-11-4 waren außer der einzig deutlich sichtbaren Interferenzlinie bei d = 1,40 Å nur diffuse, schlecht auswertbare Linien zu beobachten. Die Röntgenaufnahme läßt auf eine Tieftemperaturform schließen, die jedoch nicht eindeutig zugeordnet werden kann. Beim Oxid P-10 handelt es sich um reines Alpha-Aluminiumoxid (Ta-

belle A 2, Tabellenanhang).

4. Herstellung von dotierter und undotierter Aktivtonerde durch

Fällung

======

Zu einer wässrigen Lösung von 50 g Al(NO₃)·9 H₂O wurden die Fremdionen Ca, Sr, Ba oder Fe als Lösung ihrer Nitrate (250 g/l) oder als Oxid (Ge) in 0,01n NaOH (20 g/l) in entsprechender Menge langsam hinzugefügt (Tabelle 5). Danach wurde mit Ammoniaklösung bei pH 9 \pm 0,1 ein Aluminiumhydroxidgel ausgefällt. Nach einer Alterungszeit von 24 Stunden (27) wurde das erhaltene Aluminiumhydroxidgel filtriert, 1-2 mal mit Wasser ausgewaschen, um den überschüssigen Ammoniak zu entfernen, und das ausgewaschene Fällungsprodukt zuerst bei 200 ^OC 24 Stunden lang getrocknet, zerrieben und anschließend ebenfalls 24 Stunden bei Temperaturen zwischen 350 und 1100 ^OC aktiviert. Der Fremdionengehalt wurde durch RFA bestimmt, wobei auf Grund der Uneinheitlichkeit der Proben der geschätzte Fehler bei ca. 10 % lag. In gleicher Weise erfolgte die Herstellung undotierten Vergleichsmaterials ohne Fremdionenzusatz.

Die Ansatzgröße war jeweils für eine Oxidausbeute von 80 - 100 g berechnet.

Ansatz % Fremd- ionen	Gramm Fremdsalzzusatz zu kg Al(NO ₃) ₃ ¹⁾			Frem nier	dionengeha ten Aktivto	lt der bei onerde nac in %	600 ^O C ca h der Fällt	lci- ung		
	Ca(NO ₃) ₂ • 9 H ₂ 0	Sr(N0 ₃) ₂	Ba(NO ₃) ₂	Fe(NO ₃) ₃ . 9 H ₂ 0	Ge0 ₂	Ca-Gehalt	Sr-Gehalt	Ba-Gehalt	Fe-Gehalt	Ge-Gehalt
0,5	4,09 8,17	-	-	4,74 9,48	-	0,10		-	0,34 -	-
2,0	16,34	-	-	19,00	- [:]	1,39	-	-	1,29	-
10	81,71	-	56,8	94,81	. 56 , 78	3,66	-	7,97	5,19	5,98
15	122,70	85,2	-	-	-	5,50	13,0	-	-	-
20	163,40	-	-	-	-	8,80	-	-	-	-

Tabelle 5 Ansätze für die Herstellung der dotierten Aktivtonerde

1) es wurde jeweils nur eines der angegebenen Fremdionensalze zugegeben

5. Chemische und physikalische Untersuchung der selbst hergestellten

dotierten und undotierten Aktivtonerden

Mit diesen Untersuchungen sollte vor allem die durch Dotieren erreichbare spezifische Oberfläche ermittelt werden.Als wesentlicher Punkt dabei war auf Grund des Befundes anderer Autoren der in das Gitter des Al₂0₃ eingebaute Anteil der Dotierungskationen anzusehen, der bisher nicht bestimmt worden war.

Krischner et al (52) geben an, daß nicht in das Gitter eingebautes Calcium als Ca-Aluminat vorliegt. In (53) wird berichtet, daß Ca-Aluminate in Salzsäure löslich sind. Von der Hypothese ausgehend, daß in das Gitter eingebautes Dotierungskation nicht mit Säure herausgelöst wird, wenn die Al_2O_3 -Matrix erhalten bleibt, wurde versucht, das "überschüssige" Dotierungskation durch eine Behandlung mit verdünnter Salzsäure zu entfernen.

5.1. Einfluß einer HCl-Behandlung auf den Fremdionengehalt

- <u>Ca-dotierte Aktivtonerde</u>

3 - 40 g bei 600 ^oC calciniertes, mit 3,6 - 5,5 %Ca dotiertes Oxid wurden mit Salzsäure verschiedener Konzentration im Verhältnis g Oxid : ml HCl 1 : 50 oder 1 : 300 4- 5 Stunden gerührt, anschließend zentrifugiert, mit bidestilliertem Wasser nachgewaschen, bei 200 ^oC getrocknet und der Ca-Gehalt vor und nach dem Auswaschen durch RFA bestimmt. Tabelle 6 zeigt, daß stets der Hauptteil des Dotierungskations herausgelöst wird und zwar im Extremfall bis auf einen Rest von 0,5 %. Um zu prüfen, ob bei längerer Kontaktzeit oder höherer Säurekonzentration mehr oder alles Dotierungskation herausgelöst wird, wurden Löseversuche bei konstantem pH(\neq 4) über 12 Stunden und bei 24 und 48 h Kontaktzeit mit Zugabe verschiedener HCl-Mengen ausgeführt.Das eingesetzte Oxid hatte 3,0 %Ca und war bei 800 ^oC calciniert worden. Nach der Behandlung wurde jeweils mit Wasser gewaschen, bei 200 ^oC getrocknet und vom Rückstand der Ca-Gehalt bestimmt.

Die Ergebnisse sind in Abbildung 1 und 2 dargestellt. Sie lassen erkennen, daß der nicht mit Säure aus der Matrix herausjösbare Ca-Anteil ab einer bestimmten HCI-Konzentration und Schüttelzeit konstant bleibt.

Ca-Gehalt nach der Fällung (Gew.%)	behandelt mit HCl	Verhältnis Oxid : HCl (g : ml)	Ca-Gehalt nach der HCl-Behand- lung (Gew.%)
5,50	1•10 ⁻³ n	1 : 50	2,78
4,19	1.10^{-2} n	1:50	2,99
3,66	1•10 ⁻¹ n	1:50	1,36
5,50	5•10 ⁻⁴ n	1:300	2,27
5,50	5•10 ⁻³ n	1:300	1,32
5,50	1•10 ⁻² n	1:300	0,53
5,50	5•10 ⁻² n	1:300	0,62
1			

<u>Tabelle 6</u> Ca-Gehalte der bei 600 ^OC geglühten dotierten Oxide vor und nach dem Auswaschen

<u>Abbildung 2</u> Gehalt der Ca-Ionen in Gew.% des bei 800 ^OC geglühten, mit 3,0 Gew.% Ca-dotierten Al₂O₃ nach einer 24- bzw. 48- stündigen Schüttelzeit

Bei einer Glühtemperatur von 600 O C bleiben 0,5 Gew.% und bei 800 O C 0,8 Gew.% Ca ungelöst, sind also im Al₂O₃-Gitter eingebaut. Der - bei der jeweiligen Glühtemperatur - diese Menge überschreitende Ca-Gehalt liegt in Form von Ca-Verbindungen vor (Identifikation s. röntgenographische Untersuchung). Daraus folgt, daß es bei der angewandten Präparationsmethode einen Maximalgehalt an in das Kristallgitter einbaubaren Fremdionen gibt.

- Sr- und Ba-dotierte Aktivtonerde

Auf Grund der beim Ca-dotierten Oxid gewonnenen Erfahrungen wurde ein mit 13 Gew.% Sr- und ein mit 7,97 Gew.% Ba-dotiertes, bei 600 ^OC geglühtes Oxid nach der im letzten Abschnitt beschriebenen Methode im Verhältnis g Oxid : ml HCl 1 : 300 mit Salzsäure verschiedener Konzentration ausgewaschen, bei 200 ^OC getrocknet, und der Sr- bzw. Ba-Gehalt vor und nach dem Auswaschen durch RFA bestimmt. Wie Tabelle 7 zeigt, stellt sich auch hier ein konstanter Endgehalt an Dotierungskationen ein. Der Überschuß kann als Erdalkalioxid oder Erdalkalialuminat vorliegen. Letztere sind in Salzsäure löslich(54).

<u>Tabelle 7</u> Gehalt der Sr- und Ba-Ionen in Gew.% des bei 600 ^OC geglühten, mit 13 Gew.%Sr- und 7,97 Gew.% Ba-dotierten Oxids nach dem Auswaschen mit HCl entsprechender Konzentration im Verhältnis g Oxid : ml HCl 1 : 300

Behandelt mit HCl	Sr-Gehalt nach der HCl-Behandlung (Gew.%)	Ba-Gehalt nach der HCl-Behandlung (Gew.%)
5-10 ⁻⁴ n	3,16	3,02
1.10^{-3} n	3,30	.2,19
5.10^{-3} n	3,08	.2,40
1.10^{-2} n	3,16	.2,15
$5 \cdot 10^{-2}$ n	3,30	2,21
1.10 ⁻¹ n	3,35	2,24

- Fe- und Ge-dotierte Aktivtonerde

Wie aus Tabelle 8 hervorgeht, konnte der Fremdionenüberschuß nicht durch einfaches Auswaschen entfernt werden, weil sowohl Ge-IV-Oxide als auch durch die Fällungsmethode hergestellte Fe-Oxide (55) in HCl der angewandten Konzentration kaum löslich sind. Eine Erhöhung der HCl-Konzentration kam nicht in Frage, da dies das Auflösen der Al₂0₃-Matrix bewirkt hätte.

Tabelle 8Fe- und Ge-Gehalt der bei verschiedenen Glühtemperaturen
geglühten dotierten Oxide vor und nach der Salzsäurebe-
handlung

Glühtempe- ratur (^O C)	Fe-Gehalt vor dem Auswasch- en (Gew.%)	Fe-Gehalt nach dem Auswaschen (Gew.%)	Ge-Gehalt vor dem Auswaschen (Gew.%)	Ge-Gehalt nach dem Auswaschen (Gew.%)
400	5,56	5,58	5,88	5,50
800	5,19 5,68	5,27 5,05	5,98 5,96	5,01 5,32

5.2. Titration von Ca-dotierter und undotierter Aktivtonerde mit Salzsäure

Um festzustellen, welchen End-pH die 10 %ige wässrige Suspension des ausgewaschenen Ca-dotierten Al_2O_3 haben muß, damit die überschüssigen Ca-Ionen entfernt werden, nicht aber die Al_2O_3 -Matrix, in der die Fremdionen eingebaut sind, aufgelöst wird, wurde das Ca-dotierte Al_2O_3 mit 0,1n HCl titriert.

Versuchsdurchführung

100 mg Oxid wurden in ein auf 25 ^OC thermostatisiertes Titrationsgefäß eingewogen, mit 25 ml bidestilliertem Wasser 3 Minuten gerührt und nach weiteren 3 Minuten ohne Rühren der pH gemessen. Dann wurden jeweils 0,1 bzw. 0,05 ml einer 0,1n HCl hinzugefügt, die oben genannte Operation wiederholt und der pH erneut abgelesen. Im Laufe der Versuchsreihe fiel besonders auf, daß sich Ca-dotierte Oxide, die überschüssiges Ca enthalten, vom Titrationsanfang bis zum Ende des letzten Aquivalenzpunktes im Gefäß schnell absetzten, bei weiterer HC1-Zugabe jedoch nicht mehr, sondern eine Emulsion bildeten. Bei der Titration des undotierten GS 600 und von Ca-dotierten Oxiden ohne Ca-Überschuß trat dieser Effekt nicht auf.

Ergebnisse

Die Daten der Titrationen sind in Tabelle 9 zusammengestellt. Einige typische Titrationskurven zeigt Abbildung 3

Das undotierte selbst hergestellte Oxid (Kurve a) ergibt eine Titrationskurve ohne erkennbare Wendepunkte und dementsprechend eine Differenzialkurve ohne Maximum (ohne Abbildung). Das gleiche gilt für die dotierten, mit 300 ml 0,01n HCl zu Gramm ausgewaschenen Präparate. Diese Oxide enthalten also keine durch einen Aquivalenzpunkt sich bemerkbar machenden Bestandteile oder Gruppen. Hier fällt nur auf, daß nach Zugabe von 0,5 ml HCl je 100 mg (undot. Oxid) bis 1 ml HCl zu 100 mg (dot. Oxid) der pH sich bei weiterer Säurezugabe nur noch sehr wenig ändert. Der pH ist dann etwa 3. Bei den dotierten nicht oder nur im Verhältnis 50 ml 0,1n HCl auf 1 g Oxid ausgewaschenen Oxiden treten dagegen Wendepunkte der Titrationskurve und Maxima der Differenzialkurve auf. Und zwar zwei Maxima bei den nicht ausgewaschenen Oxiden und eines bei den wie genannt ausgewaschenen Oxiden (Abbildung 4 und 5).

<u>Abbildung 4</u> Ableitungskurve der Titration der zwischen 350 und 600 ^OC geglühten unbehandelten Ca-dotierten Aktivtonerden (Identifikation s. Tab. 9)

<u>Abbildung 5</u> Ableitungskurve der Titration der mit verschiedenen Salzsäurekonzentrationen behandelten Ca-dotierten Aktivtonerden (Identifikation s. Tab. 9)

<u>Tabelle 9</u> pH-Werte und spezifischer Verbrauch der 0,1n HCl an den Aquivalenzpunkten während der Titration der Ca-dotierten und undotierten Aktivtonerde

Identifikation	Ca-Gehalt vor dem Auswaschen (Gew.%)	Glühtemperatur (^O C)	Behandelt mit HCl	Verhältnis Oxid : HCl (g : ml)	Ca-Gehalt nach dem Auswaschen	pH ₀ ¹⁾ (vor HC1-Zugabe)	pH ₁ ²⁾ 1. Xquivalenzpunkt	(JmyalHC1/g Oxid) 1. Aquivalenzpunkt	pH ₂ ³⁾ 2. Aquivalenzpunkt	(mval HC1/g Oxid) 2. Aquivalenzpunkt
a		600	-	-	-	6,75	-	-	-	-
Ь	3,60	350		-	0,39	9,27	7,00	.3,5	4,60	11,5
с	3,94	400	-	-	0,58	9,68	6,55	8,7	5,90	10,0
d	4,67	500	-	-	0,68	9,81	7,00	12,0	6,20	13,7
е	5,50	600	-	-	0,62	10,13	7,50	11,0	6,40	13,5
f	5,50	600	1.10^{-3} n	1:50	2,78	9,86	7,40	3,5	5,35	8,5
g	5,50	600	$5 \cdot 10^{-4}$ n	1:300	2,27	9,10	6,85	3,5	4,75	8,5
h	5,50	600	5•10 ⁻³ n	1:300	1,32	:9,10	-	-	5,70	2,5
i	3,66	600	$1 \cdot 10^{-1}$ n	1:50	1,36	9,40	-	-	5,55	2,5
-	3,60	350	1.10^{-2} n	1:300	0,39	4,70	_ *	-	-	-
-	3,94	400	1•10 ⁻² n	1:300	0,58	5,40	-	-	-	-
-	4,67	500	1.10^{-2} n	1:300	0,68	5,10	-	-	-	-
-	5,50	600	1•10 ⁻² n	1:300	0,62	5,22	-	-	-	-

1) pH_0 : pH-Wert einer 0,4 % igen Oxidsuspension in H₂O nach 6 Minuten

2) pH₁ : pH-Wert des 1. Aquivalenzpunktes

3) pH₃ : pH-Wert des 2. Aquivalenzpunktes

Das erste Maximum liegt jeweils bei pH 6,5 - 7,5, das zweite bei pH 4,5 - 5,7. Dieses zweite Maximum wandert mit zunehmender Calcinierungstemperatur zu höheren pH-Werten. Beim Auswaschen mit Säure verschwindet zuerst das erste Maximum.

Man kann diese Befunde damit interpretieren, daß in den dotierten, nicht vollständig ausgewaschenen Oxiden zwei Beimengungen unterschiedlicher Basizität, d.h. unterschiedlicher chemischer Natur vorliegen. Auf Basis der weiter unten diskutierten röntgenographischen Untersuchung kann man vermuten, da β es sich um Calciumoxid und Calciumaluminat handelt, wovon das erstere vermutlich als erstes ausgewaschen wird.

Das Oxid muß also solange titriert werden, bis an der Differenzialkurve kein Maximum mehr auftritt. Mit anderen Worten, das Herauslösen der überschüssigen Ca-Ionen erfordert eine Einstellung des End-pH der 10 %igen wässrigen Suspension auf ca. 5.

5.3. Löslichkeit der dotierten und undotierten Aktivtonerden in Salzsäure und Natronlauge

Bei der Herstellung von dotierten Aktivtonerden sowie bei ihrer chemischen Regeneration nach dem Einsatz zur Wasserreinigung wird mit Salzsäure und/oder Natronlauge behandelt. Der dabei auftretende Verlust ist für die Wirtschaftlichkeit des Einsatzes von größter Bedeutung. Daher wurde das Herauslösen von Aluminium aus der Aktivtonerde durch Salzsäure oder Natronlauge näher untersucht, insbesondere die Frage, ob sich dotierte und undotierte Präparate verschieden verhalten.

5.3.1. Löslichkeit in Salzsäure

Es wurden jeweils 0,5 g ungewaschenes Oxid und mit $1 \cdot 10^{-2}$ n HCl im Verhältnis g Oxid : ml HCl = 1 : 300 gewaschenes Oxid mit 150 ml Salzsäure zwischen 1,0 und 50 mMol HCl im Liter 5 Stunden geschüttelt und danach die gelösten Al-Ionen durch eine Farbreaktion mit Alizarin S (Abschnitt 10.2) bestimmt. Die Meßresultate sind in Abbildung 6 bis 8 dargestellt.

Ergebnisse

Die Löslichkeitskurve beginnt nicht im Koordinatenursprung, sondern erst bei einer bestimmten Mindestkonzentration an HCl. Das bedeutet, daß zunächst Salzsäure durch einen anderen Effekt verbraucht wird, bevor Aluminium in Lösung geht. Dieser "<u>primäre HCl-Verbrauch</u>" kann durch Sorption bedingt sein oder durch die Neutralisation von freiem Calciumoxid. Daß es sich nicht um Neutralisation handelt, wird dadurch bewiesen, daß der Effekt auch bei undotiertem Oxid auftritt. Tabelle 10 zeigt den aus den Abszissenabschnitten berechneten primären HCl-Verbrauch. Man erkennt, daß die dotierten Oxide trotz

Abbildung 6 Löslichkeit der undotierten Aktivtonerde in Salzsäure (GS 400, GS 600, GS 800 : bei 400, 600, 800 °C calciniert)

Abbildung 7 Löslichkeit der unbehandelten Ca-dotierten Aktivtonerden in Salzsäure (Ca-Gehalt/Calcinierungstemperatur : a-3,94 %/400 °C; b-3,96 %/600 °C; c-2,52 %/800 °C)

Abbildung 8 M] HCl = 1 : 300 vorbehandelten Ca-dotierten Aktivtonerden (Ca-Gehalt/Calcinierungstemperatur : d-0,58 %/400 °C; e-0,87 %/600 °C; f-0,93 %/800 °C)

<u>Tabelle 10</u> "Primärer HCl-Verbrauch" der selbst hergestellten Aktivtonerden bei Behandlung mit 0,01n HCl (HCl : Oxid = 300 : 1)

Oxid	Ca-Gehalt (Gew.%)	Glüh- temp. (^O C)	BET-Ober- fläche (m ² /g)	primärer HCl- Verbrauch (mMol/kg)
GS 400 GS 600 GS 800 Ca-dot. Al ₂ 0 ₃ """" """"	- - 3,94 3,96 2,52 0,58 1) 0,87 1) 0,87 1) 0,93 1)	400 600 800 400 600 800 400 600 800	228,4 149,8 102,5 214,5 156,1 94,6 277,7 195,0 170,1	1000 500 400 1400 800 550

1) Vorbehandelt mit 0,01n HCl : Oxid = 300 ml: g

kleinerer BET-Oberfläche mehr Salzsäure verbrauchen und vor allem, $da\beta$ der Verbrauch mit steigender Calcinierungstemperatur abnimmt. Er ist im Falle der Ca-dotierten Oxide stets kleiner, als dem Ca-Gehalt entspricht – auch kleiner, als dem Ca-Gehalt entspricht, der durch Waschen mit HCl entfernt-werden kann. Daraus ist zu schließen, daß es sich bei dem Effekt überwiegend um eine Adsorption von HCl an die Aktivtonerde handelt.

Beim Vergleich von Abbildung 6 und 7 fällt auf, daß bei den undotierten Oxiden die Lösekurve um so höher liegt, je niedriger die Calcinierungstemperatur war, daß jedoch bei den dotierten Oxiden das Umgekehrte der Fall ist. Quantitativ ist dieser Effekt in Tabelle 11 zu erkennen, welche das gelöste Aluminium für die HCI-Konzentration 0,01 mol/l zeigt.

Dieses Phänomen könnte folgendermaßen erklärt werden: Mit zunehmender Glühtemperatur nimmt die Menge an überschüssigen Ca-Ionen, die in Form von Ca-Aluminaten vorliegen, zu, und die in Form von CaO vorliegende Menge ab. D.h., daß bei 400 ^OC das Calciumoxid und bei 800 ^OC

Glühtemperatur	aus ungew. undot. Al ₂ 0 ₃	aus ungew. Ca-dot. Al ₂ 0 ₃	aus gewaschenem Ca-dot. Al ₂ 0 ₃
(⁰ C)	(mMo1 A1/Mo1 A1 ₂ 0 ₃)	(mMo1 A1/Mo1 A1 ₂ 0 ₃)	mMo1 A1/Mo1 A1 ₂ 03
400	88,7	24,5	21,4
600	39,7	38,2	15,3
800	18,4	58,1	6,1

Tabelle 11 Durch 0,01n HCl aus Al₂0₃ gelöstes Aluminium

die Ca-Aluminate überwiegen. Der größte Teil der HCl-Menge wird im Falle der Ca-dotierten, bei 400 ^OC geglühten Oxide für die Lösung der CaO und bei Ca-dotierten, bei 800 ^OC geglühten Oxiden für die Lösung der Aluminate verbraucht, wodurch insgesamt die gelöste Menge mit steigender Glühtemperatur steigt. Die relativ leichte Auflösung von Ca-Aluminaten, auch wenn sie bei hoher Temperatur calciniert worden sind, wurde von Shepherd nachgewiesen (53). Absolut gesehen geht jedoch bei den dotierten Aktivtonerden, die bei 400 - 600 ^OC calciniert worden waren, weniger Aluminium in Lösung, sie erweisen sich als resistenter bei Säurebehandlung als die undotierten Aktivtonerden. Nach dem Auswaschen des "überschüssigen" Calciums ist die dotierte Aktivtonerde bei allen Calcinierungstemperaturen säureresistenter als die undotierte.

5.3.2. Löslichkeit in Natronlauge

Es wurde jeweils 1 g der technischen Oxide M 90 S und CTG 300 bzw. mit 0,01n HCl gewaschenes selbst hergestelltes Oxid mit 100 ml Natronlauge einer Konzentration zwischen 25 und 500 mMol/l 2 Stunden geschüttelt, der pH gemessen, die Lösung membranfiltriert und dann die gelösten Al-Ionen durch Farbreaktion mit Alizarin S (Abschnitt 10.2) bestimmt. Die Löslichkeitskurven sind in Abbildung 9 dargestellt.

Ergebnisse

Die gelöste Al-Menge steigt mit der NaOH-Konzentration anfangs steil an und strebt dann einem Sättigungswert zu. Der Kurvenverlauf gleicht

<u>Abbildung 9</u> Löslichkeit von Al₂0₃ in Natronlauge (Identifikation s. Tab.12)

einer Adsorptionsisotherme nach Langmuir. Es wurde daher untersucht, ob sich die Löslichkeit mit einer der Langmuirformel analogen Beziehung darstellen läßt. Der mathematische Ansatz lautet

$$G = L \frac{C_0}{K + C_0}$$
(1)

wobei G die Konzentration der Al-Ionen in der Lösung, L die Grenzkonzentration des Al, C_o die <u>Anfangskonzentration</u> der Natronlauge und K die Lösekonstante bedeuten.

Wie Abbildung 10 an drei Beispielen und Tabelle 12 anhand der Standardabweichung für alle Versuche zeigt, läßt sich das Löseverhalten sehr gut durch Gleichung(1)beschreiben. Man findet, daß sowohl die Grenzlöslichkeit L als auch die Lösekonstante K mit steigender Calcinierungstemperatur abnehmen. Das dotierte Oxid weist eine niedrigere Grenzlöslichkeit auf als das undotierte Oxid. In Bezug auf die Lösekonstante besteht kein signifikanter Unterschied.

Abbildung 10

Gemessene und nach Gleichung (1) berechnete Lösekurven von Aktivtonerde (Identifikation s.Tab. 12)

Identifi- kation	Oxid	Glüh- temp.	maximal gelöste	L	K
(⁰ C)		(⁰ C)	Al ³⁺ -Ionen (mMol/l)	(mMol Al ³⁺ /l)	(mMo1/1)
a	GS 400	400	12,17	12,61 + 0,27	32,12 + 4,02
b	GS 600	600	9,82	10,14 + 0,15	24,39 + 2,43
с	GS 800	800	5,13	5,29 <u>+</u> 0,05	19,59 <u>+</u> 1,50
d	0,58% Ca	400	9,78	10,32 + 0,13	33,79 <u>+</u> 2,50
е	0 , 87% Ca	600	5,88	6,13 <u>+</u> 0,11	22,73 <u>+</u> 2,78
f	0,93% Ca	800	4,55	4,73 <u>+</u> 0,08	24,97 <u>+</u> 2,90
g	M 90 S	- '	5,20	5,13 <u>+</u> 0,07	13,28 <u>+</u> 1,60
h	CTG 300	-	8,13	8,37 <u>+</u> 0,15	18,66 <u>+</u> 2,61

<u>Tabelle 12</u>	Konstanten der	Gleichung 1	für die	Löslichkeit	von
	Aktivtonerden	in Natronlauge	en		

5.4. Einfluß der Calcinierungstemperatur auf die erreichbare Dotierung

Es wurden Ca-, Fe- und Ge-dotierte Aluminiumhydroxidgele,wie in Abschnitt 4 beschrieben,hergestellt und bei Temperaturen zwischen 350 ^OC und 1000 ^OC calciniert (24 h). Danach wurde mit 0,01n HCl (300 ml/g) gewaschen. Tabelle 13 zeigt die erhaltenen Ergebnisse.

Tabelle 13 Ca-, Fe- und Ge-Gehalte dotierter Aktivtonerden vor und nach dem Auswaschen mit HCl

G1üh-	Glüh- Ca-dotiertes Oxid		Fe-dotiertes Oxid		Ge-dotiertes Oxid	
temp. (^O C)	Gehalt v. dem Aus- waschen (Gew.%)	Gehalt n. dem Aus- waschen (Gew.%)	Gehalt v. dem Aus- waschen (Gew.%)	Gehalt n. dem Aus- waschen (Gew.%)	Gehalt v. dem Aus- waschen (Gew.%)	Gehalt n. dem Aus- waschen (Gew.%)
350 400 500 600 700 800 900 1000	3,66 3,94 4,67 3,96 3,38 2,52 2,66	0,39 0,58 0,68 0,87 0,94 0,93 0,91	5,36 5,56 5,25 5,19 5,69 5,68 5,51 5,51 5,68	5,66 5,58 5,28 5,27 5,29 5,05 5,46 5,52	5,88 5,98 5,96	5,50 5,01 5,32

Ergebnisse

Abbildung 11 zeigt, daß der primäre Gehalt an Dotierungskation im calcinierten Fällungsprodukt sowohl bei Eisen wie bei Calcium linear von dem Gehalt der Fällungslösung abhängt. Im Falle des Calciums soll auch noch der Fällungs-pH eine Rolle spielen (27).

Abbildung 11 Konzentration des Dotierungskations im Fällungsansatz und im calcinierten Fällungsprodukt (Angabe im Fällungsansatz bezogen auf Al₂O₃)

Aus der graphischen Darstellung der Ca-Gehalte gegen die Glühtemperatur (Abb. 12) wird deutlich, daß die Menge Ca-Ionen, die im Kristallgitter des Al_2O_3 eingebaut werden kann, mit steigender Temperatur zunimmt. Im Temperaturbereich zwischen 350 °C und 500 °C steigt die einbaubare Ca-Ionenmenge fast auf das Doppelte, ab 600 °C bleibt der Wert innerhalb der Meßgenauigkeit fast konstant. Bei den Aluminiumoxiden der Gamma- und Delta-Gruppe kann also nur etwa 1 Gew.% Ca-Ionen durch die angewandte Herstellungsmethode in das Al_2O_3 eingebaut werden.

von der Calcinierungstemperatur

Den in Abschnitt (5.3.1) dargelegten Ergebnissen über die Löslichkeit des ungewaschenen Ca-dotierten Oxids zufolge dürfte bei einer Glühtemperatur unter 600 ^OC die Menge an CaO überwiegen, während sich bei höheren Temperaturen vermutlich größtenteils Ca-Aluminate bilden. Der Fremdionengehalt der Fe³⁺- und Ge⁴⁺ -dotierten Oxide bleibt im Gegensatz zu dem der Ca²⁺ -dotierten Oxide beim Auswaschen mit 0,01n HC1, unabhängig von der Glühtemperatur, konstant.

5.5. Einfluß der Dotierung auf die spezifische Oberfläche

Die spezifische Oberfläche der dotierten und undotierten Oxide (Abschnitt 5.1 und 5.4) wurde vor und nach dem Auswaschen mit Salzsäure durch Tieftemperatur-Stickstoffadsorption nach dem Einpunkt-Verfahren (Areameter, Abschnitt 10.1) bestimmt. Die Meßresultate sind in Tabelle A 3 (Anhang) zusammengestellt.

- <u>Allgemeine Feststellungen</u>

Die ungewaschenen, mit Ca, Sr, Ba oder Fe-dotierten Aktivtonerden weisen bei allen Glühtemperaturen die ungefähr gleiche spezifische Oberfläche wie die undotierten Oxide auf (Abb. 13). Im übrigen nimmt die innere Oberfläche mit steigender Calcinierungstemperatur ab, und zwar um ca. 0,3 m² je Gramm und ^OC. Mit 5,0 - 5,5 % Ge-dotierter Aktivtonerde wird dagegen eine höhere spezifische Oberfläche erreicht (Abb. 14, Tab. A 3).

Abbildung 13

Spezifische Oberflächen der unbehandelten dotierten Aktivtonerden Gehalte : 2,66 - 4,67 % Ca 5,19 - 5,69 % Fe 13,0 % Sr 7,97% Ba (Vergleiche Tab. 13, A 3)

Abbildung 14

Spezifische Oberflächen der mit Salzsäure ausgewaschenen dotierten Oxide

Werte für Strontium und Barium

	% Sr	m ² /g	% Ba	m ² /g
Original	13,0	136	7,97	140
ausgewaschen	3,2	176	2,4	160

Durch das Auswaschen der Ca-dotierten Oxide mit HCl erhöht sich die spezifische Oberfläche bedeutend, wie Abbildung 14 zeigt. Sie bleibt dadurch im Temperaturbereich von 350 bis 600 ^OC nach der Salzsäurebehandlung des Oxids fast konstant und fällt dann ziemlich rasch mit 0,43 m²/^OC ab. Demgegenüber war nach dem Auswaschen des undotierten Oxids (Tab. A 3, Anhang) unter der gleichen Bedingung praktisch eine vernachlässigbare Oberflächenänderung festzustellen. Die Erhöhung der spezifischen Oberfläche durch Herauslösen des überschüssigen Calciums, das den Röntgenaufnahmen zufolge in Form von Ca-Aluminaten bzw. CaO vorliegt (Abschnitt 5.6) beweist, daß nur das in das Gitter eingebaute Ca oberflächenvergrößernd wirkt und ein Oberschuß einen Teil der Oberfläche wieder blockiert, den Effekt auf die Al₂0₃-Matrix jedoch nicht verhindert.

Das Auswaschen des überschüssigen Stroniums und Bariums erhöht die spezifische Oberfläche wesentlich weniger, sodaß insgesamt nur eine kleine Verbesserung gegenüber undotierter Aktivtonerde resultiert. Man kann das in Anlehnung an die Befunde von Krischner (50,52) im Temperaturbereich 950 – 1050 ^OC als eine Verschiebung der Phasenumwandlung zu höheren Temperaturen auffassen. Allerdings sind die Kurven nicht parallel verschoben, da ja vor und nach dem Auswaschen der Temperaturgradient der inneren Oberfläche verschieden ist. Wie Abbildung 15 zeigt, tritt der maximale Effekt dieser thermischen Stabilisierung durch Ca-Dotierung bei 600 O C auf, d.h., im Bereich der Y -Phase des Al₂O₃, und zwar liegt ein ziemlich scharfes Temperaturmaximum vor.

Abbildung 15

Einfluß der eingebauten Ca-Ionen auf die thermische Stabilisierung der Oberfläche von Aktivtonerde

Anders als bei den Ca-dotierten Oxiden bewirkt eine HC1-Auswaschung bei Fe- und Ge-dotierten Oxiden keine Vergrößerung der spezifischen Oberfläche. Das deckt sich mit den Ergebnissen aus Abschnitt 5.1, wo festgestellt wurde, daß die Fe- und Ge-Aluminate und/øder -Oxide nicht durch eine Säurebehandlung aus dem Oxid entfernt werden können.

- Einfluß des Ca-Gehaltes

Um den Einfluß des Ca-Gehaltes auf die Oberflächengröße von γ -Al₂O₃ festzustellen, wurde mit verschiedenen Mengen von Ca-Ionen dotiertes Aluminiumhydroxidgel hergestellt und jeweils bei Temperaturen von 400 °C, 600 °C und 800 °C 24 Stunden calciniert. Abbildung 16 zeigt, daß die spezifische Oberfläche mit zunehmendem Ca-Gehalt des dotierten Oxids, vom Referenzwert (spezifische Oberfläche des undotierten Oxids) ausgehend, bis zu einem Maximalwert steigt und anschließend wieder fällt. Die Abnahme nach Überschreiten des Maximums kann, wie die zuvor geschilderten Versuche zeigen, mit der Gegenwart von Ca-Aluminaten bzw. CaO erklärt werden.

Spezifische Oberfläche als Funktion des Calcium-Gehaltes Daten in Tabelle A 9

Die aus den Abbildungen ablesbaren weiteren Befunde über den gegenseitigen Einfluß von Ca-Gehalt, Calcinierungstemperatur und innere Oberfläche lassen sich wie folgt zusammenfassen:

- die in das Gitter eingebaute Menge Ca-Ionen hängt vom Anfangs-Calciumgehalt und der Calcinierungstemperatur ab. Nur bei "Ca-Überschuß" läßt sich der Maximalgehalt an eingebautem Calcium erreichen
- 2. der Maximalwert der spezifischen Oberfläche nimmt mit steigender Calcinierungstemperatur ab
- 3. bei sehr hohem Gesamt-Calcium-Gehalt, der aus in das Gitter eingebautem Ca und "freiem" Ca besteht, wird die Oberfläche kleiner als die des undotierten Referenzoxids.

In Tabelle 14 sind die maximalen Oberflächen und die zugehörigen Ca-Gehalte zusammengestellt. Ein gesetzmäßiger Zusammenhang von Ca-Gehalt und Oberfläche oder Oberflächenzunahme ist nicht zu erkennen.

Calcinierungs- temperatur	undotiertes Oxid Oberfläche (S _o)	dotiertes Oxid		s ₁ - s _o
		Ca-Gehalt	Oberfläche (S ₁)	_
••••••••••••••••••••••••••••••••••••••	(m ² /g)	(Gew.%)	(m^2/g)	(m ² /g)
400	228	0,2	382	154
600	155	0,5	278	123
800	106	0,7	162	56

Tabelle 14 Calciumgehalt und maximale innere Oberfläche

- Einfluß der Dotierung mit Eisen oder Germanium

Tabelle 15 zeigt, daß Eisengehalte um 5,5 % bei allen Temperaturen eine um 10 bzw. 20 % niedrigere innere Oberfläche ergeben, verglichen mit undotiertem Oxid. Ob hier ein Effekt von überschüssigem Eisen vorliegt, wie er bei Calcium nachgewiesen wurde, ließ sich nicht klären, da das Eisen,wie erwähnt,mit Salzsäure nicht herausgelöst werden konnte.

Ein Germanium-Gehalt von ca. 6 % vergrößert dagegen die innere Oberfläche im Vergleich zu undotiertem Oxid um 20 bzw. 50 %, der maximale Effekt tritt bei einer Calcinierungstemperatur von 600 ^OC auf. Auch hier blieb die Frage ungeklärt, inwieweit das Dotierungskation in das Gitter eingebaut ist.

Weil für den praktischen Einsatz eine Ge-Dotierung kaum in Frage kommt und die Eisendotierung keine besonders erfolgsversprechenden Resultate bei den Adsorptionsmessungen ergab, wurden hierzu keine weiteren Untersuchungen angestellt. Diese hätten z.B. darin bestehen können, eine Dotierungsreihe mit steigendem Gehalt an Fe bzw. Ge näher zu untersuchen. Die dafür erforderliche lange Versuchszeit (Herstellung einer Probe ≈ 1 Woche) stand im Rahmen dieser Arbeit nicht zur Verfügung.

Tabelle 15	Spezifische	Oberflächen	Eisen-	und	Germanium-dotierter
	Oxide				

Glüh- temp.	undot. Al ₂ 0 ₃	Ca-dot.	A1203	Fe-dot.	A1 ₂ 0 ₃	Ge-dot.	A1 ₂ 0 ₃
(°C)	S (m ² /g)	Ca-Geh. (Gew.%)	S (m ² /g)	Fe-Geh. (Gew.%)	S (m ² /g)	Ge-Geh. (Gew.%)	S (m ² /g)
 400 600 800	228 150 103	5,63 5,50 -	189,0 115,3 -	5,56 5,19 5,68	206,0 145,4 80,6	5,88 5,98 5,96	258,3 225,8 138,5

5.6 Röntgenstrahlenbeugungsmessungen

Die Untersuchungen wurden mittels eines Goniometers unter Verwendung von Cu-K $_{\alpha}$ -Strahlung ausgeführt.

- Calcinierungsprodukte_des_undotierten_Aluminiumhydroxidgels Die Röntgendiagramme der thermischen Abbauprodukte des Gels zeigten bis zu einer Glühtemperatur von ca. 700 ^OC schlecht kristallisierte Oxide, d.h., fast alle Interferenzlinien waren diffus. Die Daten sind in Tabelle A 4 zusammengestellt und zeigen die Linien stärkerer Intensität der einzelnen Modifikationen sowie die entsprechenden d-Werte. Die eindeutige Zuordnung ist auf Grund der schlecht auswertbaren Röntgendiagramme schwierig. Der Vergleich der Interferenzlinien des bei 200 ^OC getrockneten Präparates mit den Daten der A.S.T.M-Kartei wies auf diffuse Linien von Böhmit hin, u.a. war die besonders charakteristische Linie bei d = 6,11 Å zu erkennen. Das bedeutet, daß beim Trocknen oder schon beim Altern des Niederschlages dieser eine Böhmit-Struktur annimmt, wobei es sich, dem diffusen Röntgendiagramm zufolge, um den schlecht kristallisierten Pseudoböhmit handelt. Bei 350 ^OC treten neben der charakteristischen Linie des Böhmits (d = 6,487 Å) die stärksten Linien des Eta-Al₂O₃ (d = 2,368 Å)d = 1,981 Å) auf. Bei 400 °C verschwindet die Böhmit-Linie, dafür erscheint eine der stärksten Linien des Gamma-Al₂0₃ (d = 1,941 Å), die im Röntgendiagramm für die bis 800 ^OC geglühten undotierten . $A1_20_3$ neben anderen $A1_20_3$ -Modifikationen erkennbar ist. Die charakteristische Linie des Chi-Al₂O₃ bei d = 1,993 Å ist ebenfalls sichtbar. Die Röntgenaufnahmen des bei 600 und 700 ^oC geglühten Al₂O₃ (Tab. A 4, Anhang) ließen eine Aufspaltung der Linie d = 1,98 \overline{A} in das charakteristische Linienpaar des Gamma-Al $_2$ O $_3$ d = 1,983 und 1,969 Å und eine der charakteristischen Linien des Theta-Al₂O₃ (d = 2,01), diese allerdings nur schwach erkennen.

Bei 800 ^OC erscheint die charakteristische Interferenzlinie des Theta-Aluminiumoxids d = 2,000, d.h., es erfolgt hier ein Übergang zur Hochtemperaturform, und bei 900 ^OC liegt bereits Delta-Aluminiumoxid vor.

Bei 1000 ^OC sind schon alle Interferenzlinien des Alpha-Aluminiumoxids scharf ausgebildet. Bis 1200 ^OC sind gegenüber der Glühtemperatur von 1000 ^OC keine Veränderungen in der Goniometeraufnahme zu beobachten (Tab. A 4, Anhang), es zeigen sich linienreiche Röntgendiagramme mit scharfen Interferenzen.

Aus den Röntgenaufnahmen ergibt sich folgende Abbaureihe des Aluminiumhydroxidgels:

A1(OH)₃-Gel 200 °C Pseudoböhmit 350 °C Pseudoböhmit +

$$\eta -A1_20_3 \xrightarrow{400 °C} \gamma -A1_20_3 \xrightarrow{500 °C} \gamma + \chi -A1_20_3 \xrightarrow{600 - 800 °C}$$

 $\gamma + \vartheta -A1_20_3 \xrightarrow{900 °C} \delta -A1_20_3 \xrightarrow{1000 °C} \alpha -A1_20_3$

- Ca-dotierte Aktivtonerden

Die Goniometerdiagramme der im Bereich 350 ^OC bis 700 ^OC calcinierten Oxide zeigten nur diffuse Interferenzen, die für sichere Identifizierung nicht ausreichten. Oberhalb 700 ^OC wurden die Diagramme mit steigender Temperatur zunehmend schärfer, sodaß sich die charakteristischen Linien einzelner Phasen erkennen ließen.

In Tabelle 16 sind die anhand der Goniometeraufnahmen identifizierten Phasen in der Reihenfolge ihres aus der Linienintensität geschätzten Anteils angegeben. Es war nicht möglich, zwischen Gamma- und Eta-Al₂O₃ sowie zwischen Delta- und Theta-Al₂03 zu unterscheiden, daher ist jeweils nur die erstgenannte Phase angeführt.

Die Dotierung mit Calcium stabilisiert die γ -Phase so erheblich, daß sie noch nach dem Calcinieren bei 900 ^OC vorhanden ist. Das durch die Auswaschversuche angezeigte, nicht in das Gitter eingebaute Calcium liegt als CaO und CaO.2Al₂O₃ vor (Tabelle A 5, Anhang). Nach dem Auswaschen des Präparates traten die Röntgenlinien dieser beiden Verbindungen nicht mehr auf, das restliche Calcium bildet offenbar keine eigene Phase mehr - es ist im Gitter eingebaut.

Calcinierungs-	Ca-Gehalt	
(⁰ C)	(Gew.%)	
800	2,52	$\gamma -; \delta -A1_20_3$ Ca0.6A1_20_3 (schwach)
800*	0,63	Υ-;δ _ "
800*	0,44	γ_;δ"
800 *	0,12	γ-;δ"
900	2,66	$\gamma -; \delta - " + Ca0 \cdot 2A1_2O_2 + CaO$
900 [*]	0,91	γ-; δ - "
900*	0,30	Υ-; δ - "
1100*	0,30	δ-; α - "

Röntgenographisch identifizierte Komponenten in den dotier-Tabelle 16 ten Aktivtonerden

uusgemuse

- Fe- und Ge-dotierte Aktivtonerde

Beim Vergleich der Röntgenaufnahmen der durch Mitfällung hergestellten Fe-dotierten Aktivtonerden (Tabelle A 7, Anhang) mit denen der undotierten, bei derselben Temperatur calcinierten (Abschnitt 5.4) war kein Unterschied der Al₂O₃-Linien zu beobachten, d.h., die Dotierung bewirkte keine Verzögerung der Gitterumwandlung zu Alpha-Al₂O₃; es ist daher fraglich, ob nach dieser Methode überhaupt ein Einbau gelungen ist. Außer den Linien der Al₂O₃-Modifikationen war noch ein schwacher Peak von α -Fe₂O₃ zu erkennen. Die Röntgendiagramme der Ge⁴⁺-dotierten Oxide waren sehr linienarm,

Die Röntgendiagramme der Ge⁻'-dotierten Oxide waren sehr linienarm, unscharf und von so schwacher Intensität, daß eine Zuordnung zu einer bestimmten Al₂O₃-Modifikation nicht möglich war.

5.7. Zusammenfassende Diskussion der chemischen und physikalischen Untersuchungen

- <u>Dotierung mit Calcium</u>

Durch Fällen einer Lösung von Al-Nitrat und Ca-Nitrat mit Ammoniak bei pH 9 und anschließendem Calcinieren bei Temperaturen entstehen dotierte Aktivtonerden, die das Calcium zum Teil in das Gitter des Al_2O_3 eingebaut und zum Teil als CaO sowie CaO·2Al_2O_3 enthalten. Die Gegenwart dieser beiden Calciumverbindungen wurde röntgenographisch nachgewiesen und zeigt sich auch bei der Titration mit Salzsäure durch Wendepunkte der Titrationskurve an. Mit der Titration ergibt sich die Möglichkeit, auf einfache Weise festzustellen, ob im dotierten Oxid noch überschüssiges Calcium vorhanden ist. Das gilt vermutlich auch für andere Dotierungskationen, sofern deren Oxide und Aluminate in HCl löslich sind.

Durch Behandlung der Ca-dotierten Aktivtonerde mit Salzsäure kann das nicht im Gitter eingebaute Calcium entfernt werden, wobei 0,01n HCl und ein Oxid : Salzsäure-Verhältnis von 1 : 300 günstig ist. Die Behandlung mit Salzsäure hat den wichtigen Effekt, daß dadurch die BET-Oberfläche erhöht wird. Möglicherweise liegt nicht eine eigentliche Oberflächenvergrößerung vor, sondern die von CaO und CaO·2Al₂O₃ zum Teil belegte Oberfläche wird ganz freigelegt. Die im Al₂O₃-Gitter eingebaute Menge an Ca-Ionen steigt mit zunehmender Calcinierungstemperatur bis 600 ^OC an und bleibt danach mit weiter ansteigender Glühtemperatur fast konstant. Die innere Oberfläche bleibt dagegen bis ca. 600 ^OC konstant und nimmt dann ab. Bei 600 ^OC entspricht dies einer 1,7-fachen Vergrößerung im Vergleich zu undotierter Aktivtonerde. Es ist also nicht der Calciumgehalt an sich, der die Oberflächenvergrößerung ergibt, sondern die thermische Stabilisierung der γ -Modifikation des Al₂O₃.

Die Frage, warum die Menge an im Al_2O_3 eingebauten Ca-Ionen nur zwischen 400 und 600 ^OC ansteigt und sich anschließend nicht mehr wesentlich verändert, kann wie folgt beantwortet werden: Bei 400 ^OC liegen Böhmit und die Eta-Phase vor, mit steigender Temperatur wan delt sich der Böhmit zunehmend in die γ -Phase um, die ihrerseits ab 600 ^OC allmählich in die Hochtemperaturmodifikationen übergeht. In den Eta-Phasen liegen oktaedrische Leerstellen vor und in der γ -Phase tetraedrische (39). Daher steigt die Zahl der tetraedrischen Leerstellen, die vom Calcium bevorzugt werden, zunächst mit der Temperatur an und dementsprechend auch das ins Gitter einbaubare Calcium. Anschließend ist zwischen 600 und 900 ^OC die Zahl der tetraedrischen Leerstellen konstant und dementsprechend auch die Konzentration des im Gitter eingebauten Calciums.

- <u>Dotierung mit Strontium bzw. Barium</u>

Die im Kristallgitter des Aluminiumoxids bei 600 ^oC einbaubare Menge der Fremdionen Sr²⁺ bzw. Ba²⁺ beträgt ca. 3,2 und 2,4 Gew.%, nimmt also mit zunehmendem Ionenradius des Fremdions ($r_{Sr}^{2+} = 1,10$ Å und $r_{Ba}^{2+} = 1,29$ Å) ab (56). Dieser Befund deckt sich mit den Untersuchungen von H. Krischner und K. Torkar (52). Dementsprechend müßte die Menge der bei 600 ^oC einbaubaren Ca-Ionen größer als 3,2 sein, da der Ionenradius der Ca-Ionen 0,94 Å (56) beträgt. Die Versuche ergaben aber maximal 0,87 %Ca im Gitter.

Es stellt sich nun zwangsläufig die Frage, was die Ursachen für einen derarten Quantitätsunterschied der im Aluminiumgitter eingebauten Ca- bzw. Ba- und Sr-Ionen sind. Durch Versuche von D. Donnert (39) und H. Krischner (57) über das Verhalten erdalkalihaltiger γ -Aluminiumoxide bei Spinellbildungsreaktionen wurde festgestellt, daß Ca-Ionen im γ -Al₂O₃ die Bildungsreaktion der Normalspinelle (Zn-Spinelle) im Vergleich zu reinem γ -Al₂O₃ stark behindern, während der Einbau von Ba- und Sr-Ionen in das γ -Al₂O₃ nur eine geringfügige Verlangsamung mit sich bringt, d.h., die tetraedrisch eingebauten Ca-Ionen (41) behindern die Diffusion von Ionen mit tetraedrischer Platzbevorzugung (Zn-Ionen), die oktaedrisch eingebauten Ba- und Sr-Ionen (39) beeinflussen sie nicht.

Da die γ -Aluminiumoxide in einem spinellartigen Gitter kristallisieren, kann man annehmen, daß sich die tetraedrische Plätze bevorzugenden Ca²⁺-Ionen gegenseitig an einer Diffusion hindern, was bedeuten würde, daß sie eher in der Lage sind, Aluminate zu bilden, als ins Kristallgitter einzudringen. Anders verhält es sich bei den oktaedrische Plätze bevorzugenden Sr²⁺ und Ba²⁺-Ionen, die ohne gegenseitige Behinderung ins Kristallgitter eindringen können. Die spezifische Oberfläche der mit Sr und Ba dotierten Aktivtonerden, die keinen Überschuß an Dotierungskation enthalten, ist größer als die der undotierten Aktivtonerde, jedoch weit kleiner als bei Calcium, sodaß für die oberflächenvergrößernde Wirkung die Reihenfolge gilt: Ca>Sr>Ba.

- <u>Dotierung_mit_Germanium_und_Eisen</u>

Bei diesen beiden Dotierungskationen ließ sich nicht feststellen, wieviel in Wirklichkeit in das Gitter eingebaut wurde, und wieviel als Fe_2O_3 bzw. GeO_2 vorliegt. Die Behandlung mit Salzsäure löste nur wenig des Dotierungselementes heraus. Das kann daran liegen, daß alles im Gitter gebunden ist, oder daß säureunlösliche Oxide vorliegen. Zumindest beim Germanium muß mindestens ein anteiliger Einbau vorliegen, da die innere Oberfläche größer ist als bei undotierter Aktivtonerde und auch nicht die der Calcinierungstemperatur entsprechenden Al_2O_3 -Modifikationen auftraten. Weniger deutlich ist das auch bei der Eisendotierung der Fall. 6. Untersuchung der pH-Abhängigkeit der Adsorption von Phosphat und

und Chromat an Aktivtonerde

Verschiedene Autoren haben angegeben, daß die Sorption von Phosphat an undotierte Aktivtonerde vom pH beeinflußt wird. Sinha u. Choud Hury (9) geben an, daß die Elimination mit abnehmendem pH bis zu pH 3 zunimmt. Das gleiche Verhalten wird von Balzer u. Lange (72) für Natriumtriphosphat angegeben. HSU u. Rennie (39) untersuchten die Sorption von Phosphat an bei 45 $^{\circ}$ C getrocknetem Aluminiumhydroxidgel und bei pH 3,8 - 5 - 6 - 7 und fanden, daß die höchste Elimination bei pH 5 erreicht wird. Klopp fand, daß die pH-Beladungskurve für Phosphat und viele organische Säuren ein Maximum aufweist (61,69). Ziel der nachstehend referierten Untersuchungen war es, die pH-Abhängigkeit der Sorption von Phosphat und von Chromat an undotierte Aktivtonerde genauer zu studieren und den Einfluß einer Calciumdotierung darauf festzustellen.

6.1. Einfluß des pH auf die Phosphatadsorption

- Ausführung der Experimente

Je 100 ml ("V") NaH₂PO₄-Lösung der gewünschten Konzentration "C " wurden auf den gewünschten pH-Wert mit verdünnter Salzsäure bzw. Natronlauge eingestellt und mit 0,5 g ("M") Aktivtonerde 48 Stunden geschüttelt. Danach wurde der pH-Wert der Lösung gemessen, mit verdünnter Salzsäure bzw. Natronlauge wieder nachgestellt, und die Lösung weitere 24 Stunden geschüttelt. Dieser Vorgang wurde so lange wiederholt, bis der End-pH der geschüttelten Lösung konstant blieb. Die Lösung wurde dann membranfiltriert und ihre Phosphatrestkonzentration "C" nach dem VM-Verfahren (Abschnitt 10.4) ermittelt. Die Oxidbeladung Q ergibt sich zu

$$Q = (C_0 - C) - \frac{V}{M}$$
 (2)

- <u>undotierte Aktivtonerden</u>

Die Phosphatadsorption an den technischen Oxiden M 150 S, M 90 S, CTG 300 und an mit HCl gewaschenem CTG 300 (Abb.17) zeigt ein scharf ausgeprägtes Maximum, das je nach verwendeter Oxidqualität zwischen pH 3,7 und pH 4,2 liegt. Bemerkenswert ist, daß die mit

Abbildung 17

Adsorption von Phosphat an technische Aktivtonerde

Abbildung 18

Adsorption von Phosphat an selbst hergestellte Aktivtonerde (GS 400, GS 500, GS 600 : bei 400, 500, 600, °C calciniert)

verdünnter HCl ausgewaschene Aktivtonerde CTG 300 bei allen pH-Werten eine bessere Adsorptionswirkung aufweist als das Originalpräparat. Sie hat auch eine höhere innere Oberfläche.

Bei den durch Fällen des Hydroxids mit Ammoniak und Calcination selbst hergestellten Aktivtonerden tritt ebenfalls ein Maximum der Adsorption auf, es ist jedoch wesentlich flacher als bei den technischen Aktivtonerden und liegt bei einem um ca. 0,7 Einheiten niedrigerem pH.

Tabelle 17 zeigt die jeweils erreichte Maximalbeladung. Sie nimmt bei den technischen Aktivtonerden in der Reihenfolge steigender BET-Oberfläche zu. Dasselbe gilt für die selbst hergestellten undotierten Aktivtonerden.

-40-

Oxid	innere Ober- fläche S (m ² /g)	pH _{max}	Q _{max} (mMol/kg)	Elimination (%)
a) C _o = 6,45 mMol P/l				
M 150 S	73	3,7	355	27,5
M 90 S	95	3,8	589	47,2
CTG 300	145	4,2	627	46,5
CTG 300 S	177	4,0	742	57,5
b) C ₀ = 12,9 mMol P/l				
GS 400	228	3,50	1129	49,4
GS 500	191	3,30	950	41,5
GS 600	155	3,15	897	32,2
			1	

<u>Tabelle 17</u> Maximal erreichte Phosphatbeladung verschiedener undotierter Aktivtonerden

- <u>nicht_ausgewaschene_Ca-dotierte_Aktivtonerden</u>

Wie Abbildung 19 zeigt, weisen die noch freies CaO und CaO·2A1₂O₃ enthaltenden Ca-dotierten Aktivtonerden eine typisch andere pH-Abhängigkeit der Phosphatadsorption auf als undotierte Aktivtonerden. Das bei 600 ^OC calcinierte Präparat mit 5,50 Gew.% Ca weist zwei Maxima der Oxidbeladung auf. Das erste Maximum (End-pH < 4) entspricht dem der Phosphatadsorption an technischen bzw. an undotierten Aktivtonerden, das zweite liegt bei pH 7 - 8. Bei noch höherem Ca-Gehalt (8,80 Gew.% Ca) tritt kein ausgeprägtes zweites Maximum mehr auf, sondern eine konstante Beladung über 2 pH-Einheiten von pH 8 bis pH 10.

Das Auftreten dieser zwei Maxima muß auf zwei verschiedenen Mechanismen der Phosphatadsorption beruhen. Auf Grund des pH-Wertes und der erreichten Beladung darf man ohne weiteres annehmen, daß das erste Maximum von der normalen Phosphatadsorption herrührt, wie sie auch bei undotierter Aktivtonerde beobachtet wurde.

Abbildung 19

Adsorption von Phosphat an Ca-dotierte, nicht mit HCl ausgewaschene Aktivtonerde (600 $^{\circ}$ C)

Ca-Gehalt (Gew.%)	Co (mMo1/1)	pH _{max}	Q _{max} (mMol P/kg)			
8,8 ¹⁾	6,45	8-10	1284			
5,5 ²⁾	6,45	3,7	1274			
		7,0	1023			
3,5 ²⁾	12,90	3,5	1550			
		7,6	1261			
1) BET-Oberfläche = 88,3 m ² /g						

2) BET-Oberfläche = 115 m^2/q

Ein wesentlicher Hinweis auf die Natur des zweiten Adsorptionsmaximums ergab die Untersuchung des Calciumgehaltes der Aktivtonerde nach der Adsorption, deren Ergebnis in Tabelle 18 zusammengestellt ist. Man erkennt, daß beim Schütteln mit Phosphatlösung sich der Ca-Gehalt vermindert, wobei bei pH 7,97 mehr als doppelt soviel Ca im Oxid verbleibt als bei niedrigerem pH. Gleichzeitig ist die Phosphatbeladung hoch und auch die BET-Oberfläche. Bei pH 3,18 und 4,64 dagegen ist die Phosphatbeladung ebenfalls hoch, jedoch die BET-Oberfläche wesentlich geringer als es der Fall sein muß, wenn das Phosphat an den inneren Oberflächen adsorbiert wird. Bei pH 7,97 kann dementsprechend das Phosphat nicht ganz – noch nicht einmal überwiegend – an die innere Oberfläche gebunden sein. Der gleichzeitig hohe Calciumgehalt legt die Vermutung nahe, daß es an Calcium gebunden ist, und zwar an das überschüssige Calcium, soweit es nicht ausgewaschen wurde.

Tabelle 18	Untersuchung von	Ca-dot.	Aktivtonerde	nach	dem	Schütteln	mit
	Phosphatlösung						

рН	Q	Ca-Gehalt ¹⁾	s _b
	(mMol.P/kg)	(Gew.%)	(m ² /g)
0,79	541	0,84	217,6
3,18	1163	1,68	103,1
4,64	1176	1,52	99,6
7,97	860	3,72	177,2

1) Anfangsgehalt 5,5 %Ca, $C_0 = 6,45 \text{ mMo}$ P/]

Für die nachstehend beschriebenen Versuche wurden die dotierten Aktivtonerden vor der Phosphatbeladung mit verschiedenen Mengen verschieden konzentrierter Salzsäure ausgewaschen. Die Ergebnisse sind in den Abbildungen 20 - 23 dargestellt.

Die pH-Abhängigkeit der Phosphat-Adsorption an Ca-dotierte, mit verschiedenen Salzsäurekonzentrationen im Verhältnis g Oxid : mlHCl 1 : 50 behandelten Oxiden (Abb. 20 und 21 und Tabelle A 6) weist, wie bei den unbehandelten Ca-dotierten Oxiden, zwei Maxima auf. Die hierbei verwendete HCl-Konzentration sowie andere Versuchsdaten sind in Tabelle 19 zusammengestellt. Man kann aus Abbildung 21 erkennen, daß mit zunehmender HCl-Konzentration das zweite Maximum kleiner wird, was ein weiterer Hinweis darauf ist, daß der Effekt auf einer Reaktion mit dem "überschüssigen" Calcium beruht.

Dieser Tendenz entsprechend tritt das 2. Maximum gar nicht mehr auf, wenn zum Auswaschen 300 ml 0,01n HCl zu Gramm dotierter Aktivtonerde eingesetzt wird(Abb. 22 und 23).Das erste Maximum liegt im Bereich 2,7 - 3,9, und zwar liegt sein pH um so niedriger, je höher die Calcinierungstemperatur war.

Identifikation	a	Ь	с	d	е
CalcTemp. ^O C	400	500	600	600	600
vor dem Auswaschen	}				
Ca-Gehalt (%)	5,63	3,53	3,66	4,34	5,50
Oberfl. (m ² /g)	189	186	168	200	115
HC1-Konz. m	0,01	0,01	0,1	0,01	0,001
Nach dem Auswascher					
Ca-Gehalt (%)	2,32	2,23	1,36	2,99	2,78
Oberfl. (m ² /g)	248	266	245	221	226
1. pH _{max}	3,20	3,42	3,66	3,2	3,32
Q _{max} (1)(mMol/kg)	1495	1410	1255	1740	1780
2. pH _{max}	6,77	6,88	7,54	7,07	7,10
Q _{max} (2)(mMol/kg)	1332	987	912	1245	1609
C ₀ (mMol P/l)	12,9	12,9	6,45	12,9	12,9

Tabelle 19 Versuchsdaten zu den Abbildungen 20 und 21

Abbildung 20

Adsorption von Phosphat an dotierte, mit 50 ml HCl zu Gramm ausgewaschene Aktivtonerde (Identifikation s.Tab.19)

Abbildung 21

Adsorption von Phosphat an dotierte, mit 50 ml zu Gramm ausgewaschener Aktivtonerde (Identifikation s.Tab.19)

Abbildung 22

Adsorption von Phosphat an dotierte Aktivtonerde ohne "überschüssiges" Calcium

Abbildung 23

Adsorption von Phosphat an dotierte Aktivtonerde ohne "überschüssiges" Calcium

Ca-Ge- halt (Gew.%)	Glüh- temp. (^O C)	BET-Ober- fläche (m ² /g)	pH _{max}	Beladung Q _{max} (mMol P/kg)	Beladung Q bei pH 2,8 (mMol P/kg)	Q/S (µMo1 P/m ²)
0,39	350	280	3,9	1494	1150	4,11
0,58	400	278	3,4	1554	1170	4,21
0,68	500	266	2,8	1643	1643	6,18
0,87	600	195	2,8	1330	1330	6,82

<u>Tabelle 20</u> pH_{max} und Q_{max} der P-Adsorption an Ca-dotierter Aktivtonerde ohne Ca-Überschuß bei einer Phosphatanfangskonzentration von 12,90 mMol P/1

Allerdings steigt, wie Tabelle 20 zeigt, parallel zur Glühtemperatur auch der Calciumgehalt, sodaß auch dieser die Ursache der PH_{max} -Verschiebung sein könnte.

Aus den Ergebnissen mit den unvollständig ausgewaschenen Aktivtonerden kann wie folgt geschlossen werden, daß die Größe der Oxidbeladung beim 2. pH_{max} von der Bindungsart der überschüssigen Ca-Ionen abhängig ist. Es nimmt nämlich Q_{max} mit steigender Glühtemperatur zu und parallel dazu, wie in Abschnitt (5.3.1) beschrieben wurde, der Ca-Aluminat-Anteil gegenüber dem CaO-Anteil. Das kann man damit interpretieren, daß Ca-Aluminat mehr Phosphat bindet als die stöchiometrisch gleiche CaO-Menge.

Die spezifischen Oberflächen der vollständig ausgewaschenen Ca-dotierten Oxide, die im Bereich zwischen 350 – 500 ^OC calciniert worden waren, sind fast alle gleich (Tab. 20), die Oxidbeladungen jedoch nehmen mit der Calcinierungstemperatur und daher auch mit dem Ca-Gehalt zu. Vergleicht man auf Basis des Quotienten aus Beladung und BET-Oberfläche, der in der letzten Spalte von Tabelle 20 angegeben ist, so erkennt man, daß die flächenspezifische Beladung ungefähr proportional zum Calciumgehalt ist, der Quotient Q/(S·%Ca) hat den Wert 8,4 + 1,4.

Damit ist festgestellt, daß die Dotierung mit Calcium im Vergleich zu undotierter Aktivtonerde höhere Phosphatbeladung ergibt, weil 1. die BET-Oberfläche größer und 2. die Affinität der inneren Oberfläche zu Phosphat größer ist.

6.2. Einfluß des pH auf die Chromatadsorption

- Ausführung der Experimente

Je 50 ml CrO₃-Lösung der gewünschten Ausgangskonzentration wurden auf den gewünschten pH-Wert mittels verdünnter Salzsäure bzw. Natronlauge eingestellt und mit 1 g Oxid in einem Erlenmeyerkolben 96 Stunden geschüttelt. Danach wurde der pH-Wert gemessen, mit verdünnter Salzsäure bzw. Natronlauge nachgestellt und die Lösung weitere 24 Stunden geschüttelt. Dieser Vorgang wurde so lange wiederholt, bis der End-pH der geschüttelten Lösung auf dem gewünschten Wert konstant blieb, danach wurde die Lösung membranfiltriert. Die Gleichgewichtskonzentration wurde durch oxidimetrische Titration bestimmt, und die Oxidbeladung ergab sich aus Gleichung 2, {Abschnitt 6.1}.

- Undotierte Aktivtonerde

Wie die Abbildungen 24 und 25 zeigen,ist die Chromatadsorption ebenso wie die Phosphatadsorption stark vom pH abhängig. Das Adsorptionsmaximum liegt je nach verwendeter Oxidqualität zwischen pH 4,2 - 4,7, d.h. höher als bei Phosphat. Als Gleichartigkeit des Verhaltens von Phosphat und Chromat ist festzustellen, daß die Beladungs-pH-Kurve der technischen Aktivtonerden ein scharfes Maximum und die der selbst hergestellten Aktivtonerden ein breites Maximum aufweisen. Die maximal erreichte Beladung ist dagegen im Falle des Chromates erheblich geringer (Tabelle 21). Sie steigt mit steigender BET-Oberfläche an, ausgenommen bei den selbst hergestellten Aktivtonerde GS 600, welche mehr Chromat aufnimmt,als die in Bezug auf die innere Oberfläche am höchsten liegende technische Aktivtonerde CTG 300 S.

Abbildung 24

Adsorption von Chromat an undotierte Aktivtonerden (Ausgangskonzentration 10 mMol Cr0₃/1)

Abbildung 25

Adsorption von Chromat an undotierte Aktivtonerden (Ausgangskonzentration 50 mMol Cr0₃/l)

Tabelle 21	Maximal erden	erreichte	Chromatbeladung	verschiedener	Aktivton-

Oxid	S	C _o = 10 (mMol CrO ₃ /l)		C _o = 50 (mMol CrO ₃ /1)		
 ••• •• ••	(m ² /g)	pH _{max}	Q _{max} (mMol CrO ₃ /kg)	pH _{max}	Q _{max} (mMol CrO ₃ /kg)	
M 150 S M 90 S CTG 300 CTG 300 S GS 600	73 95 145 177 155	4,55 4,29 4,35 4,15 4,70	96,1 216,6 223,3 283,4 320,0	4,55 4,18 4,25 4,31 4,20	144,0 272,0 356,0 422,0 426,0	

Für diese Experimente wurden dotierte Aktivtonerden eingesetzt, die mit einer zur vollständigen Entfernung des überschüssigen Calciums nicht ausreichenden Menge Salzsäure behandelt wurden. Ansatz : 1 g Oxid + 50 ml Salzsäure 0,001 - 0,1n. Die dotierten Aktivtonerden zeigen bis zu ca. 3 % Ca - d.h. etwa 2,5 % überschüssigem Calcium - die gleiche pH-Beladungskurve wie die undotierten Aktivtonerden (Abbildung 26 + 27). Das bei Phosphat gefundene 2. Maximum tritt bei Chromat also nicht auf. Der pH-Wert des 1. Maximums verschiebt sich mit zunehmender Glühtemperatur, wie Tabelle 22 zeigt, in den basischen Bereich. Diese Verschiebung hängt analog zur P-Adsorption vom Ca-Gehalt ab, d.h., je höher der Anteil an überschüssigen Ca-Ionen ist, desto weiter verlagert sich der pH_{max} in den basischen Bereich. Auch innerhalb eines Temperaturbereiches läßt sich eine Verschiebung des pH_{max} nach höheren pH-Werten erkennen.

Abbildung 26

Adsorption von Chromat an Ca-dotierte Aktivtonerde mit "Überschüssigem" Calcium I (Identifikation Tab.22)

Abbildung 27

Adsorption von Chromat an Ca-dotierte Aktivtonerde mit "überschüssigem":Calcium II (Identifikation Tab.22)

Identi- fikation	Ca-Gehalt ¹⁾ (Gew.%)	Calcinie- rungstemp. (^O C)	behandelt mit HCl	BET-Ober- fläche (m ² /g)	pH _{max}	Q _{max} (mMol/kg)
a	2,32	400	1.10 ⁻² n	248	4,38	336
b	2,23	500	1,10 ⁻² n	266	4,50	365
с	2,78	600	1.10 ⁻³ n	226	4,93	368
d	1,36	600	1:10 ⁻¹ n	245	4,50	377
е	2,99	600	1,∙10 ⁻² n	221	4,65	354

<u>Tabelle 22</u> Maximal erreichte Chromatbeladung von Ca-dotierten Aktivtonerden mit "überschüssigem" Calcium

1) Ca-Gehalte vor dem Auswaschen s. Tab. 6

An Tabelle 22 fällt auf, daß das Auswaschen mit Salzsäure zwar den Calciumgehalt vermindert, jedoch die maximale Beladung kaum beeinflußt. Um den Effekt näher aufzuklären,wurden die Ca-Gehalte nach der Chromatadsorption sowie die BET-Oberflächen bestimmt (Tabelle 23). Es ergab sich, daß die Calciumgehalte bei niederem pH stark herabgesetzt werden, also ein Teil des Calciums im Adsorptionsansatz herausgelöst wird. Die BET-Oberfläche ändert sich dagegen kaum. Bei der undotierten technischen Aktivtonerde M 90 S dagegen bewirkt die Beladung mit Chromat eine erhebliche Abnahme der BET-Oberfläche. Diese Ergebnisse führen zum Schluß, daß die Elimination der Chromat-Ionen durch Ca-Überschuß enthaltende dotierte Aktivtonerde nur durch Adsorption am Oxid erfolgt und nicht durch Fällung mit Ca oder Chemisorption an Ca-Aluminate. Zur Erklärung der Tatsache, daß die spezifische Oberfläche vor und nach der Adsorption gleich ist, kann man annehmen, daß das Chromat sorbiertes Calcium ersetzt.

- dotierte Aktivtonerden ohne "überschüssiges" Calcium

Für die Versuche wurden die gleichen "vollständig" ausgewaschenen dotierten Aktivtonerden eingesetzt wie bei der Untersuchung der Phosphatadsorption.

Abbildung 28 zeigt, daß wie bei undotierter Aktivtonerde ein pH-Maximum der Beladung vorhanden ist, und daß es im selben Bereich pH 4,2 bis pH 4,6 liegt. Die Oxidbeladung der bei 500 O C calcinierten, mit 0,68 Gew.% Calcium-dotierten Aktivtonerde ist um 34 % größer als die der mit HCl behandelten technischen Aktivtonerde CTG 300 S, und die Oxidbeladung der bei 600 O C geglühten, mit 0,87 Gew.% Calciumdotierten Aktivtonerde ist um ca. 17 % größer als die des GS 600. D.h. Ca-dotierte Aktivtonerden besitzen in Bezug auf Chromat-Ionen größere Adsorptionskapazität als undotierte Aktivtonerden.

Tabelle 23 Calciumgehalt dotierter Aktivtonerden vor und nach der Beladung mit Chromat

Oxid	End-pH des Adsorptions- ansatzes	Q (mMol CrO ₃ / kg Oxid)	Ca-Gehalt du Chromat-be- ladenen Aktivtonerde (Gew.%)	BET-Oberfläche d. Chromat-be- ladenen Aktivtonerde ^S b (m ² /g)
2,99 Gew.% Ca, bei 600 ^O C calci- niert, BET-Oberfläche 221 (m ² /g)	4,24 5,36 6,25 6,57 7,3 <u>1</u> 7,98	312,7 270,2 218,6 195,2 150,0 127,7	0,80 0,85 1,10 1,16 1,73 2,82	226,4 230,2 233,5 232,1 217,2 228,3
2,23 Gew.% Ca, bei 500 ^O C calci- niert BET-Oberfläche 266 (m ² /g)	1,85 3,91 4,19 4,45	273,5 294,5 305,0 318,5	0,99 0,62 0,93 1,30	269,4 269,6 271,2 263,8
M 90 S BET-Oberfläche 95 (m ² /g)	2,95 3,60 8,00	146,7 176,8 61,7	- - -	66,0 55,3 80,7

Abbildung 28

Adsorption von Chromat an Ca-dotierte Aktivtonerde, die kein "überschüssiges" Calcium enthält

Ca-Gehalt (Gew.%)	0,58	0,68	0,87
BET-Ober- fläche (m ² /g)	278	266	195
pH-Max.	4,60	4,56	4,25
Q _{max} (mMol CrO ₃ /kg)	424,3	430,8	383,8

6.3°. Untersuchung des Herauslösens von Calcium aus den dotierten Aktivtonerden bei der Adsorption von Phosphat und Chromat

Die vorstehend geschilderten Versuche haben u.a. gezeigt, daß beim Kontakt von Ca-dotierter Aktivtonerde mit Phosphat- oder Chromatlösung ein Teil des Calciums herausgelöst wird. Um festzustellen, wie weit dieses Herauslösen geht, wurde der Ca-Gehalt der verwendeten dotierten, bei 600 ^OC calcinierten und mit verschiedenen Salzsäurekonzentrationen im Verhältnis g Oxid : ml HCl = 1 : 50 behandelten Aktivtonerde, nach dem Schütteln mit Phosphat- und Chromatlösungen (Abschnitt 6.1 und 6.2)durch RFA bestimmt. Die Ergebnisse sind in Abbildung 29 und 30 dargestellt. Der End-Ca-Gehalt nimmt ab pH 8 mit abnehmendem pH ab und bleibt ab etwa pH 5 konstant. Das ist der gleiche Wert, der bei der Titration als ausreichend für das Herauslösen des überschüssigen Calciums ermittelt wurde. Der minimale Endgehalt an Calcium ist mit ca. 0,6 % gleich dem zuvor gefundenen Gehalt an bei 600 ^OC einbaubarem Calcium. Das Schütteln mit Phosphat- bzw. Chromatlösung wirkt also in Bezug auf den Ca-Gehalt wie eine Behandlung mit Salzsäure.

Rest Ca-Gehalt nach dem Schütteln von Ca-dotierter Aktivtonerde mit Phosphatlösung

C₀ : 6,45 mMol P/l bei 1,4 %Ca 12,9 mMol P/l bei 2,8 und 3 % Ca

100 ml Lösung zu 0,5 g Oxid

Abbildung 30

Rest-Ca-Gehalt nach dem Schütteln von Ca-dotierter Aktivtonerde mit Chromatlösung

C_o : 10 mMol CrO₃/l, 50 ml Lösung zu 1 g Oxid 7. Isothermen der Adsorption von Phosphat und Chromat an Aktivtonerden

Das Gleichgewicht der Adsorption von Phosphat aus wässriger Phase an undotierte Aktivtonerde ist von verschiedenen Autoren mehr oder weniger eingehend untersucht worden (7 - 9, 59, 60). Sie beschrieben die Isothermen durch die Freundlichgleichung, jedoch hat schon Klopp in seiner Diplomarbeit (61) gezeigt, daß diese das Sorptionsgleichgewicht nur in einem begrenzten Bereich der Restkonzentration einigermaßen genau wiedergibt. Alle Isothermenmessungen dieser Arbeit wurden bei pH 5,5 ausgeführt, d.h. nicht beim pH der maximalen Adsorption. Der Grund dafür war, daß ein pH gewählt werden sollte, der bei der technischen Durchführung der Phosphatelimination mittels Aktivtonerde noch eingehalten werden kann.

7.1. Isothermengleichungen

'Im folgenden sind zusammenfassend die in dieser Arbeit verwendeten Isothermengleichungen zusammengestellt,

- Freundlich-Isotherme

Die Freundlichgleichung (62) lautet:

$$Q = KF \cdot C^{EF}$$
(3)

bzw. nach Logarithmierung

 $\log Q = \log KF + EF \log C$

- Langmuirisotherme

Die Langmuirgleichung (63) unterscheidet sich von der Freundlichgleichung dadurch, daß sie eine Grenzbeladung des Adsorbens vorsieht. Sie lautet

$$Q = \frac{QL \cdot C}{KL + C}$$
(4)

- Modifizierte Langmuirgleichung

Diese Gleichung wurde u.a. von W. Höll (64) für Ionenaustauschvorgänge verwendet. Sie lautet

$$Q = \frac{QL \cdot C^{R}}{KL + C^{R}}$$
(5)

- Isothermengleichung_nach_Radke-Prausnitz

Dies ist eine Gleichung mit drei Parametern, die zur Beschreibung der Adsorption organischer Adsorptiva aus wässriger Lösung an Aktivkohle entwickelt wurde (65). Sie lautet:

$$\frac{1}{Q} = \frac{1}{C} + \frac{1}{D} + \frac{1}$$

wobei a,b und β die Konstantenparameter sind und KR sich aus KR = $\frac{a}{b}$ errechnet.

- BET-Isotherme

Die BET-Gleichung geht von einer Physisorption aus der Gasphase aus (66). Angewandt auf die Adsorption aus wässriger Lösung lautet sie:

$$Q = \frac{QT \cdot K_B \cdot C}{KT + C (K_B - 2) - \frac{KB - 1}{KT} C^2}$$
(7)

- Kombination von zwei Langmuirgleichungen

In (67) wurde vom Autor gemeinsam mit S.H. Eberle und R. Klopp eine neue Modellvorstellung für die Adsorption organischer und anorganischer Substanzen an Aluminiumoxid im Gleichgewicht entwickelt. Sie beruht auf der Annahme, daß sich die Gesamtadsorption aus 2 Adsorptionsreaktionen zusammensetzt, wobei dies sowohl additiv als auch sukzessiv möglich ist.

Lineare Kombination von zwei unabhängigen additiven Adsorptionsreaktionen (ZUA-Modell)

Bei diesem Modell wird von der Vorstellung ausgegangen, daß das Adsorbens zwei verschiedenartige Adsorptionsstellen aufweist. Die beiden Adsorptionsreaktionen sind voneinander unabhängig, d.h., sie addieren sich an der Oberfläche des Al₂O₃. Die mathematische Beziehung zwischen Q und der zugehörigen G.K. erfolgt also durch Addition zweier Langmuirgleichungen

$$Q = \frac{A_1 C}{K_1 + C} + \frac{A_2 C}{K_2 + C}$$
(8)

Sukzessive bimolekulare Adsorptionsreaktionen (SBA-Modell)

Diese Modellannahme beruht auf der Vorstellung, daß die beiden Adsorptionsreaktionen an der Oberfläche des Al₂O₃ miteinander verknüpft sind, wobei nur ein Teil der Adsorptionsstellen in der Lage ist, zwei Moleküle zu binden. Die Beladung ergibt sich dann zu:

$$Q = A_1 \frac{C}{K_1 + C} \left(1 + \frac{A_2 C}{K_2 + C}\right)$$
(9)

Der Beurteilung über die Güte der Anpassung experimenteller Daten an ein Modell liegen die Standardabweichung der Konstanten und die relativen Standardfehler der Beladung zugrunde.

$$Q = \sqrt{\frac{(Q - Q_B)/Q}{N - 1}}$$

Hierin ist Q die gemessene und Q_B die mit der Isothermenformel berechnete Beladung; N ist die Zahl der Meßwerte.

7.2. Phosphatadsorptionsisothermen

- Ausführung der Experimente

Je 100 ml NaH₂PO₄-Lösung von pH 4,5 wurden mit 0,5 g Aktivtonerde geschüttelt. Nach 48 Stunden wurde mit verdünnter Salzsäure erstmals der pH auf 5,5 nachgestellt. Diese Konditionierung wurde jeweils nach 24 Stunden wiederholt bis ein konstanter End-pH von $5,5 \pm 0,1$ erreicht war. Am Schluß wurde die Lösung membranfiltriert. Die Phosphatbestimmung erfolgte nach dem VM-Verfahren (Abschnitt 10.4)

- undotierte Aktivtonerden

Die Isothermen zeigen für alle untersuchten Aktivtonerden den gleichen Verlauf, der durch einen schnellen, experimentell schwer erfaßbaren Anstieg im Restkonzentrationsbereich 0 – 1 mMol P/l und einen darauf folgenden langsamen Anstieg gekennzeichnet ist (Abb. 31 u.32). Eine Sättigungsbeladung, wie sie der Langmuirgleichung entspricht, ist nur bei M 150 S angedeutet, allerdings auch nicht exakt gegeben. Die Beladungskapazitäten nehmen entsprechend der spezifischen Oberfläche in der Reihenfolge CTG 300 S, CTG 300, M 90 S und M 150 S ab (Abb. 31)

Um feststellen zu können, welches mathematische Modell sich zur Beschreibung der gemessenen Phosphatadsorptionsisotherme am besten eignet, wurden die Meßwerte mit sämtlichen in Abschnitt 7.1. beschriebenen Isothermengleichungen berechnet. Die ermittelten Konstanten sind in Tabelle 24 zusammengestellt.

Die Freundlichgleichung erweist sich als gute Beschreibung der Phosphatadsorptionsisotherme an den technischen Oxiden M 150 S, CTG 300 und CTG 300 S, da der relative Fehler σQ_{rel} mit 2 - 4 % nur klein ist. Für die Oxide M 90 S und GS 600 hingegen ist die Anpassung sehr schlecht und der relative Fehler groß (>4 %).

Die Langmuirgleichung ergibt Standardabweichungen O_{rel} über 7 %, eignet sich also mathematisch gesehen weniger gut für die Beschreibung der Meßwerte. Der Fehler tritt vor allem bei hoher Restkonzentration auf, wo sie eine konstante Beladung voraussetzt, tatsächlich

Oxid	M 150 S	M 90 S	CTG 300	GS 600	CTG 300 S
BET-Oberfl. (m ² /g)	73	95	145	155	177
<u>Freundlich</u> log KF 1) EF ورو Q _{rel} (%)	2,30 <u>+</u> 0,002 0,100 <u>+</u> 0,002 2,8	2,54 <u>+</u> 0,006 0,108 <u>+</u> 0,006 10	2,61 <u>+</u> 0,003 0,080 <u>+</u> 0,003 4,3	2,57 <u>+</u> 0,006 0,116 <u>+</u> 0,006 6,7	2,67 <u>+</u> 0,001 0,090 <u>+</u> 0,002 2,2
Langmuir QL 1) KL σ Q _{rel} (%)	225 <u>+</u> 3,22 0,013 <u>+</u> 0,003 7,8	377 <u>+</u> 6,33 0,006 <u>+</u> 0,001 8,3	439 <u>+</u> 5,91 0,008 <u>+</u> 0,001 6,7	451 <u>+</u> 31,5 0,101 <u>+</u> 0,067 32	500 <u>+</u> 11,3 0,004 <u>+</u> 0,001 12
mod. Langmuir QL ^I) KL R ♂ Q _{rel} (%)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$565 \pm 16,0$ 0,354 ± 0,044 0,243 ± 0,004 3,3	3215 <u>+</u> 2737 7,74 <u>+</u> 7,61 0,157 <u>+</u> 0,003 8,9	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
Radke-Prausnitz QR ¹⁾ KR β σ Q _{rel} (%)	keine Konvergenz der Regressions- rechnung	35212 <u>+</u> 14023 94,4 <u>+</u> 38,1 0,032 <u>+</u> 0,002 16	30115 <u>+</u> 12786 68,3 <u>+</u> 29,5 0,014 <u>+</u> 0,005 12	keine Konvergenz der Regressions- rechnung	38838 <u>+</u> 26575 79,4 <u>+</u> 55,0 0,053 <u>+</u> 0,003 19

Tabelle 24 An die Meßwerte angepaßte Isothermenkonstanten der Phosphatadsorption an undotierte Aktivtonerde

1) G.K. in mMol P/l, Beladung in mMol P/kg Oxid

-57-

Tabelle 24, Fortsetzung

Oxid	M 150 S	M 90 S	CTG 300	GS 600	CTG 300 S
BET-Oberfl.	73	95	145	155	177
(m ² /g)					
BET					
QT ^{I)}	205 <u>+</u> 2,86	350 <u>+</u> 4,38	414 <u>+</u> 5,63	344 <u>+</u> 12,7	459 <u>+</u> 9,00
KT	54,7 <u>+</u> 6,10	54,3 <u>+</u> 6,04	67,1 <u>+</u> 10,8	27,0 <u>+</u> 2,76	43,0 <u>+</u> 6,10
KB	5683 <u>+</u> 840	12505 <u>+</u> 1691	10821 <u>+</u> 1817	20311 <u>+</u> 8386	17426 <u>+</u> 4101
• ⁰ ر _{rel} (%)	4,2	4,3	4,4	9,2	7,3
ZUA-Modell					
A ₁ 1)	178 <u>+</u> 6,86	325 <u>+</u> 7,14	372 <u>+</u> 9,77	280 <u>+</u> 5 , 92	371 <u>+</u> 12,0
к ₁	0,006 <u>+</u> 0,001	0,004 <u>+</u> 0,0004	0,0041 <u>+</u> 0,0005	0,0007 <u>+</u> 0,0001	0,001 <u>+</u> 0,0002
A ₂	81,3 <u>+</u> 5,92	127 <u>+</u> 14,0	120 <u>+</u> 10,1	384 <u>+</u> 19,9	218 <u>+</u> 12,9
K_2	2,56 <u>+</u> 0,916	3,59 <u>+</u> 1,36	1,96 <u>+</u> 710	5,44 <u>+</u> 0,799	1,39 <u>+</u> 0,304
σ Q _{rel} (%)	2,7	2,5	2,6	1,6	2,6
$A_1 + A_2$	259	452	492	664	589
SBA-Modell					
A ₁ 1)	178 <u>+</u> 6,16	325 + 6,78	372 <u>+</u> 9,20	280 <u>+</u> 5,25	371 <u>+</u> 11,2
κ ₁	0,006 <u>+</u> 0,001	0,004 + 0,0003	0,004 <u>+</u> 0,0005	0,0007 <u>+</u> 0,0001	0,001 <u>+</u> 0,0002
A ₂	0,455 <u>+</u> 0,028	0,391 + 0,035	0,322 <u>+</u> 0,023	1,37 <u>+</u> 0,043	0,589 <u>+</u> 0,029
κ ₂	2,56 <u>+</u> 0,768	3,59 <u>+</u> 1,19	1,96 + 0,626	5,44 <u>+</u> 0,575	1,39 <u>+</u> 0,247
ص ٩ _{re1} (%)	2,7	2,5	2,6	1,6	2,6

1) G.K. in mMol P/l, Beladung in mMol P/kg Oxid

.

-58-

jedoch ein weiterer Anstieg der Beladung auftritt. Auffälligerweise ist der Fehler bei GS 600 besonders groß, obwohl hier der Isothermenverlauf eine Grenzbeladung andeutet. Hier weichen besonders die Meßwerte im stark gekrümmten Teil der Isotherme von dem berechneten Verlauf ab. Immerhin ergibt die Langmuirgleichung plausible Grenzbeladungen.

Unter den von anderen Autoren vorgeschlagenen Isothermenformeln gibt die modifizierte Langmuirgleichung die beste Anpassung in Bezug auf $\sigma' Q_{rel}$. Sie hat jedoch den grundsätzlichen Fehler, daß die berechneten Grenzbeladungen fast doppelt so groß sind als sie sich nach der einfachen Langmuirgleichung ergeben, auch weit über den experimentell ermittelten Beladungen liegen, d.h., sie sind als unrealistisch anzusehen.

Die Gleichung nach Radke und Prausnitz ist für die Beschreibung der Phosphatadsorptionsisotherme nicht brauchbar. Das zeigt die graphische Darstellung für M 90 S (Abb. 33). Man sieht, daß die Meßwerte von den berechneten Werten im gesamten Bereich sehr stark abweichen.

Abbildung 33

Anpassung der Phosphat-Adsorptionsisotherme an die der Radke-Prausnitz-Gleichung, Aktivtonerde M 90 S

Die Isothermen werden, wie Abbildung 34 zeigt, grundsätzlich durch die BET-Gleichung gut wiedergegeben, allerdings sind die Standardabweichungen der Gleichungskonstanten KB groß. Der Hauptfehler liegt jedoch bei dieser Isothermenformel darin, daß sie bei hoher Restkonzentration nach einem Plateau einen steilen Wiederanstieg der Beladung voraussagt, der weder gemessen wurde, noch für die Adsorption

Abbildung 34

Anpassung der Phosphatadsorptionsisotherme an die BET-Gleichung, Aktivtonerde M 90 S

eines Ions physikalisch sinnvoll ist.

Die geeignetste mathematische Beschreibung für die Phosphatadsorptionsisotherme ist die Kombination zweier Langmuir-Adsorptionsreaktionen. Sowohl das ZUA-Modell als auch das SBA-Modell, passen sich mit nur geringen relativen Fehlern, die bei beiden Modellen gleich sind, sehr gut an die Meßwerte an. Insbesondere sticht hervor, daß Meßwerte und berechnete Kurve keine systematischen Abweichungen voneinander aufweisen, wie es bei anderen Isothermengleichungen der Fall ist (Abb. 35).

Beide Modellansätze eignen sich also gleichermaßen gut für die mathematische Beschreibung der experimentellen Daten, jedoch deckt das Modell "zwei additive Adsorptionsreaktionen" einen größeren Bereich der Meßwerte ab (Abb. 35).

Abbildung 35

Anpassung der Phosphatadsorptionsisotherme an das ZUA-Modell, Aktivtonerde M 90 S

-60-

-dotierte Aktivtonerden mit "überschüssigen" Erdalkali

Für diese Experimente wurden bei 600 ^OC calcinierte dotierte Aktivtonerden ohne jegliche Vorbehandlung mit Salzsäure verwendet. Wegen des hohen Gehaltes an nicht in das Gitter eingebauten Erdalkali-Ionen reagierten diese Aktivtonerden in wässriger Lösung stark basisch und der pH mußte mehrmals mit HCl nachgestellt werden. Um das Auswaschen des Erdalkaligehaltes zu vermindern bzw. zu verhindern (s.Abschnitt 6.3),wurden die Isothermen bei pH 6,4 statt 5,5 gemessen.

Wie Abbildung 36 zeigt, steigt die Isotherme bei allen drei Dotierungskationen unterhalb der Restkonzentration 1 mMol P/l steil und dann flach an bzw. weist ein ungefähr horizontales Zwischenstück auf. Die in dem begrenzten Meßbereich erreichte Maximalbeladung nimmt in der Reihenfolge Ca>Sr>Ba ab.

In Tabelle 25 sind die Konstanten der Gleichung, auf die in Abschnitt 7.1. eingegangen wurde, zusammengestellt. Auch hier konnten die Isothermen sowohl durch die Freundlichgleichung, als auch durch die modifizierte Langmuirgleichung recht gut beschrieben werden; der relative Fehler $\sigma_{\rm rel}$ ist klein. Bei der modifizierten Langmuirgleichung nehmen die Exponenten mit zunehmendem Ionenradius der Fremdionen des dotierten Oxids, also in der Reihenfolge Ba>Sr>Ca,ab.

Abbildung 36

Phosphatadsorptionsisothermen erdalkalidotierter Aktivtonerden, die "überschüssiges" Erdalkaliion enthalten

Oxid ¹⁾		3,66	Gew.% Ca	13	3,0 Gew.% Sr	7,9	7 Gew.% Ba	
BET-Oberfläche	(m ² /g)	1	.22		136		140	
	log KF ²⁾	3,26 <u>+</u>	0,0051	3,12	<u>+</u> 0,0025	3,086	<u>+</u> 0,0035	
<u>Freundlich</u>	EF	0,097 <u>+</u>	0,0042	0,089	<u>+</u> 0,0023	0,067	<u>+</u> 0,0026	
	<u>و م</u> ر (%) روم (3,5		· · · ·	2,2		3,7	
	QL 2)	1815 <u>+</u>	79,6	1366	<u>+</u> 65,4	1181	<u>+</u> 46,4	
<u>Langmuir</u>	KL	0,0043 <u>+</u>	0,0015	0,0025	5 <u>+</u> 0,0013	0,0007	<u>+</u> 0,0003	
	ص و _{rel} (%)	11			13		15	
	QL ²⁾	2639 <u>+</u>	117	5805	<u>+</u> 2025	3236	<u>+</u> 569	
mod. Langmuir	KL	0,427 <u>+</u>	0,059	3,40	<u>+</u> 1,56	1,70	<u>+</u> 0,475	
	R	0,232 <u>+</u>	0,0018	0,112	<u>+</u> 0,0021	0,100	+ 0,0008	
	• Q _{rel} (%)	1,9			2,3		3,7	
	QT ²⁾	1657 <u>+</u>	79,5	1193	<u>+</u> 44,3	1078	<u>+</u> 42,0	
BET	KT	16,6 <u>+</u>	5,95	19,5	<u>+</u> 3,47	26,8	<u>+</u> 6,71	
	KB	5405 <u>+</u>	1974	12091	+ 3597	55601	<u>+</u> 21941	
	م Q _{rel} (%)	6,6			5,7		9,9	
	A ₁ ²⁾	1397 <u>+</u>	61,0	1066	<u>+</u> 34,9	774	<u>+</u> 54,4	
ZUA-Mode11	K ₁	0,0016 <u>+</u>	0,00036	0,0011	1 <u>+</u> 0,0002	0,00001	<u>+</u> 0,00008	
	A_2^{-2}	674 <u>+</u>	62,4	723	<u>+</u> 112	528	<u>+</u> 53,0	
	κ ₂	0,457 <u>+</u>	0,193	2,57	<u>+</u> 1,15	0,120	<u>+</u> 0,040	
	ص 0 _{re1} (%)	1,6			2,0	1	2,7	
	$A_1 + A_2$	2071		1789		1302		

Tabelle 25 An die Meßwerte angepaßte Isothermenkonstanten der Phosphatadsorption an Erdalkali-dotierte Aktivtonerden mit "überschüssigem" Erdalkaliion

bei 600 ^DC calciniert, unbehandelt
 G.K in mMol P/l, Beladung in mMol P/kg Oxid

-62-

Die BET-Gleichung ist für die Beschreibung der Isothermen nicht gut geeignet, da der relative Fehler ziemlich hoch ist. Die beste Anpassung an die Meßwerte wird, wie auch im Falle der undotierten Aktivtonerden, mit dem ZUA-Modell erreicht. Die Beladung $A_1 + A_2$ nimmt in der Reihenfolge Ca>Sr>Ba ab. Da offenbar die Dotierung mit Strontium und Barium wesentlich schlechtere Phosphatadsorption zur Folge hat als Dotierung mit Calcium – die drei Aktivtonerden hatten ungefähr gleiche BET-Dberflächen – wurden keine weiteren Untersuchungen mit diesen beiden Erdalkali-Ionen durchgeführt.

- <u>Ca-dotierte Aktivtonerde ohne Ca-Überschuß</u>

Es wurden die Isothermen der durch HCl-Behandlung von überschüssigem Calcium ganz befreiten dotierten Aktivtonerden, die im Bereich 350 - 600 ^OC calciniert worden waren, gemessen.

Wie Abbildung 37 zeigt, ist bei diesen Aktivtonerden deutlich eine Stufe der Isotherme im Bereich der Gleichgewichtskonzentration 1 - 5 mMol P/l zu erkennen, die mit steigender Calcinierungstemperatur weniger gut ausgebildet ist.

In Tab. 26 sind die berechneten Konstanten der Isothermengleichungen zusammengestellt.

Der Isothermenverlauf ist im gesamten Bereich durch die Freundlichsowie durch die Langmuirgleichung nur schlecht zu beschreiben. Besser eignen sich die modifizierte Langmuir- sowie die BET-Gleichung, jedoch sind auch hier die Standardabweichungen der Grenzbeladung hoch.

<u>Abbildung 37</u> Isothermen der Phosphatadsorption an Ca-dotierte Aktivtonerden, die kein "überschüssiges" Calcium enthalten

Ca-Gehalt (Gew.%) ¹⁾	0,39	0,58	0,68	0,87
Calcinierungstemp.(⁰ C)	350	400	500	600
BET-Oberfläche (m ² /g)	280	278	266	195
log KF ²⁾	2,94 <u>+</u> 0,003	2,92 <u>+</u> 0,005	2,92 <u>+</u> 0,006	2,78 <u>+</u> 0,609
<u>Freundlich</u> EF	0,084 <u>+</u> 0,004	0,107 <u>+</u> 0,004	0,111 <u>+</u> 0,005	0,187 <u>+</u> 0,008
<i>م</i> ⁰ ر _{re1} (%)	3,7	5,7	7,6	15
QL 2)	995 <u>+</u> 24 , 9	966 <u>+</u> 27,7	965 <u>+</u> 52,3	804 <u>+</u> 24,1
<u>Langmuir</u> KL	0,090 + 0,003	0,006 <u>+</u> 0,002	0,003 + 0,002	0,103 <u>+</u> 0,029
σ ^Q rel (%)	10	12	23	32
QL 2)	4838 <u>+</u> 2431	4444 <u>+</u> 1803	6721 <u>+</u> 5630	1318 + 66,7
mod.Langmuir KL	4,53 <u>+</u> 2,87	4,33 <u>+</u> 2,25	7,11 <u>+</u> 7,00	1,01 + 0,120
R	0,105 <u>+</u> 0,010	0,129 <u>+</u> 0,003	0,135 + 0,002	0,265 + 0,0004
^ر ⁰ rel (%)	3,9	5,7	8,4	14
QT 2)	865 <u>+</u> 17,7	842 <u>+</u> 24 , 2	732 <u>+</u> 26,8	661 <u>+</u> 23,3
<u>BET</u> KT	49,3 ± 5,28	46,4 <u>+</u> 6,84	28,8 ± 2,38	40,8 <u>+</u> 5,78
КВ	9398 <u>+</u> 1970	12164 ± 2703	21968 <u>+</u> 5387	1417 <u>+</u> 576
olerel (%)		5,9	6,6	28
A ₁ ²⁾	791 <u>+</u> 22,9	694 <u>+</u> 24,8	644 <u>+</u> 14,1	548 <u>+</u> 5,39
ZUA-Modell K ₁	0,004 + 0,0008	0,002 <u>+</u> 0,0003	0,0009 <u>+</u> 0,0001	0,002 <u>+</u> 0,0001
A ₂	549 <u>+</u> 98,5	495 <u>+</u> 28,8	930 <u>+</u> 124	470 <u>+</u> 14,7
K ₂	8,86 <u>+</u> 3,95	3,42 <u>+</u> 0,893	9,74 <u>+</u> 2,78	4,821 <u>+</u> 0,494
Q _{rel} (⁷ / ₈)	2,3	2,4	2,2	2,8
$A_1 + A_2$	1340	1189 • • • • •	1574	1018

Tabelle 26 An die Meßwerte angepaßte Isothermenkonstanten an Ca-dotierte Aktivtonerden, die kein "überschüssiges" Calcium enthalten

1) mit 0,01n HCl : 0xid = 300 ml/g vorbehandeltes 0xid
2) G.K. in mMol P/l, Beladung in mMol P/kg

-64-

Insbesondere bei der bei 600 $^{\rm O}$ C calcinierten Aktivtonerde liegt $\sigma' Q_{\rm rel}$ in allen Fällen über 10 %. Läßt man den hohen relativen Fehler außer acht, so sieht man beim Vergleich der Konstanten, daß der variable Exponent der modifizierten Langmuirgleichung mit zunehmender Glühtemperatur des Oxids zunimmt.

Die einzig geeignete mathematische Beschreibung ist die "Kombination zweier Langmuiradsorptionsreaktionen" nach dem ZUA-Modell. Vor allem vermag sie die "Stufe" der Adsorptionsisotherme wiederzugeben, wie Abbildung 38 zeigt. Diese Stufe kommt in der doppelt logarithmischen Darstellung besonders deutlich zum Vorschein, und man erkennt auch die, von systematischen Abweichungen freie, sehr gute Übereinstimmung zwischen den Meßwerten und der berechneten Kurve besonders gut. Mit zunehmender Calcinierungstemperatur nimmt die Grenzbeladung A₁ der 1. Adsorptionsstufe ab, während die Grenzbeladung A₂ der zweiten Adsorptionsstufe bei der bei 500 ^OC geglühten Ca-dotierten Aktivtonerde ein Maximum aufweist, das heißt, daß diese Oxide bei hoher Konzentration des Phosphats besonders effektiv wirken.

Abbildung 38

Meßwerte und nach dem ZUA-Modell berechnete Isotherme der Adsorption von Phosphat an Ca-dotierte Aktivtonerde ohne "Überschüssiges" Calcium Aktivtonerde 0,58 %Ca/400 ^OC

- Fe- und Ge-dotierte Aktivtonerden

Wie Abbildung 39 zeigt, ist der prinzipielle Umlauf der Isotherme der gleiche wie bei den Ca-dotierten Aktivtonerden. Für die mathematische Beschreibung der Adsorptionsisotherme (Tab. 27) ist das ZUA-Modell sowohl der Freundlich- als auch der modifizierten Langmuir- und der BET-Gleichung wegen der geringen Standardabweichung überlegen.

0xid ¹⁾		5,58	Gew.9	% Fe	5,2	7 Gew	1.% Fe	5,	01 Ge	w.% Ge
Calcinierungst	emp. (^O C)		400			600)		60	0
BET-Oberfläche	(m ² /g)		204			153	}		23	7
	log KF ²⁾	2,87	<u>+</u>	0,0034	2,81	<u>+</u>	0,0025	2,91	+	0,0017
<u>Freundlich</u>	FE	0,058	<u>+</u>	0,0035	0,080	<u>+</u>	0,0028	0,113	+	0,0016
	ص ⁰ rel (%)		4,6			3,5			2,2	
	QL 2)	5090	<u>+</u> ;	3895	4632	+ 1	.949	5189	+ 1	.259
<u>mod. Langmuir</u>	KL	5,93	<u>+</u>	5,40	6,13	<u>+</u>	3,08	5,38	<u>+</u>	1,60
	R	0,076	<u>+</u>	0,0025	0,099	<u>+</u>	0,0085	0,134	+	0,00076
	$\sigma' Q_{rel}$ (%)		5,0			3,8			2,7	
	QT 2)	706	<u>+</u>	10,8	644	+	10,6	796,8	+	26,01
BET	KT	58,2	+	4,71	59,4	<u>+</u>	4,92	39,8	<u>+</u>	4,21
	KB	129618	<u>+</u> 37	7030	12486	<u>+</u> 2	825	25410	<u>+</u> 9	294
	σ ⁰ q _{re1} (%)		4,0			4,6		н н.	10	
	A ₁ ²⁾	647	<u>+</u>	6,92	567	<u>+</u>	8,03	579	<u>+</u>	23,0
ZUA-Modell	K ₁	0,0002	6 <u>+</u>	0,00004	0,002	3 <u>+</u>	0,00035	0,000	7 <u>+</u>	0,00014
	A_2^{-2}	401	<u>+</u>	24,0	342	+	11,1	547	+	22,6
	к ₂	7,90	+	1,34	4,83	<u>+</u>	0,719	1,62	+	0,288
	~ Q _{rel} (%)		1,2			1,3			1,9	
	$A_1 + A_2$	1048	· • •		909			1126		

Tabelle 27 Konstanten der Phosphatadsorptionsisothermen an Fe- und Ge-dotierte Aktivtonerde

vorbehandelt mit 0,01n HCl : 0xid = 300 ml/g 0xid
 G.K. in mMol P/l, Beladung in mMol P/kg 0xid

Beim Vergleich der Grenzbeladung der 1. und 2. Adsorptionsstufe des ZUA-Modells für die Isothermen der bei 600 ^OC calcinierten Fe- und Ge-dotierten Aktivtonerden ergibt sich, daß die Grenzbeladungen der 1. Stufe bei beiden Dotierungskationen fast gleich sind, während die 2. Stufe beim Ge-dotierten Oxid höhere Werte aufweist.

Abbildung 39 Isothermen der Phosphatadsorption an Fe- und Ge-dotierte Aktivtonerde

7.3. Chromatadsorptionsisothermen

Die Adsorption des Chromats wurde weniger umfassend untersucht als die des Phosphats, da, wie im folgenden gezeigt wird, keine prinzipiellen Unterschiede zu dieser vorhanden sind.

- Ausführung der Experimente

Je 50 ml CrO_3 -Lösung, die einen pH von ca. 3,5 aufwies, wurden mit 1 g Oxid in einem Erlenmeyerkolben geschüttelt und nach 96 Stunden wurde der pH mit verdünnter Salzsäure erstmals auf 4,5 - 5 nachgestellt. Diese Nachstellung wurde jeweils nach 24 Stunden wiederholt, bis ein konstanter End-pH von 4,8 ± 0,2 erreicht war. Am Schluß wurde die Lösung membranfiltriert, die Chromatbestimmung erfolgte, je nach der Chromatkonzentration, durch Titration oder photometrisch.

- Ergebnisse

Wie die Abbildungen 40 - 42 zeigen, ist der Isothermenverlauf der

Gleichgewichtskonzentration (mMol CrO₃/l)

Oxid	M 150 S	M 90 S	CTG 300	CTG 300 S
BET-Oberfläche	73	95	145	177
Langmuir QL ¹) KL o ^r Q _{rel} (%)	123 <u>+</u> 13,1 1,77 <u>+</u> 0,896 41	177 <u>+</u> 8,73 0,007 <u>+</u> 0,005 26	362 <u>+</u> 24,9 1,71 <u>+</u> 0,476 34	313 <u>+</u> 15,4 0,046 <u>+</u> 0,022 28
<u>mod. Langmuir</u> QL ¹⁾ KL R G' Q _{rel} (%)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1921 <u>+</u> 580 10,6 <u>+</u> 3,70 0,276 <u>+</u> 0,009 8,5	$796 \pm 109^{\circ}$ 2,35 ± 0,534 0,225 ± 0,0031 19
$\frac{\frac{ZUA-Modell}{A_{1}}}{K_{1}}$ K_{2} K_{2} K_{2} K_{2} K_{2} K_{2} K_{1} K_{2} K_{2} K_{1} K_{2} K_{2} K_{2} K_{2} K_{2} K_{1} K_{2} K_{3} K_{4} K_{5} $K_{$	$58,6 \pm 3,31$ 0,00045 \pm 0,00021 155 \pm 29,9 32,7 \pm 12,8 7,5 214	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$218 \pm 4,60$ 0,011 \pm 0.0011 $230 \pm 10,8$ 10,7 \pm 1,76 3,1 448

Tabelle 28 Konstanten der Chromatadsorptionsisothermen

1) G.K. in mMol CrO₃/], Beladung in mMol CrO₃/kg Oxid

-69-

Tabelle 28, Fortsetzung

Oxid	0,33 Gew.% Ca/600 ⁰ C ²⁾	7,97 Gew.% Ba/600 ⁰ C ³)	5,27 Gew.% Fe/600 ^o C ⁴⁾	
BET-Oberfläche (m ² /g)	241	140	153	
Langmuir QL ¹) KL G ^{(Q} rel ^(%)	$526 + 19,9 \\ 0,359 + 0,123 \\ 33$	801 <u>+</u> 33,8 0,030 <u>+</u> 0,0087 17	443 <u>+</u> 13,2 0,057 <u>+</u> 0,014 14	
<u>mod. Langmuir</u> QL ¹⁾ KL R G ^{(Q} rel (%)	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	521 <u>+</u> 10,3 0,374 <u>+</u> 0,038 0,382 <u>+</u> 0,0078 3,2	
$ \frac{ZUA-Modell}{A_{1}} $ $ \begin{array}{c} K_{1} \\ K_{2} \\ \sigma'Q_{rel} \\ K_{2} \\ \sigma'Q_{rel} \\ A_{1} + A_{2} \end{array} $	$246 \pm 16,7$ 0,001 ± 0,00003 $325 \pm 16,5$ 2,30 ± 0,444 5,3 571	530 + 25,2 0,0077 + 0,0017 $428 + 26,1$ 2,71 + 0,624 3,4 958	$285 \pm 32,7$ 0,010 ± 0,0049 187 ± 30,7 0,905 ± 0,442 3,9 472	

1) G.K in mMol CrO₃/l, Beladung in mMol CrO₃/kg 2) mit 0,01n HCl : Oxid = 300 ml/gOxid vorbehandelt.

3) unbehandelt

4) mit 0,01n HCl : Oxid = 300 ml/g Oxid vorbehandelt

-70-

Chromatadsorption der gleiche wie der der Phosphatadsorption, wobei wieder die doppelt logarithmische graphische Darstellung das Auftreten einer Stufe der Isotherme besonders deutlich erkennen läßt (Abbildung 43).

Abbildung 43

Meßwerte und nach dem ZUA-Modell berechnete Isotherme der Adsorption von Chromat an die technische Aktivtonerde CTG 300 S (pH 4,8)

Bei allen Aktivtonerden mit Ausnahme "0,33 % Ca" und "5,7 % Fe" ergab das ZUA-Modell den weitaus besten Angleich (Tab. 28), vor allem sind keine systematischen Abweichungen zwischen den Meßwerten und den berechneten Kurven festzustellen. Bei den genannten Ausnahmen ist der Angleich mit der modifizierten Langmuirgleichung besser, wenn man sich auf die Standardabweichung σ Q_{rel} bezieht. Allerdings ergibt sich bei "0,33 %Ca" eine unrealistisch hohe Grenzbeladung von 1172 mMol/kg - der höchste gemessene Wert liegt bei 550 mMol/kg. Die Frage, welcher Isothermengleichung der Vorzug zu geben ist, wird nachfolgend besprochen.

7.4. Isothermen bei konstanter Ionenstärke

Das hervorstechende Merkmal der überwiegenden Mehrzahl der gemessenen Isothermen ist die Stufenform. Bei der Bestimmung war die Ionenstärke nicht durch Zusatz eines Neutralsalzes konstant gehalten worden, sondern variierte entsprechend der unterschiedlichen Ausgangskonzentration des Sorptivs. Da Klopp (69) gefunden hat, daß die Sorption von Essigsäure durch die Gegenwart eines Neutralsalzes (NaCl) erniedrigt wird - und zwar mit einer Art Stufe im Bereich 0,001 - 0,01 Mol/1 - sollte geprüft werden, ob die Form der Isotherme durch die Gegenwart eines Neutralsalzes beeinflußt wird.

- Ausführung der Experimente

Der Stammlösung des Sorptivs wurde soviel $NaClO_4$ zugesetzt, bis dessen Konzentration 0,1 Mol/l betrug. Die Ansätze für die Isothermenpunkte wurden aus dieser Stammlösung und 0,1 m $HClO_4$ hergestellt.

- Ergebnisse

Die Abbildungen 44 und 45 zeigen, daß die Form der Isotherme weder bei Phosphat noch bei Chromat von der Gegenwart des Natriumperchlorats beeinflußt wird. Dagegen ist ein mäßiger Einfluß auf die Beladung festzustellen, und zwar wird die Phosphatsorption verbessert und die Chromatsorption geringfügig vermindert. Die Verhältnisse werden am deutlichsten durch die Isothermenkonstanten, und zwar die Summe A_1 + A_2 wiedergegeben (Tab. 29). Demnach beträgt die Kapazitätserhöhung

Abbildung 44

Adsorption von Phosphat an Aktivtonerde M 90 S in Gegenwart von 0,1 Mol/l NaClO_A

Abbildung 45

Adsorption von Chromat an Aktivtonerde M 90 S in Gegenwart von 0,1 Mol/l NaCl0₄

<u>Tabelle 29</u> Isothermenkonstanten der Adsorption von Phosphat und Chromat an Aktivtonerde M 90 S bei Gegenwart von 0,1 Mol/l NaClO₄

	рН		ZUA-Modell Konstante			
		A ₁	10 ³ к ₁	A ₂	K ₂	Q _{rel} (%)
Phosphat						
ohne NaC10 ₄	5,5	325 <u>+</u> 7,14	3,45 <u>+</u> 0,35	127 <u>+</u> 14,0	3,59 <u>+</u> 1,36	2,5
mit NaClO ₄	5,5	296 <u>+</u> 14,10	1,06 <u>+</u> 0,29	169 <u>+</u> 12,9	0,40 <u>+</u> 0,08	1,0
Chromat						
ohne NaC10 ₄	4,8	100 <u>+</u> 3,00	0,96 <u>+</u> 0,11	108 + 4,92	2,35 <u>+</u> 0,383	2,3
mit NaClO ₄	4,8	68,8 <u>+</u> 2,32	0,15 <u>+</u> 0,03	116 <u>+</u> 3,03	1,13 <u>+</u> 0,119	3,3

bei der Phosphatadsorption nur rund 3 %.

Daß die Isothermen im Bereich mittlerer Restkonzentration weiter auseinander liegen, beruht auf dem wesentlich größeren Unterschied in A_1 und K_1 . Andererseits ist bei Chromat der Unterschied von A_1 + A_2 fast 11 %, dieser wird jedoch im Bereich mittlerer Restkonzentration durch die Unterschiede in K_1 und K_2 zum Teil wieder kompensiert. Die Veränderung der Beladung durch 0,1 m NaClO₄ ist weit kleiner als Klopp im Falle der Essigsäure für 0,1 m NaCl gefunden hat. Der Befund bei Phosphat kann wie folgt erklärt werden:

Bei den Messungen in NaClO₄ wurde der pH mit Perchlorsäure eingestellt, bei den anderen mit Salzsäure, diese enthielten also etwas Chlorid. Sontheimer und Rohmann haben festgestellt (68), daß Chlorid an Aktivtonerde sorbiert wird, es wird also das Phosphat zum Teil verdrängen. Perchlorat wird sehr wahrscheinlich weniger gut als Chlorid sorbiert, sodaß beim Übergang von Chlorid- zu Perchloratmedium netto eine Erhöhung der Beladung resultiert. Die Abnahme bei Chromat könnte mit dem in perchlorsaurer Lösung höheren Dichromatanteil zusammenhängen (56,70,71). Nach Chin Pao (14) wird Dichromat an Aktivkohle weniger gut sorbiert als Chromat.

7.5. Einfluß des Verhältnisses zwischen der eingesetzten Oxidmenge und den Volumina der Phosphatlösung auf die Oxidbeladung

Um abzusichern, daß die gefundenen Resultate überwiegend auf "Adsorption" beruhen und nicht auf Fällung durch herausgelöstes Aluminium,wurden zwei Versuche mit unterschiedlichem Verhältnis Lösung : Oxid ausgeführt. Wie Abbildung 46 zeigt, liegen die Meßpunkte beider Versuche sehr genau auf einer Kurve. Die Isothermenkonstanten des ZUA-Modells sind:

Oxid : Lösung	Meß- punkte	A ₁	κ ₁ 10 ³	A ₂	К2	A ₁ +A ₂	σ _{Qrel} (%)
1 : 200 1 : 500	29 38	738 <u>+</u> 12 697 <u>+</u> 19	1,6 <u>+</u> 0,13 1,2 <u>+</u> 0,16	430 <u>+</u> 24 508 <u>+</u> 22	3,4 <u>+</u> 0,66 3,9 <u>+</u> 0,73	1168 1187	3,4 3,5
beide Ve zusammen	rsuche	729 <u>+</u> 11	1,5 <u>+</u> 0,11	473 <u>+</u> 18	0,2 <u>+</u> 0,61	1202	4,0

Aus diesem Resultat folgt, daß ein merkbarer Fällungseffekt , der größere Elimination bei höherem Oxid : Lösung-Verhältnis ergeben sollte, nicht vorliegt.

<u>Abbildung 46</u> Phosphatadsorption an Ca-dotierte Aktivtonerde(1,36 % Ca) bei verschiedenem Verhältnis Oxid : Lösung

7.6. Bemerkung zur Frage der "besten" Isothermengleichung

Die hier vorgestellten "Isothermen" wurden hauptsächlich deswegen gemessen, um den Einfluß einer Dotierung der Aktivtonerde auf die Sorption von Phosphat und Chromat festzustellen. Als Kriterium dient dabei in erster Linie die erreichbare Beladung, d.h. die Sorptionskapazität, da diese mit der inneren Oberfläche in Beziehung stehen sollte. Sie läßt sich im Prinzip experimentell ermitteln, sodaß eine Isothermengleichung nicht unbedingt erforderlich ist. Jedoch liefert, sofern die Langmuirgleichung gilt, die Berechnung der Grenzbeladung QL bzw. von A_1 und A_2 beim ZUA-Modell wesentlich besser fundierte Zahlen und eine detailliertere Information. Es schien daher zweckmäßig, der Frage der Isothermengleichung Aufmerksamkeit zu widmen.

Das hervorstechende Merkmal der Überwiegenden Mehrzahl der gemessenen Isothermen ist die Stufenform. In (67) wurde von Eberle, Klopp und Anwar am Beispiel organischer und anorganischer Sorption bewiesen, daß das ZUA-Modell als einzige Gleichung diese Stufe wiedergibt, sie ist daher am besten geeignet, die Messungen in ihrer Gesamtheit zu beschreiben. Daß in einigen Fällen die Stufe nicht beobachtet wird, ist auch von Klopp in seiner Dissertation berichtet worden (69), wobei nicht geklärt werden konnte, ob sie nur nicht erkannt wird, z.B. wegen unzureichender Meßgenauigkeit, oder ob sie tatsächlich nicht vorhanden ist. In der oben zitierten Arbeit wurde jedoch gezeigt, daß die Überlagerung von zwei Langmuiradsorptionsstufen nicht unbedingt zu einer sichtbaren Stufe in der Isotherme führen muß.

In der Literatur sind stufenförmige Isothermen bei Aktivtonerde und Kaolin (76) mehrfach erwähnt. Connar und Ottewil (77) fanden für die Adsorption von Tetraalkylammoniumkationen an Latexpartikeln stufenförmige Isothermen und haben das mit zwei verschiedenen Bindungsformen des Adsorptivs erklärt, nämlich zum einen mit Chemisorption der kationischen Gruppe an Oberflächenkarboxylgrppen und zum anderen mit Physisorption der Alkylendgruppen an die neutralisierte Oberfläche der Partikel. Die jeweiligen partiellen Grenzbeladungen sind um Zehnerpotenzen verschieden, wobei die Physisorptionskapazität die höhere ist. Die Untersuchungen von Gatta (78) über die Chemisorption von CO an bei verschiedenen Glühtemperaturen geglühter Aktivtonerde zeigten, daß das CO an zwei verschiedenen Adsorptionsstellen, je nach der Glühtemperatur des Oxids, adsorbiert wird. Fricke et al. (79) haben bei der Adsorption von Benzol aus der Gasphase stufenförmige Isothermen gefunden und mit dem Vorliegen von zwei Arten von Poren interpretiert. Es scheint damit erwiesen, daß die Oberfläche der Aktivtonerde Stellen mit unterschiedlicher Adsorptionsaffinität aufweist, die z.B. mit den unterschiedlichen OH-Gruppenarten zusammenhängen. Verschiedene Autoren haben Hydroxylgruppen zweier verschiedener Barizitäten nachgewiesen (80 - 83), womit der "Affinitätsunterschied" als Unterschied der Säurestärke konkretisiert wäre.

Diese Betrachtung zeigt, daß das Modell "zwei unabhängige Adsorptionsreaktionen" vielen experimentellen Hinweisen entspricht und vermutlich nicht nur eine rein mathematische Beschreibung der Isotherme ist.

-75-

8. Vergleich der dotierten und undotierten Aktivtonerden

Als Basis des Vergleichs dienen die bereits angeführten Beladungsergebnisse, und zwar zum einen die höchsten bei den Isothermenmessungen gefundenen Beladungen.- diese sind im folgenden als Q_{max} bezeichnet und in Tabelle A 10 im Anhang zusammengestellt – und zum anderen die Grenzbeladungen A₁ und A₂ nach dem ZUA-Modell.

Weil die dotierten Aktivtonerden bei gleicher Calcinierungstemperatur ganz unterschiedlich große innere Oberflächen haben können – je nach dem Gehalt an Dotierungskation – wird zum Vergleich hauptsächlich die maximal erreichte spezifische Oberflächenbelegung in μ Mol P/m² bzw. μ Mol CrO₃/m² herangezogen. Daneben wird auch die maximale Beladung mMol P/kg bzw. mMol CrO₃/kg betrachtet, wo dies zweckmäßig ist.

8.1. Adsorptionskapazität der mit verschiedenen Kationen dotierten Aktivtonerden

- Phosphatadsorption

Der Vergleich basiert sowohl auf der "Maximalbeladung", als auch auf der Grenzbeladung $A_1 + A_2$. Die Daten sind in Tabelle 30 zu-sammengestellt.

Man stellt fest, daß die absolute Beladung der betrachteten dotierten Aktivtonerden in der Reihenfolge Ca>Sr>Ba>Ge>Fe abnimmt, wenn man nur diejenigen mit überschüssigem Dotierungskation betrachtet. Legt man dem Vergleich die spezifische Oberflächenbelegung zugrunde, so tauschen Ge und Fe den Platz, sonst bleibt die Reihenfolge gleich.

Die Aktivtonerden mit überschüssigem Erdalkaliion weisen sämtlich eine höhere spezifische Oberflächenbeladung auf als die Ca-dotierte Aktivtonerde ohne überschüssiges Calcium. Die Dotierung mit ca. 5 % Fe bzw. Ge ergibt etwa die gleiche spez. Oberflächenbelegung wie "nicht überschüssiges" Calcium.

Sowohl in Bezug auf die erreichbare Kapazitätsverbesserung als auch aus anderen Gründen (Dotierungskosten, Toxizität) ist somit Calcium das beste von den untersuchten Dotierungskationen. Alle hier betrachteten dotierten Aktivtonerden weisen eine bessere Phosphatadsorptionskapazität auf als die undotierte Aktivtonerde.

<u>Tabelle 30</u> Phosphat-Grenzbeladung bzw. Maximalbeladung von mit verschiedenen Kationen dotierten Aktivtonerden (Calcinierungstemperatur 600 ^OC)

Oxid	BET-Oberfl. (m ² /g)	A ₁ + A ₂ (mMol P/kg)	Q _{max} (mMol/kg)	spez. Oberfl aus A ₁ + A ₂ (µ Mol/	-belegung aus Q _{max} m ²)
undot.	155	664	545	4,28	3,52
0,87 %Ca	195	1018	873	5,22	4,48
3,66 %Ca	122	2071	1961	17,0	16,1
13,00 %Sr	136	1789	1570	13,2	11,5
7,97 %Ba	140	1302	1379	9,30	9,85
5,27 %Fe	153	909	815	5,94	5,33
5,01 %Ge	237	1126	1064	4,75	4,49

- Chromatsorption

Wie die Daten in Tabelle 31 zeigen, ist die Grenzbeladungssumme aller untersuchten dotierten Aktivtonerden größer als die der undotierten. Wegen des stark unterschiedlichen Gehaltes an Dotierungskation ist es nicht sinnvoll, eine Reihenfolge der Kapazitätsverbesserung aufzustellen.

Wenn man die spezifische Oberflächenbelegung betrachtet, ergibt sich ein anderes Bild. Zwischen undotierter und Ca-dotierter Aktivtonerde ohne überschüssiges Calcium besteht kein signifikanter Unterschied, die nicht ausgewaschene Ba-dotierte Aktivtonerde weist eine erheblich größere spezifische Oberflächenbelegung auf. Vermutlich hängt das mit der Schwerlöslichkeit von Bariumchromat zusammen. Die Dotierung mit Eisen ergibt eine etwas bessere spezifische Oberflächenbelegung als die mit Calcium.

•		CIEFCE ARCIV			·	
	Oxid	BET-Oberf1.	$A_1 + A_2$	Q _{max}	spez. Oberfl aus A ₁ + A ₂	belegung aus Q _{max}
		(m ² /g)	(mMol/kg)	(mMol/kg)	(μ Mo1/	m^2) m^2
	M 90 S	95	247	228	2,60	2,40
	CTG 300 S	177	448	384	2,53	2,17
	0,33 %Ca ¹⁾	241	571	560	2,37	2,32
	7,79 %Ba ¹⁾	140	9 58	913	6,84	6,52
	5,27 %Fe ¹⁾	153	472	491	3,08	3,21

Tabelle 31	Chromatgrenzbeladung	von mit	verschiedenen	Kationen	do-
· . · ·	tierte Aktivtonerde				

1) bei 600 ^OC calciniert,

8.2. Adsorptionskapazität Ca-dotierter Aktivtonerden ohne überschüssiges Calcium

Phosphatadsorption

Der Einfluß einer Ca-Dotierung soll zunächst an zwei auf gleiche Weise hergestellten, bei 600 ^OC calcinierten Aktivtonerden betrachtet werden:

	ohne Ca, GS 600	0,87 %Ca
A <u>1^{mMo1}kg</u>	280	548
A ₂ "	384	470
A ₁ + A ₂ "	664	1018
K ₁ mMo1 K ₂ "	0,00070 5,44	0,00205 4,82

Durch die Dotierung wird die Phosphatsorptionskapazität bei diesem Beispiel um ca. 50 % erhöht. Die Konstante K_1 des ZUA-Modells ist bei der dotierten Aktivtonerde etwas größer als bei der undotierten. Das bedeutet, daß bei jeder niederen Gleichgewichtskonzentration die letztere etwas höhere Beladungen erreicht; dies ist jedoch nur unterhalb 0,002 mMol/l (ca. 0,1 mg P/l) von Bedeutung.

Trägt man Q_{max} gegen die spezifische Oberfläche S auf, so entstehen, wie Abbildung 47 zeigt, Geraden. Es besteht der lineare Zusammenhang:

$$Q_{\max} = KA \cdot S \tag{10}$$

wobei KA einen Proportionalitätsfaktor, dessen Dimension von den Dimensionen von Q_{max} und S abhängt – hier also mg P.g/m².kg – darstellt. Rechnet man die Oberfläche auf m²/kg um, so erhält man für die Konstante:

ohne Ca-Ionen	:	KA = 0,114 mg P/m	$(3,68 \mu\text{Mol/m}^2)$
Ca-dotiert	:	KA = 0,132 "	(4,26μMol/m ²)

Daß KA.S für die dotierte Aktivtonerde größer ist als für die undotierte bedeutet, daß die durch die Dotierung ohne "Überschuß" erzielte Verbesserung über die Vergrößerung der spezifischen Oberfläche hinausgeht; bei gleicher spezifischen Oberfläche adsorbieren Ca-dotierte Oxide mehr als undotierte, das heißt, die Selektivität der Aktivtonerde bezüglich Phosphat hat sich durch Ca-Dotierung erhöht, und zwar um 16 %.

Abbildung 47

Phosphatbeladung Q_{max} als Funktion der spezifischen Oberfläche

- <u>Chromatsorption</u>

Die Q_{max}/S-Kurve der Chromatadsorption (Abb.48) weist einen anderen Verlauf als diejenige der Phosphatadsorption auf. Sowohl bei den undotierten als auch bei den dotierten Aktivtonerden besteht sie aus drei Teilabschnitten:

Der erste Abschnitt geht bis zu einer spezifischen Oberfläche von ca. 50 m 2 /g. Wie bei der Phosphatadsorption gilt auch hier die Beziehung:

$$Q_{max} = KA \cdot S$$

mit der Proportionalitätskonstante

ohne Ca-Ionen : $KA = 0,133 \text{ mg } \text{Cr}0_3/\text{m}^2$ (1,33 μ Mol/m²) Ca-dotiert : $KA = 0,140 \text{ mg } \text{Cr}0_3/\text{m}^2$ (1,40 μ Mol/m²)

Somit wird durch die Dotierung auch die Selektivität für Chromat erhöht, allerdings nur um 5 %.

Die diesen Abschnitt bildenden Aktivtonerden bestehen im wesentlichen aus α -Al₂0₃ und daheben δ -Al₂0₃, das dazu gehörende M 150 S enthält auch etwas \varkappa -Al₂0₃. Man erhält dies Aktivtonerden durch Calcinierung bei Temperaturen über 900 ^oC.

-79-

Abbildung 48

Chromatbeladung Q_{max} als Funktion der spezifischen Oberfläche

Der zweite Abschnitt ist gekrümmt, er geht von der Oberfläche 50 m²/g Dis 80 m²/g, umfaßt also den Bereich des δ -Al₂O₃. Auch hier ist eine Erhöhung der Selektivität für Chromat eindeutig zu erkennen, sie beträgt bei 80 m²/g ca. 20 %.

Der 3. Abschnitt ab 80 m²/g – der Bereich des $Y - Al_2O_3$ – ist wieder linear, die Geraden gehen aber nicht durch den Ursprung. Der Zu-sammenhang lautet also:

$$Q_{max} = m + KA \cdot S \tag{11}$$

wobei m der Schnittpunkt mit der Ordinatenachse ist, er liegt bei 10^4 mg CrO₃/kg. (=100 mMol CrO₃/kg).

Die Konstanten KA sind :

ohne Ca-Ionen : KA = 0,083 mg CrO_3/m^2 (0,83 μ Mol/m²) Ca-dotiert : KA = 0,117 mg CrO_3/m^2 (1,17 μ Mol/m²)

Die daraus berechnete Selektivitätsverbesserung beträgt 41 %. Sie hängt hier von der Oberfläche ab und ergibt sich z.B. bei 200 m 2 /g zu 25,6 %.

ohne Ca-Ionen : $S = 10^4 + 0,083 \cdot 200 \cdot 10^3 = 26\ 600\ mg/kg$ Ca-dotiert : $S = 10^4 + 0,117 \cdot 200 \cdot 10^3 = 33\ 400\ mg/kg$ $\frac{\Delta S}{S} = \frac{33400 - 26600}{26600} = 0,256$

8.3. Adsorptionskapazität Ca-dotierter Aktivtonerden mit und ohne überschüssiges Calcium

- Phosphatsorption

Bei Gegenwart von viel überschüssigem Calcium ist die Phosphat-Grenzbeladung, wie der folgende Vergleich zeigt, sehr viel höher als ohne überschüssiges Ca.

	A ₁	A ₂	$A_1 + A_2$	рН	Q(Iso) ¹⁾
0,87 % Ca, 600 ^o C(<u>mMol P</u>)	548	470	1018	5,5	873
3,66 % Ca, 600 °C *	1397	674	2071	6 , 4	1961

1) höchste gemessene Beladung der Isothermenversuche

Das gilt auch, wenn man Aktivtonerden gleicher BET-Oberfläche miteinander vergleicht, siehe hierzu Abbildung 47. Da die Isothermenmessungen nicht bei dem gleichen pH ausgeführt wurden, seien noch einige Beladungsdaten bei gleichem pH aus den pH-Beladungskurven angegeben ($C_0 = 12,9$ mMol/1, 1 g Oxid + 200 ml Lösung):

рН		.3	4	6	8	10
2,78 % Ca, 600 ^O C	(mMo] P/kg)	1780	1680	1240	1150	. 630
0,87 % Ca, 600 ^O C	"	1330	1150	810	510	260
ΔQ	"	450	530	430	640	370

Alle drei Versuche ergeben somit, daß ein Calciumüberschuß von ca. 3 % die Adsorptionskapazität für Phosphat wesentlich erhöht.

Bei 5,5 % Ca wurde mit 1500 mMol P/kg bei pH = 4 eine nur etwas geringere Beladung erreicht als bei 2,78 %Ca. Der Vergleich der bei einer Ausgangskonzentration von 6,45 mMol P/l ausgeführten pH-Beladungsmessungen der Aktivtonerden mit 1,36 %Ca (Abb. 21) und 5,5 % Ca(Abb. 20), ergibt 1274 und 1255 mMol/kg, überraschenderweise hat also von 1,3 bis 5,5 % Ca der Calciumgehalt keinen Einfluß auf die Beladekapazität.

-Chromatsorption

Im Gegensatz zu den Verhältnissen bei Phosphat ist hier die Beladung von der Gegenwart überschüssigen Calciums unabhängig. Daten aus der pH-Beladungskurve, pH 4,6

% Ca	Q _{max}
(600 ⁰ C)	(mMol/kg)
0,87	360
1,36	375
2,99	350
2,78	362

Dieser Unterschied zwischen Phosphat- und Chromatsorption bei Gegenwart überschüssigen Calciums dürfte mit der Tatsache zusammenhängen, daß Ca-Phosphat im Gegensatz zu Ca-Chromat schwer löslich ist.

8.4. Spezifischer Platzbedarf der Sorptivionen

Der spezifische Platzbedarf FS wurde aus den im Experiment ermittelten maximalen Beladungen errechnet, d.h. in den meisten Fällen aus den Maxima der pH-Beladungskurven. Dies wurde der Berechnung aus den Grenzbeladungen vorgezogen, weil diese nicht beim optimalen pH gemessen wurden. Somit stellen die nachstehend diekutierten Zahlen den minimalen Platzbedarf dar.

- Phosphat

Die Ausgangsdaten und Rechenergebnisse sind in Tabelle 32 zusammengestellt. Bei den Aktivtonerden, die kein Dotierungskation enthalten, ist der Platzbedarf im Mittel $30,7 \pm 3,5 \text{ A}^2/\text{Molekül}$. Das liegt in der Größenordnung, die man für das Phosphatanion erwarten muß, so errechnet sich aus der Mitte des AlPO₄ eine Fläche des äquivalenten Kubus von ca. 26 A^2 . Daraus folgt, daß die Phosphationen die innere Oberfläche in einer monomolekularen Schicht belegen.

Für die dotierten Aktivtonerden ohne überschüssiges Calcium allein errechnet man mit FS = 27,3 + 3,5 Å einen etwas kleineren minimalen Platzbedarf, wie es der festgestellten höheren Selektivität für Phosphat entspricht. Es scheint, daß FS mit der Calcinierungstemperatur abnimmt, was mit der zunehmenden Porengröße zusammenhängen könnte. Die Aktivtonerden mit überschüssigem Erdalkali weisen als rechnerischen Platzbedarf für das Phosphatanion 10 - 17 Å² auf, also weit weniger als für das Phosphatanion benötigt wird. Das zeigt, daß hier für die Beladung ein anderer Mechanismus verantwortlich ist, nämlich wie bereits angeführt, vermutlich die Bildung von unlöslichen Phosphaten mit dem überschüssigen Erdalkali.

Bei der Eisendotierung ist der spezifische Platzbedarf der gleiche wie bei den undotierten Aktivtonerden. Wesentlich größer ist der spezifische Platzbedarf im Falle der Ge-dotierten Aktivtonerde.

Oxid	Calci temp.	BET-Uber- fläche	Q _{max}	pH _{max}	FS
	(⁰ C)	(m ² /g)	(mMol/kg)		(^{R2} /Molekül)
M 90 S (Tab. 17)	-	95	589	3,80	26,9
GS 400 (Tab. 17)	400	228	1129	3,50	33,7
GS 500 "	500	191	950	3,30	33,5
GS 600 "	600	155	897	3,15	28,8
0,58 %Ca (Tab. 20)	400	278	1554	3,40	29,8
0,68 %Ca "	500	266	1643	2,80	27,0
0,87 %Ca "	600	195	1330	2,80	24,4
0,94 %Ca "	700	163	1144	2,70	23,8
3,66 %Ca (Tab. 30)	600	122	1961	6,40	10,4
13,0 %Sr "		136	1570	11	14,4
7,97 %Ba "	u	140	1379	11	16,9
5,27 %Fe "		153	815		31,3
5,01 %Ge "	16	237	1064		37,1

Tabelle 32 Daten zur Berechnung des spezifischen Platzbedarfes FS für an Aktivtonerde sorbiertes Phosphat

Die von Phosphatanionen "belegte" innere Oberfläche ist, wie die vier Messungen der beladenen Aktivtonerde in Abschnitt 6.1. zeigten, noch für Stickstoff erreichbar; man mißt noch eine erhebliche Rest-BET-Oberfläche. Um diesen Effekt abzusichern, wurde für mehrere Serien von beladenen Aktivtonerden aus den pH-Beladungsmessungen die BET-Oberfläche ermittelt. Die Ergebnisse sind in Abbildung 48 dargestellt. In keinem Fall vermindert sich die spezifische Oberfläche durch die Phosphatsorption um mehr als die Hälfte. Die mit 5,5 % dotierte Aktivtonerde zeigt die Besonderheit, daß bei pH = 7 ein Maximum der "Restoberfläche" auftritt, d.h., genau bei dem pH des 2. Sorptionsmaximums (s. Abb. 19). Die Oberflächendifferenz Δ FS je sorbiertem Phosphatmolekül ist im pH-Bereich 2,5 - 9,5 konstant (s. Legende zu Abb. 48), darüber und darunter niedriger. Allerdings ist hier die Meßgenauigkeit klein, da die Beladung sehr gering ist. Es fällt auf, daß FS für die kein

Abbildung 49

BET-Oberfläche phosphatbeladener Aktivtonerde

	%Ca	CalcTemp. (^O C)	So ¹⁾ (m ² /g)	FS ²⁾ (Å ² /Molekül)
a	0,39	350	280	13,0 <u>+</u> 2,2
Ь	0,58	400	278	14,6 <u>+</u> 2,3
с	0,68	500	266	13,9 <u>+</u> 2,2
d	0,87	600	195	9,0 <u>+</u> 1,3
е	5,50	600	115	3

1) BET-Oberfläche vor der Beladung 2) FS = $(S_0 - S_b) \stackrel{\cdot}{\rightarrow} Q$

überschüssiges Calcium enthaltende Aktivtonerde etwa gleich sind, im anderen Fall aber sehr klein wird. Man geht wohl nicht fehl, wenn man das damit interpretiert, daß hier das Phosphat nicht nur an der Al₂0₃-Oberfläche, sondern zu einem wesentlichen Teil durch das überschüssige Calcium gebunden ist.

Die beiden in diesem Abschnitt festgestellten Tatsachen:

- je ca. 30 \mathbb{R}^2 innerer Oberfläche kann ein Phosphatmolekül sorbiert werden
- je sorbiertes Molekül Phosphat vermindert sich die BET-Oberfläche um ca. 13 A^2

kann nach einem Vorschlag von Klopp (Dissertation S. 78) als Abnahme der Innenfläche der Poren durch die angelagerte Phosphatschicht interpretiert werden. Krischner hat festgestellt, daß die Poren von undotiertem und Ca-dotiertem Al_20_3 rohrförmig sind (75). Den Durchmesser für eine rohrförmige Pore kann man mit der o.g. Hypothese mach folgender Formel berechnen

$$DP = 2 \frac{L \cdot B \cdot H}{FS} = 2 \cdot \frac{DM^3}{FS}$$

worin L,B,H die Länge, Breite und Höhe des sorbierten Moleküls bedeuten und hier gleich seinem Durchmesser DM gesetzt werden. Die Moleküldimensionen wurden aus der Dichte des AlPO₄ (= 1,55) berechnet.

$$DM = \sqrt[3]{V} = \frac{1 \cdot 10^{24}}{(1,55 - 122) \cdot 6 \cdot 10^{23}}$$

= 5,1 Å
$$DP = 2 \frac{5,1^3}{13}$$

= 20 Å

Der so berechnete Durchmesser stimmt recht gut mit dem von Krischner gemessenen Maximum der Porenweiterverteilung von calciumdotierten γ -Al₂O₃ von ca. 20 Å überein (75). Das stellt eine Stütze für die Hypothese zur Oberflächenabnahme durch die Beladung dar.

- <u>Chromat</u>

Bei diesem Anion ist eine Berechnung des minimalen spezifischen Platzbedarfs nur für die undotierten Aktivtonerden möglich, da mit den dotierten Aktivtonerden die Versuche entweder bei niederer Ausgangskonzentration oder bei nicht optimalem pH ausgeführt wurden. Aus Tabelle 21 errechnet man für M 90 S, CTG 300, CTG 300 S und GS 600 den minimalen Flächenbedarf 64 \pm 6 Å². Das Chromation hat also einen wesentlich höheren Flächenbedarf als das Phosphation, obwohl es nur zweiwertig ist. Anscheinend ist bei Aktivtonerde die Kapazität doch entscheidend von der Molekül – oder Ionengröße – abhängig, obwohl der Sorptionsmechanismus als ein Ionenaustausch angesehen wird und das bei Ionenaustauschern, gerade im Gegensatz zu Adsorptionsmitteln, nicht der Fall ist (abgesehen von Porenweiteeffekten). Der Vergleich der Grenzbeladungen A₁ + A₂ eignet sich vor allem, um das besondere Verhalten der Ba-beladenen Aktivtonerden hervorzuheben. Bei pH 4,8 findet man

> 7,97 %Ba FS = 24,3 A^2 0,33 %Ca FS = 70,3 "

d.h., bei Barium einen weit unter der realistischen Größe liegenden scheinbaren Flächenbedarf. Man erkennt hier, daß die Aufnahme bzw. Elimination des Chromats in diesem Fall nicht auf Sorption allein beruhen kann.

9. Diskussion

Hauptzweck dieser Arbeit war,zu prüfen, ob dotierte Aktivtonerde ein besseres Adsorptionsmittel ist als undotierte. Auf Grund der Ergebnisse lassen sich die durch Ca-Dotierung erreichten Verbesserungen wie folgt zusammenfassen:

- eine Vergrößerung der inneren Oberfläche bei allen Calcinierungstemperaturen, die für eine Adsorptionsanwendung interessant sind
- maximale Oberflächenvergrößerung bei der für eine thermische Regeneration organisch beladener Aktivtonerde erforderlichen Temperatur von ca. 600 ^OC
- Erhöhung der Selektivität bzw. der auf die Einheit der Oberfläche bezogenen Kapazität bei einigen Sorptiven, z.B. Phosphat
- Verbesserung der Beständigkeit gegen Säuren und Laugen
- Verschiebung bzw. Verbreiterung des für die Adsorption optimalen Bereiches bei Ca-Oberschuß.

Der letztgenannte Vorteil kann nur dann ausgenutzt werden, wenn das überschüssige Calcium beim Kontakt mit dem zu behandelten Wasser nicht ausgewaschen wird. Das scheint bei pH>5 zumindest zum Teil der Fall zu sein. Es wäre interessant, diesen Punkt näher zu überprüfen, was im Rahmen dieser Arbeit aus Zeitgründen nicht möglich war.

Die Veränderung der Selektivität kann je nach den Inhaltsstoffen des zu reinigenden Wassers von Vorteil oder Nachteil sein. Manche Stoffe werden ohne Zweifel an der dotierten Aktivtonerde schlechter sorbiert sein. Das könnte z.B. für hochmolekulare Stoffe zutreffen, da anscheinend die mittlere Porenweite durch die Dotierung geringer wird. Möglicherweise würde das auch eine schlechtere Sorptionskinetik zur Folge haben. Ein Nachteil der Dotierung ist, daß sie vermutlich höhere Produktionskosten verursacht. Die technische Produktion kann kaum über Mitfällung erfolgen, also nicht so wie in dieser Arbeit. Denkbar sind der Zusatz von Calciumsalzen bzw. Ca(OH)₂ beim Ausrühren oder die Behandlung des ausgerührten Al-Hydroxides mit Calciumsalzen vor dem Calcinieren. Man wird die Mehrkosten dem "Mehrwert" gegenüberstellen müssen. Am einfachsten geht das, wenn man sich auf die spezifische Oberfläche bezieht, die bis zu 70 % größer sein kann. Im Ergebnisteil nicht deutlich zum Ausdruck gekommen ist, daß die Reproduzierbarkeit der Herstellung nicht gesichert oder optimiert war. Im großen und ganzen gab es bei der Herstellung wenig Ausreißer. Jedoch hatte gerade das in größeren Mengen hergestellte Präparat 0,87 % Ca/ 600 ^OC nicht die hohe Oberfläche, welche aus den entsprechenden Vorversuchen erwartet worden war – 195 statt 265 m²/g – immerhin noch mehr als das undotierte Präparat, das 155 m²/g aufwies. Von erheblichem Einfluß scheint die Alterungszeit zu sein, die wegen der langen Filtrierdauer bei größeren Ansätzen nicht wirklich gleich gehalten werden konnte. Bei manchen Ansätzen waren 10 Tage für das Filtrieren und Auswaschen erforderlich.

Die außer Calcium untersuchten Dotierungselemente haben keine so erhebliche Verbesserung ergeben, daß sie Anlaß zu einer intensiveren Untersuchung geboten hätten. Als ein Faktum ist festzustellen, daß der Einfluß auf die innere Oberfläche von dem auf die Adsorptionskapazität stark verschieden sein kann. Enttäuschend ist vor allem der im Vergleich zur Ca-Dotierung geringe Effekt der Dotierung mit Eisen, weil wegen der Schwerlöslichkeit des Eisenphosphates eine merkliche Verbesserung der Phosphatadsorption erhofft worden war. Allerdings ist auch von der Fällungsreinigung bekannt, daß Eisensalze nicht merklich besser wirken als Aluminiumsalze.

10.1. Röntgenstrukturaufnahmen

Das zu untersuchende, in feinkörniger Pulverform vorliegende Aluminiumoxid wurde in dünner Schicht auf einen röntgenamorphen Träger aus Kunststoff mit einem Lack angeteigt. Die Aufnahme wurde auf einem " 2 THETA/ THETA Goniometer-Modell" mit Cu-K $_{\alpha}$ -Strahlung gemacht, wobei der Präparathalter tangential bewegt wurde. Die Auswertung der Goniometeraufnahme erfolgte nach der Braggschen Beziehung:

$$n \lambda = 2d \sin \vartheta$$
 bzw. $d = \frac{\lambda}{2 \sin \vartheta}$

wobei bedeuten:

- λ die Wellenlänge der charakteristischen Strahlung, in unserem Fall der K α -Linie des Kupfers (1,54178 Å),
- n die Ordnungszahl der Beugung,
- Ider Winkel zwischen der einfallenden Röntgenstrahlung und der Netzebene.
- d der Abstand zwischen zwei Atomebenen.

Die Interferenzlinien wurden am Diagramm ausgemessen und die relativen Intensitäten visuell geschätzt. Für die stärkste Linie wurde die Intensität 10 angesetzt, alle anderen Interferenzlinienintensitäten sind als Bruchteil davon angegeben. Die Identifizierung der Phasen und Verbindungen erfolgte anhand der A.S.T.M-Kartei (von der "American Society for Testing and Materials" gesammelte Röntgendaten hinsichtlich verschiedener Substanzen). Da die ASTM-Werte für die einzelnen Aluminiumoxidmodifikationen nicht nur von verschiedenen Forschern, sondern auch aus einer Zeit stammen, wo die vielfachen Einflüsse auf den thermischen Abbau des Al(OH)₃ noch nicht genau bekannt waren, wurden zusätzlich die Angaben von Neuwinger (38) zum Vergleich herangezogen.

10.2. Photometrische Al-Bestimmung

Die Bestimmung der gelösten Al-Ionen erfolgte nach der Alizarinmethode (84). Das Prinzip dieser Methode besteht darin, daß Aluminium-Ionen mit Alizarin S einen gelblich-roten Farblack bilden, wobei Farbe und Intensität außer vom Al-Gehalt der Lösung auch von deren pH-Wert abhängig sind. Bei Anwendung dieser Methode war zu beachten, daß Ca-Ionen diese Messung stören (84,85). Um trotzdem reproduzierbare Werte zu erhalten und Verfälschungen durch eventuell aus den dotierten Oxiden herausgelösten Ca-Ionen zu vermeiden, wurde zu allen Proben ein Überschuß an Ca²⁺ in Form einer CaCl₂-Lösung zugegeben.

Die Auswertung der erhaltenen Konzentrationswerte erfolgte durch Ablesen aus einer Eichkurve.

A. Herstellung der Reagenslösung

- <u>Herstellung der Alizarin-Lösung</u>

0,5 g Alizarin S wurden in 100 ml Wasser mit 3 - 4 Tropfen Essigsäure gelöst. Danach wurde die Alizarin-Lösung durch ein 0,45 H Membranfilter filtriert und lichtgeschützt aufbewahrt. Die Lösung wurde wegen ihrer leichten Zersetzlichkeit jede Woche neu angesetzt.

- Herstellung der Calciumchlorid-Lösung

2,622 g $CaCl_2 \cdot 2H_20$ wurden in einem 1-Liter Meßkolben in ca. 800 ml Wasser gelöst und dann bis zur Marke aufgefüllt; 1 ml Lösung enthalten dann etwa 0,7 mg Ca²⁺.

B. Herstellung einer Al-Lösung bekannten Gehalts

1 g Aluminiumband wurde in ca. 20 ml konzentrierter HCl unter Erwärmen gelöst und die Lösung anschließend mit Wasser zum Liter aufgefüllt. Von dieser Lösung wurden 10 ml auf 1 l mit Wasser verdünnt, 1 ml dieser verdünnten Lösung enthält dann ca. 0,01 mg Al³⁺.

C. Eichkurve und Messung

In einem 100 ml Meßkolben wurden verschiedene Mengen der Al-Lösung bzw. der zu untersuchenden Lösung mit 5 ml Calciumchlorid-Lösung, 10 ml Acetatpufferlösung (pH = 4,62) und 2 ml Alizarin-Lösung versetzt und dann mit bidestilliertem Wasser auf 100 ml aufgefüllt. Der pH-Wert dieser Lösung betrug ca. 4,6.

Dann erfolgte innerhalb der 30 Minuten, in denen die Intensität des Farbstoffs konstant blieb, die Messung bei 490 nm. Als Vergleichslösung diente ein Ansatz aus Alizarin, Calciumchlorid- und Acetatpufferlösung im angegebenen Verhältnis ohne die Al-Lösung.

10.3. Bestimmung der spezifischen Oberfläche

Die Bestimmung der spezifischen Oberfläche erfolgte durch Messung der Stickstoffadsorption, wobei die zur Bildung einer monomolekularen Schicht auf der Feststoffoberfläche nötige Zahl von Stickstoffmolekülen ermittelt wird. Unter Berücksichtigung des Flächenbedarfs eines N₂-Moleküls läßt sich hieraus die spezifische Oberfläche errechnen. Die Bestimmung erfolgte nach einem vereinfachten BET-Verfahren (66), der sog. Einpunkt-Methode (86).

Im Gegensatz zum BET-Verfahren muß hier nur ein Punkt der Adsorptionsisotherme bestimmt werden, außerdem muß der sich bei der Adsorption einstellende Gleichgewichtsdruck nicht gemessen werden, sondern läßt sich rechnerisch ermitteln.

Zur Durchführung der Messung wurde das AREA-meter von Ströhlein verwendet, Das Meßprinzip beruht auf dem Einsatz von zwei Adsorptionsgefäßen aus Glas mit gleichen Volumina, von denen das eine (Meßgefäß) eine bestimmte Einwaage der zu messenden Probe enthält, während das andere (Vergleichsgefäß) leer bleibt. Zur Entfernung der bereits bei Raumtemperatur an der zu untersuchenden Substanz adsorbierten Fremdmoleküle werden die Meßgefäße mit der Probe in einem Ausheizthermostaten bei 150 ^OC mit trockenem Stickstoff gespült.

Nach dieser Vorbehandlung wurde das Meßgefäß an das AREA-meter angeschlossen. Als Meßgas diente gereinigter Stickstoff, der durch das Meß- und Vergleichsgefäß strömte.

Gemessen wird der Druckunterschied, der sich beim Abkühlen auf die Temperatur des flüssigen Stickstoffs durch Adsorption des Stickstoffs an der Oberfläche der Probe einstellt. Der Druckunterschied wird durch Ablesen am Olmanometer (mm Ol), der mit gefärbtem Dibutylphthalat gefüllt ist, ermittelt. Mit Hilfe eines Nomogramms wird die spezifische Oberfläche folgendermaßen berechnet:

$$S = \frac{A \cdot \Delta h}{m} \qquad (\frac{m^2}{g})$$

wobei Δ h die Druckdifferenz am \Im lmanometer (mm \Im l) und

m die Probeeinwaage (g) bedeuten.

Der Faktor A, der von Δ h und A (Atmosphärdruck) abhängig ist, kann durch das Nomogramm ermittelt werden.

10.4. Phosphatbestimmung

Es wurde die Molybdat-Vanadat-Methode verwendet, die auf der Bildung einer gelb gefärbten Molybdat-Vanadat-Phosphatsäure [(NH₄)₃PO₄·NH₄· VO₃·16 MoO₃] beruht(&7).

A. Reagenzlösungen

- 1. Salpetersäure 1 : 2 verdünnt.
- 2. 0,25 %ige Ammoniumvanadat-Lösung. 2,5 g Ammoniumvanadat NH₄VO₃ wurden in ca. 500 ml siedendem bidestilliertem Wasser gelöst, nach dem Erkalten mit 20 ml konzentrierter Salpetersäure versetzt und mit bidestilliertem Wasser zu einem Liter aufgefüllt.
- 3. 5 %ige Ammoniummolybdat-Lösung 50 g Ammoniummolybdat (NH₄)₆Mo₇O₂₄ 4H₂O wurden in ca. 800 ml bidestilliertem Wasser bei etwa 50 °C gelöst und nach dem Abkühlen auf 1 Liter aufgefüllt.

Die oben beschriebenen Lösungen wurden im Verhältnis 1 : 1 : 1 gemischt und das so hergestellte VM-Reagenz lichtgeschützt in einer braunen Flasche aufbewahrt.

B.Eichkurve und Messung

In einem 50 ml Meßkolben wurden 1 - 40 ml Na₂HPO₄-Lösung bzw. der zu messenden Lösung mit einer Konzentration zwischen 5 mg P/l und 7 mg P/l mit 10 ml VM-Reagenz versetzt und dann mit bidestilliertem Wasser auf 50 ml aufgefüllt. Innerhalb von 30 Minuten bleibt die Intensität der gelben Farbe konstant. Als Vergleichslösung diente das 1 : 50 verdünnte VM-Reagenz. Die Extinktion wurde bei 7 Wellenlängen (350 nm bis 410 nm) gemessen und die Einzelergebnisse gemittelt.

10.5. Chromat-Bestimmung

Die Bestimmung des Chromat-Ionengehaltes erfolgte nach zwei Methoden:

- durch Titration mit $KMnO_4$ für Konzentrationen über 3 mg Cr⁶⁺/1 (5,77 mg CrO₃/1).
- durch photometrische Messung des Farbkomplexes mit Diphenyl-
- carbazid für Konzentrationen unter 3 mg Cr⁶⁺/1

10.5.1. durch Titration

Chromate werden in stark saurer Lösung von Ferrosulfat zu Cr (III)-Salz nach folgender Redoxgleichung reduziert:

$$3Fe^{2+} + Cr^{6+} - 3Fe^{3+} + Cr^{3+}$$

Das unverbrauchte Fe²⁺ wird anschließend mit KMnO₄ zurücktitriert (88).

A. Reagenzlösungen

- 1. Konzentrierte Phosphatsäure (85 %ig)
- 2. 0,02m-Ammoniumeisen (II) Sulfaltlösung 7,8428 g $(NH_4)_2$ Fe $(So_4)_2$ ·6H₂O wurden in bidestilliertem Wasser gelöst, mit 50 ml H₂SO₄-Konzentration versetzt und bei 20 ^OC mit H₂O auf 1 Liter aufgefüllt.
- 3. Kaliumpermanganatlösung 0,1n

B. Titration

- 1. 20 m] Ferrosulfat wurden mit 20 m] $\rm H_{2}O$ und 5 m] $\rm H_{3}PO_{4}$ angesetzt und mit $\rm KMnO_{4}$ titriert.
- 2. 20 ml Ferrosulfat + 20 ml H_2^0 + 5 ml $H_3^{PO}_4$ und 5 ml Chromatlösung wurden mit KMnO₄ titriert. Das Verhältnis zwischen ml Ammoniumeisen (II) Sulfatlösung und ml Chromatlösung ändert sich je nach der Chromatkonzentration.
- 3. Die Differenz der beiden Titrationen wird berechnet und, da auf 1 Aquivalent Cr⁶⁺ 3 Aquivalente Fe²⁺ entfallen, in die folgende Formel eingesetzt:

mg $\text{CrO}_3/1 = (\text{Differenz ml KMnO}_4) \cdot \frac{\text{MG von CrO}_3}{3} \cdot \frac{1000}{\text{ml Probe}} \cdot 0,1$

10,5.2. Photometrische Bestimmung

Mit Diphenylcarbazid CO(NHNH C_6H_5)₂ bilden Chromat-Ionen einen rotvioletten Farbstoff, dessen Intensität der Chromationen-Konzentration proportional ist (89,90)

A. Reagenzlösung

l g Diphenylcarbazid $C_{13}H_{14}N_40$ wurde in 100 ml Aceton gelöst, ein Tropfen Essigsäure hinzugefügt und das Reagenzgemisch lichtgeschützt aufbewahrt.

B. Eichkurve und Messung

Es wurden 0,3740 g Kaliumchromat K_2CrO_4 in einem 1-Liter Meßkolben in bidestilliertem Wasser gelöst, was einer Konzentration von 0,1 mg $Cr^{6+}/1$ entspricht. 100 ml dieser Lösung wurden in einem Meßkolben mit bidestilliertem Wasser auf 1 l aufgefüllt (0,01 mg $Cr^{6+}/1$). 1 - 40 ml der 0,01 mg $Cr^{6+}/1$ -Lösung bzw. der zu untersuchenden Lösung wurden in einem 50 ml-Meßkolben mit 2 ml Reagenz und mit 2 ml o-Phosphorsäure versetzt und mit bidestilliertem Wasser auf 50 ml aufgefüllt. Innerhalb von 30 Min. bleibt die Intensität des rot-violetten Farbstoffs konstant. Als Vergleichslösung diente eine Mischung von Reagenz und Phosphorsäure im angegebenen Verhältnis ohne Chromat-Lösung. Die Extinktion wurde bei 550 nm gemessen.

11. Tabellenanhang

Tabelle A 1 d-Werte und relative Interferenzintensitäten der $Merck-A1_20_3$ sowie die entsprechenden $A1_20_3$ -Modifikationen nach (38)

M 150 S		δ+κ -A1 ₂ 0 ₃ Lit (38)		M 90 S		Y-A1 ₂ 0 ₃ Lit. (38)	
d(Å)	I/I _o	(Å) b	I/I _o	d(Å)	I/I _o	d(Å)	I/I _o
3,056 2,819 2,739 2,592 2,436 2,318 2,267 2,000 1,945(d) 1,742 1,564 1,534 1,488	3 5 3 5 3 3 3 4 3 1 1 2 2	3,040 [®] 2,798 [®] 2,728 ⁰ 2,554 ⁰ 2,446 ⁰ 2,313 ⁰ 2,280 ⁰ 2,000 ⁰ 1,947 ⁰ 1,741 ⁰ 1,601 ⁰ 1,540 ⁰ 1,487 ⁰	3 8 8 2 6 4 3 5 3 1 1 2 1	2,795 2,398 2,284 1,996 1,957 1,392	2 4 2 3 4 10	2,750 2,410 2,280 1,985 1,950 1,393	1 5 2 8 7 10
1,437 1,392 1,352 1,264	5 10 1 1	1,453° 1,388 ⁰ 1,340 [⊕] 1,265 [⊕]	1 10 1 1				

δ -A1203 ×-A1203 0

۲

GTG 100		CTG	200	Lit. (38)		
d(Å)	I/I _o	d (Å)	I/I _o	d (Å)	I/I ₀	
6,259	7	6,237	6	6, 340 [⊕]	10	
3,175	6	3,175	4	3 , 260 [®]	7	
2,401	4	2,404	5	Böhmit- oder -Al ₂ 0 ₃		
2,347	5	2,365	6			
2,284	2	2,279	4	2,280+	4	
1,980	4	1,985	5	1,985+	8	
1,959	4	1,957	4	1,950+	7	
1,862	2	1,850	2	1,822	1	
-	-	1,665	1	1,569 ⁰	1	
1,532(d)	1	1,536	1	1,491 [®]	4	
1,452	3	. –	-	1,470 ⁰	1	
1,396	10	1,388	10	1,393+	10	
1,308	. 1	1,312		1,343 ⁰	1	

<u>Tabelle A 2</u> d-Werte und relative Interferenzintensitäten der Giulini-Al₂O₃ sowie die entsprechenden Al₂O₃-Modifikationen nach (38)

+ Y-A1203

🖶 Böhmit

ĆTG 300		Böhr Lit	nit . (38)	Y-Al ₂ 0 ₃ Lit. (38)		
d(Å)	1/1 ₀	d (Å)	I/I _o	d (Å)	I/I _o	
6,259	10	6,320	10			
3,175	5	3,260	7	-	-	
2,747	1	-	· •	2,750	1	
2,401	4	-	-	2,410	5	
2,374	5	2,400	5	-	-	
2,279	. 3	-	-	2,280	4	
1,985	4	-	· -	1,985	8	
1,850(d)	3	1,822	1	-	-	
1,542	1	-	-	1,530(d)	. 2	
1,432	. 3	1,423	2	-	-	
1,396	10					
Tabelle A 2, Fortsetzung 1

· · · · · · · · · · · · · · · · · · ·	P-10	α-A1 ₂ 0 ₃ , Li	t. (38)
d (Å)	1/1 ₀	d (Å)	١/١ _٥
3,500	8	3,470	70
2,564	10	2,547	95
2,392	5	2,375	41
2,318	1	-	-
2,092	10	2,083	100
1,746	6	1,738	47
1,605	10	1,600	87
1,516	1	1,545	3
-	-	1,511	9
1,409	5	1,404	34
-	_	1,401	10
-	-	1,373	48
1,337	7	1,367	16
1,242	2	1,239	14
1,238	2	1,234	5
-	- .	1,230	3
1,192	1	1,190	6
	-	1,186	2
-	-	1,146	4
-		1,144	1
1,126	1	1,124	4
1,101	1	1,099	6
-	-	1,096	1
1,080	1	1,078	7
1,077	1	1,075	2
1,045	2	1,042	.15
1,042	1	1,039	6

-96-

.

Glüh- temp.	undot.	A1 ₂ 0 ₃	Ca-dot.	A1203		Fe-dot	. A1 ₂ 0 ₃	Ge-dot. Al ₂ 0 ₃		
(⁰ C)	S vor dem Auswaschen (m ² /g)	1) S ₁ nach dem Auswaschen (m²/g)	S vor dem Auswaschen (m ² /g)	2) S ₂ nach dem Auswaschen (m ² /g)	Δ S = S ₂ - S ₁ (m ² /g)	S vor dem Auswaschen (m²/g)	S nach dem Auswaschen (m ² /g)	S vor dem Auswaschen (m ² /g)	S nach dem Auswaschen (m ² /g)	
350 400 500 600 700 800 900	234 228 178 150 124 103 66 28	236 227 191 155 136 106 70 20	222 215 189 115 121 95 73	280 278 266 265 219 170 130	44 50 75 110 83 64 60	236 206 182 145 121 81 80 26	226 204 182 153 140 84 81 27	- 258 - 226 - 139 -	- 255 - 237 - 143 -	
1100	8	10	- 11	- 49	39	- -	-	-	-	

Tabelle A 3 Spezifische Oberfläche undotierter sowie Ca-, Fe- und Ge-dotierter Aktivtonerden vor und nach der Salzsäurebehandlung im Verhältnis g Oxid : ml HCl 1 : 300 (zugehörige Gehalte an Dot.-Kation s. Abschnitt 5.1. und 5.4)

S : spezifische Oberfläche (m²/g)

1) S_1 : spezifische Oberfläche des undotierten Al_2O_3 nach dem Auswaschen

2) S_2 : spezifische Oberfläche des Ca-dotierten Al_2O_3 nach dem Auswaschen

(m²/g) (m²/g) -97-

Tabellen A 4d-Werte und relative Interferenzintensitäten des beiTemperaturen zwischen 200 - 1100 °C calcinierten Alu-
miniumhydroxidgels im Vergleich mit den aus der A.S.T.M-
Kartei (34) und Lit. 38 entnommenen Werten

200′	oC	Böhmi Lit.	it 34	Böhmit Lit. 38	
d(Å)	I/I _o	d(Å)	I/I _o	d (Å) I	/I ₀
6,006	10	6,110	100	6,320 1	0
3,239	7	-	. 🗕	2,260	7
3,148	8	3,164	.65	-	-
2,330	8	2,346	55	2,400	5
1,842	9	1,850	25	-	-
1,774	3	1,770	6	-	-
1,675	2	1,662	14	-	-
1,466	3	-	-	1,470	4
1,436	9	1,434	10	-	-
1,401	2		. 🗕	-	-
1,353	1	1,369	2	-	-
1,337	2	-		1,343	5
1,311	4	1,312	16	-	-
1,301	4	1,303	4	-	-
1,135	3	1,134	6	-	-
1,125	2	1,115	2	-	-
1,109	1	-	· _	1,114	1
1,104	1	-	-	1,066	1

í

Tabelle /	Α 4 ,	Fortsetzung	1
-----------	--------------	-------------	---

• •			· · · ·		<u></u>							
	350	ос	Lit.	38	400	°C	Lit.	38	500	°C	Lit.	38
	d(Å)	I/I _o	d(Å)	I/I _o	d (Å)	I/I _o	d (Å)	I/I _o	d (Å)	I/I _o	d(Å)	1/I ₀
	6,487	10	6,320+	10	-	- #	-	-	-		_	
	-	• =	-	-	· _	-	-	-	4,732	-	4,540+	1
	3,153	7	3,260+	7	-	-	-	-	-		-	-
	-	-	· -	-	2,800	3	2,750 ⁰	1	-	-	-	-
	2,368	7	2,390	6	-	-	-	-	_	-	_	-
	-	-		-	2,344	5	2,410 ⁰	5	2,414	6	2,400 ⁰	4
	-	-	-	-	-	-	-	-	2,281	5	2,280+	2
	-	-	· -	-	-	-	-	-	1,993	-	1,990+	-
	1,981	7	1,978	9	1,941	7	1,950 ⁰	7	1,963	9	1,950 ⁰	7
	1,841	8	1,822+	1	-	-	-	-	-	-	-	-
	1,396	. 10	1,399	10	1,397	10	1,393 ⁰	10	1,384	10	1,390 ⁰	10
	+ Böhn	nit			ο Υ-Α	$1_{2}0_{3}$			ογ-Α	1 ₂ 0 ₃		
	é ŋ-	A12 ⁰ 3				2 3			+ X -A	1 ₂ 0 ₃		

Tabelle A 4, Fortsetzung 2

.

,

600 °C	C	Lit.	38	700 ⁰ C		Lit. 38		
d (Å)	I/I _o	d(Å)	I/I _o	d (Å)	I/I _o	d (Å)	I/I _o	
4,928	3	4,540 ⁺	3	4,745	3	4,543 [*]	3	
-	-	-	-	2,734	4	2 , 728 [*]	6	
-	-	-	-	-	3	2,561*	1	
2,401	5	2,410 ⁰	5	2,442	5	2 , 440 [*]	7	
-	-	-	-	2,386	5	2 , 313 [*]	5	
2,287	7	2,280 ⁰	4	2,279	4	2,280 ⁰	4	
2,010(d)	2	2,010+	-	2,000	1	2,010 [*]	7	
1,983	7	1,985 ⁰	8	1,985	7	1,985 ⁰	8	
1,969	7	1,950 ⁰	7	1,950	6	1,950 ⁰	7	
1,937	4	1,910+	3	1,886	1	1,910*	3	
-	-	-	-	1,845	1	1,795*	2	
-	-	-	-	1,506	2	1,487*	2	
1,396	10	1,393 ⁰	10	1,377	10	1,392*	10	
-	-	-	-	1,296	1	1,290(d)	1	
ο Υ-Α1 ₂	03			ο γ-Α1	2 ⁰ 3			
+ 9-A72	0 ₃	• • • • • • • • • • •		* $\vartheta - A1_2^{20}_{3}$				

Tabelle A 4, Fortsetzung 3

800 ⁰	'C	Theta-A (38)	1 ₂ 0 ₃	900	°c	Delta-Al ₂ 0 ₃ (38)		
d(Â)	I/I _o	d (Å)	I/I _o	d(Å)	I/I _o	d(Â)	I/I _o	
5,260(d)	2	5,466	1	5,454(d)	3	5,460	1	
4,543(d)	3	4,543	3	4,548(d)	3	4,540	2	
-	-	3,490	- 1	3,611	1	3,480	1	
2,853	5	2,846	6	2 , 834(d)	6	2,850	5	
2,743	5	2,728	6	2,739	8	2,728	8	
2,574	3	2,561	1	2,578	4	2,554	2	
2,445	5	2,440	. 7	2,455	6	2,446	6	
2,304(d)	4	2,313	5	2,315	5	2,313	4	
2,270	3	2,260	3	2,265	4	2,280	3	
2,129	1	2,090	1	2,117	2	2,079	1	
2,000	6	2,010	7	2,021	6	2,000	5	
1,955	4	1,950 ⁰	7	1,947	3	1,947	3	
-	-	1,910	3	1,910	3	1,908	3	
1,804	1	1,795	2	1,799	1	1,799	1	
-	-	1,738	1	-	-	1,741	1	
-	-	1,610	1	-	-	1,601	1	
1,542(d)	2	1,540	3	1,542	2	1,540	2	
1,468	2	1,487	2	-	-	1,508	1	
1,449	2	1,449	2	1,487	2	1,487	1	
1,397	10	1,392	10	1,454	3	1,453	1	
		, 		1,436	3	1,423	1	
• V -∆1.0) .			1,436	3	1,423	1	
0 1 7 20	'3			1,405	6	1,405	4	
				1,389	10	1,388	10	
				1,289	1	1.290	1	

Tabelle A 4, Fortsetzung 4

1000	0° (110	о _о с	120	0 °C	α- Lit	A1 ₂ 0 ₃ . 38
d(Å)	I/I _o	d (Å)	I/I _o	d (Å)	I/I _o	d(Å)	I/I _o
3,500	60	3,507	69	3,480	48	3,470	70
2,560	94	2,567	94	2,550	87	2,547	95
2,389	46	2,395	49	2,374	45	2,375	41
2,090	100	2,096	100	2,080	100	2,080	100
1,745	55	1,746	53	1,738	58	1,738	47
1,604	90	1,608	83	1,600	100	1,600	87
1,513	13	1,517	11	1,510	14	1,511	9
1,404	40	1,410	40	1,404	49	1,404	34
1,377	59	1,379	55	1,373	65	1,373	48
1,241	20	1,242	8	1,238	24	1,239	14
1,237	48	1,238	14	1,234	19	1,234	5
1,191	9	1,193	8	1,188	11	1,186	2
1,149	6	1,150	6	1,147	7	1,146	4
1,127	7	1,128	6	1,125	9	1,124	4
1,101	9	1,102	8	1,099	12	1,099	6
1,080	12	1,081	11	1,078	14	1,078	7
-	· _	-	-	1,075	9	1,075	. 2
1,044	21	1,042	10	1,042	26	1,042	.15
1,040	8	-	-	1,040	14	1,039	6
-	-	. –	-	1,018	4	1,017	1
0,999	15	0,999	13	0,999	21	0,997	. 11
-	-	0,997	8	0,995	10	0,995	. 5
				0,982	4	0,982	1
				0,934	6	0,934	4

Die stärkste Linie wurde zu 100 angenommen und alle anderen Interferenzlinien-Intensitäten als Bruchteile dieser Linie angegeben.

Tabelle A 5 Röntgeninterferenzen und relative Intensitäten undotierter bei 900 ^OC calcinierter und Ca-dotierter Aktivtonerden

A1 ₂ 0	3	2,66 Gew.% Al ₂ 0 ₃	Ca-dot.	2,66 Gew.% Ca-dot. Al ₂ 0 ₃ nach dem Auswaschen mit 0,01n HCl Restgehalt 0,9 Gew.% Ca			
d (Â)	I/I _o	d (Å)	I/I _o	d (Å)	I/I _o		
5,454(d)	3	-	-	-	-		
4,548(d)	3	4,495 ^ø	3	4,439	2		
3,611	1	3,633 ^ø	1	3,623	1		
-	-	¹⁾ 3,520 ⁰	4	-	- '		
-	-	(1) 3,105 ⁰	2	-	-		
-	-	¹⁾ 2,894 ⁰	3	-	-		
-	-	2,867(d) ^X	3	2,867(d)	2		
2,834	6	1 · _	-	-	-		
-	-	2,759+	5	2,762	2		
2,739	8	2,726	5	2,747	4		
-	-	2,611	3	-	-		
2,578	4	2,546 [¢]	3	-	-		
2,455	6	2,445 ^ø	6	2,455(d)	5		
-	-	2,414+	4	2,401	4		
2,315	5	2,325(d)¢	3	2,312	3		
2,265	4	2,287(d) ⁺	3	2,309	3(d)		
2,117	2	-	-	-	-		
2,021	6	-	-	_	-		
-		1,995 ⁺	7	1,995	5		
1,947(d)	d	-	-	-	-		
1,910	3	_	-	e -	-		
1,799	1	1,809 ^ø	1	-	-		
1,542	2	1,541 [×]	3	1,541(d)	1		
1,487	2	1,491 ^ø	2	1,491	1		
1,454	3	1,436 [¢]	2	1,455	1		
1,436	3	-	-	-	-		
1,405	6	-	-	-	-		
-	-	1,402 [¥]	10	1,403	10		
- ·	-	1,399 [¥]	10	1,399	10		
1,389	10	-	-	-	-		
1,289	1	-	-		-		
o Ca0·2/	A12 ⁰ 3	ø X	Hochtem Tief- o	peraturformen der Hochtemper	aturformen		

Gau
 + Tieftemperaturformen
 vgl. Lit. (73)

0,3 Gew.% ^{Al} 2 ⁰ 3	G Ca-dot.	Theta- Lit. 3	A1 ₂ 0 ₃ 8	Kappa-/ Lit. 38	^{A1} 2 ⁰ 3 8	Alpha-Al ₂ O ₃ Lit. 38		
d (A)	I/I _o	d(Å)	I/I ₀	d (Å)	I/I _o	d (🎗)	I/I _o	
6,088	1	-	-	6,060	1		· · · · · · · · · · · ·	
3,506	-	-	-	-	-	3,470	70	
3,069	1	-	-	3,040	3	-	-	
2,880	3	2,846	6	-	-	-	-	
2,827	4	- .	-	2,798	8	_	-	
2,738	6	2,728	6	-	-	-	-	
2,592	4	2,561	1	-	-	-	-	
2,564	8	-	-	-	-	2,547	95	
2,455	4	-	-	2,540	10	-	-	
2,449	4	2,440	7	-	-	_	-	
2,433	4	-	-	2,427	3	-	-	
2,392	5	-	-	- .	-	2,375	41	
2,324	3	-	-	2,319	3	-	-	
2,127	2	-	-	2,115	7		-	
2,087	7	-	-	-	-	2,080	100	
2,027(d)	3	-	-	2,017	2	-	-	
1,916	2	1,910	3	-	-	-	-	
1,745	3	-	-	-	-	1,738	47	
1,605	5	-	-	-	-	1,600	87	
1,546	2	1,540	3	-	-	-	-	
1,513	2	-	-	1,506	1	-	-	
1,455	2	1,449	2	-	-	-	-	
1,437	2	-	-	1,433	6	-	-	
1,404	7	-	-	-	-	-	-	
1,397	10	-	-	1,390	10	-	-	
1,392	9	1,392	10	-	-	-	-	
1,379	5	-	-	-	-	1,373	48	
1,229	1	1,230	1	-	-	-	-	

<u>Tabelle A 6</u> d-Werte bzw. Relativintensitäten des 0,3 Gew.% Ca-dotierten, bei 1100 ^OC calcinierten Al₂0₃

Fe-dot Präpar	iertes at	α Li	-A1 ₂ 0 ₃ t. 38	α-Fe Lit.	² 2 ⁰ 3 58
d(Å)	1/1 ₀	d (Å)	I/I _o	d(Å)	I/I _o
3,527	56	3,470	70	-	_
2,706	7	-	-	2,70	100
2,57	100	2,547	95	-	-
2,522	6	-	-	2,520	80
2,401	50	2,375	41	-	-
2,204	4	-	-	2,200	4
2,103	100	2,083	100	-	-
1,840	5	-	-	1,840	50
1,786	5	-	-	1,965	60
1,754	55	1,738	47	-	-
1,613	100	1,600	87	-	-
1,557	6	1,545	3	-	-
1,521	14	1,511	9	-	-
1,414	39	1,404	34	-	-
1,383	57	1,373	48	-	-
1,247	19	1,239	14	-	-
1,154	7	-	-	1,161	10
1,130	7	1,144	1	-	-
1,095	7	1,099	6	-	-
1,075	9	1,078	7	-	-
1		·			

Tabelle A 7 Goniometerdaten der bei 1000 ^OC calcinierten mit 5,52 Gew.% Fe-dotierten Aktivtonerde

Tabelle A 8pH
maxund Q
maxder Phosphat-Adsorption an Ca-dotierter Aktivtonerde,
die mit Salzsäure verschiedener Konzentration im Verhältnis g Oxid :
m] HCl 1 : 50 ausgewaschen wurde

Glüh-	S	Ausgewa-	Ca-Gehalt	-Gehalt S		ehalt S C _o			1. Maximum			2. Maximum			
(⁰ C)	(m ² /g)	HC1-Konz.	Auswaschen (Gew.%)	(m ² /g)	(mMol P/l)	pH _{max}	Q _{max} (mMol/kg)	E (%)	pH _{max}	Q _{max} (mMol/kg)	E (%)	Diff.			
400	189	1,10 ⁻² n	2,32	248	12,9	3,20	1495	60	6,77	1332	51	11			
500	186	1,10 ⁻² n	2,23	266	12,9	3,42	1410	56	6,88	987	.38	30			
600	115	1,10 ⁻³ n	2,78	226	12,9	3,32	1780	71	7,10	1609	62	10			
600	200	1,10 ⁻² n	2,99	221	12,9	3,20	1740	70	7,07	1245	48	28			
600	168	1,10 ⁻¹ n	1,36	245	6,45	3,66	1255	98	7,54	912	71	27			
	Glüh- temp. (^o C) 400 500 600 600 600	Glüh- temp. S (°C) (m²/g) 400 189 500 186 600 115 600 200 600 168	Glüh- temp.SAusgewa- schen m. HCl-Konz. (^{O}C) (m^{2}/g) 4001891,10^{-2}n5001861,10^{-2}n6001151,10^{-3}n6002001,10^{-1}n600168	Glüh- temp.SAusgewa- schen m. HCl-Konz.Ca-Gehalt nach dem Auswaschen (Gew.%)400189 $1,10^{-2}n$ 2,32500186 $1,10^{-2}n$ 2,23600115 $1,10^{-2}n$ 2,78600200 $1,10^{-2}n$ 2,99600168 $1,10^{-1}n$ 1,36	Glüh- temp.SAusgewa- schen m. HCl-Konz.Ca-Gehalt nach dem Auswaschen (Gew.%)S (^{O}C) (m^{2}/g) (m^{2}/g) (m^{2}/g) (m^{2}/g) 400189 $1,10^{-2}n$ $1,10^{-2}n$ $2,32$ $2,23$ 248500186 $1,10^{-2}n$ $1,10^{-3}n$ $2,78$ $2,78$ 226600200 $1,10^{-2}n$ $1,10^{-1}n$ $2,99$ 221 221600168 $1,10^{-1}n$ $1,36$ 245	Glüh- temp.SAusgewa- schen m. HCl-Konz.Ca-Gehalt nach dem AuswaschenS C_0 (°C) (m^2/g) (m^2/g) $(mMol P/l)$ $(mMol P/l)$ 400189 $1,10^{-2}n$ $2,32$ 248 $12,9$ 500186 $1,10^{-2}n$ $2,23$ 266 $12,9$ 600115 $1,10^{-3}n$ $2,78$ 226 $12,9$ 600200 $1,10^{-2}n$ $2,99$ 221 $12,9$ 600168 $1,10^{-1}n$ $1,36$ 245 $6,45$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			

Tabelle A 9 spezifische Oberfläche der Ca-dotierten bei 400,600 und 800 ^OC geglühten Oxide sowie die entsprechenden Ca-Gehalte

Calcinierungstemp. 400 ^O C		Calcinierungstemp. 600 ^{_0} C		Calcinierungstemp. 800 ^O C		
Gew.%Ca ²⁺	BET-Ober- fläche (m ² /g)	Gew.%Ca ²⁺	BET-Ober- fläche (m ² /g)	Gew.%Ca ²⁺	BET-Ober- fläche (m ² /g)	
-	228	-	155	-	106	
0,10	372	0,10	206	0,10	120	
0,12	387	0,12	205	0,12	114	
0,40	364	0,15	223	0,44	158	
1,24	295	0,33	241	0,71	170	
2,05	254	0,44	278	0,84	166	
2,32	248	0,53	286	0,91	154	
3,94	215	0,62	278	1,49	116	
4,34	200	1,36	245	2,52	96	
5,63	189	1,74	239	2,64	88	
		2,27	203			
		3,66	168			
		3,96	144			
		5,50	115			

Oxid	Calcinie- rungstemp.	Fremdionen- gehalt	. S	C	Q _{max}	Zunahme bez. CTG 300 S	Zunahme bez. GS 600
	(⁰ C)	(Gew.%)	(m ² /g)	(mMo] P/1)	(mMol P/kg Oxid)		
M 150 S			73	9,85	248		
M 90 S			95	10,2	419		
CTG 300			145	9,91	470		
CTG 300 S			177	10,1	567		
gs ⁶⁰⁰			155	10,8	545		
Ca-dot. Oxid	600	3,66	122	3,1	1961	71,1	72,2
Sr-dot. Oxid	600	13,0	136	5,1	1570	63,9	.65,3
Ba-dot. Oxid	600	7,97	140	6,0	1379	58,9	60,5
Ca-dot. Oxid	· 350	0,39	280	10,6	1080	47,5	49,5
Ca-dot. Oxid	400	0,58	. 278	10,6	1055	46,3	48,3
Ca-dot. Oxid	500	0,68	266	10,4	1122	49,5	51,4
Ca-dot. Oxid	600	0,87	. 195	10,4	873	35,1	37,6
Fe-dot. Oxid	400	5,58	204	12,2	889	36,2	38,7
Fe-dot. Oxid	600	5 , 27	.153	12,7	815	30,4	` 33 ,1
Ge-dot. Oxid	600	5,01	237	10,8	1064	46,7	48,8

$\frac{\text{Tabelle A 10}}{\text{an dotierter und undotierter Aktivtonerde}} Vergleich der festgestellten <math>Q_{\text{max}}$ der Phosphatadsorptionsisotherme

12. Literaturverzeichnis

- Ploetz, T. Reinigung von Bleichereiabwässern der Zellstoffindustrie mit Aluminiumoxid Das Papier, 28 H. 10A (1974)
- 2. Eberle, S.H.

Aluminiumoxid als Adsorbens zur Wasserreinigung Haus der Technik Vortragsveröffentlichungen Heft 404 S. 69-73 Vulkan Verlag Essen

- 3. Donnert,D.; Anwar,S.; Eberle S.H. Über calciumdotierte Aluminiumoxide für die adsorptive Wasserreinigung Vom Wasser, Bd. 52 (1979) 115-121
- 4. Zahn, A.

Einsatzmöglichkeiten von γ -Aluminiumoxid zur Reinigung textiler Abwässer

Melliand Textilberichte <u>6</u> (1975) 477-482

- 5. Giles, C.H.; Mehta, H.V.; Rahman, S.M.K.; Stewart, C.E. Adsorption at Inorganic Surfaces. V. Adsorption of Sulphonated Dyes by the Anodic Film on Aluminium J. appl. Chem. 9 (1959) 457-466
- 6. Donnert, D.; Eberle, S.H.; Endres, G.; Metzger, A.; Sapandowski H.P. Untersuchungen über die Rückgewinnung von Phosphaten aus Abwässern mittels Aluminiumoxid Vom Wasser, Bd. 50 (1978) 125-136
- 7. Neufeld, R.D.; Thodos, G. Removal of Orthophosphates from Aqueous Solutions with Activated Alumina Sci. Tech. <u>3</u> No 7 (1969) 661-669
- Winkler, B.F.; Thodos, G. Kinetics of Orthophosphate Removal from Aqueous Solutions by Activated Alumina
 J. Water Poll. Contr. Fed. 43 No 3 (1971) 474-482
- 9. Sinha, P.R.; Choudhury, A.K. Adsorption of Phosphate and Other Anions by Aluminium Oxide J. Indian Chem. Soc. <u>31</u> No 3 (1954) 211-219

- 10. Yee, W.C Selective Removal of Mixed Phosphates by Activated Alumina J. Awwa <u>58</u> No 1 (1966) 239-247
- 11. Eberle, S.H.; Donnert, D. Untersuchungen über die Adsorption von Ligninsulfonsäure an Aluminiumoxid KFK-1969 UF (1974) 110
- 12. Gulledge, J.H.; O'Conner, J.T. Removal of Arsenic (V) from Water by Adsorption on Aluminum and Ferric Hydroxides J. AWWA 65 (1973) 548-553
- Eberle, S.H.; Donnert, D.; Stöber, H. Untersuchungen über die Adsorption und Abscheidung organischer Verbindungen aus Wasser durch Aluminiumoxid Chem.-Ing.-Technik 48 (1976) 731
- Huang, C.-P.; Wu, M.-H.
 Chromium Removal by Carbon Adsorption
 J. Water Poll. Contr.Fed. 47 No 10 (1975) 2437-2446
- 15. Jhomas, E.A. Die Phosphat-Hypertrophie der Gewässer Chem. weekblad, Amsterdam 63 No 26 (1967) 305-319
- 16. Awad, A.; Kretzschmer, R. Nachweis der Phosphate in Oberflächenwässern und in Abwässern Vom Wasser, Bd. 42 (1974) 181
- 17. Browning, E.Toxicity of Industrial Metals2nd Ed Butterworths, London, Chapt. 12 (1969) 119-131
- 18. Krischner, H. Das System Aluminiumoxid-Wasser Habilitationsschrift, Graz (1964)
- 19. Aldcroft,D.; Bye, G.C.; Robinson, J.G.; Sing, K.S.W. Surface Chemistry of the Calcination of Gelatinous and Crystalline Aluminium Hydroxides

J. appl. Chem. <u>18</u> (1968) 301-306

20. Maciver, D.S.; Tobin, H.H.; Barth, R.T. Catalytic Aluminas 1. Surface Chemistry of Eta and Gamma Alumina J. Cat. 2 (1963) 485-497 21. Torkar, K. Untersuchungen über Aluminiumhydroxyde und -oxyde, 2. Mitt. Mh. Chem. 91 H. 3 (1960) 450-455 22. Glemser, O.; Rieck, G. Zur Bindung des Wassers in den Systemen Al_2O_3/H_2O_3 , SiO_2/H_2O und ʹϜͼϧ᠐_ͻ/ΗϧΟ Z. Anorg. Allg. Chem. 297 (1958) 175-188 23. Treibmann, D.; Simon, A. Vergleich der katalytischen Aktivität von Aluminiumoxiden mit Herstellungsart und Adsorptionsstruktur Z. Anorg. Allg. Chem. 350 (1967) 281-294 24. Hauschild, U. Ober Nordstrandit, γ -A1(OH)₃ Z. anorg. allg. Chem. 324 (1963) 15-30 25 Torkar, K.; Krischner, H. Untersuchungen über Aluminiumhydroxyde und -oxyde, 5. Mitt. Mh. Chem. 91 H. 5 (1960) 757-763 26 Torkar, H.; Worel, H.; Krischner, H. Untersuchungen über Aluminiumhydroxyde und -oxyde, 3. Mitt. Mh. Chem. 91 H.4 (1960) 653-657 27. Krischner, H.; Torkar, K.; Hoffmann, R. Uber den Einbau von Fremdionen in γ -Al₂0₃, 1. Mitt. Mh. Chem. 98 H.6 (1967) 2348-2355 28. Torkar, K.; Egghart, H. Untersuchungen über Aluminiumhydroxyde und -oxyde, 10. Mitt. Mh. Chem. 92 (1961) 755-767 29. Torkar, K.; Bertsch, L. Untersuchungen über Aluminiumhydroxyde und -oxyde, 9. Mitt. Mh. Chem. <u>92</u> H.3 (1961) 746-754 30. Torkar, K.; Egghart, H.; Krischner, H.; Worel, H. Untersuchungen über Aluminiumhydroxyde und -oxyde, 7. Mitt. Mh. Chem. 92 H.3 (1961) 512-524

- -112-31. A.S.T.M.-Kartei (20-11) Ref. Rothbauer, Zigan, O'Daniel Z. Krist. <u>125</u> (1967) 317-331
- 32. A.S.T.M.-Kartei (7-324) Ref. Gillery, Min. Ind., Pennsylvania State Univ.
- 33. Oosterhout van, G.W. Morphology of Synthetic Submicroscopic Crystals of α -and γ FeOOH and of γ -Fe₂O₃ Prepared from FeOOH Acta Cryst. <u>13</u> (1960) 932-935
- 34. A.S.T.M.-Kartei (21-1307) Ref. National Bureau of Standards Circular 539, <u>3</u>, 38 (1953)
- 35. A.S.T.M.-Kartei (5-0355) Ref. Swanson, Fuyat, NBS Circular 539, 3 (1953)
- 36. Papée, D.; Tertian, R. Etude de la décomposition thermique de l'hydrargillite et de la constitution de l'alumine activée Bull. Soc. chim. (France) <u>22</u> (1959) 983-991
- 37. Lippens, B.C. Strukture and Texture of Aluminas Proefschrift, Delft (1961)
- 38. Neuwinger, H.D. Darstellung und Oberflächeneigenschaften verschiedener Aluminiumoxidformen Dissertation Universität Heidelberg (1970)
- 39. Donnert, D.

Der Einfluß von Struktur und Fremdionengehalt der Aluminiumoxide auf die Spinellbildung Diss. TH Graz (1968)

40. Kröger, F.A.

The Chemistry of Imperfect Crystals North-Holland Publishing Company-Amsterdam Çhapt, 18 (1964)

41. Miller, A.

Distribution of Cations in Spinels J. Appl. Phys., Suppl. <u>30</u>,4 (1959) 24S-25S

-113-42. Verwey, E.J.W. The Structure of the Electrolytical Oxide Layer on Aluminium Z. Krist. Miner. 91 (1935) 317-320 43. Hägg, G.; Söderholm, G. Die Kristallstrukturen von Mg - Al-Spinellen mit Al₂0₃-Oberschuß und von $\gamma - A1_20_3$ Z. Phys. Chem. 29 (1935) 88-94 44. Hoffmann, R. Der Einfluß von Calzium auf die Eigenschaften und das Reaktionsverhalten von γ -Aluminiumoxid Dissertation, Graz (1965) 45. de Boer, J.H.; Houben, G.M.M. The Binding of Water in and on Aluminium Oxide Proc. Intern. Symp. Reactivity of Solids, Göteborg (1952) 237-244 46. Glemser, O.; Rieck, G. Die Bindung des Wassers in den durch thermische Zersetzung von Aluminiumhydroxyden entstandenen Phasen Angew. Chem. Jg.68, Nr.5 (1956) 182 47. de Boer, J.H.; Fortuin, J.M.H.; Lippens, B.C.; Meijs, W.H. Study of the Nature of Surface with Polar Molecules II. The Adsorption of Water on Aluminas J. Cat. <u>2</u> (1963) 1-7 48. Peri, J.B. Infrared and Gravimetrie Study of the Surface Hydration of Y-Alumina J. Phys. Chem. 69, No.1 (1965) 211-219 49. Peri, J.B. Model for the Surface of γ -Alumina J. Phys. Chem. 69 N .1 (1965) 220-230 50. Krischner, H. Der Einbau von Fremdionen in γ -Al₂O₃ Koll. Z. u. Z. f. Polymere, 227 H. 1-2 (1968) 10-16 51. Hornisch, H.P. Untersuchungen an erdalkalidotierten Aluminiumoxiden Dissertation T.H. Graz (1967)

-114-52. Krischner, H.; Torkar, K.; Hornisch, P. Über den Einbau von Fremdionen in γ -Al₂0₃, 2. Mitt. Mh. Chem. 99 H.11 (1968) 220-229 53. Shepherd, E.S.; Rankin, G.A. Die binären Systeme von Tonerde mit Kieselsäure, Kalk und Magnesia Z. Anorg. Chem. 68 (1910) 370-420 54. Pukall, W. Anorganische Thesen Silikat-Z. 2 (1914) 87-99 55. Holleman, A.F.; Wiberg, E. Lehrbuch der Anorganischen Chemie Walter de Gruyter & Co. Berlin 57-70 Aufl. (1964) 352 56. Cotton, F.A.; Wilkinson, G. Anorganische Chemie Ver1. Chemie, GmbH, Weinheim/Bergstraße, 2. Auf1. (1970) 57. Krischner, H.; Hoffmann, R.; Donnert, D. Über den Einbau von Fremdionen in γ-Al₂0₃ 4. Mitt. Mh. Chem. 99 H.3 (1968) 1080-1089 58. Simpkin, G.T. The Effect of Iron an Chromium Ions on the Thermal Transformations and Electrokinetic Properties of Aluminium Oxides Dissertation Univ. Sheffield (1971) 59. Hsu, P.H.; Rennie, D.A. Reactions of Phosphate in Aluminium Systems Can.J.Soil Sci. 42 (1962) 197 60. Chen, Y.R.; Butler, J.N.; Stumm, W. Adsorption of Phosphate on Alumina and Kaolinite from Dilute Aqueous Solutions J.Coll. Interf. Sci. (1973)43, 421 61. Klopp, R. Adsorption von Phosphaten an Aluminiumoxid Diplomarbeit Universität Karlsruhe 62. Freundlich, H. Über die Adsorption in Lösungen Z. Phys. Chem. 57(1907) 385-470

- 63. Langmuir, I. The Constitution and Fundamental Properties of Solids and Liquids J. Am. Chem. Soc. 38(1916) 2221-2295
- 64. Höll, W.; Kirch, R. Regeneration of Weak Base Ion Exchange Resins Desalination, <u>26</u>(1978) 153-162
- 65. Radke, C.J.; Prausnitz, J.M. Adsorption of Organic Solutes from Dilute Aqueous Solution on Activated Carbon Ind. Eng. Chem. Fundam. 11 No. 4 (1972) 445-451
- 66. Brunauer, S.; Emmet, P.H.; Teller, E.Adsorption of Gases in Multimolecular LayersJ. Am. Chem. Soc. 60 (1938) 309-319
- 67. Eberle, S.H.; Klopp, R.; Anwar, S. Quantitative Beschreibung von Adsorptionsgewichten mit Aluminiumoxid auf Basis einer Überlegung von zwei Langmuir-Adsorptionsisothermen Vorabdruck KfK 2588 Uf
- 68. Rohmann, U.; Sontheimer, H. Untersuchungen zum Sorptionsverhalten von organischen Säuren an Aluminiumoxid Jahrbuch vom Wasser Bd. 50 (1978) 301
- 69. Klopp, R. Untersuchungen zur Sorption von organischen Verbindungen aus Wasser an Aluminiumoxid Dissertation Universität Karlsruhe (1979)
- 70. Tong, J.Y. Chromium (VI) Species and Spectra in Acidic Solutions Inorg. Chem. 3 Nr. 12 (1964) 1804-1805
- 71. Haight, G.P.; Richardson, D.C.; Coburn, N.H. A Spectrophotometric Study of Equilibria Involving Mononuclear Chromium (VI) Species in Solutions of Various Acids Inorg. Chem. <u>3</u> No.12 (1964) 1777-1780

72.Balzer, D.; lange, H.Zur Wechselwirkung von Polyanionen mit Pigmenten1. Untersuchung an Aluminiumoxid

J. Coll. Pol. Sci 253 No.8 (1975) 643-657

-115-

- 73. A.S.T.M.-Kartei (23-1037 A)
- 74. Krischner, H.; Torkar, K.; Hornisch, P. Über den Einbau von Fremdionen in γ -Al₂0₃, 5. Mitt. Mh. Chem. <u>99</u> H.5 (1968) 1733-1741
- 75. Krischner, H.; Torkar, K.; Mulder, J.A Über den Einbau von Fremdionen in γ -Al₂O₃, 3. Mitt. M. Chem. <u>99</u> H.2 (1968) 823-831
- 76. Muljadi,D.; Posner, A.M.; Quirk, J.P. The Mechanism of Phosphate Adsorption by Kaolinite, Gibbsite, and Pseudoboehmite J. Soil.Sci. 17 (1966) 213-247
- 77. Connor, P.; Ottewill, R.H. The Adsorption of Cationic Surface Active Agents on Polystyrene Surface J. Colloid Interface Sci. <u>37</u> No.3 (1971) 642-651
- 78. Gatta, G.D.; Fubini, B.; Ghiotti, G. The Chemisorption of Carbon Monoxide on Various Transition Aluminas J. Catal. 43 (1976) 90-98
- 79. Fricke, R.; Jockers, K. Porosität und Oberfläche verschiedener Aluminiumhydroxide und Aluminiumoxide Z.Anorg.Allg. Chem.<u>262</u>,1 (1951) 41-48
- 80.Santacesarle, E.; Gelosa, D.Basic Behavior of Alumina in the Presence of Strong Acids Ind. Eng. Chem. Prod. Res Dev.16 No.1 (1977) 45-47
- 81.Pines, H.; Manassen, H. The Mechanism of Dehydration of Alcohols over Alumina Catalysts J. Adv. Catal <u>16</u> (1966) 49
- 82.Knözinger, H.; Ratnasamy, P. Catalytic Aluminas: Surface Models and Characterization of Surface Sites Catal. Rev.-Sci. Eng. 17 No 1 (1978) 31-70

- 83. Knözinger, H.; Krietenbrind, H.; Müller, H.D.; Schulz, W. Co-Operative Effects in Surface Chemical and Heterogeneously Catalyzed Reactions on Metal Oxides Proc. 6th Intern. Congr. Catal., London <u>1</u> (1976) Chemical Society London (1977) 183-194
- 84. Giebler, G.
 Vergleichende Untersuchungen der zur Bestimmung von Aluminiumionen im Wasser gebräuchlichen Methoden
 Z. Anal. Chem. 184 (1961) 401-411
- 85. Parker, C.A.; Goddard, A.P. The Reaction of Alumina Ion with Alizarin-3-Sulphonate with Particular Reaction Anal. Chem. Acta 4 (1950) 517-535
- 86. Haul, R.; Dümbgen, G. Vereinfachte Methode zur Messung von Oberflächengrößen durch Gasadsorption Chem. Ing. Techn. 35 Nr. 8 (1963) 586-589
- 87. Gericke, S.; Kurmies, B.
 Colorimetrische Bestimmung der Phosphorsäure mit Vanadat-Molybdat
 Z. Anal. Chem. 137 (1952) 15-22
- 88. Jander Jahr Maßanalyse, Sammlung Göschen, Bd. 221/221 a
- 89. Bose, M. The Reaction of Chromate with Diphenylcarbazide I Anal. Chem. <u>10</u> (1954) 201-208
- 90. Deutsche Einheitsverfahren zur Wasseruntersuchung E 10 Verlag Chemie, Weinheim, 3. Auflage